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Abstract. Satellite Earth observations (EO) are an accurate and reliable data source for atmospheric and environmental 

science. Their increasing spatial and temporal resolution, as well as the seamless availability over ungauged regions, make 

them appealing for hydrological modeling. This work shows recent advances in the use of high-resolution satellite-based 15 

Earth observation data in hydrological modelling. In a set of experiments, the distributed hydrological model Continuum is 

set up for the Po River Basin (Italy) and forced, in turn, by satellite precipitation and evaporation, while satellite-derived soil 

moisture and snow depths are ingested into the model structure through a data-assimilation scheme. Further, satellite-based 

estimates of precipitation, evaporation and river discharge are used for hydrological model calibration, and results are 

compared with those based on ground observations. Despite the high density of conventional ground measurements and the 20 

strong human influence in the focus region, all satellite products show strong potential for operational hydrological 

applications, with skillful estimates of river discharge throughout the model domain. Satellite-based evaporation and snow 

depths marginally improve (by 2% and 4%) the mean Kling-Gupta efficiency (KGE) at 27 river gauges, compared to a 

baseline simulation (KGEmean=0.51) forced by high-quality conventional data. Precipitation has the largest impact on the 

model output, though the satellite dataset on average shows poorer skills compared to conventional data. Interestingly, a 25 

model calibration heavily relying on satellite data, as opposed to conventional data, provides a skillful reconstruction of river 

discharges, paving the way to fully satellite-driven hydrological applications. 

1 Introduction 

Remote sensing of the Earth from space is a ripe yet ever growing sector, with countless applications and users worldwide. 

Hydrological sciences have already benefited enormously from Earth observation data (see e.g., McCabe et al., 2017; Chen 30 

and Wang, 2018; Alfieri et al., 2018), thanks to global and independent datasets of the different components of the water and 
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energy cycles as well as anthropogenic processes such as irrigation (Massari et al., 2021). Hydrological models play a crucial 

role for monitoring and forecasting, thanks to their ability to reproduce the physical processes governing the water cycle. 

Their successful implementation is strongly conditioned by the availability of consistent, accurate, and seamless hydro-

meteorological datasets for the considered focus region, space/time resolution and period of interest. Conventional data 35 

including ground observations and weather radars are traditionally favourite sources of dynamic data to force these models. 

Yet, they are not viable options for the still vast ungauged regions of the world. Satellite products offer a range of 

alternatives to fill such gaps, thanks to their massive contribution to the atmospheric reanalyses (see e.g., Hersbach et al., 

2020) as well as with independent products. Hydrological models can benefit from dynamic data (either ground or satellite-

based) in various forms: 1) as forcing datasets, 2) as assimilation datasets, 3) as benchmark data for model training and 40 

calibration, and 4) to investigate process understanding. 

Forcing data are mandatory input for hydrological models. Key variables are precipitation, air temperature and evaporation 

or, alternatively, the meteorological variables needed to estimate them. Their influence in hydrological modeling was 

assessed, for instance, by Wu et al. (2017) and Beck et al. (2017) for precipitation datasets, Dembélé et al. (2020a) for 

evaporation datasets, and Dembélé et al. (2020b) for combinations of temperature and precipitation datasets. The latter found 45 

a reduced influence of the choice of temperature datasets on the output discharge, though these can significantly impact 

evaporation and soil moisture estimates. Data assimilation methods are designed to merge measurements of any type with 

estimates from geophysical models (Reichle, 2008), to compensate for errors in the forcing data, model structural 

deficiencies, and update their state variables at the initial or intermediate simulation steps (Spaaks and Bouten, 2013). 

Relevant applications of assimilating satellite products in hydrological modeling include soil moisture (Massari et al., 2015; 50 

Wanders et al., 2014), water storage (Li et al., 2012), snow cover (Thirel et al., 2013), evaporation (Hartanto et al., 2017), 

land surface temperature (Silvestro et al., 2013), water levels (Paiva et al., 2013), discharge (Ishitsuka et al., 2021), water 

extent (Revilla-Romero et al., 2016; Hostache et al., 2018), and multi variable combinations (Wongchuig-Correa et al., 

2020). Hydro-meteorological data has also been used as a benchmark to train the model parameters through machine 

learning techniques (Mosaffa et al., 2022) or calibration techniques based on minimization of cost functions computed 55 

between simulated and observed variables (Pechlivanidis et al., 2011). Satellite estimation of river levels also shows 

promising applications in the field. It has been tested in the calibration of hydrological (Getirana et al., 2013; Dhote et al., 

2021) and hydraulic (Domeneghetti et al., 2021) models. 

As part of the Green Deal and the Digital Strategy, the European Commission recently launched the Destination Earth 

program1, a joint effort involving key European institutions to develop a very high precision digital model, or “Digital 60 

Twin”, of the Earth to monitor and predict environmental change and human impacts, to ultimately support sustainable 

development. The present work strives in that direction, by contributing to the development of a Digital Twin Earth focused 

on the water cycle and hydrological processes. It highlights the potential of high-resolution satellite products in describing 

 

1 https://digital-strategy.ec.europa.eu/en/policies/destination-earth 
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the water cycle and monitoring hydrological extremes and water resources. Through various dedicated experiments, we test 

the influence of five new high-resolution satellite-derived datasets on the performance of the distributed hydrological model 65 

Continuum (Silvestro et al., 2013) set up for the entire Po River Basin, in northern Italy. These include (1) GPM-SM2RAIN 

(Massari et al., 2020) precipitation and (2) GLEAM (Miralles et al., 2011) evaporation as dynamic forcing; data assimilation 

of (3) C-SNOW (Lievens et al., 2019) snow depth and (4) RT1 (Quast et al., 2019) soil moisture; and model calibration 

using (5) satellite-based river discharge (Tarpanelli et al., 2020) as a benchmark. By comparing results with observed river 

discharge and with a simulation forced by conventional data, we investigate the relative impact of these high-resolution 70 

satellite products. Further, we take the first steps towards hydrological modelling fully relying on satellite data, by 

calibrating and subsequently running the model using satellite precipitation and evaporation as forcing, and satellite-based 

estimates of river discharge as benchmark data for the calibration. 

2 Data 

2.1 Static data 75 

We used the Digital Elevation Model (DEM) from the global USGS Hydrologic Derivatives for Modeling and Analysis 

(HDMA, Verdin, 2017) at 3 arc-second spatial resolution (about 90 m at the equator), which comes with pre-computed and 

corrected hydrological derivatives including channel network and macro basins. The DEM was upscaled at the chosen model 

resolution of 1 km to define the computational grid and compute the necessary hydrological derivatives (flow accumulation, 

drainage directions and channel network). The river network is defined by cells with an upstream area larger than 240 km2. 80 

To improve its spatial representation, the DEM was carved with a high-resolution stream network of the main rivers, while 

dikes were manually placed at specific locations, especially in flat areas. 

The Curve Number map used in Continuum to model direct runoff and infiltration from rainfall excess, was derived from the 

ESA-CCI 2018 Land Cover map (ESA, 2017) at 300 m resolution. A hydrologic soil type map was extracted from the 

HYSOGs250m (Ross et al., 2018), while for soil capacity, we applied the USDA method for soil texture identification using 85 

the ISRIC SoilGrids (Hengl et al., 2017) global maps of the fraction of sand and clay, combined with the ESA CCI 

SoilMoisture (Dorigo et al., 2017) global map of soil porosity. Glacier areas used in the cryospheric model S3M (see Section 

3.1) were taken from the Randolph Glacier Inventory (RGI) v6 (Raup et al., 2007). Vegetation coverage is taken from the 

global land cover map ECOCLIMAP (Faroux et al., 2013). 

Point information for a set of 99 reservoirs and the three major lakes (Maggiore, Como and Garda) was included in the 90 

model setup (Figure 1). Information on the dams and the corresponding reservoirs was provided by the Italian Civil 

Protection Department (DPC) and from the GranD database (Lehner et al., 2011). Data ingested by Continuum for each dam 

include the maximum stored volume, initial volume, maximum non-damaging discharge at the outflow gates, weir length, 

maximum storage level, outflow coefficient, and coordinates of the release point. For lakes, required metadata are the outlet 

coordinates, minimum volume inducing outflow discharge, initial volume, and emptying coefficient. 95 
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2.2 Dynamic data 

Continuum requires input maps of precipitation, air temperature, relative humidity, wind speed and incoming solar radiation. 

The baseline hydrological simulation uses conventional meteorological data as input. Precipitation fields were estimated 

with the Modified Conditional Merging (MCM) technique (Bruno et al., 2021), which incorporates precipitation gauges and 

radar estimates. MCM is an improvement of the Conditional Merging proposed by Sinclair and Pegram (2005), which 100 

estimates the structure of covariance and the length of spatial correlation at every gauge, taking it from the cumulated radar 

precipitation fields. For the Po River basin, MCM is based on 1377 precipitation gauges and on the mosaic of the Italian 

weather radars. 

Hourly maps of the weather variables needed by Continuum for the Po river basin ultimately include 1258 temperature 

stations, 608 for relative humidity, 460 for wind speed and 278 for solar radiation. Temperature maps include an altitude 105 

correction algorithm with temperature gradients estimated at every time step by linearly interpolating available data at 

different elevations. They also include an outlier removal algorithm which discards station data with a deviation of more 

than 20°C from the corresponding temperature-elevation interpolating line. 

Discharge data at 27 river gauging stations with hourly sampling frequency for the years 2016-2019 were provided by the 

DPC and the regional hydrometeorological offices. 22 stations were selected for model calibration, while 5 were retained for 110 

validation only (Figure 1). 

Figure 1: Simulated domain (blue line) and river network (dark green) of the Po river basin. Symbols show the point features considered 
in the hydrological model. 
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2.3 Satellite products and validation 

1.2.1 Precipitation 115 

The precipitation dataset used in this work and referred to as SM2RAIN (Figure 2) merges SM2RAIN-ASCAT (Brocca et 

al., 2019) and the Global Precipitation Measurement Mission IMERG-LR (Huffman et al., 2015) datasets, both available at 

10km spatial resolution. Unlike in Massari et al. (2020), where the fusion of the two datasets was based on an Optimal 

Interpolation Technique, here we relied upon a Triple Collocation (TC)-based merging using the Signal to Noise Ratio 

(SNR), as in Gruber et al (2017). In particular, to derive the merged dataset we seek the optimality in a least squares sense, 120 

so that the variance of residual random errors is minimized. This leads to a weighted average between SM2RAIN-ASCAT 

and IMERG-LR, i.e., 

 𝑃஽்ா = 𝑤ଵ𝑃ௌெଶோ஺ூேି஺ௌ஼஺ + 𝑤ଶ𝑃ூொோீି௅ோ     (1)   

where the weights w1 and w2 are calculated as: 

 𝑤ଵ =
ௌேோభ

ௌேோభାௌேோమ
, 𝑤ଶ =

ௌேோమ

ௌேோభାௌேோమ
      (2)  125 

and the subscripts 1 and 2 refer to the SM2RAIN-ASCAT and IMERG-LR datasets, respectively. Under the assumption that 

the two datasets are independent (as also required by TC), the random error of the merged time series is lower than those of 

the individual input datasets. 

Prior to the merging, the two datasets are rescaled to a common reference to remove the relative systematic differences 

between the products. TC was applied here between SM2RAIN-ASCAT, IMERG-LR and the MCM radar-gauge 130 

precipitation dataset. The fusion of the two datasets was only done for the time steps where IMERG-LR was greater than 

zero; due to the high sensitivity of the GPM mission, values with zero precipitation in IMERG-LR were set to zero. 

Furthermore, hourly data were obtained by imposing the sub-daily temporal pattern of IMERG-LR to the merged dataset. 
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Figure 2: Daily Pearson correlation coefficient between SM2RAIN precipitation and the MCM (radar-gauge) precipitation dataset. 135 
Median correlation rSM2RAIN=0.76 largely improves that of the two individual products, rSM2RAIN-ASCAT=0.66 and rIMERG-LR=0.67. 

 
2.3.2 Evaporation 

Global Land Evaporation Amsterdam Model (GLEAM, Miralles et al., 2011) is a state-of-the-art methodology to derive 

evaporation and its various components (i.e. transpiration, bare soil evaporation, interception loss, snow sublimation and 140 

open-water evaporation). It combines global satellite observations of meteorological (precipitation, near-surface net 

radiation, and air temperature) and surface (soil and vegetation water content, and snow water equivalent) variables that are 

informative for the evaporation process. The model is based on the Priestley and Taylor (1972) equation to estimate potential 

evaporation. Those estimates are then constrained based on root-zone soil moisture, which results from a precipitation-driven 

running water balance in which satellite-based soil moisture can be assimilated. Interception loss is independently estimated 145 

through an adapted Gash analytical model (Miralles et al., 2010). Since its first version, GLEAM has been widely deployed 

at coarse resolution for climatic studies. In the past few years, it has been further developed to solve higher spatial and 

temporal resolutions. For instance, Martens et al. (2018) obtained accurate results in an implementation over the Netherlands 

at 100-meter resolution. For this work, GLEAM was applied over the entire Po River Basin to produce evaporation estimates 

at 1 km resolution. 150 

Since measurements of evaporation in the focus region are limited, the performance of the 1-km evaporation dataset was 

inferred on the basis of the FluxNet IT-Tor site, located in the mountainous Val d’Aosta region in the NW part of the domain 

(Figure 3). While based on one station only, the performance (Pearson's correlation r=0.83) is in line with results obtained in 
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the high-resolution implementation across the Netherlands, where Martens et al. (2018) found a median temporal correlation 

coefficient of 0.76 across 29 sites. 155 

 

Figure 3: Average GLEAM daily evaporation for 2017-2019 in the Po river basin at 1 km resolution (left) and comparison with daily 
evaporation from the FluxNet site IT-Tor for 2018 (right). Pearson's correlation r=0.83. The location of the FluxNet site is marked with a 
red star on the left panel. 

2.3.3 Soil moisture 160 

High-resolution soil moisture was retrieved from incidence angle dependent Sentinel-1 backscatter measurements at 500m 

spatial sampling (~1km spatial resolution) (Bauer-Marschallinger et al., 2019) by using a time series based first-order 

radiative transfer modelling approach (RT1, see Quast and Wagner, 2016; Quast et al., 2019). The RT1 model uses auxiliary 

Leaf Area Index (LAI) time series provided by ECMWF ERA5-Land reanalysis dataset (Muñoz-Sabater et al., 2021) to 

correct for effects induced by seasonal dynamics of vegetation. The retrieval is then performed via a non-linear least-squares 165 

regression that optimizes static and dynamic model-parameters to minimize the difference between measured and modelled 

backscatter for a set of ~300,000 pixels over a 4-year time-period (2016-2019). The resulting soil moisture product 

represents a percentage measure of the relative moisture saturation of the soil surface. The performance of the obtained soil 

moisture time series was validated with in-situ observations as well as compared to top-layer (0-7cm) soil moisture estimates 

from ERA5-Land. In addition, the spatial distribution of the resulting auxiliary model parameters (single-scattering albedo, 170 

soil scattering directionality) was analysed with respect to CCI Landcover (ESA, 2017) classifications to assess the physical 

plausibility of the resulting parametrization. The observed spatial pattern of the parameters indicate a close connection to the 

associated land cover, following some expected variations, e.g., higher single-scattering albedo over forested areas compared 

to croplands. 

The RT1 high-resolution soil moisture product over the Po basin shows an overall good performance compared to ERA5-175 

Land soil moisture, with a median Pearson correlation of 0.55 for croplands and 0.65 over areas primarily covered by natural 

vegetation. Validation was performed using in situ soil moisture for the Oltrepo station (Bordoni et al., 2019), which resulted 

in a correlation of 0.58 (raw data) and 0.73 (with a 10-daily rolling mean). These results highlight the potential of Sentinel-1 

observations for high-resolution soil moisture retrievals and their use in applied science. 

 180 
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Figure 4: Time series of RT1 Surface Soil Moisture compared to in situ SM in Oltrepo. A 10-daily rolling mean is applied to the RT1 
retrievals to reduce noise. The shading indicates the corresponding standard-deviation. Pearson-correlation of 0.58 (raw data) and 0.73 (10-
daily rolling mean). 

2.3.4 Snow depth 185 

Snow-depth data were obtained from the Sentinel-1-based product proposed by Lievens et al. (2019). The data product has a 

1-km spatial resolution and daily granularity, and is available through the public repository of the C-SNOW project 

(https://ees.kuleuven.be/project/c-snow). The mapping algorithm is based on a change-detection approach and has been 

validated across the mountain regions in the whole Northern Hemisphere. 

 190 

For the scope of the present study, C-SNOW data over the period September 2016 - April 2020 were evaluated with 172 

ultrasonic snow-depth sensors across the Po river basin (Figure 5a). 77% of the evaluation dataset is located in the range 

1000-2500 m above sea level (ASL) (Figure 5b), a frequent condition in the Alps (Avanzi et al., 2021a). Observed snow-

depth data were processed and aggregated at daily resolution, and C-SNOW data were extracted for the same location and 

data range. The evaluation confirmed previous results by Lievens et al. (2019), with C-SNOW successfully reproducing the 195 

seasonality and magnitude of snow depth as measured by snow depth sensors (Figure 5c and d). Root mean square errors 

(RMSE) ranged from less than 20 cm below 1000 m ASL to 60 cm or more above 2000 m ASL, though with no significant 

trend in the bias versus the elevation. 
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Figure 5: Evaluation of satellite based C-SNOW snow depth estimates. (a) Location of the 172 sensors across the Po river basin, and (b) 200 
their elevation distribution. (c) comparison between the interquartile range of C-SNOW and in situ measurements at the 172 sensors. (d) 
comparison between daily C-SNOW estimates and ground-based snow-depth measurements for all sites. 

2.3.5 River discharge 

River discharge time series from satellite remote sensing are estimated by integrating data from two sensors: altimeter and 

multispectral. Traditionally defined as the product of cross-sectional river flow area and velocity, river discharge is 205 

calculated by assuming that the satellite sensors measure the two quantities (Tarpanelli et al., 2015). Specifically, once the 

cross-sectional geometry is known, flow area is calculated as a function of the water height derived from satellite altimetry 

(Abdalla et al., 2021), while flow velocity, usually measured through in-situ instruments (current meter, acoustic doppler 

current profiler, velocimeter), is linked to the reflectance measured by the near infrared signal of the multispectral sensor 

(Tarpanelli et al., 2013), relying on the reflectance ratio between a dry (C) calibration pixel and the corresponding wet (M) 210 

measurement pixel. 

Multi-mission satellite altimetry data coming from Saral/Altika, Cryosat-2 and Sentinel-3A and 3B are used to derive 

densified water level time series (Zakharova et al., 2020) at five stations along the main reach of the Po River named 

Piacenza, Cremona, Borgoforte, Sermide and Pontelagoscuro. At these stations, the multi-mission reflectance was extracted 

from the MODIS (Aqua and Terra), OLCI (Sentinel-3A) and MSI (Sentinel-2) sensors following the methods shown in 215 
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Tarpanelli et al. (2020). Here, river discharge (Q) is estimated as the product of flow velocity (Tarpanelli et al., 2020) and 

flow area, as a function of altimetry-derived water height (H) (Tarpanelli et al., 2015): 

𝑄 = 𝛼(𝐻)ఉ(𝐶 𝑀⁄ )ఊ        (3) 

where the parameters α,β,γ were calibrated using observed discharges at the five stations. The resulting time series for each 

station are illustrated in Figure 6 against the in situ observations recorded at the gauged stations. Performance metrics 220 

(Supplement material, Table S2) show skillful performance of the method in representing the observed daily discharges at 

the five stations, with average Nash-Sutcliffe (NS) of 0.81, KGE of 0.88 and relative RMSE (rRMSE) of 26%. 

 

Figure 6: Comparison between discharges simulated by the multi-mission approach versus observations at five gauging stations in the Po 
River in terms of time series (left column) and scatter plot (right column):(a, f) Piacenza, (b, g) Cremona, (c, h) Borgoforte, (d, i) Sermide 225 
and (e, l) Pontelagoscuro. 

3 Methods 

3.1 Hydrological modeling 

Continuum (Silvestro et al., 2013) is a distributed hydrological model relying on a morphological approach based on the 

identification of the drainage network components (Giannoni et al., 2000). It is a tradeoff between empirical and physically-230 

based models, reproducing all main hydrological processes by relying on parameterization. The physical description of the 
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hydrological processes is comparatively simple, resulting in high computational efficiency yet generally skillful performance 

(Silvestro et al., 2013). Continuum reproduces the spatio-temporal evolution of runoff, soil moisture, energy fluxes, surface 

soil temperature, snow accumulation and melting, and evaporation. Deep flow and water table evolution are based on the 

Darcy’s equation, where each cell drains towards the neighboring cells following the 2D water table gradient and their 235 

hydraulic head, while a distributed interaction between water table and soil surface is represented through parameterization. 

A force-restore equation (Dickinson, 1988) is used to model the surface energy balance and enables the estimation of land 

surface temperature. 

To simulate the cryospheric processes, we used S3M version 5 (Avanzi et al., 2021b), a one-layer snow model accounting 

for precipitation-phase partitioning, snowpack accumulation and melt, snow rheology and hydraulics, as well as glacier melt 240 

(Terzago et al., 2020; Avanzi et al., 2021b). With its hybrid approach to snowmelt, which decouples the radiation- and 

temperature-driven contributions, S3M combines a parsimonious formulation with a substantial physical realism. For this 

work, S3M and Continuum were set up and coupled over the entire Po River basin (drainage area of 74,000 km2), with a 

constant grid spacing of 1 km and time resolution of 1 hour. 

3.2 Model calibration 245 

To improve the representation of the hydrological states, Continuum was calibrated in the focus region using discharge data 

as benchmark. We deployed a multi-site calibration procedure that iteratively searches the model parameterization that best 

matches the available discharge observations over the calibration period at the 22 considered calibration stations. 

Hydrological simulations run for the model calibration cover the 2 years starting on 2018-01-01, while the calibration period 

starts on 2018-07-01, leaving out the initial 6 months for model warm-up. The calibration tool perturbs six scalar parameters 250 

related to four physical hydrological features: infiltration velocity at saturation (cf), field capacity (ct), Curve Number (CN), 

and water sources (ws). 

While the calibrated value of ws is a constant for the entire region of interest, for ct, cf and CN, the calibration consists in a 

rescaling of their default maps to the best value, thus preserving their spatial pattern, which depends on geographic spatial 

datasets of soil characteristics and land cover. The cost function, based on the Kling-Gupta Efficiency (Gupta et al., 2009), 255 

computes an error between the duration curves at each percentile, weighted with the logarithm of the upstream area, to give 

higher weight to the downstream stations without neglecting the contribution of the most upstream ones. 

The calibration procedure was performed through the implementation of a parallel search algorithm. The algorithm performs 

an iterative exploration of the 6-dimensional parameter space; the exploration starts with N=20 initial values sampled with a 

Gaussian Latin Hypercube approach. For each of these N parameter sets, a hydrological simulation is performed over the 260 

calibration period, and the cost function is computed to map the error hypersurface. The point that minimizes J is used as the 

centre of the following iteration, until the algorithm converges to an optimal solution. 
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3.3 Data assimilation of satellite snow and soil moisture products 

Satellite derived soil moisture from the Sentinel 1 RT1 product was assimilated into the Continuum model through a nudging 

technique (Stauffer and Seaman, 1990; Lakshmivarahan and Lewis, 2013). The nudging scheme is a computationally 265 

inexpensive approach and is particularly suitable for applications in operational frameworks for flood predictions. The 

update is performed when the satellite data become available, on average once per day for soil moisture, following the 

equation: 

 𝑋ெை஽
ା (𝑡) = 𝑋ெை஽

ି (𝑡) + 𝐺ൣ𝑋ை஻ௌ(𝑡) − 𝑋ெை஽
ି (𝑡)൧    (4) 

where X+
MOD represents the updated modelled variable , X-

MOD is the modeled prior value, XOBS is the observation, and G is 270 

the Kernel function. Thus, the correction term represents the difference between observed (XOBS) and modelled variable 

multiplied by a gain (G) that takes into account the uncertainties of both the model and the satellite observations. In this 

application we used a constant value of G=0.45, following the work of Laiolo et al. (2016). 

The assimilation of satellite-derived C-SNOW maps into S3M was performed using the same approach and assuming G=1 to 

mimic direct insertion. 275 

C-SNOW maps come as snow depths, while S3M supports assimilation in the form of snow water equivalent (SWE), which 

is a more suitable variable to assimilate to control the water balance. Thus, snow depths from C-SNOW were converted in 

SWE using simulated snow density values (see Avanzi et al., 2021b). Along with snow depth information, we rely on C-

SNOW to determine snow-covered and snow-free areas, and then assimilated this information into S3M to clip modeled 

snow cover according to the satellite information. More information on the theoretical background of SWE assimilation in 280 

S3M can be found in Avanzi et al. (2021b). 

4 Results 

4.1 Baseline run 

The hydrological model Continuum was first calibrated using conventional meteorological data and observed discharges at 

the 22 calibration stations described above. The calibrated setup was then run over the years 2016-2019 to produce a baseline 285 

simulation for 2017-2019, leaving out 2016 as model warm-up. A comparison of simulated versus observed hourly river 

discharges is shown in Figure 7 for five sample stations, while six performance metrics are shown for all 27 discharge 

stations in Figure 8 and in Table S1 (see Supplement material). Dimensionless scores, including KGE and its three 

decomposition terms, i.e., correlation (r), bias rate, and Coefficient of variation rate (CV rate), increase on average with the 

upstream area. Note that all four scores have optimum value at 1. The mean KGE over all the stations KGE=0.51, rises to 290 

0.63 and 0.70 for basins larger than 1,000 km2 and 10,000 km2, respectively. Similar trends versus the same classes of 

upstream area are found in the mean correlation (0.75, 0.86, 0.88), while bias rate (0.98, 0.99, 0.94) and CV rate (0.89, 0.94, 

1.13) are slightly deteriorated for basins larger than 10,000 km2. 
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Differences in the mean KGE, r and CV rate between validation and calibration stations are not statistically significant in a 

two-sample t-test for the mean. Only the mean of the bias rate of the two samples is statistically different at 5% significance 295 

level, with validation stations having an average 30% negative bias in comparison to an average 5% positive bias of the 

calibration stations. 

 

Figure 7: Observed versus simulated (baseline) discharge [m3/s] for the years 2017-2019 at five river gauging stations. 

 300 
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Figure 8: Skills of the baseline run versus upstream area at the 27 measurement stations. Dashed lines indicate the optimum value of each 
score. 

4.2 Model runs with satellite input 305 

In a second phase, we performed four hydrological simulations, each of them based on the configuration and input data of 

the baseline run and by replacing in turn one input dataset with one of four satellite products described in Sect. 2.3: 1) 

precipitation from SM2RAIN, 2) evaporation from GLEAM, data assimilation of 3) soil moisture from RT1, and of 4) snow 

depths from C-SNOW. Two additional configurations were run including multiple satellite-based data sources: 5) all four 

satellite Earth observation datasets, hereafter referred to as EO, and 6) a combination of the satellite precipitation and 310 

evaporation, referred to as SM2RAIN+GLEAM. The spatial distribution of the performance of the six model simulations at 

the 27 river gauges is shown as maps of KGE (Figure 9) and its three decomposition terms (see Supplement material). 

Further, boxplots of the KGE of the six experiments and comparison with the baseline run are shown in Figure 10. 

Results denote a generally skillful reconstruction of river discharges for all experiments, with mean KGE at the 27 stations 

ranging between 0.13 (SM2RAIN+GLEAM) and 0.53 (C-SNOW), all well above the no-skill threshold of KGE0 = 1-21/2 ≅-315 

0.41 (see Knoben et al., 2019). Simulations including C-SNOW and GLEAM perform on average better than the baseline 

run, with mean improvements in KGE of 0.02 and 0.01 (+4% and +2%), respectively. Largest differences in the overall 

performances are due to the wide range of the mean bias across the six simulations, with the largest bias rates for 

SM2RAIN+GLEAM (1.58) and EO (0.69), and the lowest bias rate for GLEAM (1.02) and C-SNOW (0.97), both improving 

that of the baseline run (0.95). On the other hand, average correlations across the six experiments fall in a much narrower 320 
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interval, ranging between 0.61 for EO and 0.75 for both C-SNOW and the baseline run. Running the model with all Earth 

observations produces on average a 28% deterioration of the mean performance (KGE=0.37), though it surprisingly 

generates the best performance at the five validation stations (KGE=0.54) among all simulations (Figure 10). 

 

 325 

Figure 9: Spatial distribution of the Kling-Gupta Efficiency (KGE) of the six model runs driven by the four input satellite products versus 
observed discharges at the measurement stations. Validation stations are marked with a bold circle. Multi-product experiments are in the 
first row, while single-product experiments in row 2 (forcing input) and 3 (data assimilation input). 
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Figure 10: Box-plots comparing the Kling-Gupta Efficiency (KGE) of simulated river discharges for all the considered experiments 330 
versus observations at the calibration and at the validation stations. The no-skill line at 1-21/2 is indicated with a solid horizontal line. 

The six simulations forced by satellite products were then compared to the baseline run, to detect similarities and deviations 

in the entire simulation domain, including where no observations are available. To reduce the correlation effects along the 

river network, we consider only one value per simulated river reach, located just upstream each confluence. Using RT1 and 

GLEAM does not result in significant spatial differences with respect to the baseline (Figure 11). As expected, the use of C-335 

SNOW results in differences mainly in alpine areas, especially in Ticino (Switzerland), where the MCM dataset used in the 

baseline run is known to underestimate precipitation rates, due to the lack of ground measurements outside the Italian 

territory. Larger deviations are visible in the runs including SM2RAIN, particularly in the upper Po basin in the west and in 

the upper Adda River in the north, confirming the stronger sensitivity of river discharge to precipitation dynamics. 

Figure 12 shows a comparison of the six simulations forced by satellite products, the baseline run, and observed discharges 340 

at two validation stations, for a series of moderate to high intensity events which hit a large portion of the Po River basin in 

Fall 2019. The second of the three main events, in the second half of November, caused the exceedance of the maximum 

alert level and widespread flooding in several river sections in the main reach of the Po River across the Lombardia and 

Emilia Romagna regions, including the area of Piacenza (Figure 12, bottom). In Piacenza, all model simulations performed 

reasonably well, with maximum error on the peak discharge below 20%. The best performances over the three months are 345 

found in the baseline run and in the two runs with data assimilation (RT1 and C-SNOW), all three with KGE=0.89. Lower 

performances are produced by the three runs forced by SM2RAIN, mainly due to an overestimation of the first event in late 

October 2019. At the Candoglia station, results show an opposite pattern, with best performance by SM2RAIN and 
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SM2RAIN+GLEAM both with KGE=0.74 over the three months, mildly improving upon the performance of the baseline 

run (KGE=0.71). 350 

 

Figure 11: Like Figure 9, but using the baseline run as reference discharge. Results are shown for each modeled river reach. 
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Figure 12: Comparison of observed and simulated hydrographs [m3/s] for the events of October-December 2019 at two validation 355 
stations: Candoglia (top) and Piacenza (bottom), together with KGE calculated versus the observed discharges for the same three months. 

4.3 Sensitivity of satellite data to three model parameterizations 

A subsequent experiment investigated the performance of the hydrological model in reproducing discharges at the 27 river 

gauges, by forcing it with the satellite datasets SM2RAIN and GLEAM. In details, we compared the results of three model 

runs over 2017-2019, using three different model parameterizations obtained through dedicated calibrations (over 2018-360 

2019), derived by applying the steps described in Sect. 3.2 to different configurations of input and benchmark discharges: 

1. The first is the simulation SM2RAIN+GLEAM described in Sect. 4.2, i.e., run with the model parameters obtained 

by calibrating with conventional ground observations (interpolated measurements and MCM precipitation) and 

optimizing the objective function using observed discharge at the 22 calibration stations as benchmark (obs PE, obs 

Q in Figure 10). 365 

2. The simulation SM2RAIN+GLEAM run on a model calibration forced by the same satellite datasets SM2RAIN and 

GLEAM as input and optimizing the objective function using observed discharge at the 22 calibration stations as 

benchmark (EO PE, obs Q in Figure 10). 
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3. The simulation SM2RAIN+GLEAM run on a model calibration forced by the satellite datasets SM2RAIN and 

GLEAM as input and optimizing the objective function using satellite-derived discharge estimates at the 5 virtual 370 

stations (see Sect. 2.3.5) as benchmark (EO PE, EO Q in Figure 10). 

Surprisingly, simulation #2 forced by the same SM2RAIN and GLEAM used in the calibration shows the lowest 

performance among the three (mean KGE=0.07 over all 27 stations). Simulation #3 (EO PE, EO Q) gives satisfactory 

performance (mean KGE=0.10), relatively close to #1 (mean KGE=0.13), despite relying largely on satellite data. 

Interestingly, the five validation stations on average outperform the set of calibration stations, with average KGE of 0.38, 375 

0.30 and 0.29 for the three experiments. Performance of the three model runs versus the upstream area at the 27 stations 

(Figure 13) shows a general improvement in the correlation with the upstream area, while for the other metrics trends are 

less clear. Simulation #3 shows reduced variability (CV rate) yet smaller absolute errors (RMSE and mean error in Figure 

13), also thanks to a calibration focused on the downstream virtual stations. 

 380 

Figure 13: Skills of the run forced by satellite precipitation and evaporation (PE) versus upstream area at the 27 measurement stations. 
The three markers denote three calibrated parameter sets, obtained with different configurations of PE input and of benchmark discharge 
(Q). Conventional observational datasets are indicated with “obs”, while “EO” are the satellite-derived datasets. Dashed lines indicate the 
optimum value of each score. 

5 Discussions 385 

A critical evaluation of the results of the experiments performed can help identify strengths and weaknesses, as well as 

directions to take to maximize the benefits of satellite observations in Earth system modeling. Overall, hydrological 
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simulations driven by satellite datasets produced encouraging results, with 95% of the KGE of the station-experiment 

combinations above the no-skill threshold (versus 100% for the baseline run). The remaining 5% of combinations with KGE 

below the no-skill threshold occur in just 3 stations out of 27 and only in model configurations including SM2RAIN. 390 

Generally, the precipitation dataset is found to have the largest weight on the resulting model performance, with standard 

deviation of changes in KGE versus the baseline simulation SDΔKGE,SM2RAIN=0.37 being more than twice that of all the other 

satellite driven configurations (SDΔKGE,RT1=0.16, SDΔKGE,GLEAM=0.09, SDΔKGE,C-SNOW=0.06). In other words, the simulation 

performance shows strongest sensitivity to the precipitation forcing, which in fact leads to the largest deteriorations 

compared to the baseline run, as well as some of the largest improvements in KGE, up to ΔKGEMAX,SM2RAIN=0.29, well 395 

above all the improvements produced by GLEAM (ΔKGEMAX,GLEAM=0.17) and C-SNOW (ΔKGEMAX,C-SNOW=0.12) at any 

single station. This result is largely in agreement with previous findings (e.g., Jones et al., 2006; Sperna Weiland et al., 2015) 

and highlights the importance of advances in satellite precipitation estimation for hydrological applications. Qi et al. (2016) 

showed that model performance can also be impacted by model-precipitation product interactions, though this can partly be 

mitigated by dedicated model calibrations for each combination of input products. The high resolution version of SM2RAIN 400 

used in this work leads to comparable hydrological performance to that of the best non-gauge-corrected satellite products 

found in the literature (Camici et al., 2018; Amorim et al., 2020), and local results are better than those obtained with 

previous coarser resolution versions (see e.g., Beck et al., 2017; Tang et al., 2020). These works also show that satellite 

precipitation datasets bias-corrected with ground observations further improve the overall quality, including the performance 

in hydrological modelling. 405 

With regard to the precipitation forcing, one must also note that the MCM dataset used in the baseline represents a 

particularly difficult benchmark to overcome. The high station density and the merging with the Italian radar composite 

make MCM a high-quality and detailed product both spatially and temporally. Yet, only few world areas can rely on 

seamless and nearly unbiased gauge-radar products, while satellite datasets remain prime candidates in ungauged regions, 

especially for real time applications, thanks to key features such as extended coverage, high resolution, short latency, and 410 

spatial consistency. In addition, satellite datasets are unaffected by country borders, which make them suitable for 

applications in transboundary river basins, especially in countries where data sharing agreements are not easily implemented. 

In contrast, GLEAM and C-SNOW consistently produced moderate improvements, though on a larger number of river 

sections, with only a minority of stations where skills deteriorated in comparison to the baseline run. Finally, the assimilation 

of RT1 soil moisture shows contrasting behaviour. On the one hand, it deteriorated KGE values throughout most of the 415 

stations in the main reach of the Po river, due to a general increasing negative bias. On the other hand, it shows general 

benefits in small-size upstream catchments and notably the best improvement in KGE (ΔKGEMAX,RT1=0.41) among all 216 

station-experiment combinations, for the Trebbia river at Valsigiara. 

A final comment goes to the surprisingly high skills of hydrological simulations at the 5 validation stations, which on 

average exceed those at the calibration stations in 5 out of 9 experiments (see Figure 10). Validation stations were chosen to 420 

represent different areas of the Po basin, including a mix of small and large sub-catchments with varying influence of lakes 
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and reservoirs. The multi-site calibration strategy is designed to find an optimal parameter set for the entire domain, thus 

reducing the effect of highly variable model performance typical of cascading calibrations (e.g., Alfieri et al., 2020). All 

results are then compared at the calibration and validation stations for the same period 2017-2019, which is twice the 

duration of the calibration period, implicitly adding a validation component also at the calibration stations. Higher 425 

performance at the validation stations seem to be particularly evident in simulations forced by SM2RAIN, though a 

connection between these facts is not known and it may simply be related to spatial differences in the skills of the satellite 

precipitation forcing in the sub-catchments where validation stations are located. A noteworthy case is that of the validation 

station of the Toce River at Candoglia, in the north-western part of the Po basin. It is influenced by a large number of 

reservoirs upstream and the Lake Maggiore located just downstream hugely smoothens its runoff characteristics from the rest 430 

of the river network. This makes the sub basin almost disconnected by the rest of the Po basin. Notwithstanding, simulation 

performance at Candoglia are higher than those of the calibration stations in all experiments but one (RT1), with the case of 

SM2RAIN scoring a KGE=0.74, hence 0.22 points higher than the average calibration KGE among all stations. 

6 Conclusions 

This research explored the impact of five high resolution satellite products in distributed hydrological modelling. In a set of 435 

experiments we tested the use of satellite precipitation and evaporation as forcing input, data assimilation of satellite soil 

moisture and snow depth, and satellite river discharge estimates as benchmark for model calibration. We found skillful 

performance for all simulations including satellite derived products, with GLEAM evaporation and C-SNOW snow depth 

yielding an average 2% and 4% improvements over a baseline run driven by high-quality ground-based datasets. The skills 

of model runs including earth observation data showed considerable variability in space and time. In addition, we found 440 

skillful results in a model calibration heavily relying on satellite products, both with regard to forcing input and to 

benchmark discharge. This heralds the use of hydrological models fully relying on satellite data as an appealing solution for 

large scale applications and for regions where ground-based observations are not available, particularly in near-real time. 
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