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Abstract.

Sorptivity is one of the most important parameters for the quantification of water infiltration into soils. Parlange (1975) pro-

posed a specific formulation to derive sorptivity as a function of the soil water retention and hydraulic conductivity functions,

as well as initial and final soil water contents. However, this formulation requires the integration of a function involving the

hydraulic diffusivity, which may be undefined or present numerical difficulties that cause numerical misestimations. In this5

study, we propose a mixed formulation that scales sorptivity and splits the integrals into two parts: the first term involves the

scaled degree of saturation while the second involves the scaled water pressure head. The new mixed formulation is shown to

be robust and well-suited to any type of hydraulic functions - even with infinite hydraulic diffusivity or positive air-entry water

pressure heads - and any boundary condition, including infinite initial water pressure head, h→−∞.

1 Introduction10

Soil sorptivity represents the capacity of a soil to absorb or desorb liquid by capillarity, and is therefore one of the key factors

for modeling water infiltration into soil or flow in the vadose zone (Cook and Minasny, 2011). Knowledge of soil sorptivity

is also crucial when deciphering soil physical properties such as hydraulic conductivity from water infiltration experiments

1

https://doi.org/10.5194/hess-2021-633
Preprint. Discussion started: 23 December 2021
c© Author(s) 2021. CC BY 4.0 License.



(Angulo-Jaramillo et al., 2016; Stewart and Abou Najm, 2018). Several models and methods make use of this variable such

as in the the Beerkan Estimation of Soil Transfer parameters (BEST) methods (Lassabatere et al., 2006, 2009, 2014, 2019;15

Angulo-Jaramillo et al., 2019) and related simplified Beerkan approaches (Bagarello et al., 2014b; Di Prima et al., 2020;

Yilmaz, 2021). Sorptivity is also required for the computation of several hydraulic parameters, like the macroscopic capillary

length (Bouwer, 1964; White and Sully, 1987). Parlange (1975) proposed an accurate approximation for the quantification of

sorptivity:

SD (θ0,θ1) =

√√√√√
θ1∫

θ0

(θ1 + θ− 2θ0)D (θ)dθ (1)20

where D(θ) =K(θ)dh/dθ is the hydraulic diffusivity function, θ0 and θ1 stand for the initial and final water contents. This

formulation addresses the case when the initial and final conditions are defined in terms of water contents. Ross et al. (1996)

defined this integral in terms of water pressure head instead of water contents, leading to the following formulation:

SK (h0,h1) =

√√√√√
h1∫

h0

(θ (h1) + θ (h)− 2θ (h0))K (h)dh

=

√√√√√
h1∫

h0

(θ1 + θ (h)− 2θ0)K (h)dh (2)

where the initial and the final values of the water pressure heads, h0 and h1, correspond to the water contents θ0 = θ (h0) and25

θ1 = θ (h1). In the following, the two equations Eq. (1) and Eq. (2) will be referred to as the diffusivity and conductivity forms

of sorptivity and will be respectively denoted SD and SK.

The two forms, SK and SD, each have their own shortcomings. For certain hydraulic models, D (θ) tends towards infinity

when θ0→ θs, making it difficult to compute the right-hand side of Eq. (1). Moreover, when the surface water pressure head

exceeds the air-entry water pressure head, SD misses the saturated part of sorptivity,
∫ h1

ha
(θ (h1) + θ (h)− 2 θ (h0))K (h)dh30

(Ross et al., 1996). The conductivity form SK must be used when it is necessary to account for the two parts of sorptivity, i.e.,

the unsaturated and saturated parts, as indicated by the following relationship (Lassabatere et al., 2021):

SK (h0,h1 ≥ ha) =
√
S2

D (θ0,θs) + 2(θs− θ0)Ks (h1−ha)

=
√
S2

D (θ (h0) ,θ (h1)) + 2(θ (h1)− θ (h0))Ks (h1−ha) (3)

We can thus conclude that the conductivity form, SK, is the more general equation. However, SK can also be difficult to

handle when the initial conditions are very dry. In particular, for very dry initial conditions, the initial water pressure head35

corresponding to θr corresponds to h0→−∞. Then, the calculation of SK requires the evaluation of an integral that involves

an infinite lower bound:
∫ h1

−∞ (θ (h1) + θ (h)− 2 θr)K (h)dh.

In this study, we propose a new mixed formulation that overcomes these problems. We compare it to the approaches com-

monly used to compute sorptivity, i.e., Eq. (1) and Eq. (2). The proposed mixed formulation automatically accounts for the

2
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saturated and unsaturated parts of sorptivity. It also allows for easy computation under any initial condition, including the ex-40

treme case of an initial water content equal to the residual water content, θ0 = θr (corresponding to an negative infinite initial

water pressure head, h0 =−∞) and a final water pressure head higher than the air-entry water pressure head, h1 ≥ ha.

The paper is organized as follows. The theory section presents the proposed mixed formulation. Next, the paper analyzes

the precision of the mixed formulation by comparing it with the exact analytical formulation for the case of the maximum

sorptivity, S (−∞,0) =
√∫ 0

−∞ (θs + θ (h)− 2 θr)K (h)dh. The maximum sorptivity, S (−∞,0), encompasses the two types45

of problems, i.e., infinite negative initial water pressure head, and infinite diffusivity function close to water saturation θ→ θs,

and also omission of the saturated part of sorptivity when h1 > ha by regular approaches. We considered three commonly

used hydraulic models, for which Lassabatere et al. (2021) proposed analytical formulations for S (−∞,0): Brooks and Corey

(BC), van Genuchten - Burdine (vGB), and van Genuchten - Mualem (vGM). See below for their descriptions. The second part

of the paper compares the accuracy of the mixed formulation with the current strategies for the same three hydraulic models50

plus the Kosugi (KG) model, that demonstrating the risk of serious misestimations with prior approaches. By presenting a

new formulation that is applicable to any types of conditions, this paper completes the study of Lassabatere et al. (2021),

who proposed a scaling procedure for the approximation of SK (h0,h1 = 0) with the condition of null water pressure head at

surface, i.e., h1 = 0.

2 Theory55

2.1 Proposed new mixed formulation for computing sorptivity

To build the mixed formulation, SM, we start with the conductivity form of sorptivity, SK, since it includes both unsaturated

and saturated parts. Then, we define an intermediate water pressure head between the initial and final water pressure heads,

hc ∈ [h0,h1], smaller than the air entry pressure, hc < ha ≤ 0, and we split the integrate into two separate parts as follows:

SM (h0,h1) = SK (h0,h1) =

√√√√√
h1∫

h0

(θ (h1) + θ (h)− 2θ (h0))K (h)dh

=

√√√√√
hc∫

h0

(θ (h1) + θ (h)− 2θ (h0))K (h)dh+

h1∫

hc

(θ (h1) + θ (h)− 2θ (h0))K (h)dh

=

√√√√√√

θ(hc)∫

θ(h0)

(θ (h1) + θ− 2θ (h0))D (θ)dθ+

h1∫

hc

(θ (h1) + θ (h)− 2θ (h0))K (h)dh (4)60

In Eq. (4), the integral
∫ hc

h0
(θ (h1) + θ (h)− 2θ (h0))K (h)dh is transformed into

∫ θ(hc)

θ(h0)
(θ (h1) + θ− 2θ (h0))D (θ)dθ thanks

to the change of variable h→ θ. This operation requires that the function θ (h) is bijective over the whole interval [h0,hc],

3
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which is valid so long as hc < ha. The mixed formulation, SM, may be written alternatively as follows:

SM (h0,h1) =

√√√√√√√√

θc∫

θ0

(θ1 + θ− 2θ0)D (θ)dθ

︸ ︷︷ ︸
A

+

h1∫

hc

(θ1 + θ (h)− 2θ0)K (h)dh

︸ ︷︷ ︸
B

(5)

where θc = θ (hc) and θ1 = θ (h1) and θ0 = θ (h0). The constraint hc < ha ensures that the computation of A in Eq. (5) avoids65

the challenging integration of infinite diffusivity close to saturation, D (θs) = +∞, since θc < θs. In addition, hc is bounded

to finite value to avoid integration over infinite intervals for part B. Then, the two integrals involved in Eq. (5), A and B only

involve bounded functions over finite intervals, ensuring an easy numerical computation. An illustration of the procedure is

depicted in Figure (1).
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Figure 1. Concept of the mixed formulation, SM (h0,h1): the integration of
∫ h1
h0

(θ1 + θ (h)− 2θ0)K (h)dh
(
= S2

M (h0,h1)
)

is

converted into the sum of the integration of two bounded functions over bounded intervals,
∫ θc
θ0

(θ1 + θ− 2θ0)D (θ)dθ and∫ h1
hc

(θ1 + θ (h)− 2θ0)K (h)dh. Note that the data are depicted with log-scale for clarity but the integration performs on directly on the

integrands instead of their log-scaled counterparts.

Next, we scale sorptivity to separate the respective contributions of scale and shape parameters, as suggested by Lassabatere70

et al. (2021). We consider the following scaling relationships for hydraulic variables and sorptivity:




Se = θ−θr
θs−θr

h∗ = h
|hg|

Kr = K
Ks

(6)

4
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where Se is the saturation degree, h∗ is the scaled water pressure head, Kr is the relative hydraulic conductivity, θr and θs are

the residual and the saturated water contents, hg is the scale parameter for the water pressure head, and Ks is the saturated

hydraulic conductivity. The application of scaling relationships of Eq. (6) to the dimensional sorptivity expressions leads to the75

following equation (Ross et al., 1996):

S =
√
|hg|Ks (θs− θr) S∗ (7)

where S and S∗ are respectively the dimensional and the scaled sorptivities. The application of the scaling equations Eqs. (6-7)

to the mixed formulation SM, defined by Eq. (4), leads to the final expression proposed in this study:




SM (h0,h1) =
√
|hg|Ks (θs− θr) S∗M (h∗0,h

∗
1)

S∗M (h∗0,h
∗
1) =

√∫ Se(h∗c )

Se(h∗0) (Se (h∗1) +Se− 2Se (h∗0))D∗ (Se)dSe +
∫ h∗1
h∗c

(Se (h∗1) +Se (h∗)− 2Se (h∗0))Kr (h∗)dh∗
(8)80

where S∗M (h∗0,h
∗
1) is the scaled version of the proposed mixed formulation, SM (h0,h1), with h∗0 = h0/|hg| and h∗1 = h1/|hg|.

Eq. (8) can be demonstrated by changing the integration variable θ→ Se in the first and h→ h∗ in the second integral of

Eq. (4). The equation Eq. (8) has an inconvenient with coding software that do not allow infinite value, h∗0 =−∞. We then

replace the input h0 (that may be infinite) with Se,0 = Se (h∗0) that always remains bounded in the final expression of the mixed

formulation S∗M:85

S∗M (Se,0,h∗1) =

√√√√√√

Se(h∗c )∫

Se,0

(Se (h∗1) +Se− 2Se,0)D∗ (Se)dSe +

h∗1∫

h∗c

(Se (h∗1) +Se (h∗)− 2Se,0)Kr (h∗)dh∗ (9)

Several options exist for the choice of the intermediate water pressure head h∗c and intermediate saturation degree Se,c =

Se (h∗c). In this study, our preferred option is to set the intermediate saturation degree as the average between the initial and

the final saturation degrees, Se,c = (Se,0 +Se,1)/2. However, under certain circumstances (e.g., for soils with gradual water

retention functions, see results section), the value of h∗(Se,c) may reach very large values, leading to numerical instabilities.90

Therefore, we use the following criteria to ensure that h∗(Se,c) remains finite:



h∗c =−min

(∣∣∣h∗
(
Se,0+Se,1

2

)∣∣∣ ,10z
)

z ∈ Z

Se,c = Se (h∗c)
(10)

When necessary, the value of z is varied until the two integrals in S∗M (Eq. 9) converge. In most cases, z ∈ {−2,−1,0} ensures

convergence regardless of soil type and situation. Note that for hydraulic models with non-null water entry pressure head

ha < 0, z should be fixed with z ≥ 0 so as to ensure −10z ≤−1 and thus h∗c ≤ h∗a =−1. This condition is necessary to ensure95

the bijectivity of the function Se (h∗) over the interval [h∗0,h
∗
c ], which is required for the use of Eq. (9).

In the following, the mixed formulation S∗M, Eqs. (9-10) will be compared to several strategies previously proposed in the

literature to cope with situations of numerical indeterminacy, e.g., at saturation θ1 = θs (or, Se,1 = 1) for a null water pressure

head at surface, h1 = 0, and for very dry initial conditions θ0→ θr (or, h∗0→−∞).
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2.2 Usual methods for computing sorptivity based on SD and SK100

2.2.1 Computing sorptivity with SK for very dry initial conditions h0→−∞

Regarding the computation of sorptivity for very dry initial conditions with SK, one of the strategies found in the literature

applies the regular definitions of sorptivity (Parlange, 1975), Eq. (2), to the case of very low values of h0. Such an approach

was used by Di Prima et al. (2020) for the estimation of SK (h0,h1) for very dry soils. In this case, the maximum sorptivity,

S (−∞,h1), is approached as follows:105

S (−∞,h1) =

√√√√√
h1∫

−∞

(θ1 + θ (h)− 2 θr)K (h)dh

= lim
h0→−∞

√√√√√√

h1∫

h0

(
θ1 + θ (h)− 2θ

(
h0

))
K (h)dh

= lim
h0→−∞

SK

(
h0,h1

)
(11)

Note that, for the sake of clarity, the underline in Eq. (11) shows the variables that are varied. Note also that the preceding

equations are valid since
√
lim f(x) = lim

√
f(x), with y =

√
x defining a continuous function. In practical applications of

this method, SK (h0,h1) is computed for decreasing values of h0 until reaching stabilization, since the integration can lead to

numerical indeterminacy when the intervals [h0,h1] are too wide. The last value obtained in this way is considered to represent110

the sorptivity at extremely dry conditions, i.e., S (−∞,h1). This option is quite practical since it requires the user to only code

the regular function SK before applying it to very negative values of h0.

We propose an alternative procedure that employs a specific integrand to compute the same limit. In this case, the water

content θ0 is set equal to θr in the integrand so as to correspond to the targeted initial conditions θ (h0 =−∞) = θr:

S (−∞,h1) =

√√√√√
h1∫

−∞

(θ1 + θ (h)− 2 θr)K (h)dh

= lim
h0→−∞

√√√√√√

h1∫

h0

(θ1 + θ (h)− 2 θr)K (h)dh

= lim
h0→−∞

SK−V2

(
h0,h1

)
(12)115

with the specific function SK−V2 defined as follows:

SK−V2 (h0,h1) =

√√√√√
h1∫

h0

(θ1 + θ (h)− 2 θr)K (h)dh (13)

6
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In comparison to SK, the water content θ0 is replaced with θr in the integrand for SK−V2. We expect this modification to im-

prove numerical convergence towards the lower integration limit, since SK−V2 directly integrates the right integrand (Fig. 2a,

SK−V2). Conversely, SK integrates a distinct integrand, i.e., (θ1 + θ (h)− 2θ0)K (h) 6= (θ1 + θ (h)− 2θr)K (h), thus involv-120

ing an additional source of error (Fig. 2a). Briefly, SK combines the error due to the integral bound h0 >−∞ and the differ-

ence between its integrand and the targeted integrand. Note that the function SK−V2 should be restricted to the evaluation of

S (−∞,h1) and never used for the computation of other cases, i.e., S (h0 6=−∞,h1), since the water content in the integrand

is fixed at θr, which corresponds exclusively to the case of h0 = +∞.

10
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10
0

10
1
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2
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3
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10
-12
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-9
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-1
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5.0x10
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(b)

Figure 2. Illustration of the regular strategies for the estimation of the limits: (a) case of very dry conditions with the estimation of S (−∞,h1)

using either SK (h0,h1) or SK−V2 (h0,h1), (b) case of saturation θ1→ θs, with the estimation of Su (θ0,θs) using either SD (θ0,θ1) or

SD−V2 (θ0,θ1). The variables that are varied to reach the targeted limits are underlined. The integration proceeds from the given value of h0

to right, h≥ h0 in (a) and from the given value of θ1 to the left, θ ≤ θ1 in (b), and figures are zoomed in in the vicinity of the limits.

The application of the scaling, Eqs. (6-7), to the preceding definitions, Eqs. (11-12), leads to scaled versions of those equa-125

tions, which will be used in the computations below:

S∗ (−∞,h∗1) = lim
h∗0→−∞

√√√√√√

h∗1∫

h∗0

(
Se,1 +Se (h∗)− 2 Se

(
h∗0

))
Kr (h∗)dh∗

= lim
h∗0→−∞

S∗K
(
h∗0,h

∗
1

)
(14)
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S∗ (−∞,h∗1) = lim
h∗0→−∞

√√√√√√

h∗1∫

h∗0

(Se,1 +Se (h∗))Kr (h∗)dh∗

= lim
h∗0→−∞

S∗K−V2

(
h∗0,h

∗
1

)
(15)

with S∗K and S∗K−V2, the scaled versions of SK and SK−V2, defined as follows:130




S∗K (h∗0,h

∗
1) =

√∫ h∗1
h∗0

(Se,1 +Se (h∗)− 2Se (h∗0))Kr (h∗)dh∗

S∗K−V2 (h∗0,h
∗
1) =

√∫ h∗1
h∗0

(Se,1 +Se (h∗))Kr (h∗)dh∗
(16)

The derivation of these equations involved scaling Eq. (6) and Eq. (7) along with the change of variable θ→ Se.

2.2.2 Computing sorptivity with SD for null water pressure head at surface (h1 = 0)

A similar approach is often used with the SD formulation to avoid numerical indeterminacy close to saturation. The first option

considers SD (θ0,θ1) with θ1→ θs as suggested, for instance, by Fernández-Gálvez et al. (2019):135

Su (θ0,θs) =

√√√√√
θs∫

θ0

(θs + θ− 2 θ0)D (θ)dθ

= lim
θ1→θs

√√√√√√

θ1∫

θ0

(
θ1 + θ− 2 θ0

)
D (θ)dθ

= lim
θ1→θs

SD

(
θ0,θ1

)
(17)

Note that with this method, we can only account for the unsaturated part of sorptivity, Su (θ0,θs) =
√∫ θs

θ0
(θs + θ− 2 θ0)D (θ)dθ,

and we systematically miss the saturated portion of sorptivity 2(θs− θ0)Ks (h1−ha), as mentioned in section 1. The total

sorptivity corresponds to the sum of its two components (see Eq. 3): S (h0,h1 > ha) =
√
S2

u (θ0,θs) + 2(θs− θ0)Ks (h1−ha).

The subscript "u" in Su (θ0,θs) stands for "unsaturated" and serves as a reminder of that limitation (Ross et al., 1996). This140

point will be further illustrated and discussed in the Results section (section 3).

The integrand specified by SD corresponds to
(
θ1 + θ (h)− 2 θ0

)
D (θ). Consequently, SD combines the error due to the

discrepancy between the integrated and the targeted integrands with the error resulting from the restriction of the integration to

[θ0,θ1] instead of [θ0,θs] (Fig. 2b, SD). To correct this problem, we define a different estimator, SD−V2, to integrate directly

8
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the targeted integrand, (θs + θ (h)− 2 θ0) D (θ) (Fig. 2b, SD−V2), and the following developments come out:145

Su (θ0,θs) =

√√√√√
θs∫

θ0

(θs + θ− 2 θ0)D (θ)dθ

= lim
θ1→θs

√√√√√√

θ1∫

θ0

(θs + θ− 2 θ0)D (θ)dθ

= lim
θ1→θs

SD−V2

(
θ0,θ1

)
(18)

with the function SD−V2 defined as follows:

SD−V2 (θ0,θ1) =

√√√√√
θ1∫

θ0

(θs + θ− 2 θ0)D (θ)dθ (19)

As mentioned above for SK−V2, SD−V2 should be only used for the determination of Su (θ0,θs), and not for the computation

of sorptivity corresponding to other values of final water contents, SD−V2 integrates the integrand related exclusively to the150

case of θ1 = θs.

The scaled version of these equations can be easily found by applying the scaling, Eq. (6-7), to the previous equations,

Eqs. (17-18), leading to their scaled versions:

S∗u (Se,0,1) = lim
Se,1→1

√√√√√√

Se,1∫

Se,0

(
Se,1 +Se− 2 Se,0

)
D∗ (Se)dSe

= lim
Se,1→1

S∗D
(
Se,0,Se,1

)
(20)

155

S∗u (Se,0,1) = lim
Se,1→1

√√√√√√

Se,1∫

Se,0

(1 +Se− 2 Se,0)D∗ (Se)dSe

= lim
Se,1→1

S∗D−V2

(
Se,0,Se,1

)
(21)

with the use of the scaled versions S∗D and S∗D−V2 of the formulations SD and SD−V2:



S∗D (Se,0,Se,1) =

√∫ Se,1

Se,0
(Se,1 +Se− 2 Se,0)D∗ (Se)dSe

S∗D−V2 (Se,0,Se,1) =
√∫ Se,1

Se,0
(1 +Se− 2 Se,0)D∗ (Se)dSe

(22)

In the following, we compare these previously used strategies based on the use of S∗K, and S∗D, and the improved versions

designed for the purpose of this study, S∗K−V2 and S∗D−V2 with the proposed mixed formulation S∗M, in terms of accuracy160
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and efficiency. Note that instead of using the limits, some authors (e.g., Minasny and McBratney, 2000) have discretized the

integrands using the adaptive Gaussian quadrature algorithm (Kahaner et al., 1989). This point is out of the scope of this study.

We focused on regular integration procedures without discretization of integrands and functions, like in the adaptive Gaussian

quadrature algorithm (Kahaner et al., 1989).

2.3 Validation of estimates against the nominal sorptivity for the selected hydraulic models165

2.3.1 Hydraulic models and nominal sorptivity

The validation of the computation of sorptivity with the proposed mixed formulation SM (Eq. 9) and the usual strategies (see

sections 2.2) was performed for hydraulic models that present challenging features. Besides, these models are commonly used

for the hydraulic characterization of soils:

– The Brooks and Corey (BC) model (Brooks and Corey, 1964) is among the first hydraulic models of soil physics (Hillel,170

1998). It uses power laws to define the water retention (WR) and hydraulic conductivity (HC) functions and was often

considered for integrating sorptivity and finding analytical solutions for water infiltration into soils (e.g., Varado et al.,

2006). The BC model reads as follows:




θBC(h) =





θs h≥ hBC

θr + (θs− θr)
(
hBC
h

)λBC
h < hBC

KBC(θ) =Ks

(
θ−θr
θs−θr

)ηBC

(23)

– The van Genuchten – Burdine (vGB) model combines van Genuchten (1980) model with Burdine condition (m= 1− 2
n )175

for the WR function and the Brooks and Corey (1964) model for the HC function. It was the basis of the development of

BEST methods and often considered for the hydraulic characterization of soils (Lassabatere et al., 2006; Yilmaz et al.,

2010; Bagarello et al., 2014a). These formulations are considered to be one of the most consistent to use for modeling

water infiltration into soils (Fuentes et al., 1992). The vGB model reads as follows:




θvGB(h) = θr +(θs− θr)
(
1+
(

h
hvGB

)nvGB
)−mvGB

mvGB = 1− 2
nvGB

KvGB(θ) =Ks

(
θ−θr
θs−θr

)ηvGB

(24)180

– The van Genuchten – Mualem (vGM) model combines van Genuchten (1980) model with Mualem’s condition (m=

1− 1
n ) for the WR function and the Mualem (1976) capillary model for the HC function. The vGM model is among the

most widely-used models, in particular for the numerical modeling of flow in the vadose zone (Šimůnek et al., 2003).

The vGM model reads as follows:
θvGM(h) = θr +(θs− θr)

(
1+

(
h

hvGM

)nvGM
)−mvGM

mvGM = 1− 1
nvGM

KvGM(θ) =Ks

(
θ−θr
θs−θr

)lvGM
(

1−
(

1−
(
θ−θr
θs−θr

) 1
mvGM

)mvGM)2
(25)185
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– The Kosugi (KG) model relates the WR function to the soil pore size distribution assuming log-normal distributions

(Kosugi, 1996). It is quite popular as the consequence of its physical meaning and soundness (Pollacco et al., 2013;

Nasta et al., 2013) and was also recently implemented into BEST methods for the hydraulic characterization of soils

(Fernández-Gálvez et al., 2019). The KG model reads as follows:
θKG(h) = θr +

(θs−θr)
2

erfc

(
ln

(
h

hKG

)
√

2σKG

)

KKG(θ) =Ks

(
θ−θr
θs−θr

)lKG
(

1
2
erfc

(
erfc−1

(
2 θ−θr
θs−θr

)
+ σKG√

2

))2
,

(26)190

where erfc stands for the complementary error function.

These models involve the following common scale hydraulic parameters: residual water content, θr, saturated water content,

θs, scale parameter for the water pressure head, hg, (hBC, hvGB, hvGM, or hKG), and saturated hydraulic conductivity,Ks. The

BC models involve a non-null air-entry water pressure head, hBC, meaning that air needs a given suction to enter into the soil

and to desaturate the soil. For the sake of simplicity, the scale parameter for water pressure head is often fixed at the air-entry195

pressure head, so that hg = hBC. In addition, these hydraulic models involve one or two shape parameters for each set of WR

and HC functions, which are λBC and ηBC for the BC model, mvGB, nvGB and ηvGB for the vGB model, mvGM, nvGM and

lvGM for the vGM model, and, lastly, σKG and lKG for the KG model. In order to simplify these equations and to reduce the

risk of equifinality and non-unique optimization when inverting (Pollacco et al., 2013), the following capillary model has been

proposed to link these shape parameters (Haverkamp et al., 2005):200

η =
2
λ

+ 2 + p (27)

where λ= λBC for the BC model and λ=mn for the vGB models. Besides, the shape parameters lvGM and lKG are usually

fixed at 1
2 . In this study, the computations are performed considering the relationship given by Eq. (27).

The application of the scaling procedure Eq. (6) to these hydraulic models, i.e., Eqs. (23)-(26) leads to the following scaled

hydraulic models (Lassabatere et al., 2021):205

BC model:{
Se,BC (h∗) = (1−H (1+h∗)) |h∗|−λBC +H (1+h∗)

Kr,BC (Se) = SηBC
e

(28)

vGB model:




Se,vGB (h∗) = (1 + |h∗|nvGB)−mvGB

with mvGB = 1− 2
nvGB

Kr,vGB (Se) = SηvGB
e

(29)

vGM model:210




Se,vGM (h∗) = (1 + |h∗|nvGM)−mvGM

with mvGM = 1− 1
nvGM

Kr,vGM (Se) = SlvGM
e

(
1−

(
1−S

1
mvGM
e

)mvGM
)2

(30)
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KG model:




Se,KG (h∗) = 1
2erfc

(
ln(|h∗|)√

2σKG

)

Kr,KG (Se) = SlKG
e

(
1
2erfc

(
erfc−1 (2Se) + σKG√

2

))2

.
(31)

These hydraulic models have the following hydraulic diffusivity functions, D∗ (Se) =K (Se) dh
∗

dSe
(Lassabatere et al., 2021):

D∗BC (Se) =
1
λBC

S
ηBC−

(
1

λBC
+1

)
e (32)215

D∗vGB (Se) =
1−mvGB

2mvGB
S
ηvGB− 1+mvGB

2mvGB
e

(
1−S

1
mvGB
e

)− 1+mvGB
2

(33)

D∗vGM (Se) =
1−mvGM

mvGM
S
lvGM− 1

mvGM
e

((
1−S

1
mvGM
e

)−mvGM

+
(

1−S
1

mvGM
e

)mvGM

− 2

)
(34)

220

D∗KG (Se) =
1
2

√
π

2
σKGS

lKG
e

(
erfc

(
erfc−1 (2Se) +

σKG√
2

))2

e(erfc
−1(2Se))2

+
√

2σKG erfc
−1(2Se) (35)

These equations are needed for the computation of the dimensionless sorptivity with the proposed mixed formulation S∗2M , and

the regular formulations S∗2K , S∗2K−V2, S∗2D and S∗2D−V2.

The studied hydraulic models exhibit contrasting and challenging features for the computation of sorptivity, including non-

null water pressure heads h∗a < 0, and infinite hydraulic diffusivity close to saturation lim
Se→1

D∗ (Se) = +∞. The complexity225

may also increase with the values of related shape parameters. To that regards, Lassabatere et al. (2021) define a shape index to

characterize the spread of the WR functions around Se (h∗) = 1
2 . Regardless the chosen hydraulic model, the values of x close

to zero correspond to a large spread of WR functions with a smooth descent of the saturation degree, Se, with the increase

of |h∗| (See Fig. 2, in Lassabatere et al. (2021), and also section 3). Conversely, when x gets close to unity, WR functions

approach the stepwise function with an abrupt decrease of Se with the increase of |h∗|. Lassabatere et al. (2021) defined the230

WR shape index x as follows:




xBC = λBC
2+λBC

xvGB =mvGB

xvGM =mvGM

xKG = 1
1+σKG

(36)
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Lassabatere et al. (2021) also determined analytically the maximum square scaled sorptivity S∗2 (−∞,0), also referred to as

the parameter cp, as a function of the WR shape index x, for the BC, vBG, and vGM models:





cp,BC (x) = 2 + 1−x
5x+1 + 1−x

7x+1

cp,vGB (x) = Γ
(

3−x
2

)[Γ( 1+5x
2 )

Γ(1+2x) +
Γ( 1+7x

2 )
Γ(1+3x)

]

cp,vGM (x) = Γ(2−x)
[

Γ( 3
2 x)

( 3
2x−1)Γ( 1

2 x)
+

Γ( 5
2 x)

( 5
2x−1)Γ( 3

2 x)

]
+ (x− 1)

[
Γ( 3

2 x)Γ(1+x)

( 3
2x−1)Γ( 5

2 x)
+

Γ( 5
2 x)Γ(1+x)

( 5
2x−1)Γ( 7

2 x)
− 2
(

1
3
2x−1

+ 1
5
2x−1

)]

(37)235

Note that no analytical formulation can be found for the case of Kosugi’s hydraulic model, so cp,KG (x) must be computed

numerically (Lassabatere et al., 2021). Note also that in Eqs. (37), nominal sorptivities are defined with the use of the capillary

model Eq. (27) for the BC and vGB models, and lvGM = lKG = 1
2 .

2.3.2 Paper methodology and computations

In this study, we aim to demonstrate the following points: (i) the studied hydraulic models for WR and HC functions exhibit240

challenging conditions for the computation of sorptivity, (ii) the proposed mixed formulation is an ideal estimator for sorptivity,

and (iii) the usual methods, based on the use of SK and SD (Eq. 2 and Eq. 1), or their improved version, SK−V2 and SD−V2

(Eq. 13 and Eq. 19) do not necessarily provide accurate estimations of the targeted nominal sorptivity. To demonstrate these

points, we consider the following conditions. Firstly, we only investigate the case of the scaled sorptivity. Indeed, if we let be

any estimator Ŝ of the nominal dimensional sorptivity S, and the related scaled variables, Ŝ∗ and S∗, the following relations245

emerge:

Er (S) =
Ŝ−S
S

=
Ŝ∗ ·

√
hgKs (θs− θr)−S∗ ·

√
hgKs (θs− θr)

S∗ ·
√
hgKs (θs− θr)

=
Ŝ∗−S∗
S∗

= Er (S∗) , (38)

proving that the accuracy of the scaled estimator corresponds exactly to the accuracy of the dimensional estimator. Lastly, we

consider the maximum scaled sorptivity S∗ (−∞,0), since it involves at the same time the two types of challenges, i.e., very

dry initial conditions with infinite water pressure head, h0 =−∞, and saturated final conditions with null water pressure head,250

h1 = 0.

The first step, point (i), involves the study of the selected models with regards to the shapes of WR and HC functions. We

computed the WR and HC functions for the four selected models, considering the following values of the WR shape index:

x ∈ {0.01,0.02, ...,0.99}. For the second goal of the study, point (ii), we compared the values provided by the proposed mixed
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formulation S∗M with the nominal (error-free) values of sorptivity, S∗ = S∗ (−∞,0) =√cp, provided by the exact analytical255

formulations (Eqs. 37) for BC, vGB and vGM models. The computations were performed for all the values of the WR shape

index x, and the accuracy of S∗M was discussed as a function of x. For the third goal, point (iii), the estimations provided by the

usual strategies were compared to the estimates provided by the proposed mixed formulation, S∗2M , to evaluate the efficiency of

those previously used strategies. We considered several scenarios for the use of SK, SK−V2, SD, SD−V2, with several values

of the lower water pressure head h∗0 used in Eq. (14) and Eq. (15), and several values of the final saturation degree Se,1 used in260

Eq. (20) and Eq. (21). All the computations were performed using Scilab software (Campbell et al., 2010).

3 Results

3.1 Analysis of the selected hydraulic models and related challenging features

The BC model has a non-null air-entry water pressure head (Fig. 3a, shown by the plateau for |h∗| ≤ 1, i.e., h∗ ≥−1), meaning

that the sorptivity has a non-null saturated part that must be accounted for. This condition is one of the challenging features265

of the diffusivity form of sorptivity, Eq. (1). Conversely, the three other hydraulic models do not have any air-entry water

pressure head values (Fig. 3e, i, m do not have plateaus), but rather have infinite values of the hydraulic diffusivity close to

saturation, thus posing potential problems of convergence (Fig. 3h, l, p). The use of these models allows us to characterize the

improvements offered by S∗M compared to the usual use of S∗D for the cases of problematic computation close to saturation (i.e.,

h1→ 0 and θ1→ θs). Similarly, accuracy of the commonly used S∗K version can be challenged when integrating over infinite270

intervals (−∞,0], particularly for hydraulic models that are characterized by a slow decrease in the saturation degree, Se, for

quasi-infinite water pressure heads, h∗. The chosen hydraulic models are thus expected to be challenging, in particular the BC,

vGB and vGM models, which keep high values of saturation degrees even for quasi-infinite water pressure heads (Fig. 3a, e,

i). The KG model, which is more symmetrical and characterized by a larger decrease in Se when h∗ decreases (Fig. 3m) is

expected to be less challenging. Regarding those challenges, the shapes of the WR, HC and hydraulic diffusivity functions are275

also of importance. We expect the small values of x to be more problematic, in particular with the use of S∗K, due to the smooth

decrease in Se with h∗ (Fig. 3, first column). Conversely, we expect more problems with the use of S∗D for large values of x,

with quasi infinite values for the hydraulic diffusivity close to saturation, i.e., Se→ 1 (Fig. 3h, l, p).

3.2 Validation of the proposed mixed formulation, S∗
M, against the nominal sorptivity, S∗ (−∞,0)

The computations using S∗M (Eq. 9-10) with h∗c = h∗
(
Se,0+Se,1

2

)
was efficient in most cases, regardless of the value of the280

WR shape index x. The use of the threshold 10z was necessary for the first value of the WR shape index x for the BC

model (xBC = 0.01), the first two values for the vGB model (xvGB ∈ {0.01,0.02}) and the first 17 values for the vGM model

(xvGM ∈ {0.01,0.02, ..,0.17}). The value of z = 0 was enough to allow the computation in all cases, apart from the case of

vGM model for which the value of z =−1 had to be considered for xvGM ∈ {0.02, ..,0.07} and z =−2 for xvGM = 0.01.

Note that, as long as convergence is obtained, the values of S∗M (−∞,0) do not depend on z. With this strategy involving a285
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Figure 3. Water retention (WR) and hydraulic conductivity (HC) curves for different values of the WR shape index x. The first column

shows WR as Se (h∗), the second column shows HC as Kr (Se), the third column shows HC as Kr (h∗), and the fourth column shows

diffusivity as D∗ (Se); the four tested models include Brooks and Corey (BC) (1st row), van Genuchten – Burdine (vGB) (2nd row), van

Genuchten-Mualem (vGM) (3rd row), and Kosugi (KG) models (4rd row). The arrows indicate the trends with increasing WR shape index

x. The hydraulic parameters λBC,mvGM,mvGB, and σKG were computed as a function of x using Eq. (36) with lvGM = lKG = 1
2

. Adapted

from Lassabatere et al. (2021).

threshold, the proposed mixed formulation, S∗M, provides estimates for all cases, i.e., for all hydraulic models and all values of

the WR shape index, x. A sensitivity analysis was also performed for the KG model and led to the same success with z = 0

regardless of the value of the WR shape index xKG (data not shown).
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Table 1. Absolute values of relative errors, |Er|, between the proposed mixed formulation, S∗M, and the targeted scaled sorptivity,

S∗ (−∞,0) =
√
cp, with the mean |Er|, the standard deviation (σ|Er|), the minimum and the maximum values for the three hydraulic

models whose sorptivity in analytically tractable: Brooks and Corey (BC), van Genuchten – Burdine (vGB), van Genuchten-Mualem (vGM).

Note that 10−16 corresponds to the relative precision of numbers in scilab.

|Er| BC vGB vGM

|Er| 1.44510−13 5.59410−13 3.30910−9

σ|Er| 2.77410−13 1.01410−12 1.93410−8

min < 10−16 < 10−16 8.25510−16

max 1.20110−12 6.03710−12 2.00010−7

Relative error, Er, between the estimates provided by the proposed mixed formulation, S∗M (−∞,0), and the targeted sorp-

tivity, S∗ (−∞,0) =√cp, were analyzed in terms of means, standard deviations, and minimum and maximum values (Table290

1):

Er =
S∗M (−∞,0)−√cp√

cp
(39)

The accuracy of the proposed mixed formulation, S∗M, Eqs. (9-10), is excellent for all the models and all values of WR shape

index x (Table 1). The average relative errors were in the order of 10−13 for the BC and vGB models, and in the order of 10−9

for the vGM model (Table 1, Er). The minimum errors were < 10−15 for all the models (Table 1, min). The maximum errors295

were ≈ 10−12 for the BC and the vGB models and ≈ 10−7 for the vGM model (Table 1, max). In other words, the mixed

formulation, S∗M, provides extremely accurate estimations of the targeted scaled sorptivity S∗ (−∞,0). The proposed mixed

formulation, S∗M, can therefore be considered to be an excellent estimator of sorptivity in all cases, regardless the choice of the

hydraulic model and related values of shape parameters.

3.3 Study of the usual strategies for estimating the nominal sorptivity, S∗ (−∞,0)300

In this section, we compare the estimates provided by the strategies commonly considered (i.e., Eqs. (1-2), S∗D, S∗D−V2, S∗K
and S∗K−V2) with the reference values of the targeted sorptivity S∗ = S∗ (−∞,0). For these comparisons, we consider the

analytical formulations of Eq. (37) for the BC, vGB, and vGM models and use the proposed mixed formulation S∗M for the KG

model. Indeed, no analytical expressions are available for this last model, whereas the estimates provided by S∗ = S∗M are very

convincing for the BC, vGB, and vGM models (see Section 3.2) and thus S∗M is assumed to be as accurate for the KG model.305

3.3.1 Illustrative example

Firstly, we investigate the accuracy of the limits of the functions S∗K and S∗K−V2 towards S∗. These functions, in particular S∗K,

are often used without special attention regarding their accuracy. S∗K and S∗K−V2 converge to the limit S∗ when |h∗0| becomes

large enough (Fig. 4, left column). For instance, for the BC model with λ= 0.56, the use of S∗K with h∗0 =−10 and h∗0 =−100
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has respective relative errors of Er =−4.1% and Er =−15% (Figure 4a, red dashed line). The second estimator, S∗K−V2,310

converges much faster than S∗K. With the same values of h∗0, the relative errors drop below 0.01% in absolute value (Figure 4a,

blue continuous line). In this case, the convergence towards the target can be achieved by integrating from h∗0 =−10, with

high accuracy. Such an improvement results from setting the initial saturation degree, Se,0, at its target value, Se,0 = 0, in the

integrand (see Eq. 15 versus Eq. 14). The same conclusions can be stated regardless of the selected hydraulic models (Figure 4c,

e, g).315

The convergence of the two functions, S∗D and S∗D−V2, are depicted for the case of BC functions in Figure 4b. For both

estimators, the estimates are far from the target values, S∗, with |Er| close to 50%. This large error results from the omission

of the saturated part of sorptivity, as explained above (Section 2.2). By design, S∗D and S∗D−V2 converge towards the unsatu-

rated part of sorptivity, Su (0,1) =
√∫ 1

0
(1 +Se)D∗ (Se)dSe, and miss the additional saturated part of the scaled sorptivity,

2(Se,1−Se,0)Kr (Se,1)(h∗1−h∗a) = 2, given that h∗1 = 0 (Se,1 = 1), h∗0 =−∞ (Se,0 = 0), and h∗a = 1. When the saturated320

portion is added to the estimators, the convergence becomes excellent (Figure 4b, green line). These results show that the

computation of sorptivity using the integration with regards to saturation degree, like Eq. (1) and Eq. (22), leads to erroneous

estimations. Accounting for the term 2(θs− θ0)Ks|ha| in Eq. (3) is thus essential. Note that Eq. (1) is often considered and

used in most studies, even though it can lead to large under-estimation of sorptivity for the case of non-null air-entry water

pressure heads. That factor is of prime importance regarding the accurate estimation of sorptivity.325

For the other hydraulic models, the estimators S∗D and S∗D−V2 are significantly better (Figure 4d, f, h). Indeed, the air-entry

water pressure head is null in these models, which removes the large underestimation due to the omission of the saturated part

of sorptivity, as observed for BC model. However, the under-estimation remains substantial, with relative errors on the order of

15−20% for Se,1 = 0.99 (Figure 4d, f, h). Even when Se,1 = 0.999, the relative errors are larger than 10%. From these results,

we conclude that the determination of the sorptivity, S∗, by approaching the final saturation degree to unity does not provide330

good estimates, regardless of the estimators considered. These poor estimates result from the fact that the diffusivity, and thus

the integrand, are infinite. The convergence of the integrals defined by Eqs. (22) and thus Eq. (1) are slow and prevent accurate

estimations. Conversely to the case of S∗K and S∗K−V2, changing the integrand by fixing it to the targeted integrand does not

significantly improve the convergence.
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Figure 4. : Relative errors of the regular functions S∗D (0,Se,1) and S∗D−V2 (0,Se,1) (right) and S∗K (h∗0,0) and S∗K−V2 (h∗0,0) (left) towards

S∗ (−∞,0) for the four hydraulic models, for the following specific cases: BC model with λBC = 56 (xBC = 0.22), vGB model with

nvGB = 3 (xvGB = 1/3), vGM model with nvGM = 2 (xvGM = 1/2) with lvGM = 0.5, and KG model with σKG = 1.5 (xKG = 0.4) and

lKG = 0.5. 18
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3.3.2 Relative errors as a function of the WR shape index x335

The previous results were presented for specific values of the shape parameters in Figure 4. One may wonder if the accuracy

of estimators S∗K and S∗K−V2, on the one hand, and S∗D and S∗D−V2, on the other, varies with the shape parameters and indices.

Figure 5 depicts the relative errors of the estimators S∗K and S∗K−V2 as a function of the shape parameters for different values of

h∗0 (left column of Figure 5) and of the estimators S∗D and S∗D−V2 for different values of Se,1 (right column of Figure 5). For all

hydraulic models except the BC model, the best estimates for S∗D and S∗D−V2 are obtained for intermediate values of WR shape340

indexes (Figure 5, right column). Discrepancies increase for both small or large values of the WR shape index. As detailed

above (section 3.3.1), accurate predictions require the practitioner to fix the upper integration boundary, Se,1, to 0.999 at least,

to get errors less than 10%. However, estimates remain poor, even with Se,1 = 0.999 or Se,1 = 0.9999, when the WR shape

indices tend towards unity (Figure 5d, f, h). For the BC model, the estimators S∗D and S∗D−V2 provide poor estimates under

all circumstances, since they miss the saturated part of sorptivity, as explained above (Figure 5b, S∗D ≈ S∗D−V2)). Adding the345

saturated part of sorptivity substantially improves the computation, with very accurate estimations (Figure 5b,
√

(2 +S∗2D )).

Regarding the estimators S∗K and S∗K−V2 (Figure 5, left column), the estimates improve when the WR shape index converges

towards 1. It can be noted that S∗K−V2 provide always quite accurate predictions with very small relative errors (Figure 5a, c,

e, f).

The results obtained in this study also revealed particular behaviors that are specific to different formulations for computing350

sorptivity, specifically S∗K, S∗K−V2, S∗D, and S∗D−V2. The approaches that compute sorptivity by integration with regards to h∗

(i.e., S∗K and S∗K−V2) have errors that come from the choice of the lower integration boundary h∗0 and from the value of Se,0

in the integrand. Solutions that compute sorptivity by integration with regards to Se (i.e., S∗D and S∗D−V2) have more error

associated with the omission of the saturated part, as well as slow convergence of the integration procedure when dealing with

infinite diffusivity values. Among the usual procedures, the use of S∗K is better than S∗D, but the use of S∗K−V2 remains the355

best one. Indeed, S∗K−V2 does not miss the saturated part of sorptivity and provides much lower discrepancies than the other

estimators regardless of the selected hydraulic model (Figure 5). At the same time, the adaptation of the integrand, by fixing

the values of the initial saturation degree, Se,0, to its final values, substantially improves the quality of the estimator. This

formulation thus always provides estimates with |Er| < 10%, regardless of the selected hydraulic model and the value of shape

index. However, these errors are still much larger than those obtained with the mixed formulation, S∗M. Consequently, the use360

of the mixed formulation, S∗M, should be favored as far as possible.
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Figure 5. Relative errors of estimators S∗D and S∗D−V2 (right) and S∗K and S∗K−V2 (left) for the four selected hydraulic models, i.e., BC, vGB,

vGM, and KG models as a function of the WR shape indexes.
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4 Conclusions

The proper evaluation or even calculation of sorptivity is crucial to model accurately water infiltration into soils. However,

in some cases, e.g., when the initial state is very dry or the final state corresponds to saturated conditions, the numerical

computation of sorptivity using Eq. (1) or Eq. (2) from the hydraulic functions may be a source of numerical errors and365

difficulties. Indeed, the integration procedure typically used involves either an infinite boundary or unbounded integrands. Many

previous studies had attempted to alleviate these problems by fixing arbitrarily finite limits for the integration interval. In this

study, we investigated the accuracy of these approaches and demonstrated the potentially massive mis-estimation of sorptivity

that is possible when these arbitrary corrections are used. To alleviate those problems, we proposed a mixed formulation

that was validated against analytical expressions of sorptivity for specific hydraulic models. The proposed mixed-formulation370

proved highly accurate for all hydraulic models and shape parameters tested, with negligible relative errors (< 10−7).

This study demonstrates that, through the use of the new mixed formulation, it is possible to compute sorptivity easily and

very accurately. The proposed formulation presents a very practical tool that may be applied for any type of hydraulic model

and any value of initial and final water pressure heads and water contents. The proposed approach allows to compute sorptivity

in all cases, thus improving the modeling of water infiltration into soils and the estimation of soil hydraulic properties.375
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