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Introduction  22 

Figure S1 shows a schematic diagram of an unconfined aquifer. 23 

Figure S2 shows the experimental apparatus used to quantify the dynamic effective porosity. 24 

Figure S3 plots amplitude decay rate (krD) and phase lag increase rate (kiD) versus non-25 

dimensional aquifer depth (ne𝜔D/Ks) for watertable waves obtained from experiments and 26 

different existing theories. 27 

Figure S4 plots amplitude decay rate (krD) and phase lag increase rate (kiD) versus non-28 

dimensional aquifer depth (ne𝜔D/Ks) for watertable waves obtained from experiments and 29 

existing theory that combines equation (2) with the complex-valued expression for the 30 

dynamic effective porosity proposed by Cartwright et al. (2005). 31 

Figure S5 gives the numerical model setup for the base case.  32 

mailto:zhaoyang.luo@epfl.ch
mailto:kongjun999@126.com


2 

 33 

Figure S1. Schematic diagram of an unconfined aquifer (modified from Kong et al. (2015)). 34 

OPNM represents the aquifer normal to the shoreline with a vertical sea boundary (OM). OP 35 

and PN are impermeable while MN is the ground surface, t [T] is time, x [L] is the horizontal 36 

distance from the vertical seaward boundary, D [L] is the aquifer depth (equal to the mean 37 

height of the boundary forcing), and h [L] is the watertable height above the impermeable 38 

layer.  39 
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   40 

Figure S2. Experimental apparatus used to quantify the dynamic effective porosity, modified 41 

from Luo et al. (2020).  42 
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 43 

 44 

Figure S3. Comparison of (a) amplitude decay rate (krD) versus non-dimensional aquifer 45 

depth (ne𝜔D/Ks) and (b) phase lag increase rate (kiD) versus non-dimensional aquifer depth 46 

(ne𝜔D/Ks) for watertable waves obtained from experiments and different existing theories. 47 

Parameters used are consistent with Shoushtari et al. (2016): D = 0.92 m, Hψ = 0.61 m and Ks 48 

= 4.7 × 10-4 m/s. Parameter definitions are given in the main text.  49 

(a) 

(b) 
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 51 

Figure S4. Comparison of (a) amplitude decay rate (krD) versus non-dimensional aquifer 52 

depth (ne𝜔D/Ks) and (b) phase lag increase rate (kiD) versus non-dimensional aquifer depth 53 

(ne𝜔D/Ks) for watertable waves obtained from experiments and existing theory that 54 

combines equation (2) with the complex-valued expression for the dynamic effective 55 

porosity proposed by Cartwright et al. (2005). Parameters used are consistent with 56 

Shoushtari et al. (2016): D = 0.92 m, Hψ = 0.61 m and Ks = 4.7 × 10-4 m/s.  57 

(a) 

(b) 
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 58 

Figure S5. Numerical model setup for the base case (Shen et al., 2020), which uses a van 59 

Genuchten (VG) soil.  60 
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