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Abstract. Global soil water availability is challenged by the effects of climate change and a growing population. On average 

70% of freshwater extraction is attributed to agriculture, and the demand is increasing. In this study, the effects of climate 

change on the evolution of the irrigation water requirement to sustain current crop productivity are assessed by using the FAO 

crop growth model AquaCrop version 6.1. The model is run at 0.5° lat x 0.5° lon resolution over the European mainland, 10 

assuming a general C3-type of crop, and forced by climate input data from the Inter-Sectoral Impact Model Intercomparison 

Project phase three (ISIMIP3).  

First, the performance of AquaCrop surface soil moisture (SSM) simulations using historical meteorological input from two 

ISIMIP3 forcing datasets is evaluated with satellite-based SSM estimates. When driven by ISIMIP3a reanalysis meteorology 

for the years 2011-2016, daily simulated SSM values have an unbiased root-mean-square difference of 0.08 and 0.06 m³m-3 15 

with SSM retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions, 

respectively. When forced with ISIMIP3b meteorology from five Global Climate Models (GCM) for the years 2011-2020, the 

historical simulated SSM climatology closely agrees with the climatology of the reanalysis-driven AquaCrop SSM climatology 

as well as the satellite-based SSM climatologies.  

Second, the evaluated AquaCrop model is run to quantify the future irrigation requirement, for an ensemble of five GCMs and 20 

three different emission scenarios. The simulated net irrigation requirement (Inet) of the three summer months for a near and 

far future climate period (2031-2060 and 2071-2100) is compared to the baseline period of 1985-2014, to assess changes in 

the mean and interannual variability of the irrigation demand. Averaged over the continent and the model ensemble, the far 

future Inet is expected to increase by 67 mm year-1 (+30%) under a high emission scenario Shared Socioeconomic Pathway 

(SSP) 3-7.0. Central and southern Europe are the most impacted with larger Inet increases. The interannual variability of Inet is 25 

likely to increase in northern and central Europe, whereas the variability is expected to decrease in southern regions. Under a 

high mitigation scenario (SSP1-2.6), the increase in Inet will stabilize around 40 mm year-1 towards the end of the century and 

interannual variability will still increase but to a smaller extent. The results emphasize a large uncertainty in the Inet projected 

by various GCMs.  
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1 Introduction 30 

Global crop production has vastly increased over the past century, leading to the expansion of irrigated areas by almost sixfold, 

and more pressure on the irrigation water demand (Siebert et al., 2015). With changing climatic conditions and a growing 

population, future water availability is expected to further decline, raising demands for more efficient irrigation systems (Elliott 

et al., 2014; Taylor et al., 2013) and a higher crop water productivity (Brauman et al., 2021). In this context, a range of 

modelling studies have tried to assess future impacts on agricultural water demands and possible actions, but this remains a 35 

difficult task due to high uncertainties in future climate and socioeconomic scenarios (Elliott et al., 2014; Haddeland et al., 

2014; Wada et al., 2013). 

Future meteorological variables are typically modelled by Global Climate Models (GCMs) for different scenarios, usually 

represented by the Representative Concentration Pathways (RCPs; van Vuuren et al., 2011). Some challenges associated with 

climate forcing data are the consistency and the representation of the uncertainty of the data. The Inter-Sectoral Impact Model 40 

Intercomparison Project (ISIMIP) is an initiative to provide consistent bias-corrected climate datasets for impact modelling 

(Rosenzweig et al., 2017; Warszawski et al., 2014). The project is currently at its third simulation round (ISIMIP3) and 

provides reanalysis historical climate (ISIMIP3a) and GCM-driven historical and future climate (ISIMIP3b), following 

different emission scenarios, and using various GCMs. Data from the previous simulation round (ISIMIP2) have already been 

used in several studies of historical and future water resources (e.g. Boulange et al., 2021; Gudmundsson et al., 2021; Lange 45 

et al., 2020; Pokhrel et al., 2021; Reinecke et al., 2021). 

Based on such climate projections, it is possible to derive meteorological drought indicators, which are determined by 

precipitation (P) and the atmospheric evaporation demand (ET0). These meteorological droughts propagate into agricultural 

and hydrological droughts, characterized by a reduction in the soil water content and a reduction in streamflow. Over this 

century, droughts are expected to become more frequent in the northern hemisphere (Sheffield and Wood, 2008), in most parts 50 

of Europe (Spinoni et al., 2018, Grillakis, 2019), and especially in southern Europe (Pokhrel et al., 2021; Russo et al., 2013, 

Ruosteenoja et al., 2018). Common meteorological drought indices are directly associated to variations in P and ET0 (Vicente-

Serrano et al., 2015). The difference between these two fluxes (P-ET0), also referred to as the climatic water balance, has 

served as proxy to investigate drying trends (Greve et al., 2014; Prăvălie et al., 2019). For agriculture, P-ET0 is also a major 

factor determining the need for additional water, i.e. for irrigation.  55 

For the past decades, the yearly net irrigation requirement in Europe has been estimated between 53 to 1120 mm year-1 in 

Denmark and Spain, respectively (Wriedt et al., 2009). The effectively applied amounts of irrigation could be much lower or 

higher but are unknown due to the lack of good observational data (Massari et al., 2021). Future global and regional irrigation 

trend assessments have commonly used hydrological models (e.g. WaterGAP [Döll and Siebert, 2002] in Döll, 2002; Pfister 

et al., 2011), agro-ecosystems models (Lund-Potsdam-Jena managed Land model [LPJmL, Bondeau et al., 2007] in Fader et 60 

al., 2016; Konzmann et al., 2013), or agro-ecological zone (AEZ) models (FAO-AEZ methodology applied in Fischer et al., 

2007). The earliest global study addressing future irrigation requirement under climate change was performed by Döll (2002) 
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using the WaterGAP model for two GCMs. The results indicate clear effects on the long-term average irrigation requirement, 

with an average global increase of ~10% by the 2070s under the IPCC IS92a scenario (Leggett et al., 1992). Similar increases 

were found later by Fischer et al. (2007) also using two GCMs applied to an emission scenario from the IPCC Special Report 65 

on Emission Scenarios (SRES A2r; Nakicenovic et al., 2000; Riahi et al., 2007). By contrast, global decrease in irrigation 

water demand were simulated by Pfister et al. (2011) and Konzmann et al. (2013) for the end of the century. These studies 

only assessed one emission scenario, both from the IPCC SRES (Nakicenovic et al., 2000), namely the A1B and A2 scenario, 

respectively. However, in Europe, all these studies indicate clear increases in irrigation water requirement for most parts of the 

continent where irrigation is currently applied.  70 

The outcomes of the different irrigation assessments can diverge quite significantly. Wada et al. (2013) provided an ensemble 

of seven General Hydrological Models (GHMs, including LPJmL and WaterGAP) and analyzed the sources of uncertainty on 

the final predictions. The results showed that the fraction of the variance due to the GCMs is larger than the fraction caused 

by the future emission scenarios, and that the largest part of the variance resulted from the GHMs, accounting for more than 

50%. The experiment setup also plays a major role as many parameters can influence the irrigation requirement. Global figures 75 

are highly different depending on whether the expansion of irrigated areas is considered or not, which explains why Fischer et 

al. (2007) found increases in the average water requirement, whereas Pfister et al. (2011) and Konzmann et al. (2013) expected 

a global decrease. The conclusions also depend on (i) whether irrigation efficiencies are considered (i.e., including socio-

economic factors), (ii) the delineation of the growing season (a whole year, fixed or flexible start) and (iii) the type of 

implementation of irrigation in the model (gross or net requirement, threshold to trigger irrigation, amount of water applied; 80 

Telteu et al., 2021).  

The irrigation requirement can also be estimated with crop models, which have the added benefit of estimating future trends 

in crop production and thereby provide useful information to farmers and decision-makers in their adaptation management 

strategies under climate change. Crop models mainly aim to present quantitative knowledge about the crop development and 

crop yield for a given crop having specific features and subject to given environmental conditions (Monteith, 1996). Crop 85 

modelling integrates physiological processes and the interactions between the crop and its environment. Several studies have 

shown the added value of upscaling field-scale crop models to a regional level (e.g. Balkovič et al., 2013; Boogaard et al., 

2013; de Wit and van Diepen, 2007; Stöckle et al., 2014), allowing future crop yield and irrigation assessments. Elliot et al. 

(2014) provided estimations of future potential irrigation water consumption with 10 GHMs (similarly to Wada et al., 2013) 

and six Global Gridded Crop Models (GGCMs developed within the Agricultural and Model Intercomparison Project (AgMIP) 90 

framework, Rosenzweig et al., 2014), of which three are upscaled site-based crop models. Global-scale crop modelling remains 

challenging, especially at coarser resolutions (e.g. 0.5° x 0.5° lat-lon), where one grid cell may contain information of many 

heterogeneous agricultural fields (Müller et al., 2017). In addition, field management practices (e.g. irrigation practices, 

fertilizer application) are even more challenging to integrate at regional and global levels. In this study, the spatial version of 

AquaCrop developed by de Roos et al. (2021) will be used. AquaCrop (Steduto et al, 2009; Raes et al., 2009) set up as a field-95 

scale model, was developed by the Food and Agriculture Organization of the United Nations (FAO) and is based on the soil 
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water balance. Compared to other more complex canopy-level models, AquaCrop stands out by its relatively few and intuitive 

input parameters (Steduto et al., 2009). AquaCrop has already been used in regional agricultural climate impact studies by 

Dale et al. (2017), where an open-source version of AquaCrop (AquaCrop-OS; Foster et al., 2017) was used to project crop 

yields for a high number of GCMs under different climate scenarios at a resolution of 2° x 2°. 100 

In this study, the impact of climate change on the future net irrigation requirement is assessed for different emission scenarios 

and GCMs, using the spatial version of AquaCrop (de Roos et al., 2021) forced with ISIMIP3 meteorological data over the 

European continent for the first time. First, the model performance is evaluated by comparing historical spatial AquaCrop v6.1 

simulations without any irrigation, and forced with reanalysis and GCM-based meteorological data from ISIMIP3a and 

ISIMIP3b, against satellite-based surface soil moisture (SSM) observations. Next, AquaCrop v6.1 simulations are performed 105 

using an ensemble of five ISIMIP3b GCMs as forcing to provide estimates of changes in the net irrigation water requirement 

(Inet) during the summer months (June, July, August) for two periods in the future (2031-2060 and 2071-2100). The focus is 

mainly on estimating water demand during the summer period and not on crop water productivity. The objective is to regionally 

quantify the mean and interannual variability in summer Inet for a near and future climate period, and relate this to the current 

(baseline) Inet and future changes in P-ET0 following various climate scenarios.  110 

2 Model and data 

2.1 Model setup 

The study domain includes the European continent, with latitudes (lat) ranging from 34.75° N to 59.75° N, and longitudes 

(lon) from -10.75° E to 41.25° E. The spatial and temporal resolutions of the model simulations are set to those of the ISIMIP3 

input datasets, i.e. 0.5° lat x 0.5° lon, and daily time steps. The same spatial AquaCrop (v6.1) model structure as described by 115 

de Roos et al. (2021) is used for this study, but adaptations are made to the spatial resolution, input datasets, and simulated 

periods. Simulations are performed from 1985 through 2100, either with or without considering irrigation, and with the 

respective associated crop-related parameters. 

2.2 Model parameters 

Soil data is extracted from the ISIMIP3 soil input dataset that has been used in the AgMIP GGCM intercomparison (GGCMI; 120 

Rosenzweig et al., 2014). ISIMIP3 uses the Harmonized World Soil Database version 1.1 (HWSD1.1), aggregated to 0.5° 

resolution. The soil dataset represents dominant soil types on croplands within each pixel. Two soil layers are implemented in 

AquaCrop: one topsoil layer of 0.30 m, and an underlying layer of 1 m, both with the same ISIMIP (topsoil only) textural 

properties (clay, sand, silt fractions) and gravel content, but with different derived soil hydraulic parameters. More specifically, 

the volumetric soil water content at saturation, field capacity, and permanent wilting point (θs, θFC, θPWP) and the saturated 125 

hydraulic conductivity (Ksat) are derived using depth-specific (topsoil, subsoil) pedotransfer functions described by De Lannoy 

et al. (2014). Because the crop rooting depth is set to 1 m and various bedrock maps indicate that the soil depth over Europe 
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reaches below 1 m (Dirmeyer and Oki., 2002; Mahanama et al., 2015; Shangguan et al., 2017), no limitations to root 

development in a 1 m soil depth need to be considered (Raes et al., 2009).  

To assess the irrigation water requirement over time, the choice is made to use a general C3-type of crop with a 1 m rooting 130 

depth to describe the vegetation component, similar to de Roos et al. (2021). This choice is motivated by the coarse spatial 

resolution and the high uncertainty in crop modifications over time and follows the methodology of well-known hydrological 

and land surface models, that also make use of general vegetation descriptions (e.g. Niu et al., 2011; Rodell et al., 2004).  

For the historical model evaluation with satellite retrievals, no irrigation is activated, the soil fertility stress of 30% is 

maintained (de Roos et al., 2021), and the AquaCrop default record of mean annual CO2 concentration observed at Mauna Loa 135 

(Hawaii, USA) is considered in the simulations. By contrast, the simulations with irrigation follow the yearly CO2 

concentrations of the emission scenarios from ISIMIP3 and assume near-optimal soil fertility.  

Irrigated fields are assumed to be well-managed. Hence, a near-optimal soil fertility is defined in AquaCrop, corresponding to 

a potential achievable biomass production (without any other stress) of 80% (compared to 70% for the simulations without 

irrigation). To be sure of a well-developed crop canopy during the three summer months, it is assumed in the simulations with 140 

irrigation, that the crop germinated in early spring, and that the natural crop senescence occurred in late autumn. Future elevated 

CO2 concentrations are expected to increase biomass production by reducing crop transpiration and stimulating crop 

production (CO2 fertilization effect; Vanuytrecht et al., 2012). This response can vary according to intrinsic crop characteristics 

or nutrient availability (Vanuytrecht et al., 2011). To avoid overexpression of this effect, the sink term in AquaCrop is lowered 

to 0%.  145 

2.3 Meteorological data 

The AquaCrop model is run with both reanalysis (ISMIP3a) and GCM-based (ISIMIP3b) meteorological input. The ISIMIP3a 

forcing data extend up to end 2016 and are based on bias-corrected ECMWF Reanalysis data fifth generation (ERA5; Cucchi 

et al., 2020; Lange, 2019a). The GCM (ISIMIP3b) data start in 2015 and are derived from five different GCMs contributing 

to the Coupled Model Intercomparison Project phase 6 (CMIP6): GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-150 

ESM2-0, UKESM1-0-LL (Lange, 2019b, 2020). These future climate data are separated into different scenarios, which are 

based on the new scenario framework described by van Vuuren et al. (2014), combining RCPs (van Vuuren et al., 2011) with 

pathways of socioeconomic development (shared socioeconomic pathways SSPs; O’Neill et al., 2014). The sixth assessment 

report of the IPCC (2021) demonstrates its results based on this scenario architecture. Scenarios are referred to as SSPx-y, 

where SSPx refers to the SSP (five in total, described in O’Neill et al., 2014), and y refers to the level of radiative forcing (in 155 

W m-2) in 2100 (RCP). Under SSP3-7.0 and SSP5-8.5, global warming of 2 °C will likely be exceeded by mid-century. Three 

scenarios are evaluated, SSP1-2.6 (low emissions thanks to strong mitigation), SSP3-7.0 (high emissions), and SSP5-8.5 

(extreme emissions or unmitigated), for five GCMs, resulting in a total of 15 SSP-GCM scenarios. 

AquaCrop requires minimum and maximum temperature, rainfall, and reference evapotranspiration (ET0), on a daily basis. 

Meteorological variables extracted from ISIMIP3 are the daily maximum and minimum temperatures, total precipitation, near-160 
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surface relative humidity, near-surface wind speed (at a 10 m height), and the shortwave downwelling radiation. Daily ET0 

values are estimated with the FAO Penman-Monteith equation according to the guidelines presented in the FAO Irrigation and 

Drainage Paper 56 (Allen et al., 1998) with the available variables and ISIMIP elevation data (for the estimation of the 

atmospheric pressure). 

2.4 Satellite-based evaluation data 165 

To evaluate the performance of the regional AquaCrop simulations forced with ISIMIP input, two L-band microwave-based 

level 2 SSM products are used: (i) the SMUDP2 data product version 650 from the ESA Soil Moisture Ocean Salinity (SMOS) 

mission (Kerr et al., 2010), from 2011 onwards; and (ii) the SPL2SMP product version 7 from the NASA Soil Moisture Active 

Passive (SMAP) mission (Chan et al., 2016), from 2015 onwards. For both data sources, only recommended quality retrievals 

are included. Additionally, retrievals for daily minimum temperatures below 4 °C are screened out to avoid retrievals near 170 

frozen conditions. Both satellite products are projected on a 36-km Equal-Area Scalable Earth version 2 (EASEv2) grid, for 

SMOS data after reprojection as in De Lannoy and Reichle (2016). It should be noted that SMOS data over Europe have been 

affected by radio frequency interference, especially in the early years after launch in 2010 (Oliva et al., 2012).  

3 Methodology 

3.1 Simulations 175 

Three types of simulations (experiments) are performed and referred to as SIM1, SIM2, and SIM3, represented in the scheme 

in Fig. 1. SIM1 and SIM2 constitute the historical model evaluation. For the first simulation (SIM1), reanalysis meteorological 

data (ISIMIP3a) are used as input and simulated SSM is compared to satellite reference data. The earliest SMOS SSM 

observations are available in 2011. Therefore, AquaCrop is run over the study area for the period from 1 January 2011 through 

31 December 2016 with reanalysis data, i.e. until the end of the available reanalysis data. The second set of simulations (SIM2) 180 

are historical GCM-driven (ISIMIP3b) SSM simulations. The purpose of SIM2 is to determine whether the GCM-based forcing 

is reliable to use for future simulations. For each GCM, AquaCrop is run with climate input data for the period 2011-2020. 

These input data gather historical simulated climate for 2011-2014, and scenario-based simulated climate for the period 2015-

2020, only accounting for SSP5-8.5 (only small differences occur between the three SSPs for this time period). The 

meteorological time series of the two periods are stitched together to provide continuous AquaCrop forcing fields for 2011-185 

2020.  

Once the model has been evaluated with the first two experiments, simulations of SIM3 are run with GCM-driven 

meteorological input (ISIMIP3b) for the baseline (historical reference period, 1985-2014) and into the future from 2021 

through 2100. The net irrigation water requirement Inet for the three summer months is extracted from these simulations for the 

reference time window, and two future time horizons (near future 2031-2060, and far future 2071-2100). For SIM3, AquaCrop 190 

is run with the net irrigation requirement option, whereby a small amount of water (just covering the crop ET for that day) is 
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injected into the root system on days when a certain fraction of the Readily Available soil Water (RAW) is depleted (Raes et 

al., 2017). With this option, the wetting of the soil surface, and interval and application amount specific to a particular irrigation 

method are not relevant. By selecting a threshold of 50 % RAW depletion, crop water stress affecting the canopy development 

and transpiration of the generic C3 crop is avoided, and effective rainfall (the part stored in the root system up to field capacity) 195 

is still considered. All simulations performed in this research are uncoupled, i.e. feedback mechanisms from irrigation on 

atmospheric climate (e.g. Hirsch et al., 2017; Thiery et al., 2017, 2020) are neglected. 

 

 

Figure 1 Schematic presenting the simulations of this study, with an overview of satellite and climate data availability. Note that the SIM3 200 
baseline period (1985-2014) was separated from the from the present-day period (2011-2020) for readability purpose. 

 

3.2 Evaluation of historical AquaCrop simulations 

3.1.1 Skill metrics 

To compare the spatial and temporal patterns of SSM from 0.5° AquaCrop simulations with 36-km satellite data, nearest-205 

neighbour sampling is used to spatially match simulated SSM with SMOS and SMAP retrievals. The output variable extracted 

from the AquaCrop simulation is the volumetric water content of the topsoil compartment, corresponding to the first 0.1 m of 

the soil (output variable WC01 in AquaCrop).  After quality screening of the satellite data (see section 2.4), about 1.4 and 1.9 

million usable observations are kept over the study domain (composed of 3882 pixels) for SMOS and SMAP, within the period 

January 2011 – December 2020 and April 2015 – December 2020, respectively. The most widely used validation metrics for 210 

SSM estimates from large-scale model simulations and retrievals are the Pearson correlation coefficient (R), the bias, the root-

mean-square difference (RMSD), and the unbiased RMSD (ubRMSD), which are calculated as follows: 
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where x are the simulated SSM, y the reference observations, N the number of observation-simulation pairs, and ( . ̅) is the 

temporal mean. A minimum threshold of N=100 reference data points in time are set per pixel for all analyses. Because of the 

strong seasonal variation (wet winters and drier summers) of a temperate climate that characterises most of Europe, SSM 

correlations tend to be high and could misrepresent the validity of the model (Albergel et al., 2013). To avoid this effect, time 220 

series of anomalies are calculated by subtracting the climatology from the data for each daily time step. The climatology 

calculates the mean seasonal cycle as a long-term mean using a sliding window of 31 days with a minimum threshold of three 

data points of data within the window. Then, the Pearson correlation coefficient is calculated based on the anomaly time series 

(anomR). 

3.1.2 Difference in evaluation timescale for SIM1 and SIM2 225 

The time series of historical SIM1 SSM (2011 through 2016) are compared to satellite observations (SMOS: 2011-2016, and 

SMAP: 2015-2016) through the skill metrics described in section 3.1.1. All months of the year with available and qualitative 

satellite data were included in this first validation step.  

For the historical SIM2 SSM simulations (2011 through 2020), the results driven by the five different GCMs are also evaluated 

with SMOS (2011-2020) and SMAP (2015-2020) satellite observations. Additionally, the median SSM time series across the 230 

GCMs is evaluated. However, for each simulation year, only the period between the 1st of March up to the 31st of October is 

considered in the evaluation, because only summer months will be considered for the subsequent analysis of future Inet (section 

3.2). Climate models are developed to indicate changing climatic trends but do not present daily accurate data, if they are not 

constrained by observational data. Therefore, the multi-year average (i.e. climatology) of SIM2 SSM is computed for the 

corresponding observation period for the five GCM-driven simulations and their median. These can then be compared to the 235 

climatologies of satellite and reanalysis-driven SSM, using the same skill metrics presented in section 3.1.1. 

3.2 Future net irrigation Inet requirement (SIM3) 

This study focuses on the evaluation of the change in Inet during the period for which the highest irrigation demand is expected 

in all parts of Europe, i.e. June, July, and August. For the evaluation of the future irrigation water requirement, daily Inet values 

(directly available from the model output) are first extracted from the SIM3 output of the 15 different SSP-GCM combinations, 240 

and are then summed for the three summer months for each simulated year. Although this is expressed in mm year-1, it is 
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important to stress that only the three summer months are considered. The summer irrigation is then used for evaluation 

following two approaches. First, the summer Inet is averaged over the 30-year time window allowing to compare future (2031-

2060 and 2071-2100) and baseline (1985-2014) average Inet by computing the difference (ΔInet). A statistical t-test is carried 

out to define whether the difference of mean Inet between the two periods is significant (p < 0.05). Second, interannual variation 245 

is assessed based on the Inet range (RInet), defined as the difference between maximum and minimum summer Inet of the 30-

year time window. Again the difference between future and baseline RInet is evaluated (ΔRInet). Inet simulated for the different 

SSP-GCM combinations are analyzed individually. Additionally, the median results across the GCMs for each scenario are 

presented. A simple climate index (P-ET0), computed for the three summer months, is used to identify where drying trends are 

potentially occurring, and how this is reflected in the irrigation requirement.  250 

4 Results 

4.1 Evaluation of historical regional AquaCrop simulations forced with ISIMIP3 

4.1.1 SIM1: reanalysis-driven simulations  

AquaCrop SSM simulations forced with ISIMIP3a reanalysis data for the years 2011-2016 (SIM1) are evaluated against SMOS 

and SMAP SSM retrievals. Only the SMOS SSM retrievals cover this entire reanalysis period, allowing to evaluate the short-255 

term and interannual variability in the AquaCrop SSM in terms of temporal anomR. Figure 2 shows the anomR over Europe 

with a spatial mean anomR of 0.44. Higher correlations are found in south-western locations (anomR often > 0.6) and lower 

performances occur in north and central-western Europe (anomR generally < 0.4). Also shown on this figure is a partitioning 

of Europe in various zones for further discussion. 

  260 

Figure 2 Anomaly correlation (anomR) between SIM1 AquaCrop SSM and SMOS SSM for the period 2011-2016. The spatial mean and 
standard deviation are indicated (MEAN, STDEV). The six European sub-regions used to describe the model evaluation and the future Inet 
are indicated (from top left to bottom right: north-west, north-east, central-west, central-east, south-west, south-east). 

From April 2015 through December 2016, both SMOS and SMAP SSM retrievals are available. The spatially averaged skill 

metrics for AquaCrop SSM compared to satellite observations from SMOS and SMAP are presented in Table 1. The skill is 265 
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generally better relative to SMAP SSM than relative to SMOS SSM. The expected errors of both missions are 0.04 m³m-3 

when comparing the satellite data to in situ reference data (Entekhabi et al., 2014). Here, slightly higher ubRMSDs of 0.06 and 

0.08 m³m-3 are obtained.  

Table 1 Spatial mean (± spatial standard deviation) of R, RMSD, bias, and ubRMSD between SIM1 SSM estimates, SMOS, and SMAP, for 
April 2015 through December 2016. 270 

Reference obs. R (-) RMSD (m³m-3) bias (m³m-3) ubRMSD (m³m-3) 

SMOS 0.53 (±0.13) 0.10 (±0.03) -0.05 (±0.05) 0.08 (±0.02) 

SMAP 0.65 (±0.15) 0.08 (±0.04) -0.03 (±0.06) 0.06 (±0.01) 

 

Figure 3 (a) ubRMSD of SIM1 AquaCrop SSM compared to SMOS (left) and SMAP (right) retrievals for April 2015 through December 
2016. The spatial mean and standard deviation are indicated in the titles (MEAN, STDEV). (b) SSM time series of two pixels (marked by 

blue dots in (a) with the title indicating the ubRMSD [m3m-3] against SMOS and SMAP for each location. 

The spatial distribution of ubRMSD is presented in Fig. 3a. Simulated SSM deviate more from SMOS retrievals in north and 275 

central-eastern Europe, whereas pixels located in southern regions (e.g. Spain) present a better model performance when 

comparing to SMOS. Central-eastern Europe presents on average a higher ubRMSD, stressing a lower performance in this 

region. Time series of SSM estimates at two locations are shown in Fig. 3b. The modeled SSM contents are close to satellite 

retrievals for the first pixel (left), and a mismatch is found between simulations and retrievals for the second pixel (right). For 

the latter, AquaCrop simulations are underestimating SSM during summer and it can be noticed that SMOS and SMAP 280 

retrievals substantially diverge for this location. 

https://doi.org/10.5194/hess-2021-631
Preprint. Discussion started: 12 January 2022
c© Author(s) 2022. CC BY 4.0 License.



11 
 

4.1.2 SIM2: GCM-driven simulations  

The SIM2 AquaCrop SSM for the period 2011-2020 is forced with ISIMIP3b GCM-driven meteorology. The 10 years of daily 

modelled SSM are converted to a multi-year average climatology for the five GCMs, and compared to climatologies of SMOS 

(2011-2020) and SMAP (2015-2020) SSM, as well as SIM1 SSM (2011-2016), for the months March through October. 285 

Spatially averaged temporal skill metrics are shown in Fig. 4. The climatologies are inevitably computed for different numbers 

of samples in time.  

 

Figure 4 Spatial boxplots of (a) ubRMSD, (b) bias, and (c) RMSD, for five GCMs (1 to 5: GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-
HR, MRI-ESM2-0, UKESM1-0-LL) and the median across GCMs (6). SIM2 SSM is compared with (i) SMOS SSM for 2011-2020 (blue, 290 
left), (ii) SMAP for April 2015 through December 2020 (yellow-brown, middle), and (iii) SIM1 SSM for 2011 till 2016 (green, right). Only 
SSM values for the months March through October are considered in the computation of the skill metrics, and the spatial coverage is different 
for each boxplot (full coverage for SIM1 only). The boxes represent the values in the interquartile range (IQR), the line in the box corresponds 
to the median, and the whiskers extend to Q1 – 1.5IQR and Q3 + 1.5IQR, or are cut off if all data points fall into the interval (outliers are 
not shown).  295 

All GCM-driven simulations are similarly biased compared to the satellite products. The larger dry bias with SMOS (on 

average -0.05 m³m-3) compared to SMAP observations (on average -0.02 m³m-3) agrees with the evaluation results of the 

reanalysis-driven simulations (section 4.1.1). The bias of SSM climatologies between the GCM-driven to reanalysis-driven 

simulations, is minimal (green boxplots in Fig. 4b), indicating that GCM-driven projections are representative of the reanalysis 

climate. Moreover, the evaluation of predicted SSM compared to satellite data results in spatially averaged mean ubRMSDs 300 

ranging between 0.02 and 0.04 m³m-3, with the lowest values for the multi-model median SSM (Fig. 4a). 
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Figure 5 Density scatter plots comparing the SIM2 SSM climatology (median climatology across the GCMs), against a reference climatology 
based on (a) SMOS retrievals (2011-2020), (b) SMAP retrievals (April 2015-2020), and (c) SIM1 SSM estimates (2011-2016). Only the 
period from 1 March to 31 October is considered. The colorbars represent the number of space-time samples per bin. Spatio-temporal skill 305 
metrics (R, bias, RMSD and ubRMSD) are shown. 

Figure 5 presents the spatio-temporal skill metrics comparing the multi-model median SIM2 SSM climatology with three 

reference SSM climatologies. The GCM-driven SSM climatology remains close to satellite SSM climatologies in drier 

conditions but there is a wet model bias (or dry satellite retrieval bias) in wetter conditions (Fig. 5a and b). By contrast, no 

spatio-temporal pattern bias is seen between GCM-driven and reanalysis-driven SSM climatologies (Fig. 5c), i.e. SIM1 and 310 

SIM2 simulations are well correlated in all moisture conditions (R=0.99). Correlations between simulated climatologies and 

satellite data are slightly lower when considering individual GCMs (no median) with ranges of 0.46-0.49 and 0.47-0.51 for 

SMOS and SMAP, respectively (not shown). From the evaluation of SIM1 and SIM2, it can overall be concluded that 

AquaCrop demonstrates a reasonable performance in terms of spatio-temporal SSM pattern representation; we therefore 

assume that the model can be used to project Inet changes across the study area. 315 

4.2 Future net irrigation requirement Inet (SIM3) 

4.2.1 Climate impact on mean Inet 

The change in summer Inet is assessed by the difference (ΔInet) between the mean Inet of the future horizons (2031-2060; 2071-

2100) and the baseline period (1985-2014). In Fig. 6, spatial boxplots of ΔInet are presented for five GCMs individually and 

for the median across the GCMs for each scenario.  320 
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Figure 6 Spatial boxplots of ΔInet [mm year-1] for the three SSPs (a, b, c) and five GCMs (1 to 5: GFDL-ESM4, IPSL-CM6A-LR, MPI-
ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL) and the median across GCMs (6), for near (2031-2060: white) and far (2071-2100: grey) 
future, both relative to the baseline period (1985-2014). 

Based on Fig. 6, increases in Inet are expected in the future for all scenarios, where the severity of the increase depends on the 325 

emission scenario. SSP1-2.6 presents a stabilization of Inet towards the end of the century in line with the evolution of CO2 for 

this scenario, whereas the other scenarios show increases from 2031-2060 to 2071-2100. The differences between the GCMs 

within an SSP are considerable and these disparities increase with rising emission scenario. According to the first GCM 

(GFDL-ESM4), on average about 20 mm year-1 extra irrigation water will be required in the summer months by 2050 for 

SSP5-8.5, whereas for UKESM1-0-LL, nearly 100 mm year-1 will be required by mid-century for the same emission scenario. 330 

Decreases in Inet (boxplot whiskers below 0) are only observed in a few locations, especially along the Mediterranean coast 

and under the highest emission scenario (Fig. 6c). These negative differences are mostly statistically non-significant (except 

for GFDL-ESM4, but the total area subjected to decreases is negligible). Figure 7 presents the spatial distribution of ΔInet, for 

the median across the GCMs. Regions where all GCMs present significant changes are stippled. Once the results are presented 

in terms of medians, virtually no statistically significant decrease in ΔInet is observed. 335 

 

Figure 7 Changes in summer Inet (ΔInet), median across five GCMs for the two future time horizons (rows) and the three scenarios (columns) 
with reference to the baseline period. The stippled areas represent pixels where all five GCMs present statistically significant changes (t-test, 
p < 0.05). 

Under the low emission scenario (Fig. 7a and d), the whole continent will face a mild increase in summer Inet by about 40 mm 340 

year-1 (+18%) in the near and far future and regions undergoing severe increases cannot be identified. Towards the end of the 

century, for high and extreme emissions, the most affected areas (where all GCMs agree on a significant change) are situated 

in the central and southern latitudes (Fig. 7e and f). For the end of the century, the spatial mean summer Inet increases by 67 
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and 79 mm year-1 (+30% and +35%) for SSP3-7.0 and SSP5-8.5, respectively. The most eastern parts are on average presenting 

large ΔInet for the far future (2071-2100), but according to GFDL-ESM4 alone (not shown), these changes are non-significant 345 

and therefore not stippled in Fig. 7e and f. All SSP-GCM combinations agree on the evolution of Inet in the northern Alps, 

where the situation is likely to remain stable, in terms of amounts of required irrigation water. 

  

Figure 8 Scatter plots of ΔInet relative to the baseline period for the two future periods (rows) and the three scenarios (columns). The coloring 

refers to the corresponding Δ(P-ET0). Increases in Δ(P − ET0) are represented by black crosses. All values (Inet and Δ(P − ET0)) are medians 350 
across the GCMs. 

Figure 8 shows the spatial relationship between the expected change in summer Inet with reference to the baseline period. Areas 

with historically extreme (> 500 mm) or low (< 100 mm) Inet will not see their future needs increase drastically, whereas 

regions with a relatively moderate to high baseline Inet will face the strongest changes. Table 2 summarizes the baseline summer 

Inet and ΔInet (median and standard deviation across GCMs), for six selected countries and the Benelux included in this study 355 

area. The difference between the ΔInet for various scenarios is of the same order of magnitude as, and often smaller than, the 

variability introduced by the various GCMs. Note again that the presented numbers are expressed in mm year-1, but only 

integrated over three summer months per year, and the results are purely based on climate projections that are integrated into 

AquaCrop, assuming a hypothetical C3 crop, near-optimal fertilization, and without accounting for the presence or quality of 

the irrigation network. 360 
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Table 2 Median across GCMs (± standard deviation of GCMs) of baseline summer Inet, ΔInet, baseline RInet, and ΔRInet (mm year-1), 

spatially averaged over the country, for six European countries and the Benelux. The changes Δ are presented for the two future horizons 
(2031-2060 and 2071-2100, columns), and for the different emission scenarios (line 1, 2, 3 of a cell corresponding to SSP1-2.6, SSP3-7.0, 
and SSP5-8.5, respectively). 365 

 Summer Inet (mm year-1) RInet (mm year-1) 

Country Baseline 𝚫 2031-2060 𝚫 2071-2100 Baseline 𝚫 2031-2060 𝚫 2071-2100 

Benelux 77 (±7) 37 (±13) 

42 (±24) 

53 (±19) 

43 (±26) 

71 (±42) 

94 (±39) 

198 (±43) 38 (±21) 

43 (±49) 

36 (±32) 

25 (±34) 

106 (±33) 

63 (±34) 

France 159 (±6) 56 (±15) 

66 (±17) 

73 (±28) 

50 (±19) 

94 (±42) 

121 (±37) 

261 (±29) 19 (±26) 

10 (±36) 

36 (±38) 

-10 (±25) 

29 (±38) 

19 (±69) 

Germany 80 (±5) 32 (±17) 

39 (±26) 

43 (±30) 

40 (±30) 

59 (±55) 

82 (±56) 

189 (±44) 24 (±25) 

28 (±28) 

57 (±32) 

3 (±36) 

81 (±40) 

63 (±48) 

Italy 275 (±5) 39 (± 8) 

38 (±10) 

39 (±18) 

46 (±10) 

55 (±22) 

66 (±22) 

231 (±24) -15 (±37) 

9 (±26) 

3 (±27) 

-35 (±34) 

-15 (±32) 

-11 (±31) 

Romania 153 (±7) 49 (±23) 

36 (±32) 

56 (±29) 

43 (±22) 

85 (±49) 

109 (±42) 

242 (±50) 20 (±41) 

42 (±62) 

60 (±31) 

61 (±26) 

23 (±33) 

55 (±47) 

Spain 412 (±3) 48 (±12) 

51 (±24) 

56 (±22) 

40 (±16) 

71 (±28) 

85 (±23) 

259 (±16) -12 (±15) 

-10 (±23) 

-1 (±25) 

-17 (±32) 

-36 (±31) 

-26 (±14) 

Ukraine 197 (±8) 60 (±20) 

40 (±32) 

61 (±31) 

59 (±23) 

112 (±50) 

122 (±50) 

300 (±31) -11 (±43) 

-27 (±43) 

41 (±37) 

26 (±27) 

23 (±42) 

1 (±32) 

 

Figure 8 also shows how the atmospheric conditions in the summer, i.e. Δ(P-ET0), are directly related to ΔInet. The largest 

increases in ΔInet correlate with strong decreases in P-ET0. The few locations showing a positive Δ(P-ET0) in SSP1-2.6 (black 

crosses in Fig. 8a, b and d) are still subjected to a slight increase in irrigation requirement. The ΔInet estimates obtained with 

AquaCrop provide additional information over the mere Δ(P-ET0) estimates, because the soil-plant system has a memory and 370 

temporally integrates the past P-ET0 and irrigation events. Since the crop and management parameters are constant for the 

entire study domain, the only factor affecting Inet for a given climate (P and ET0) is the buffering capacity of the root zone, i.e. 
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soil characteristics. An analysis of the influence of soil characteristics showed, for instance, that sandy soils see their Inet enlarge 

more rapidly compared to loamy soils. However, no clear conclusions could be drawn, because the vast majority of Europe at 

the resolution of this study is dominated by a loamy soil texture. 375 

4.2.2 Climate impact on the interannual variability of Inet (RInet) 

To assess the potential change in interannual variability of summer Inet, the difference between the maximum and minimum 

summer Inet within a 30 year time period (range of Inet = RInet) is evaluated. The future RInet values are assessed with reference 

to the baseline period, resulting in ΔRInet for each scenario and GCM. Results are presented in Fig. 9, where expansions of 

RInet are indicated in red, and reductions in blue.  380 

 

Figure 9 Future changes in RInet (ΔRInet) median of five GCMs for the two future horizons (rows) and the three scenarios (columns) with 
reference to the baseline period. 

For all SSPs, future RInet are likely to decrease in most of southern Europe, whereas the gap between the highest and lowest 

irrigation requirement in the 30-year time window is expected to grow in northern and central regions of Europe. Similar to 385 

ΔInet (Fig. 7), Fig. 9 shows that changes are strengthened from SSP3-7.0 to SSP5-8.5 (far future, Fig. 9e and f), in line with 

the expected increase in extreme events with climate change. Table 2 summarizes the baseline RInet and changes in interannual 

variability for some selected countries in Europe. 
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Figure 10 Scatter plots of ΔRInet versus baseline range for the two future periods (rows) and the three scenarios (columns). The dots are 390 
colored by ΔInet of the corresponding time window and scenario. Negative ΔInet are marked with black crosses and extreme increases in 

ΔInet (>150 mm year-1) are represented as dark blue larger dots. All values (RInet and ΔInet) are medians across the GCMs. 

Figure 10 presents how the change in interannual variability (ΔRInet) of the two future periods relates to the baseline RInet, and 

to ΔInet. Regions with severe increases in Inet do not necessarily present the highest enlargements in RInet. The largest baseline 

RInet correlate to lower ΔRInet for the far future (SSP3-7.0 and SSP5-8.5, Fig. 10e and f), in combination with high values of 395 

ΔInet (dark blue dots, Fig. 10e and f). In other words, the Mediterranean region, west France and the region around Black Sea, 

with currently a high interannual variability in irrigation requirements will see their requirement significantly increase to more 

steady high irrigation requirement. Large ΔRInet values follow the Carpathian Mountains (central Europe) for SSP5-8.5 (Fig. 

9f). According to the model, only little irrigation was required in these mountainous regions during the baseline whereas future 

requirement are projected to increase. In the future, Inet peaks to larger values for several years, increasing RInet. 400 

 

Figure 11 Time series of summer Inet simulated with climate data extracted from IPSL-CM6A-LR for two locations (a) 49.75° N 5.25° E, 
and (b) 38.25° N 2.75° W, marked on the inset. SSP1-2.6 is represented by thin light blue bars, SSP5-8.5 by dark blue wider bars. The 
horizontal lines correspond to the time series mean over the climate window, for the future horizons the dotted lines correspond to SSP1-2.6 
and the full lines to SSP5-8.5.  405 
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To get a better understanding of changes in interannual variability of Inet, time series of two different locations for one GCM 

are presented in Fig. 10. Fig. 10a shows the evolution of summer Inet for a pixel in central-western Europe, with a ΔRInet of 

300 mm year-1 (for IPSL-CM6A-LR, randomly chosen GCM). During the baseline period, summer Inet fluctuates between zero 

and about 100 mm year-1, while at the end of the century, the maximum Inet of the time window will reach 400 mm year-1 for 

SSP5-8.5 with the same minimum Inet as for the baseline. For the second pixel in southern Europe (Fig. 10b), a stabilization of 410 

the yearly summer requirement is expected. Overall, more water will be required here, but summer Inet will not vary importantly 

relative to the average requirement from one year to another. This second location results in a decrease in RInet of about 170 mm 

year-1 for the presented GCM under SSP5-8.5. 

5 Discussion 

5.1 A new model setup for climate change impact assessment  415 

The regional setup of the AquaCrop model using ISIMIP3 meteorological data has potential to assess impacts of climate 

change on the irrigation requirement and possibly also on future crop production. First, the model evaluation proved that the 

model has an acceptable performance, i.e. the ubRMSD between SIM1 SSM simulations with reanalysis meteorology 

(ISIMIP3a), and satellite retrievals is 0.06 and 0.08 m³m-3, for SMAP and SMOS, respectively (Table 1). The lower model 

performance compared to SMOS SSM could be due to remaining radio frequency interference contamination (Oliva et al., 420 

2012). It is important to note that the satellite target uncertainty is 0.04 m³m-3 over areas with less than 5 kg m-2 vegetation 

water (i.e. excluding dense vegetation; Entekhabi et al., 2014). Even though a conservative screening was used, this target may 

be possibly exceeded at some times and locations. The findings of the evaluation against SMAP SSM are comparable to the 

results found by de Roos et al. (2021). The latter study, however, showed a slightly higher performance between the simulated 

SSM of the regional AquaCrop model and SMAP SSM. The difference in study domain and especially in resolution play a 425 

major role in explaining this difference (larger domain and soil characteristics aggregated to coarser pixels in this study).  

The strong agreement between the SIM2 SSM climatologies obtained with GCM-driven input (ISIMIP3b), the reference 

satellite and reanalysis-driven SSM climatologies (Fig. 4), further showed that the historical GCM-driven input is also reliable. 

A larger bias was observed in wetter moisture conditions (Fig. 5), possibly coming from the model itself or from biases in 

satellite retrievals. Overall, the provided simulated atmospheric data could represent the main variations of SSM for the past 430 

(2011-2020) and is therefore reliable to be used for climate change assessments. 

The model simulations for the historical evaluation did not include any irrigation and therefore, some mismatches in SSM 

could possibly be expected in areas which are currently irrigated. Earlier studies suggest that the contrast between satellite 

observations and model simulation could identify unmodeled processes (Brocca et al., 2018). In a separate analysis (not 

shown), this effect was assessed by evaluating the correlation values with regard to irrigation areas that are equipped for 435 

irrigation (AEI; similar to de Roos et al., 2021). By using the FAO global maps of irrigated areas version 5 (Siebert et al., 

2013) aggregated to ISIMIP resolution, pixels were divided into two groups: (1) less than 10% of the area is equipped for 
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irrigation, and (2) more than 10% of the pixel is equipped. The correlations between AquaCrop SIM1 SSM and satellite SSM 

for the irrigated pixels (AEI>10%) were nearly identical to correlations for the locations with an AEI<10% (0.65 versus 0.67 

for SMOS, and 0.51 for both classes of AEI for SMAP), therefore not revealing where irrigation was missing in the simulations. 440 

Even if irrigation could be captured by observation-based SSM (Kim et al., 2020), the low amount of reference satellite data 

in regions presenting high percentages of AEI compromised the evaluation in this study. The use of a conservative screening 

of satellite SSM retrievals for both SMOS and SMAP resulted in a significant amount of data loss, especially in densely 

vegetated areas which are generally masked out (Kim et al., 2020). Further, irrigated areas are usually much smaller than the 

0.5o pixel size of this study. Nevertheless, the second time series presented in Fig. 3b showed an underestimation of SSM 445 

during summer by the model and large differences between SMOS and SMAP, both suggesting potential irrigation 

applications, as confirmed by a high AEI percentage. 

5.2 Future mean and interannual variability of summer Inet 

The evolution of future summer Inet with climate change is highly dependent on the scenario (SSP), but also on the GCM 

(Table 2, Fig. 6). This agrees with several earlier droughts and irrigation projection assessments (Döll, 2002; Elliott et al., 450 

2014; Konzmann et al., 2013; Pfister et al., 2011; Pokhrel et al., 2021; Ruosteenoja et al., 2018; Satoh et al., 2021; Wada et 

al., 2013). Under high and extreme emission scenarios, the whole continent will be significantly impacted by the end of the 

century (Fig. 7e and f), with the most drastic changes in central and upper southern latitudes of the study domain, confirmed 

by the high increases in meteorological (Spinoni et al., 2018) and soil water (Ruosteenoja et al., 2018) shortages in these 

regions. ΔInet spatial patterns (Fig. 7) are comparable to the findings of Konzmann et al. (2013) and Wada et al. (2013) for the 455 

most affected areas where all GCMs present significant changes. Eastern Europe shows on average large positive ΔInet values 

but not all GCMs converge towards significant changes in this region. Moreover, the model evaluation showed a lower 

performance over this area (Fig. 3a). For these two reasons, the results may be less certain. Absolute values are hard to directly 

confront to literature because of the differences in methodology compared to other studies. In literature, Inet is often assessed 

under the assumption of potential irrigation during the entire year or growing season (as opposed to the summer only in this 460 

study), considering other factors such as irrigation efficiencies and strategies, varying crop types, and even population increase 

or economic growth ultimately impacting e.g. irrigation efficiencies. Furthermore, Wada et al. (2013) proved that the largest 

part of uncertainty in future Inet estimation is due to the impact model in the first place, and only then to climate uncertainty. 

ET0 is a determinant factor for these kinds of studies, and its calculation procedures can have an important influence on the 

final results (Webber et al., 2016).  465 

Atmospheric data alone could give an indication of the crop water requirement, as is done in meteorological drought 

assessments. However, the integration of P and ET0 into a crop model with application of irrigation is more realistic to estimate 

Inet, because it benefits from the land system memory. It should be noted though that the wetness of the irrigated land area will 

in turn affect turbulent fluxes and thus atmospheric variables in general (Hirsch et al., 2017; Thiery et al., 2017; 2020; Keune 
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et al., 2018). This feedback loop is not included in the presented simulations and needs to be carefully considered in future 470 

attempts to design climate-smart irrigation systems.  

Whereas the focus of this study was on the irrigation requirement, a similar analysis can be performed in terms of agricultural 

productivity. An increase in Inet is expected but, following increasing CO2 concentrations, biomass production is also expected 

to increase (Schleussner et al., 2018; Vanuytrecht, 2020; Vanuytrecht et al., 2012). The yield water productivity (WPY/ET, i.e. 

the ratio between crop yield and the amount of water lost by evapotranspiration) will improve due to the rising CO2 475 

concentrations. Since crops can only fully profit of the CO2 fertilization when soil fertility is high (Raes et al., 2021), an 

increase in WPY/ET is likely to occur in irrigated fields that are generally well fertilized. In the absence of soil water and soil 

fertility stress, crop production might increase by about 25% up to 45% for an atmospheric CO2 concentration of 550 ppm 

(Raes et al., 2017). Effects above this concentration remain more uncertain. 

5.3 Future adaptations of irrigation infrastructure and management 480 

Different practical future pathways can be considered starting from the current state of irrigation requirement. In regions where 

Inet is currently low (low baseline Inet), there is typically no irrigation infrastructure available or needed to achieve a fairly high 

crop production. However, to maintain crop production in the future, large investments will be required to develop or extend 

the irrigation infrastructure (Rosa et al., 2020). In regions with an existing water shortage and irrigation infrastructure, the 

focus will be on improving irrigation efficiencies, aiming to buffer the effects of climate change (Jägermeyr et al., 2016). 485 

Furthermore, with a lower availability of freshwater, the introduction of other irrigation strategies, such as deficit irrigation, 

also gains importance. Deficit irrigation intends to maximize crop water productivity, therefore stabilizing crop yields through 

time (Geerts and Raes, 2009; Mushtaq and Moghaddasi, 2011). 

5.4 Model uncertainty 

Model uncertainty is an important factor influencing climate scenario analysis (Lehner et al., 2020). This starts with the high 490 

variability between climate scenarios that are input to the crop model simulations. The uncertainty of future climate was 

included by using meteorological input from three scenarios and five GCMs, resulting in 15 different SSP-GCM combinations. 

The process of using only a small fraction of the various existing GCMs has been criticized (McSweeney and Jones, 2016). 

However, previous drought and irrigation projections often used less than five GCMs or used more but for only one emission 

scenario. Additionally, the ISIMIP GCMs are carefully selected to represent the entire CMIP ensemble (Frieler et al., 2017; 495 

Warszawski et al., 2014).  

The AquaCrop model setup also adds uncertainty. First, the constantly evolving field practices in terms of e.g. crop type and 

cultivars, water management, and soil fertility management were not included in the model simulations. However, this aspect 

is almost impossible to include. Second, the model generalizations (generic C3-type of crop, unconstrained water availability 

and constant small soil fertility stress for the whole domain) increase the uncertainty in the projections. It should be noted that 500 

actual area of irrigated land is not considered, and consequently, the expansion thereof is not simulated (estimated by e.g. 
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Schaldach et al., 2012). Nevertheless, this study aimed to present in a simple way the evolution of Inet during summer months, 

despite these generalisations in time and space.  

6 Conclusions 

Large-scale AquaCrop simulations over Europe were performed using ISIMIP3 meteorological forcings at a spatial resolution 505 

of 0.5° lat x 0.5° lon to assess future changes in net irrigation requirements. The model was first evaluated using satellite-based 

SSM to evaluate the skill of AquaCrop SSM forced with historical ISIMIP3 reanalysis and GCM-based meteorology. The 

reanalysis-driven simulated SSM have a mean spatial ubRMSD of 0.06 m³m-3 with SMAP retrievals, and thereby deviate 

slightly more than the assumed intrinsic error of the satellite retrieval error (0.04 m³m-3). The performance of AquaCrop 

compared with SMOS (ubRMSD=0.08 m³m-3) is slightly lower than with SMAP, most likely due to the older sensor of SMOS 510 

which suffers more from radio frequency interference. When using GCM-driven meteorology as input, the resulting simulated 

SSM climatologies for the years 2011 through 2020 agree closely with the SSM climatology of the reanalysis product. In 

addition, GCM-driven SSM climatologies are comparable to reference satellite climatologies (ubRMSD=0.03 m³m-3), which 

reinforces the reliability of the ISIMIP3 climate data for future projections.  

In the second part of this paper, the summer irrigation requirement of a near- (2031-2060) and far- (2071-2100) future horizon 515 

was simulated using five different GCMs and three emissions scenarios. The mean and interannual variability in net irrigation 

requirement Inet for the summer months were quantified for the two future climate horizons and compared to the baseline period 

(1985-2014). This evaluation showed that the effect of climate change on future Inet depends on the emission scenario, but 

more strongly on the GCM. Under high and extreme emission scenarios (SSP3-7.0 and SSP5-8.5), almost the whole European 

continent will see an increase in summer Inet, with on average 30% and 35% additional net irrigation water required in the far 520 

future relative to the baseline Inet. Especially regions with a moderate baseline Inet will experience strong increases in Inet. All 

GCMs agree on significant increases in central to southern Europe, which is in line with meteorological and soil moisture 

drought projections for the same scenarios, as well as previous irrigation demand projections.  

The interannual variability in summer Inet was quantified by the range between maximum and minimum Inet within the 30-year 

climate periods, RInet. It was found that mild increases in Inet result in larger gaps between maximum and minimum summer 525 

Inet within a time window, corresponding to more extremes, and a high interannual variability (large RInet). In the future, 

northern and central areas will face increased RInet, whereas southern Europe is likely to see the variability diminish resulting 

in steady high Inet. Under the strong mitigation scenario (SSP1-2.6), Inet stabilizes towards the end of the century, consistent 

with the plateauing CO2 concentrations in this scenario. The increase in variability is also reduced under this scenario. Overall, 

extra water will be required, but more production can be achieved under higher CO2 concentrations. The exact effect of CO2 530 

fertilization remains uncertain, but it is expected that yield, and especially yield water productivity, are likely to increase in 

the future in absence of water and soil fertility stress.  
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These results highlight the importance of climate change mitigation to keep future irrigation at reasonable levels, while it also 

stresses the high uncertainty of climate projections. This study aimed to demonstrate the effect of climate change on Inet over 

Europe, without considering land use, crop types, and actual irrigated areas. Therefore, the results of this study should not be 535 

taken as predictions but as an indication of the potential consequences of climate change on the amount and variability of Inet 

for the summer months. 

Code and data availability  

All results (metrics from the model evaluation, Inet and RInet for the three time windows) can be provided in netCDF format 

by contacting the authors. The original regional AquaCrop (v6.1) is available on Zenodo at https://doi.org/10.5194/gmd-2021-540 

98 (de Roos et al., 2021). ISIMIP input data can be retrieved from https://www.isimip.org/gettingstarted/input-data-bias-

correction/. The Python code and  other input datasets for the complete setup of this research can be obtained by contacting 

the authors. The netCDF files and model setup will be publicly available after the acceptance of this paper. 
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