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Figures S1-S5

Introduction

Figure S1 shows a schematic diagram of an unconfined aquifer.

Figure S2 shows the experimental apparatus used to quantify the dynamic effective porosity.

Figure S3 plots amplitude decay rate (k.D) and phase lag increase rate (k;D) versus non-
dimensional aquifer depth (n.wD/K;) for watertable waves obtained from experiments and
different existing theories.

Figure S4 plots amplitude decay rate (k.D) and phase lag increase rate (k;D) versus non-
dimensional aquifer depth (n.wD/K;) for watertable waves obtained from experiments and
existing theory that combines equation (2) with the complex-valued expression for the
dynamic effective porosity proposed by Cartwright et al. (2005).

Figure S5 gives the numerical model setup for the base case.
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Figure S1. Schematic diagram of an unconfined aquifer (modified from Kong et al. (2015)).
OPNM represents the aquifer normal to the shoreline with a vertical sea boundary (OM). OP
and PN are impermeable while MN is the ground surface, t [T] is time, x [L] is the horizontal
distance from the vertical seaward boundary, D [L] is the aquifer depth (equal to the mean
height of the boundary forcing), and h [L] is the watertable height above the impermeable
layer.
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a1 Figure S2. Experimental apparatus used to quantify the dynamic effective porosity, modified
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Figure S3. Comparison of (a) amplitude decay rate (kD) versus non-dimensional aquifer
depth (n.wD/Ks) and (b) phase lag increase rate (kiD) versus non-dimensional aquifer depth
(newD/K;s) for watertable waves obtained from experiments and different existing theories.
Parameters used are consistent with Shoushtari et al. (2016): D =0.92 m, Hy = 0.61 m and K;
=4.7 x 10* m/s. Parameter definitions are given in the main text.
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Figure S4. Comparison of (a) amplitude decay rate (kD) versus non-dimensional aquifer
depth (n.wD/Ks) and (b) phase lag increase rate (kiD) versus non-dimensional aquifer depth
(newD/K;s) for watertable waves obtained from experiments and existing theory that
combines equation (2) with the complex-valued expression for the dynamic effective
porosity proposed by Cartwright et al. (2005). Parameters used are consistent with
Shoushtari et al. (2016): D=0.92 m, Hy = 0.61 m and Ks = 4.7 x 10% m/s.
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h,=D + Asin(wt)
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Model setup

Boundary conditions: Soil properties:

RS: Constant head boundary with h =0.74 VG parameters:a=11m?,n =6,

m and ¢ =0 ppt Hydraulic conductivity: K, = 3 x 103 m/s
OPQ: Time-dependent head boundary Static effective porosity: 0.4
withD=0.7m,A=0.075mand T=240s Diffusion coefficient: 1 x 10° m?/s
(w=2m/T),and c =35 ppt Longitudinal dispersivity: 0.006 m

0S: No flow boundary Transversal dispersivity: 0.0006 m

QR: Atmospheric boundary Mesh sizes and time step:

Initial conditions: Ax=0.02m,Az=0.1mand At=4s

h=0.70m, c=0ppt
58

ss  Figure S5. Numerical model setup for the base case (Shen et al., 2020), which uses a van
0  Genuchten (VG) soil.
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