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Abstract. Global soil water availability is challenged by the effects of climate change and a growing population. On average 

70% of freshwater extraction is attributed to agriculture, and the demand is increasing. In this study, the effects of climate 

change on the evolution of the irrigation water requirement to sustain current crop productivity are assessed by using the FAO 

crop growth model AquaCrop version 6.1. The model is run at 0.5° lat x 0.5° lon resolution over the European mainland, 10 

assuming a general C3-type of crop, and forced by climate input data from the Inter-Sectoral Impact Model Intercomparison 

Project phase three (ISIMIP3).  

First, the AquaCrop surface soil moisture (SSM) forced with two types of ISIMIP3 historical meteorological datasets is 

evaluated with satellite-based SSM estimates in two ways. When driven by ISIMIP3a reanalysis meteorology, daily simulated 

SSM values have an unbiased root-mean-square difference of 0.08 and 0.06 m³m-3 with SSM retrievals from the Soil Moisture 15 

Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions, respectively, for the years 2015-2016 (2016 is 

the end year of the reanalysis data). When forced with ISIMIP3b meteorology from five Global Climate Models (GCM) for 

the years 2015-2020, the historical simulated SSM climatology closely agrees with the satellite-based SSM climatologies. 

Second, the evaluated AquaCrop model is run to quantify the future irrigation requirement, for an ensemble of five GCMs and 

three different emission scenarios. The simulated net irrigation requirement (Inet) of the three summer months for a near and 20 

far future climate period (2031-2060 and 2071-2100) is compared to the baseline period of 1985-2014, to assess changes in 

the mean and interannual variability of the irrigation demand. Averaged over the continent and the model ensemble, the far 

future Inet is expected to increase by 22 mm month-1 (+30%) under a high emission scenario Shared Socioeconomic Pathway 

(SSP) 3-7.0. Central and southern Europe are the most impacted with larger Inet increases. The interannual variability of Inet is 

likely to increase in northern and central Europe, whereas the variability is expected to decrease in southern regions. Under a 25 

high mitigation scenario (SSP1-2.6), the increase in Inet will stabilize around 13 mm month-1 towards the end of the century 

and interannual variability will still increase but to a smaller extent. The results emphasize a large uncertainty in the Inet 

projected by various GCMs.  
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1 Introduction 

Global crop production has vastly increased over the past century, leading to the expansion of irrigated areas by almost sixfold, 30 

and more pressure on the irrigation water demand (Siebert et al., 2015). With changing climatic conditions and a growing 

population, future water availability is expected to further decline, raising demands for more efficient irrigation systems (Elliott 

et al., 2014; Taylor et al., 2013) and a higher crop water productivity (Brauman et al., 2021). In this context, a range of 

modelling studies have tried to assess future impacts on agricultural water demands and possible actions, but this remains a 

difficult task due to high uncertainties in future climate and socioeconomic scenarios (Elliott et al., 2014; Haddeland et al., 35 

2014; Wada et al., 2013). 

Future meteorological variables are typically modelled by Global Climate Models (GCMs) for different scenarios, usually 

represented by the Representative Concentration Pathways (RCPs; van Vuuren et al., 2011). Some challenges associated with 

climate forcing data are the consistency and the representation of the uncertainty of the data. The Inter-Sectoral Impact Model 

Intercomparison Project (ISIMIP) is an initiative to provide consistent bias-corrected climate datasets for impact modelling 40 

(Rosenzweig et al., 2017; Warszawski et al., 2014). The project is currently at its third simulation round (ISIMIP3) and 

provides reanalysis historical climate (ISIMIP3a) and GCM-driven historical and future climate (ISIMIP3b), following 

different emission scenarios, and using various GCMs. Data from the previous simulation round (ISIMIP2) have already been 

used in several studies of historical and future water resources (e.g. Boulange et al., 2021; Gudmundsson et al., 2021; Lange 

et al., 2020; Pokhrel et al., 2021; Reinecke et al., 2021). 45 

Based on such climate projections, it is possible to derive meteorological drought indicators, which are determined by 

precipitation (P) and the atmospheric evaporation demand (ET0). These meteorological droughts propagate into agricultural 

and hydrological droughts, characterized by a reduction in the soil water content and a reduction in streamflow. Over this 

century, droughts are expected to become more frequent in the northern hemisphere (Sheffield and Wood, 2008), in most parts 

of Europe (Spinoni et al., 2018, Grillakis, 2019), and especially in southern Europe (Pokhrel et al., 2021; Russo et al., 2013, 50 

Ruosteenoja et al., 2018). Common meteorological drought indices are directly associated to variations in P and ET0 (Vicente-

Serrano et al., 2015). The difference between these two fluxes (P-ET0), also referred to as the climatic water balance, has 

served as proxy to investigate drying trends (Greve et al., 2014; Prăvălie et al., 2019). For agriculture, P-ET0 is also a major 

factor determining the need for additional water, i.e. for irrigation.  

In Europe, rainfall fulfills the largest part of the crop water requirement (green water), but irrigation (blue water) becomes 55 

essential in the most southern parts of the continent (Chiarelli et al., 2020; Liu and Yang, 2010; Siebert and Döll, 2010). For 

the past decades, the yearly net irrigation requirement in Europe has been estimated between 53 to 1120 mm year-1 in Denmark 

and Spain, respectively (Wriedt et al., 2009). The effectively applied amounts of irrigation could be much lower or higher but 

are unknown due to the lack of good observational data (Massari et al., 2021). Future global and regional irrigation trend 

assessments have commonly used hydrological models (e.g. WaterGAP [Döll and Siebert, 2002] in Döll, 2002; Schadlach et 60 

al., 2012), agro-ecosystems models (Lund-Potsdam-Jena managed Land model [LPJmL, Bondeau et al., 2007] in Fader et al., 
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2016; Konzmann et al., 2013), or agro-ecological zone (AEZ) models (FAO-AEZ methodology applied in Fischer et al., 2007). 

The earliest global study addressing future irrigation requirement under climate change was performed by Döll (2002) using 

the WaterGAP model for two GCMs. The results indicate clear effects on the long-term average irrigation requirement, with 

an average global increase of ~10% by the 2070s under the IPCC IS92a scenario (Leggett et al., 1992). Similar increases were 65 

found later by Fischer et al. (2007) also using two GCMs applied to an emission scenario from the IPCC Special Report on 

Emission Scenarios (SRES A2r; Nakicenovic et al., 2000; Riahi et al., 2007). By contrast, global decrease in irrigation water 

demand were simulated by Pfister et al. (2011) and Konzmann et al. (2013) for the end of the century. These studies only 

assessed one emission scenario, both from the IPCC SRES (Nakicenovic et al., 2000), namely the A1B and A2 scenario, 

respectively. However, in Europe, all these studies indicate clear increases in irrigation water requirement for most parts of the 70 

continent where irrigation is currently applied.  

The outcomes of the different irrigation assessments can diverge quite significantly. Wada et al. (2013) provided an ensemble 

of seven General Hydrological Models (GHMs, including LPJmL and WaterGAP) and analyzed the sources of uncertainty on 

the final predictions. The results showed that the fraction of the variance due to the GCMs is larger than the fraction caused 

by the future emission scenarios, and that more than 50% of the variance resulted from the GHMs. The experiment setup also 75 

plays a major role as many parameters can influence the irrigation requirement. Global figures are highly different depending 

on whether the expansion of irrigated areas is considered or not, which explains why Fischer et al. (2007) found increases in 

the average water requirement, whereas Pfister et al. (2011) and Konzmann et al. (2013) expected a global decrease. The 

conclusions also depend on (i) whether irrigation efficiencies are considered (i.e., including socio-economic factors), (ii) the 

delineation of the growing season (a whole year, fixed or flexible start) and (iii) the type of implementation of irrigation in the 80 

model (gross or net requirement, threshold to trigger irrigation, amount of water applied; Telteu et al., 2021).  

The irrigation requirement can also be estimated with crop models, which have the added benefit of estimating future trends 

in crop production and thereby provide useful information to farmers and decision-makers in their adaptation management 

strategies under climate change. Crop models mainly aim to present quantitative knowledge about the crop development and 

crop yield for a given crop having specific features and subject to given environmental conditions (Monteith, 1996). Crop 85 

modelling integrates physiological processes and the interactions between the crop and its environment. Several studies have 

shown the added value of upscaling field-scale crop models to a regional level (e.g. Balkovič et al., 2013; Boogaard et al., 

2013; de Wit and van Diepen, 2007; Stöckle et al., 2014), allowing current and future crop yield and irrigation assessments. 

Liu and Yang (2010) used a GIS-based version of the EPIC (Williams et al., 1989) crop model to spatially evaluate the crop 

consumptive water use, partitioning the precipitation input, and the irrigation requirement for the year 2000. Pfister et al. 90 

(2011) used CROPWAT (Smith, 1992) to compute the global increase in irrigation requirement to meet future food and 

biomass demands. Elliot et al. (2014) provided estimations of the potential irrigation water consumption with 10 GHMs 

(similarly to Wada et al., 2013) and six Global Gridded Crop Models (GGCMs developed within the Agricultural and Model 

Intercomparison Project (AgMIP) framework, Rosenzweig et al., 2014), of which three are upscaled site-based crop models. 

Global-scale crop modelling remains challenging, especially at coarser resolutions (e.g. 0.5° x 0.5° lat-lon), where one grid 95 
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cell may contain information of many heterogeneous agricultural fields (Müller et al., 2017). In addition, field management 

practices (e.g. irrigation practices, fertilizer application) are even more challenging to integrate at regional and global levels. 

In this study, the spatial version of AquaCrop developed by de Roos et al. (2021) will be used. AquaCrop (Steduto et al, 2009; 

Raes et al., 2009) set up as a field-scale model, was developed by the Food and Agriculture Organization of the United Nations 

(FAO) and is based on the soil water balance. Compared to other, more complex canopy-level models, AquaCrop stands out 100 

by its relatively few and intuitive input parameters (Steduto et al., 2009). AquaCrop has already been used in regional 

agricultural climate impact studies by Dale et al. (2017), where an open-source version of AquaCrop (AquaCrop-OS; Foster 

et al., 2017) was used to project crop yields for a high number of GCMs under different climate scenarios at a resolution of 

2° x 2°. 

In this study, the impact of climate change on the future net irrigation requirement is assessed for different emission scenarios 105 

and GCMs, using the spatial version of AquaCrop (de Roos et al., 2021) forced with ISIMIP3 meteorological data over the 

European continent for the first time. First, the model performance is evaluated by comparing historical spatial AquaCrop v6.1 

simulations without any irrigation, forced with (i) reanalysis data from ISIMIP3a and (ii) GCM-based meteorological data 

from ISIMIP3b, against satellite-based surface soil moisture (SSM) observations. Next, AquaCrop v6.1 simulations are 

performed using an ensemble of five ISIMIP3b GCMs as forcing to provide estimates of changes in the net irrigation water 110 

requirement (Inet) during the summer months (June, July, August) for two periods in the future (2031-2060 and 2071-2100). 

The focus is mainly on estimating water demand during the summer period and not on crop water productivity. The objective 

is to regionally quantify the mean and interannual variability in summer Inet for a near and future climate period, and relate this 

to the current (baseline) Inet and future changes in P-ET0 following various climate scenarios. Compared to previous studies, 

the advantages are that the simulations are performed with (i) climate data from the latest generation of reanalyses and GCMs, 115 

(ii) the most recent set of future scenarios, and (iii) a crop model (AquaCrop), in which the dynamic interactions between water 

and vegetation are the main focus and where irrigation and management practices can be included with more detail than in a 

land surface or hydrological model. Future Inet projections could be used to inform on climate change adaptation strategies 

(e.g., climate-smart irrigation, crop type selection, water conservation). The new AquaCrop-ISIMIP3 model setup can be run 

at any spatial domain and resolution, providing future opportunities for further climate analysis, also including other irrigation 120 

practices and management options. 

2 Model and data 

2.1 Model setup 

The study domain focuses on the part ofincludes the European continent, with latitudes (lat) ranging from 34.75° N to 59.75° 

N, and longitudes (lon) from -10.75° E to 41.25° E. The spatial and temporal resolutions of the model simulations are set to 125 

those of the ISIMIP3 input datasets, i.e. 0.5° lat x 0.5° lon, and daily time steps. The same spatial AquaCrop (v6.1) model 

structure as described by de Roos et al. (2021) is used for this study, but adaptations are made to the spatial resolution, input 
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datasets, and simulated periods. Simulations are performed from 1985 through 2100, either with or without considering 

irrigation, and with the respective associated crop-related parameters. 

2.2 Model parameters 130 

Climate impact assessments are subject to large uncertainties, which increase with longer temporal projections. Therefore, 

several assumptions are made in this study to limit the uncertainty of other factors than climate. We will present net irrigation 

requirement values that are independent of the irrigated area, period, infrastructure and the exact crop type. First, simulations 

are performed over all pixels of the entire study domain (i.e. the main European continent), and the irrigation estimates for the 

entire hypothetically irrigated agricultural domain are normalized by area to make the results independent of the actual irrigated 135 

area. This avoids the need to include estimates of future hypothetical land use (Prestele at al., 2016), and the uncertain evolution 

of the extent of irrigated areas (Schaldach et al., 2012; Hurtt et al., 2020). Second, the spatial resolution of this study matches 

that of the ISIMIP input data resolution. In contrast to fine-scale agricultural studies, usually assessing actual irrigation under 

historical conditions, future climate projections are dependent on the resolution of the driving climate models (or downscaled 

output). Such studies mainly aim at estimating the irrigation requirement that is needed for crop root uptake, thereby omitting 140 

the part of irrigation that is lost to the atmosphere, or retained on the soil surface or in the soil profile. Also, state-of-the-art 

global and continental-scale climate impact assessments are typically performed at the same resolution (e.g., Jägermeyr et al., 

2021; Lange et al., 2020; Thiery et al., 2021). Third, each pixel is defined as a hypothetical homogeneous field, in which the 

vegetation conditions are identical. For future projections, the use of a representative field crop is supported by the current 

lack of detailed year- and location-specific crop maps, and by the unpredictability of changes and developments in crop type 145 

and distribution. Finally, the uncertainty and high spatial and temporal variability of the start and end of the growing season 

(King et al., 2018; Menzel and Fabian, 1999; Schadlach et al., 2012) restricts the modelling possibilities. Some previous studies 

(e.g., Elliott et al., 2014; Fader et al., 2016; Fischer et al., 2007; Konzmann et al., 2012) have used dynamic growing seasons, 

but the choice has been made to avoid this additional level of uncertainty for this study. Therefore, only the summer months 

are considered to make the future requirement directly comparable to the baseline Inet. On average, these are the months 150 

presenting the highest Inet (Siebert and Döll, 2010), and are expected to remain important months for irrigation requirements, 

even if growing seasons might shift in the future.  

Soil data is extracted from the ISIMIP3 soil input dataset that has been used in the AgMIP GGCM intercomparison (GGCMI; 

Rosenzweig et al., 2014). ISIMIP3 uses the Harmonized World Soil Database version 1.2 (HWSD1.2), aggregated to 0.5° 

resolution. The soil dataset represents dominant soil types on croplands within each pixel. Two soil layers are implemented in 155 

AquaCrop: one topsoil layer of 0.30 m, and an underlying layer of 1 m, both with the same ISIMIP (topsoil only) textural 

properties (clay, sand, silt fractions) and gravel content, but with different derived soil hydraulic parameters. More specifically, 

the volumetric soil water content at saturation, field capacity, and permanent wilting point (θs, θFC, θPWP) and the saturated 

hydraulic conductivity (Ksat) are derived using depth-specific (topsoil, subsoil) pedotransfer functions described by De Lannoy 

et al. (2014). Because the crop rooting depth is set to 1 m and various bedrock maps indicate that the soil depth over Europe 160 



 

6 

 

reaches below 1 m (Dirmeyer and Oki., 2002; Mahanama et al., 2015; Shangguan et al., 2017), no limitations to root 

development need to be considered (Raes et al., 2009). A total profile depth of 1.30 m is defined, but without the presence of 

a groundwater table or confining layers, the actual depth below the maximum rooting depth has no influence on the simulations. 

For the historical model evaluation with satellite retrievals, the choice is made to use a general C3-type of crop with a 1-m 

rooting depth to describe the vegetation component, similar to de Roos et al. (2021). This choice is motivated by the coarse 165 

spatial resolution and the high uncertainty in crop modifications over time and follows the methodology of well-known 

hydrological and land surface models, that also make use of general vegetation descriptions (e.g. Niu et al., 2011; Rodell et 

al., 2004). C3 crops are dominant in Europe (Monfreda et al., 2008; Still et al., 2003). A detailed description of the crop 

characteristics is given in Table 1 of de Roos et al. (2021). For the model evaluation, no irrigation is activated, the soil fertility 

stress of 30% is maintained (de Roos et al., 2021), and the AquaCrop default record of mean annual CO2 concentration 170 

observed at Mauna Loa (Hawaii, USA) is considered in the simulations. By contrast, the simulations with irrigation follow the 

yearly CO2 concentrations of the emission scenarios from ISIMIP3 and assume near-optimal soil fertility.  

For the determination of Inet, a representative field crop is considered. The crop characteristics that determine crop transpiration 

and hence Inet are listed in Table 1. The considered crop transpiration coefficient of 1.10 is a good indicative value of the basal 

crop coefficient for the mid-season for a large range of field crops (Allen et al., 1998). Moreover, it is assumed that in the 175 

summer months (in which Inet is determined) the crop has reached its maximum canopy cover and is prior to senescence. Since 

Inet is determined by keeping the soil water content in the root zone above 50 % of the readily available water (RAW, which is 

25 % of the total available water, TAW, for the representative field crop), water stress does not affect crop transpiration. Also, 

air temperature stress affecting crop transpiration will be small or absent in the summer months with the settings of the 

thresholds in Table 1. To be sure of a well-developed crop canopy during the three summer months, it is assumed in the 180 

simulations with irrigation, that the crop germinated in early spring, and that the natural crop senescence occurred in late 

autumn. Irrigated fields are assumed to be well-managed. Hence, a near-optimal soil fertility is defined in AquaCrop, 

corresponding to a potential achievable biomass production (without any other stress) of 80% (compared to 70% for the 

simulations without irrigation). Future elevated CO2 concentrations are expected to increase biomass production by reducing 

crop transpiration and stimulating crop production (CO2 fertilization effect; Vanuytrecht et al., 2012). This response can vary 185 

according to intrinsic crop characteristics or nutrient availability (Vanuytrecht et al., 2011). To avoid overexpression of this 

effect, the sink term in AquaCrop is lowered to 0%.  
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Table 1. Characteristics of the representative field crop 

Crop parameters values units 

Canopy cover (during the 3 summer months) 85 % soil cover 

Crop transpiration coefficient when canopy is complete 1.10 - 

Maximum effective rooting depth 1.0 m 

Soil water depletion at which stomata starts to close 50 %TAW 

Base temperature, below which crop development does not progress 8.0 °C 

Minimum growing degrees required for full crop transpiration 10.0 °C-day 

 

2.3 Meteorological data 190 

The AquaCrop model is run with both reanalysis (ISMIP3a) and GCM-based (ISIMIP3b) meteorological input. The ISIMIP3a 

forcing data extend up to end 2016 and are based on bias-corrected ECMWF Reanalysis data fifth generation (ERA5; Cucchi 

et al., 2020; Lange, 2019a). The GCM (ISIMIP3b) data start in 2015 and are derived from five different GCMs contributing 

to the Coupled Model Intercomparison Project phase 6 (CMIP6): GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-

ESM2-0, UKESM1-0-LL (Lange, 2019b, 2020). These future climate data are separated into different scenarios, which are 195 

based on the new scenario framework described by van Vuuren et al. (2014), combining RCPs (van Vuuren et al., 2011) with 

pathways of socioeconomic development (shared socioeconomic pathways SSPs; O’Neill et al., 2014). The sixth assessment 

report of the IPCC (2021) demonstrates its results based on this scenario architecture. Scenarios are referred to as SSPx-y, 

where SSPx refers to the SSP (five in total, described in O’Neill et al., 2014), and y refers to the level of radiative forcing (in 

W m-2) in 2100 (RCP). Three scenarios are evaluated, SSP1-2.6 (low emissions thanks to strong mitigation), SSP3-7.0 (high 200 

emissions), and SSP5-8.5 (extreme emissions or unmitigated), for five GCMs, resulting in a total of 15 SSP-GCM scenarios. 

Under SSP3-7.0 and SSP5-8.5, a global warming of 2 °C will likely be exceeded by mid-century. 

AquaCrop requires minimum and maximum temperature, rainfall, and reference evapotranspiration (ET0), on a daily basis. 

Meteorological variables extracted from ISIMIP3 are the daily maximum and minimum temperatures, total precipitation, near-

surface relative humidity, near-surface wind speed (at a 10 m height), and the shortwave downwelling radiation. Daily ET0 205 

values are estimated with the FAO Penman-Monteith equation according to the guidelines presented in the FAO Irrigation and 

Drainage Paper 56 (Allen et al., 1998) with the available variables and ISIMIP elevation data (for the estimation of the 

atmospheric pressure). 

2.4 Satellite-based evaluation data 

To evaluate the performance of the regional AquaCrop simulations forced with ISIMIP input, two L-band microwave-based 210 

level 2 SSM products are used: (i) the SMUDP2 data product version 650 from the ESA Soil Moisture Ocean Salinity (SMOS) 
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mission (Kerr et al., 2010), from 2011 onwards; and (ii) the SPL2SMP product version 7 from the NASA Soil Moisture Active 

Passive (SMAP) mission (Chan et al., 2016), from 2015 onwards. For both data sources, only recommended quality retrievals 

are included. Additionally, retrievals for daily minimum temperatures below 4 °C are screened out to avoid retrievals near 

frozen conditions. Both satellite products are projected on a 36-km Equal-Area Scalable Earth version 2 (EASEv2) grid, for 215 

SMOS data after reprojection as in De Lannoy and Reichle (2016). It should be noted that SMOS data over Europe have been 

affected by radio frequency interference and are filtered out, especially in the early years after launch in 2010 (Oliva et al., 

2012).  

3 Methodology 

3.1 Simulations 220 

Three types of simulation experiments are performed and referred to as SIM1, SIM2, and SIM3, with the corresponding settings 

described in Table 2. SIM1 and SIM2 constitute the historical model evaluation against satellite retrieval products. For SIM1, 

reanalysis meteorological data (ISIMIP3a) are used as input and simulated SSM is compared to satellite reference data at a 

daily resolution (short-term variability). AquaCrop is run over the study area for the period from 1 January 2011 through 31 

December 2016 with reanalysis data, i.e. until the end of the available reanalysis data. The second set of historical simulations 225 

(SIM2) are GCM-driven (ISIMIP3b) SSM simulations. The purpose of SIM2 is to determine whether the GCM-based forcing 

is reliable to use for future simulations, i.e. via an evaluation of multi-year average SSM (long-term distribution). For each 

GCM, AquaCrop is run with climate input data for the period 2011-2020. These input data gather historical simulated climate 

for 2011-2014, and scenario-based simulated climate for the period 2015-2020, only accounting for SSP5-8.5 (only small 

differences occur between the three SSPs for this time period). The meteorological time series of the two periods are stitched 230 

together to provide continuous AquaCrop forcing fields for 2011-2020. SIM1 and SIM2 have a spin up period of four years, 

and only output from 2015 onwards is used for evaluation, i.e. starting when both SMOS and SMAP data are available.  

Once the model has been evaluated with the first two experiments, simulations of SIM3 are run with GCM-driven 

meteorological input (ISIMIP3b) for the baseline (historical reference period, 1985-2014) and into the future from 2021 

through 2100. Irrigation is activated in AquaCrop and the net irrigation water requirement Inet for the three summer months is 235 

extracted from the simulations for the reference time window, and two future time horizons (near future 2031-2060, and far 

future 2071-2100). For the baseline simulation, the initial moisture conditions are set to field capacity while the future periods 

have a spin up of at least 10 years (continuous simulation from 2021 through 2100). For SIM3, irrigation is introduced, using 

the net irrigation requirement option in AquaCrop, whereby a small amount of water (just covering the crop ET for that day) 

is injected into the root system on days when a certain fraction of the RAW is depleted (Raes et al., 2017). With this option, 240 

solely the amount water taken up by the roots is considered, where the wetting of the soil surface, and interval and application 

amount specific to a particular irrigation method are not relevant. By selecting a threshold of 50% RAW depletion, which is 

the average depletion in an optimal irrigation interval (Smith, 1992), crop water stress affecting the canopy development and 
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transpiration of the representative field crop is avoided, and effective rainfall (the part stored in the root system up to field 

capacity) is still considered. All simulations performed in this research are uncoupled, i.e. feedback mechanisms from irrigation 245 

on atmospheric climate (e.g. Hirsch et al., 2017; Thiery et al., 2017, 2020) are neglected. 

Table 2 Description of the different simulations with regard to the simulation periods, analyses, climate data, crop characteristics, soil 

fertility stress and the activation of the irrigation (ON/OFF).  

Sim. Period Analysis Climate data Crop Soil fertility 

stress (%) 

Irrigation 

SIM1 April 2015 

- December 2016 

SSM short-term  

evaluation 

reanalysis generic C3 30 OFF 

SIM2 April 2015 

- December 2020 

SSM climatological 

evaluation 

5 GCMs generic C3 30 OFF 

SIM3 1985-2014 

2031-2060 

2071-2100 

Inet projections 5 GCMs 

5 GCMs x 3 SSPs 

representative 

field crop 

20 ON 

3.2 Evaluation of historical AquaCrop simulations 

3.1.1 Skill metrics 250 

To compare the spatial and temporal patterns of SSM from 0.5° AquaCrop simulations with 36-km satellite data, nearest-

neighbour sampling is used to spatially match simulated SSM with SMOS and SMAP retrievals. The output variable extracted 

from the AquaCrop simulation is the volumetric water content of the topsoil compartment, corresponding to the first 0.1 m of 

the soil (output variable WC01 in AquaCrop).  After quality screening of the satellite data (see section 2.4), about 0.9 and 1.9 

million usable observations are kept over the study domain (composed of 3882 pixels) for SMOS and SMAP, within the period 255 

April 2015 – December 2020. The most widely used validation metrics for SSM estimates from large-scale model simulations 

and retrievals are the Pearson correlation coefficient (R), the bias, the root-mean-square difference (RMSD), and the unbiased 

RMSD (ubRMSD), which are calculated as follows: 

𝑅 =  
∑ (𝑥𝑛−𝑁

𝑛=1 𝑥̅)(𝑦𝑛−𝑦̅)

√(∑ (𝑥𝑛−𝑥̅̅𝑁
𝑛=1 )

2
(∑ (𝑦𝑛−𝑦̅̅𝑁

𝑛=1 )
2

 

            (1) 

𝑏𝑖𝑎𝑠 =
1

𝑁
∑ (𝑥𝑛 − 𝑦𝑛

𝑁
𝑛=1 )             (2) 260 

𝑅𝑀𝑆𝐷 =  √
1

𝑁
∑ (𝑥𝑛 − 𝑦𝑛)2𝑁

𝑛=1             (3) 

𝑢𝑏𝑅𝑀𝑆𝐷 =  √𝑅𝑀𝑆𝐷2 − 𝑏𝑖𝑎𝑠2            (4) 

where x are the simulated SSM, y the reference observations, N the number of observation-simulation pairs, and ( . ̅) is the 

temporal mean. A minimum threshold of N=100 reference data points in time are set per pixel for all analyses. Anomaly 
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correlations are discussed in Appendix A. The aim of the historical evaluation is to assess the performance of AquaCrop to 265 

integrate ISIMIP3 meteorological forcings and to provide SSM estimates. By design, the model and satellite retrievals are 

biased, due to model parameters related to the soil and  the uniform vegetation type (generic C3 crop), vertical 

representativeness bias, etc. Therefore, bias-free metrics (R and ubRMSD) are essential to assess whether the main temporal 

variations of SSM are captured by the model forced with ISIMIP3 data. 

3.1.2 Difference in evaluation for SIM1 and SIM2 270 

Both the time series of historical SIM1 and SIM2 SSM are compared to satellite observations through the skill metrics 

described in section 3.1.1 for the time period with available data for both SMOS and SMAP, i.e. from April 2015 through 

2016. SIM1 is a short-term evaluation since daily SSM simulations are compared to satellite observations. All months of the 

year with available and qualitative satellite data were included in this first validation step.  

For the historical SIM2 SSM simulations, the multi-year average (long-term) results driven by the five different GCMs, and 275 

the median SSM time series across the GCMs are evaluated. However, for each simulation year, only the period between the 

1st of March up to the 31st of October is considered, because only summer months will be considered for the subsequent analysis 

of future Inet (section 3.2). Climate models are developed to indicate changing climatic trends but do not present daily accurate 

data, if they are not constrained by observational data. Therefore, the multi-year average (i.e. climatology) of SIM2 SSM is 

computed and then be compared to the climatologies of satellite SSM during the observation period, using the same skill 280 

metrics presented in section 3.1.1. Climatologies are calculated using a sliding window of 31 days with a minimum threshold 

of three data points of data within the window. The computation of the climatology is restrained to the availability of reference 

satellite data (i.e. SMAP, data available from April 2015), as it is also the case in satellite data assimilation systems (e.g., 

SMAP Level 4 product; Reichle et al., 2019). 

3.2 Future net irrigation Inet requirement (SIM3) 285 

This study focuses on the evaluation of the change in Inet during the period for which the highest irrigation demand is expected 

in all parts of Europe, i.e. June, July, and August (Siebert and Döll, 2010). For the evaluation of the future irrigation water 

requirement, daily Inet values (directly available from the model output) are first extracted from the SIM3 output of the 15 

different SSP-GCM combinations. The results are expressed in mm month-1 by averaging the Inet of the three summer months. 

The summer irrigation is then used for evaluation following two approaches. First, the summer Inet is averaged over the 30-290 

year time window allowing to compare future (2031-2060 and 2071-2100) and baseline (1985-2014) average Inet by computing 

the difference (ΔInet). A statistical t-test is carried out to define whether the difference of mean Inet between the two periods is 

significant (p < 0.05). Second, interannual variation is assessed based on the Inet range (RInet), defined as the difference between 

maximum and minimum summer Inet of the 30-year time window. Again the difference between future and baseline RInet is 

evaluated (ΔRInet). Inet simulated for the different SSP-GCM combinations are analyzed individually. Additionally, the median 295 
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results across the GCMs for each scenario are presented. A simple climate index (P-ET0), computed for the three summer 

months, is used to identify where drying trends are potentially occurring, and how this is reflected in the irrigation requirement.  

4 Results 

4.1 Evaluation of historical regional AquaCrop simulations forced with ISIMIP3 

4.1.1 Short-term evaluation (SIM1) 300 

AquaCrop SSM simulations forced with ISIMIP3a reanalysis data are evaluated with SMOS and SMAP SSM retrievals from 

April 2015 through December 2016 (start when data from both missions are available, until end of reanalysis data). The 

spatially averaged skill metrics for AquaCrop SSM compared to satellite observations from SMOS and SMAP are presented 

in Table 3. The skill is generally better relative to SMAP SSM than relative to SMOS SSM. The expected errors of both 

missions are 0.04 m³m-3 when comparing the satellite data to in situ reference data (Entekhabi et al., 2014). Here, slightly 305 

higher ubRMSDs of 0.06 and 0.08 m³m-3 are obtained.  

Table 3 Spatial mean (± spatial standard deviation) of R, RMSD, bias, and ubRMSD between SIM1 SSM estimates, SMOS, and SMAP, for 

April 2015 through December 2016. 

Reference obs. R (-) RMSD (m³m-3) bias (m³m-3) ubRMSD (m³m-3) 

SMOS 0.53 (±0.13) 0.10 (±0.03) -0.05 (±0.05) 0.08 (±0.02) 

SMAP 0.65 (±0.15) 0.08 (±0.04) -0.03 (±0.06) 0.06 (±0.01) 

 

 310 
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Figure 1 (a) ubRMSD of SIM1 AquaCrop SSM compared to SMOS (left) and SMAP (right) retrievals for April 2015 through December 

2016. The spatial mean and standard deviation are indicated in the titles (MEAN, STDEV). Grey areas correspond to pixels where the 

number of satellite retrievals is smaller than 100. (b) SSM time series of two pixels (marked by blue dots in (a) with the title indicating the 

ubRMSD [m3m-3] against SMOS and SMAP for each location. 

The spatial distribution of ubRMSD is presented in Fig. 1a. For further discussion, a partitioning of the study domain in various 315 

zones shown is shownpresented in Appendix A (Fig. 1A). Simulated SSM deviate more from SMOS retrievals in north and 

central-eastern Europe, whereas pixels located in southern regions (e.g. Spain) present a better model performance when 

comparing to SMOS. Central-eastern Europe presents on average a higher ubRMSD, stressing a lower performance in this 

region. Time series of SSM estimates at two locations are shown in Fig. 1b. The modelled SSM contents are close to satellite 

retrievals for the first pixel (left), and a mismatch is found between simulations and retrievals for the second pixel (right). For 320 

the latter, AquaCrop simulations are underestimating SSM during summer and it can be noticed that SMOS and SMAP 

retrievals substantially diverge for this location. 

4.1.2 Climatological evaluation (SIM2)  

The SIM2 AquaCrop SSM for the period 2011-2020 is forced with ISIMIP3b GCM-driven meteorology. The modelled SSM 

is converted to a multi-year average climatology for the five GCMs, and compared to climatologies of SMOS and SMAP SSM 325 

(2015-2020) for the months March through October. Spatially averaged temporal skill metrics are shown in Fig. 2.  

 

Figure 2 Spatial boxplots of (a) ubRMSD, (b) bias, and (c) RMSD, for five GCMs (1 to 5: GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-

HR, MRI-ESM2-0, UKESM1-0-LL) and the median across GCMs (6). SIM2 SSM is compared with SMOS (blue, left) and SMAP (yellow-

brown, right) SSM for April 2015 through December 2020. Only SSM values for the months March through October are considered in the 330 
computation of the skill metrics, and the spatial coverage is different for SMOS and SMAP. The boxes represent the values in the interquartile 



 

13 

 

range (IQR), the line in the box corresponds to the median, and the whiskers extend to Q1 – 1.5IQR and Q3 + 1.5IQR, or are cut off if all 

data points fall into the interval (outliers are not shown).  

All GCM-driven simulations are similarly biased compared to the satellite products. The larger dry bias with SMOS (on 

average -0.05 m³m-3) compared to SMAP observations (on average -0.02 m³m-3) agrees with the short-term evaluation results 335 

of the reanalysis-driven simulations (section 4.1.1).  The evaluation of predicted SSM compared to satellite data results in 

spatially averaged mean ubRMSDs ranging between 0.02 and 0.04 m³m-3, with the lowest values for the multi-model median 

SSM (Fig. 2a). 

 

Figure 3 Density scatter plots comparing the SIM2 SSM climatology (median climatology across the GCMs), against a reference climatology 340 
based on (a) SMOS retrievals, (b) SMAP retrievals (April 2015-2020). Only the period from 1 March to 31 October is considered. The 

colorbars represent the number of space-time samples per bin. Spatio-temporal skill metrics (R, bias, RMSD and ubRMSD) are shown. 

Figure 3 presents the spatio-temporal skill metrics comparing the multi-model median SIM2 SSM climatology with the two 

satellite-based SSM climatologies. The GCM-driven SSM climatology remains close to satellite SSM climatologies in drier 

conditions but there is a wet model bias (or dry satellite retrieval bias) in wetter conditions (Fig. 3). Correlations between 345 

simulated climatologies and satellite data are slightly lower when considering individual GCMs (no median) with ranges of 

0.41-0.45 and 0.47-0.51 for SMOS and SMAP, respectively (not shown). By design, GCM climatolgies are unbiased against 

the reanalysis climatology, indicating that GCM-driven projections are representative of the reanalysis climate. From the 

evaluation of SIM1 and SIM2, it can overall be concluded that AquaCrop forced by ISIMIP3 input demonstrates a reasonable 

performance in terms of spatio-temporal SSM pattern representation; we therefore assume that the model can be used to project 350 

Inet changes across the study area. 

4.2 Future net irrigation requirement Inet (SIM3) 

4.2.1 Climate impact on mean Inet 

The change in summer Inet is assessed by the difference (ΔInet) between the mean Inet of the future horizons (2031-2060; 2071-

2100) and the baseline period (1985-2014). In Fig. 4, spatial boxplots of ΔInet are presented for five GCMs individually and 355 

for the median across the GCMs for each scenario.  
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Figure 4 Spatial boxplots of ΔInet [mm month-1] for the three SSPs (a, b, c) and five GCMs (1 to 5: GFDL-ESM4, IPSL-CM6A-LR, MPI-

ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL) and the median across GCMs (6), for near (2031-2060: white) and far (2071-2100: grey) 

future, both relative to the baseline period (1985-2014). 360 

Based on Fig. 4, increases in Inet are expected in the future for all scenarios, where the severity of the increase depends on the 

emission scenario. SSP1-2.6 presents a stabilization of Inet towards the end of the century in line with the evolution of CO2 for 

this scenario, whereas the other scenarios show increases from 2031-2060 to 2071-2100. The differences between the GCMs 

within an SSP are considerable and these disparities increase with rising emission scenarios. According to the first GCM 

(GFDL-ESM4), on average about 7 mm month-1 extra irrigation water will be required in the summer months by 2050 for 365 

SSP5-8.5, whereas for UKESM1-0-LL, more than 20 mm month-1 will be required by mid-century for the same emission 

scenario. Decreases in Inet (boxplot whiskers below 0, Fig. 4c) are only observed in a few southern coastal locations under the 

high and severe emission scenarios. In these historically warm and dry regions with insignificant rainfall in the summer months, 

the effect of stomatal closure by 5% as response to CO2 concentrations above 550 ppm is stronger than the increase in ET (less 

than 5%). These negative differences are statistically non-significant (except for GFDL-ESM4, but the total area subjected to 370 

decreases is negligible). Figure 5 presents the spatial distribution of ΔInet, for the median across the GCMs. Regions where all 

GCMs present significant changes are stippled. Once the results are presented in terms of medians, no statistically significant 

decrease in ΔInet is observed. 
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Figure 5 Changes in summer Inet (ΔInet) [mm month-1], median across five GCMs for the two future time horizons (rows) and the three 375 
scenarios (columns) with reference to the baseline period. The stippled areas represent pixels where all five GCMs present statistically 

significant changes (t-test, p < 0.05). 

Under the low emission scenario (Fig. 5a and d), the whole continent will face a mild increase in summer Inet by about 

13 mm month-1 (+18%) in the near and far future, and regions undergoing severe increases cannot be identified. Towards the 

end of the century, for high and extreme emissions, the most affected areas (where all GCMs agree on a significant change) 380 

are situated in the central and southern latitudes (Fig. 5e and f). For the end of the century, the spatial mean summer Inet 

increases by 22 and 26 mm month-1 (+30% and +35%) for SSP3-7.0 and SSP5-8.5, respectively. The most eastern parts are on 

average presenting large ΔInet for the far future (2071-2100), but according to GFDL-ESM4 alone (not shown), these changes 

are non-significant and therefore not stippled in Fig. 5e and f. All SSP-GCM combinations agree on the evolution of Inet in the 

northern Alps, where the situation is likely to remain stable, in terms of amounts of required irrigation water. 385 

  

Figure 6 Scatter plots of ΔInet relative to the baseline period for the two future periods (rows) and the three scenarios (columns). The coloring 

refers to the corresponding Δ(P-ET0). Increases in Δ(P-ET0) are represented by pink crosses. All values (Inet and Δ(P-ET0)) are medians 

across the GCMs [mm month-1]. 
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Figure 6 shows the spatial relationship between the expected change in summer Inet with reference to the baseline period. Areas 390 

with historically extreme (> 150 mm month-1) or low (< 20 mm month-1) Inet will not see their future needs increase drastically, 

whereas regions with a relatively moderate to high baseline Inet will face the strongest changes. Table 4 summarizes the baseline 

summer Inet and ΔInet (median and standard deviation across GCMs), for six selected countries and the Benelux included in 

this study area. The difference between the ΔInet for various scenarios is of the same order of magnitude as, and often smaller 

than, the variability introduced by the various GCMs. Note again that the presented numbers are expressed in mm month-1, but 395 

only averaged over three summer months, and the results are purely based on climate projections that are integrated into 

AquaCrop, assuming a hypothetical C3 crop, near-optimal fertilization, and without accounting for the presence or quality of 

the irrigation network. 
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Table 4 Median across GCMs (± standard deviation of GCMs) of baseline summer Inet, ΔInet, baseline RInet, and ΔRInet [mm month-1], 400 
spatially averaged over the country, for six European countries and the Benelux. The changes Δ are presented for the two future horizons 

(2031-2060 and 2071-2100, columns), and for the different emission scenarios (line 1, 2, 3 of a cell corresponding to SSP1-2.6, SSP3-7.0, 

and SSP5-8.5, respectively). 

 Summer Inet (mm month-1) RInet (mm month-1) 

Country Baseline 𝚫 2031-2060 𝚫 2071-2100 Baseline 𝚫 2031-2060 𝚫 2071-2100 

Benelux 26 (±2) 12 (±4) 

14 (±8) 

18 (±6) 

14 (±9) 

24 (±14) 

31 (±13) 

66 (±14) 13 (±7) 

14 (±16) 

9 (±3) 

8 (±11) 

35 (±11) 

21 (±11) 

France 53 (±2) 19 (±5) 

22 (±6) 

24 (±9) 

17 (±6) 

31 (±14) 

40 (±12) 

87 (±10) 6 (±9) 

3 (±12) 

12 (±13) 

-3 (±8) 

10 (±13) 

6 (±23) 

Germany 27 (±2) 11 (±6) 

13 (±9) 

14 (±10) 

13 (±10) 

20 (±18) 

27 (±19) 

63 (±15) 8 (±8) 

9 (±9) 

19 (±11) 

1 (±12) 

27 (±13) 

21 (±16) 

Italy 92 (±2) 13 (±3) 

13 (±3) 

13 (±6) 

15 (±3) 

18 (±7) 

22 (±7) 

77 (±8) -5 (±12) 

3 (±9) 

1 (±9) 

-12 (±11) 

-5 (±11) 

-4 (±10) 

Romania 51 (±2) 16 (±8) 

12 (±11) 

19 (±10) 

14 (±7) 

28 (±16) 

36 (±14) 

81 (±17) 7 (±14) 

14 (±21) 

20 (±10) 

20 (±9) 

8 (±11) 

18 (±16) 

Spain 137 (±1) 16 (±4) 

17 (±8) 

19 (±7) 

13 (±5) 

24 (±11) 

28 (±8) 

86 (±5) -4 (±5) 

-3 (±8) 

0 (±8) 

-6 (±11) 

-12 (±10) 

-9 (±5) 

Ukraine 66 (±3) 20 (±7) 

13 (±11) 

20 (±10) 

20 (±8) 

37 (±17) 

41 (±17) 

100 (±10) -4 (±14) 

-9 (±14) 

14 (±12) 

9 (±9) 

8 (±14) 

0 (±11) 

 

Figure 6 also shows how the atmospheric conditions in the summer, i.e. Δ(P-ET0), are directly related to ΔInet. The largest 405 

increases in ΔInet correlate with strong decreases in P-ET0. The few locations showing a positive Δ(P-ET0) (black crosses in 

Fig. 6a, b and d) are still subjected to a slight increase in irrigation requirement. The ΔInet estimates obtained with AquaCrop 

provide additional information over the mere Δ(P-ET0) estimates, because the soil-plant system has a memory and temporally 

integrates the past P-ET0 and irrigation events. Since the crop and management parameters are constant for the entire study 

domain, the only factor affecting Inet for a given climate (P and ET0) is the buffering capacity of the root zone, i.e. soil 410 
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characteristics. An analysis of the influence of soil characteristics showed, for instance, that sandy soils see their Inet enlarge 

more rapidly compared to loamy soils. However, no clear conclusions could be drawn, because the vast majority of Europe at 

the resolution of this study is dominated by a loamy soil texture. 

4.2.2 Climate impact on the interannual variability of Inet (RInet) 

To assess the potential change in interannual variability of summer Inet, the difference between the maximum and minimum 415 

summer Inet within a 30-year time period (range of Inet = RInet) is evaluated. The future RInet values are assessed with reference 

to the baseline period, resulting in ΔRInet for each scenario and GCM. Results are presented in Fig. 7, where expansions of 

RInet are indicated in red, and reductions in blue.  

 

Figure 7 Future changes in RInet (ΔRInet) [mm month-1] median of five GCMs for the two future horizons (rows) and the three scenarios 420 
(columns) with reference to the baseline period. 

For all SSPs, future RInet are likely to decrease in most of southern Europe, whereas the gap between the highest and lowest 

irrigation requirement in the 30-year time window is expected to grow in northern and central regions of Europe. Similar to 

ΔInet (Fig. 5), Fig. 7 shows that changes are strengthened from SSP3-7.0 to SSP5-8.5 (far future, Fig. 7e and f), in line with 

the expected increase in extreme events with climate change. Table 4 summarizes the baseline RInet and changes in interannual 425 

variability for some selected countries in Europe. 
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Figure 8 Scatter plots of ΔRInet versus baseline range for the two future periods (rows) and the three scenarios (columns). The dots are 

colored by ΔInet of the corresponding time window and scenario. Negative ΔInet are marked with pink crosses and extreme increases in ΔInet 

(> 45 mm month-1) are represented as dark blue larger dots. All values (RInet and ΔInet) are medians across the GCMs [mm month-1]. 430 

Figure 8 presents how the change in interannual variability (ΔRInet) of the two future periods relates to the baseline RInet, and 

to ΔInet. Regions with severe increases in Inet do not necessarily present the highest enlargements in RInet. The largest baseline 

RInet correlate to lower ΔRInet for the far future (SSP3-7.0 and SSP5-8.5, Fig. 8e and f), in combination with high values of 

ΔInet (dark blue dots, Fig. 8e and f). In other words, the Mediterranean region, west France and the region around Black Sea, 

with currently a high interannual variability in irrigation requirements will see their requirement significantly increase to more 435 

steady high irrigation requirement. Large ΔRInet values follow the Carpathian Mountains (central Europe) for SSP5-8.5 

(Fig. 7f). According to the model, only little irrigation was required in these mountainous regions during the baseline whereas 

future requirement are projected to increase. In the future, Inet peaks to larger values for several years, increasing RInet. 

 

Figure 9 Time series of summer Inet [mm month-1] simulated with climate data extracted from IPSL-CM6A-LR for two locations (a) 49.75° 440 
N 5.25° E, and (b) 38.25° N 2.75° W, marked on the inset. SSP1-2.6 is represented by thin light blue bars, SSP5-8.5 by dark blue wider bars. 

The horizontal lines correspond to the time series mean over the climate window, for the future horizons the dotted lines correspond to SSP1-

2.6 and the full lines to SSP5-8.5.  
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To get a better understanding of changes in interannual variability of Inet, time series at two different locations for one GCM 

are presented in Fig. 9. Fig. 9a shows the evolution of summer Inet for a pixel in central-western Europe, with a ΔRInet of 445 

100 mm month-1 (for IPSL-CM6A-LR, randomly chosen GCM). During the baseline period, summer Inet fluctuates between 

zero and about 35 mm month-1, while at the end of the century, the maximum Inet of the time window will reach 

135 mm month-1 for SSP5-8.5 with the same minimum Inet as for the baseline. For the second pixel in southern Europe 

(Fig. 9b), a stabilization of the yearly summer requirement is expected. Overall, more water will be required here, but summer 

Inet will not vary importantly relative to the average requirement from one year to another. This second location results in a 450 

decrease in RInet of about 55 mm month-1 for the presented GCM under SSP5-8.5. 

5 Discussion 

5.1 A new model setup for climate change impact assessment  

The regional setup of the AquaCrop model using ISIMIP3 meteorological data has potential to assess impacts of climate 

change on the irrigation requirement and possibly also on future crop production. First, the short-term evaluation proved that 455 

the model forced with reanalysis meteorology (ISIMIP3a) has an acceptable performance, i.e. the ubRMSD between SIM1 

SSM simulations with reanalysis meteorology (ISIMIP3a), and satellite retrievals is 0.06 and 0.08 m³m-3, for SMAP and 

SMOS, respectively (Table 3). The lower model performance compared to SMOS SSM could be due to remaining radio 

frequency interference contamination (Oliva et al., 2012). It is important to note that the satellite target uncertainty is 

0.04 m³m-3 over areas with less than 5 kg m-2 vegetation water (i.e. excluding dense vegetation; Entekhabi et al., 2014). Even 460 

though a conservative screening was used, this target may be exceeded at some times and locations. The findings of the 

evaluation against SMAP SSM are comparable to the results found by de Roos et al. (2021). However, the latter study used 

Modern-Era Restrospective analysis for Research and Applications (version 2) input and showed a slightly higher performance 

between the simulated SSM of the regional AquaCrop model and SMAP SSM. Furthermore, the difference in study domain 

and especially in resolution play a major role in explaining this difference (larger domain and soil characteristics aggregated 465 

to coarser pixels in this study).  

The strong agreement between the SIM2 SSM climatologies obtained with GCM-driven input (ISIMIP3b) and the reference 

satellite SSM climatologies (Fig. 2), further confirmed that the historical GCM-driven input is also reliable. A larger bias was 

observed in wetter moisture conditions (Fig. 3), possibly coming from the model itself or from biases in satellite retrievals. 

Overall, the provided simulated atmospheric data could represent the main variations of SSM for the past (2015-2020) and is 470 

therefore reliable to be used for climate change assessments. 

The model simulations for the historical evaluation did not include any irrigation and therefore, some mismatches in SSM 

could possibly be expected in areas which are currently irrigated. Earlier studies suggest that the contrast between satellite 

observations and model simulation could identify unmodelled processes (Brocca et al., 2018). In a separate analysis (not 

shown), this effect was assessed by evaluating the correlation values with regard to irrigation areas that are equipped for 475 



 

21 

 

irrigation (AEI; similar to de Roos et al., 2021). By using the FAO global maps of irrigated areas version 5 (Siebert et al., 

2013) aggregated to ISIMIP resolution, pixels were divided into two groups: (1) less than 10% of the area is equipped for 

irrigation, and (2) more than 10% of the pixel is equipped. The correlations between AquaCrop SIM1 SSM and satellite SSM 

for the irrigated pixels (AEI>10%) were nearly identical to correlations for the locations with an AEI<10% (0.65 versus 0.67 

for SMOS, and 0.51 for both classes of AEI for SMAP), therefore not revealing where irrigation was missing in the simulations. 480 

Even if irrigation could be captured by observation-based SSM (Kim et al., 2020), the low amount of reference satellite data 

in regions presenting high percentages of AEI compromised the evaluation in this study. The use of a conservative screening 

of satellite SSM retrievals for both SMOS and SMAP resulted in a significant amount of data loss, especially in densely 

vegetated areas which are generally masked out (Kim et al., 2020). Further, irrigated areas are usually much smaller than the 

considered 0.5o pixel and a recent study stressed the low potential to detect irrigation at coarse resolutions (Dari et al., 2021). 485 

Nevertheless, the second time series presented in Fig. 1b showed an underestimation of SSM during summer by the model and 

large differences between SMOS and SMAP, both suggesting potential irrigation applications, as confirmed by a high AEI 

percentage. 

5.2 Future mean and interannual variability of summer Inet 

The evolution of future summer Inet with climate change is highly dependent on the scenario (SSP), but also on the GCM 490 

(Table 4, Fig. 4). Our results agree with several earlier droughts and irrigation projection assessments (Döll, 2002; Elliott et 

al., 2014; Konzmann et al., 2013; Pfister et al., 2011; Pokhrel et al., 2021; Ruosteenoja et al., 2018; Satoh et al., 2021; Schaldach 

et al., 2012; Wada et al., 2013). Under high and extreme emission scenarios, the whole continent will be significantly impacted 

by the end of the century (Fig. 5e and f), with the most drastic changes in central and upper southern latitudes of the study 

domain, confirmed by the high increases in meteorological (Spinoni et al., 2018) and soil water (Ruosteenoja et al., 2018) 495 

shortages in these regions. ΔInet spatial patterns (Fig. 5) are comparable to the findings of Konzmann et al. (2013) and Wada 

et al. (2013) for the most affected areas where all GCMs present significant changes. Eastern Europe shows on average large 

positive ΔInet values but not all GCMs converge towards significant changes in this region. Moreover, the model evaluation 

showed a lower performance over this area (Fig. 1a). For these two reasons, the results may be less certain.  

For the year 2050, Schadlach et al. (2013) estimated an average increase of 70 mm year-1 (+15% compared to the baseline of 500 

470 mm year-1) of the Inet over the European continent under a high emission scenario. For the same scenario, Fischer et al. 

(2007) predicted an increase of 53 mm year-1 (+36% compared to the baseline of 147 mm year-1) over western Europe by 2080. 

These values are comparable to the results of this study, presenting a mean increase of 38 mm year-1 (+17% compared to the 

baseline of 221 mm year-1, integrated over the three summer months only) and 67 mm year-1 (+30%) for 2050 and 2090, 

respectively, and for a comparable emission scenario (SSP3-7.0). Also, the evolution of Inet under SSP5-8.5 (+35%) can be 505 

related to the findings from Wada et al. (2013) for which increases larger than 25% are estimated over almost the entire 

European continent. Under this same scenario, the results show that France will face extreme increases in Inet (+75%) confirmed 

by Fader et al. (2016) (+80%). Smaller increases were found in other studies (e.g., Döll, 2002; Elliott et al., 2014), however 
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absolute values are hard to directly confront to literature because of the differences in methodology. In literature, Inet is often 

assessed under the assumption of potential irrigation during the entire year or growing season (as opposed to the summer only 510 

in this study), considering other factors such as irrigation efficiencies and strategies, varying crop types, and even population 

increase or economic growth ultimately impacting e.g. irrigation efficiencies. Furthermore, Elliott et al. (2014) demonstrated 

that irrigation estimates from GHMs deviate strongly from crop model predictions, potentially due to the differences in 

agrohydrological processes between the two types of models. Also, Wada et al. (2013) proved that the largest part of 

uncertainty in future Inet estimation is due to the impact model in the first place, and only then to climate uncertainty. ET0 is a 515 

determinant factor for these kinds of studies, and its calculation procedures can have an important influence on the final results 

(Webber et al., 2016). 

Atmospheric data alone could give an indication of the crop water requirement, as is done in meteorological drought 

assessments. However, the integration of P and ET0 into a crop model with application of irrigation is more realistic to estimate 

Inet, because it benefits from the land system memory. It should be noted though that the wetness of the irrigated land area will 520 

in turn affect turbulent fluxes and thus atmospheric variables in general (Hirsch et al., 2017; Thiery et al., 2017; 2020; Keune 

et al., 2018). This feedback loop is not included in the presented simulations and needs to be carefully considered in future 

attempts to design climate-smart irrigation systems.  

Whereas the focus of this study was on the irrigation requirement, a similar analysis can be performed in terms of agricultural 

productivity. An increase in Inet is expected but, following increasing CO2 concentrations, biomass production is also expected 525 

to increase (Schleussner et al., 2018; Vanuytrecht, 2020; Vanuytrecht et al., 2012). The yield water productivity (WPY/ET, i.e. 

the ratio between crop yield and the amount of water lost by evapotranspiration) will improve due to the rising CO2 

concentrations. Since crops can only fully profit of the CO2 fertilization when soil fertility is high (Raes et al., 2021), an 

increase in WPY/ET is likely to occur in irrigated fields that are generally well fertilized. In the absence of soil water and soil 

fertility stress, crop production might increase by about 25% up to 45% for an atmospheric CO2 concentration of 550 ppm 530 

(Raes et al., 2017). Effects above this concentration remain more uncertain. 

5.3 Future adaptations of irrigation infrastructure and management 

Different practical future pathways can be considered starting from the current state of irrigation requirement. In regions where 

Inet is currently low (low baseline Inet), there is typically no irrigation infrastructure available or needed to achieve a fairly high 

crop production. However, to maintain crop production in the future, large investments will be required to develop or extend 535 

the irrigation infrastructure (Rosa et al., 2020). In regions with an existing water shortage and irrigation infrastructure, the 

focus will be on improving irrigation efficiencies, aiming to buffer the effects of climate change (Jägermeyr et al., 2016). Our 

study did not consider specific irrigation practices and efficiencies. The latter have been estimated around 50% in Europe 

(Fischer et al., 2007; Rohwer et al., 2007; Wada et al., 2013), meaning that the Inet values presented in this study could roughly 

be doubled to obtain the gross requirement. Sprinkler irrigation remains the most widely used practice in Europe, but the share 540 

of drip irrigation is progressively increasing in southern countries such as Spain and Italy (Monaghan et al., 2013), aiming at 
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improving irrigation efficiencies. Furthermore, with a lower availability of freshwater, the introduction of other irrigation 

strategies, such as deficit irrigation, also gains importance. Deficit irrigation intends to maximize crop water productivity, 

therefore stabilizing crop yields through time (Geerts and Raes, 2009; Mushtaq and Moghaddasi, 2011). 

5.4 Model uncertainty 545 

Model uncertainty is an important factor influencing climate scenario analyses (Lehner et al., 2020). This starts with the high 

variability between climate scenarios that are input to the crop model simulations. The uncertainty of future climate was 

included by using meteorological input from three scenarios and five GCMs, resulting in 15 different SSP-GCM combinations. 

The process of using only a small fraction of the various existing GCMs has been criticized (McSweeney and Jones, 2016). 

However, previous drought and irrigation projections often used less than five GCMs or used more but for only one emission 550 

scenario. Additionally, the ISIMIP GCMs are carefully selected to represent the entire CMIP ensemble (Frieler et al., 2017; 

Warszawski et al., 2014).  

The AquaCrop model setup also adds uncertainty. First, the constantly evolving field practices in terms of e.g. crop type and 

cultivars, water management, and soil fertility management were not included in the model simulations. However, this aspect 

is almost impossible to include. Second, the model generalizations (generic C3-type of crop, unconstrained water availability 555 

and constant small soil fertility stress for the whole domain) increase the uncertainty in the projections. It should be noted that 

actual area of irrigated land is not considered, and consequently, the expansion thereof is not simulated (estimated by e.g. 

Schaldach et al., 2012). Nevertheless, the intention of this study is to limit the uncertainty in time and space (as described in 

section 2.2) by assuming these generalizations, therefore aiming to present in a simple way the evolution of Inet during summer 

months.  560 

6 Conclusions 

Large-scale AquaCrop simulations over Europe were performed using ISIMIP3 meteorological forcings at a spatial resolution 

of 0.5° lat x 0.5° lon to assess future changes in net irrigation requirements Inet. Because this is the first large-scale AquaCrop 

application with ISIMIP3 input, the model was first evaluated using satellite-based SSM. The reanalysis-driven (ISIMIP3a) 

simulated SSM have a mean spatial ubRMSD of 0.06 m³m-3 with SMAP retrievals, and thereby deviate slightly more than the 565 

assumed intrinsic error of the satellite retrieval error (0.04 m³m-3). The performance of AquaCrop compared with SMOS 

(ubRMSD=0.08 m³m-3) is slightly lower than with SMAP, most likely because the SMOS sensor suffers more from radio 

frequency interference. When using GCM-driven (ISIMIP3b) meteorology as input, the multi-year average SSM of the 

simulations is comparable to that of reference satellite data (ubRMSD=0.03 m³m-3), which reinforces the reliability of the 

ISIMIP3 climate data for future projections.  570 

In the second part of this paper, the summer irrigation requirement of a near- (2031-2060) and far- (2071-2100) future horizon 

was simulated using five different GCMs and three emissions scenarios. We present net irrigation requirement values that are 
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independent of the irrigated area, period, infrastructure and the exact crop type. The mean and interannual variability in net 

irrigation requirement Inet for the summer months were quantified for the two future climate horizons and compared to the 

baseline period (1985-2014). This evaluation showed that the effect of climate change on future Inet depends on the emission 575 

scenario, but more strongly on the GCM. Under high and extreme emission scenarios (SSP3-7.0 and SSP5-8.5), almost the 

whole European continent will see an increase in summer Inet, with on average 30% and 35% additional net irrigation water 

required in the far future relative to the baseline Inet. Especially regions with a moderate baseline Inet will experience strong 

increases in Inet. All GCMs agree on significant increases in central to southern Europe, which is in line with meteorological 

and soil moisture drought projections for the same scenarios, as well as previous irrigation demand projections.  580 

The interannual variability in summer Inet was quantified by the range between maximum and minimum Inet within the 30-year 

climate periods, RInet. It was found that mild increases in Inet result in larger gaps between maximum and minimum summer 

Inet within a time window, corresponding to more extremes, and a high interannual variability (large RInet). In the future, 

northern and central areas will face increased RInet, whereas southern Europe is likely to see the variability diminish resulting 

in steady high Inet. Under the strong mitigation scenario (SSP1-2.6), Inet stabilizes towards the end of the century, consistent 585 

with the plateauing CO2 concentrations in this scenario. The increase in variability is also reduced under this scenario. Overall, 

extra water will be required, but more production can be achieved under higher CO2 concentrations. The exact effect of CO2 

fertilization remains uncertain, but it is expected that yield, and especially yield water productivity, are likely to increase in 

the future in absence of water and soil fertility stress. Our large-scale setup with AquaCrop is well suited to explore the effect 

of climate scenarios on crop productivity in future research. 590 

These results highlight the importance of climate change mitigation to keep future irrigation at reasonable levels, while it also 

stresses the high uncertainty of climate projections. This study aimed to demonstrate the effect of climate change on Inet over 

Europe, without considering land use, crop types, and actual irrigated areas to avoid the inclusion of more uncertainty. 

Therefore, the results of this study should not be taken as predictions but as an indication of the potential consequences of 

climate change on the amount and variability of Inet for the summer months. 595 

Appendices 

Appendix A: comparison of SIM1 and SMOS SSM in terms of anomalies 

To evaluate the short-term and interannual variability in the AquaCrop SSM in terms of temporal anomaly correlation 

(anomR), time series of anomalies are calculated by subtracting the climatology from simulation and satellite data for each 

daily time step. The climatology calculates the mean seasonal cycle as a long-term mean using a sliding window of 31 days 600 

with a minimum threshold of three data points of data within the window.  

Because anomR values can only be computed when several years of data are available, the AquaCrop SSM simulations forced 

with ISIMIP3a reanalysis data for the years 2011-2016 (SIM1) are evaluated against SMOS SSM retrievals only. Figure A1 

shows the anomR over Europe with a spatial mean anomR of 0.44. Higher correlations are found in south-western locations 
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(anomR often > 0.6) and lower performances occur in north and central-western Europe (anomR generally < 0.4). Also shown 605 

on this figure is a partitioning of Europe in various zones for further discussion. 

  

Figure A1 Anomaly correlation (anomR) between SIM1 AquaCrop SSM and SMOS SSM for the period 2011-2016. The spatial mean and 

standard deviation are indicated (MEAN, STDEV). The six European sub-regions used to describe the model evaluation and the future Inet 

are indicated (from top left to bottom right: north-west, north-east, central-west, central-east, south-west, south-east). 610 

Code and data availability  

The regional AquaCrop (v6.1) is available on Zenodo at https://doi.org/10.5194/gmd-2021-98 (de Roos et al., 2021). ISIMIP 

input data can be retrieved from https://www.isimip.org/gettingstarted/input-data-bias-correction/. The other input datasets and 

Python code for the complete setup of this specific research can be obtained by contacting the authors. All results (metrics 

from the model evaluation, Inet and RInet for the three time windows) can be provided in netCDF format by contacting the 615 

authors. The netCDF files and model setup will be publicly available after the acceptance of this paper. 

Author contributions 

LB adapted the code to run the regional version of AquaCrop with ISIMIP data, prepared the input data, conducted the model 

evaluation, performed all simulations and analyses. SDR provided the code of the regional version of AquaCrop (v6.1) and 

scientific guidance. GDL prioritized the main steps taken in the paper, provided supervision and scientific guidance throughout 620 

all research advances, and manages HPC usage. WT provided scientific guidance through climate change impact assessments 

and ISIMIP. DR provided scientific guidance regarding the use and interpretation of AquaCrop, along with an appropriate 

methodology to assess future irrigation requirements. LB wrote the paper and all authors contributed.  

Competing interests 

The authors declare that they have no conflict of interests.  625 

https://doi.org/10.5194/gmd-2021-98
https://www.isimip.org/gettingstarted/input-data-bias-correction/


 

26 

 

Acknowledgements 

The resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the 

Research Foundation - Flanders (FWO) and the Flemish Government. The authors would like to acknowledge the ISIMIP for 

providing climate input data used in this study. We would also like to thank Luke Grant for his help with the ISIMIP data 

downloads and storage management. 630 

Financial support 

This research is conducted as part of the H2020 project Shui, that stands for “Soil Hydrology research platform underpinning 

innovation to manage water scarcity in European and Chinese cropping systems”. SHui is funded by the European Union 

Project GA 773903. Additional support was available via KU Leuven internal fund C14/21/057. 

References 635 

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration, Irrig. Drainage Paper, 56, Rome, Italy: UN Food 

and Agriculture Organization, 1998 

Balkovič, J., van der Velde, M., Schmid, E., Skalský, R., Khabarov, N., Obersteiner, M., Stürmer, B., and Xiong, W.: Pan-

European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation, Agr. Syst., 120, 61–75, 

https://doi.org/10.1016/j.agsy.2013.05.008, 2013. 640 

Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., 

Reichstein, M., and Smith, B.: Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Glob. 

Change. Biol., 13, 679–706, https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007. 

Boogaard, H., Wolf, J., Supit, I., Niemeyer, S., and van Ittersum, M.: A regional implementation of WOFOST for calculating 

yield gaps of autumn-sown wheat across the European Union, Field Crop. Res., 143, 130–142, 645 

https://doi.org/10.1016/j.fcr.2012.11.005, 2013. 

Boulange, J., Hanasaki, N., Satoh, Y., Yokohata, T., Shiogama, H., Burek, P., Thiery, W., Gerten, D., Schmied, H. M., Wada, 

Y., Gosling, S. N., Pokhrel, Y., and Wanders, N.: Validity of estimating flood and drought characteristics under equilibrium 

climates from transient simulations, Environ. Res. Lett., 16, 104028, https://doi.org/10.1088/1748-9326/ac27cc, 2021. 

Brauman, K. A., Siebert, S., and Foley, J. A.: Improvements in crop water productivity increase water sustainability and food 650 

security—a global analysis, Environ. Res. Lett., 8, 024030, https://doi.org/10.1088/1748-9326/8/2/024030, 2013. 

Brocca, L., Tarpanelli, A., Filippucci, P., Dorigo, W., Zaussinger, F., Gruber, A., and Fernández-Prieto, D.: How much water 

is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products, Int. J. Appl. Earth Obs. 73, 

752–766, https://doi.org/10.1016/j.jag.2018.08.023, 2018. 

Chan, S. K., Bindlish, R., O’Neill, P. E., Njoku, E., Jackson, T., Colliander, A., Chen, F., Burgin, M., Dunbar, S., Piepmeier, 655 

J., Yueh, S., Entekhabi, D., Cosh, M. H., Caldwell, T., Walker, J., Wu, X., Berg, A., Rowlandson, T., Pacheco, A., McNairn, 

H., Thibeault, M., Martínez-Fernández, J., González-Zamora, Á., Seyfried, M., Bosch, D., Starks, P., Goodrich, D., Prueger, 



 

27 

 

J., Palecki, M., Small, E. E., Zreda, M., Calvet, J.-C., Crow, W. T., and Kerr, Y.: Assessment of the SMAP Passive Soil 

Moisture Product, IEEE T. Geosci. Remote, 54, 4994–5007, https://doi.org/10.1109/TGRS.2016.2561938, 2016. 

Chiarelli, D. D., Passera, C., Rosa, L., Davis, K. F., D’Odorico, P., and Rulli, M. C.: The green and blue crop water requirement 660 

WATNEEDS model and its global gridded outputs, Sci Data, 7, 273, https://doi.org/10.1038/s41597-020-00612-0, 2020. 

Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., and Buontempo, C.: 

WFDE5: bias-adjusted ERA5 reanalysis data for impact studies, Earth Syst. Sci. Data, 12, 2097–2120, 

https://doi.org/10.5194/essd-12-2097-2020, 2020. 

Dale, A., Fant, C., Strzepek, K., Lickley, M., and Solomon, S.: Climate model uncertainty in impact assessments for 665 

agriculture: A multi-ensemble case study on maize in sub-Saharan Africa, Earth’s Future, 5, 337–353, 

https://doi.org/10.1002/2017EF000539, 2017. 

Dari, J., Quintana-Seguí, P., Escorihuela, M. J., Stefan, V., Brocca, L., and Morbidelli, R.: Detecting and mapping irrigated 

areas in a Mediterranean environment by using remote sensing soil moisture and a land surface model, Journal of Hydrology, 

596, 126129, https://doi.org/10.1016/j.jhydrol.2021.126129, 2021. 670 

De Lannoy, G. J. M. and Reichle, R. H.: Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land 

surface model, Hydrol. Earth Syst. Sci., 20, 4895–4911, https://doi.org/10.5194/hess-20-4895-2016, 2016. 

De Lannoy, G. J. M., Koster, R. D., Reichle, R. H., Mahanama, S. P. P., and Liu, Q.: An updated treatment of soil texture and 

associated hydraulic properties in a global land modeling system, J. Adv. Model. Earth Sy., 6, 957–979, 

https://doi.org/10.1002/2014MS000330, 2014. 675 

de Roos, S., De Lannoy, G. J. M., and Raes, D.: Performance analysis of regional AquaCrop (v6.1) biomass and surface soil 

moisture simulations using satellite and in situ observations, Geosci. Model Dev., 14, 7309–7328, https://doi.org/10.5194/gmd-

14-7309-2021, 2021. 

de Roos, S., De Lannoy, G., and Raes, D.: source code and datasets for gmd-2021-98, Version 1, Zenodo [data set], 

https://doi.org/10.5281/zenodo.4770738, 2021 680 

de Wit, A. J. W. and van Diepen, C. A.: Crop model data assimilation with the Ensemble Kalman filter for improving regional 

crop yield forecasts, Agr. Forest Meterol., 146, 38–56, https://doi.org/10.1016/j.agrformet.2007.05.004, 2007. 

Dirmeyer, P. and Oki, T.: The Second Global Soil Wetness project (GSWP-2) Science 2 and Implementation Plan, 

International GEWEX Project Office Publication (IGPO), Columbia, Md, IGPO Publication Series No. 37, 64 pp., 2002.  

Döll, P.: Impact of Climate Change and Variability on Irrigation Requirements: A Global Perspective, Climatic Change, 54, 685 

269–293, https://doi.org/10.1023/A:1016124032231, 2002. 

Döll, P. and Siebert, S.: Global modeling of irrigation water requirements, Water Resour. Res., 38, 8-1-8–10, 

https://doi.org/10.1029/2001WR000355, 2002. 

Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, 

S., Fekete, B. M., Folberth, C., Foster, I., Gosling, S. N., Haddeland, I., Khabarov, N., Ludwig, F., Masaki, Y., Olin, S., 690 

Rosenzweig, C., Ruane, A. C., Satoh, Y., Schmid, E., Stacke, T., Tang, Q., and Wisser, D.: Constraints and potentials of future 

irrigation water availability on agricultural production under climate change, P. Natl. Acad. Sci. USA, 111, 3239–3244, 

https://doi.org/10.1073/pnas.1222474110, 2014. 



 

28 

 

Entekhabi, D., Yueh, S., O'Neill, P., Kellogg, K. H., Allen, A., Bindlish, R., Brown, M., Chan, S., Colliander, A., Crow, W. 

T, Das, N., De Lannoy, G., Dunbar, R. S., Edelstein, W. N., Entin, J. K., Escobar, V., Goodman, S. D., Jackson, T. J., Jai, B., 695 

Johnson, J., Kim, E., Kim, S., Kimball, J., Koster, R. D., Leon, A., McDonald, K. C., Moghaddam, M., Mohammed, P., Moran, 

S., Njoku, E. G., Piepmeier, J. R., Reichle, R., Rogez, F., Shi, J. C., Spencer, M. W., Thurman, S. W., Tsang, L., Van Zyl, J., 

Weiss, B., and West, R.: SMAP Handbook–soil moisture active passive: Mapping soil moisture and freeze/thaw from space, 

JPL publication, Pasadena, California USA, 192 pp., JPL 400-1567, 2014.  

Fader, M., Shi, S., von Bloh, W., Bondeau, A., and Cramer, W.: Mediterranean irrigation under climate change: more efficient 700 

irrigation needed to compensate for increases in irrigation water requirements, Hydrol. Earth Syst. Sci., 20, 953–973, 

https://doi.org/10.5194/hess-20-953-2016, 2016. 

Fischer, G., Tubiello, F. N., van Velthuizen, H., and Wiberg, D. A.: Climate change impacts on irrigation water requirements: 

Effects of mitigation, 1990–2080, Technol. Forecast Soc., 74, 1083–1107, https://doi.org/10.1016/j.techfore.2006.05.021, 

2007. 705 

Foster, T., Brozović, N., Butler, A. P., Neale, C. M. U., Raes, D., Steduto, P., Fereres, E., and Hsiao, T. C.: AquaCrop-OS: An 

open source version of FAO’s crop water productivity model, Agr. Water Manage., 181, 18–22, 

https://doi.org/10.1016/j.agwat.2016.11.015, 2017. 

Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., 

Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanovic, M., Suzuki, T., 710 

Volkholz, J., Burke, E., Ciais, P., Ebi, K., Eddy, T. D., Elliott, J., Galbraith, E., Gosling, S. N., Hattermann, F., Hickler, T., 

Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova, V., Marcé, R., Müller Schmied, H., Mouratiadou, I., Pierson, D., 

Tittensor, D. P., Vautard, R., van Vliet, M., Biber, M. F., Betts, R. A., Bodirsky, B. L., Deryng, D., Frolking, S., Jones, C. D., 

Lotze, H. K., Lotze-Campen, H., Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts of 1.5 °C 

global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), Geosci. Model 715 

Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, 2017. 

Geerts, S. and Raes, D.: Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas, Agr. Water 

Manage., 96, 1275–1284, https://doi.org/10.1016/j.agwat.2009.04.009, 2009. 

Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., and Seneviratne, S. I.: Global assessment of trends in 

wetting and drying over land, Nat. Geosci, 7, 716–721, https://doi.org/10.1038/ngeo2247, 2014. 720 

Grillakis, M. G.: Increase in severe and extreme soil moisture droughts for Europe under climate change, Sci. Total Environ., 

660, 1245–1255, https://doi.org/10.1016/j.scitotenv.2019.01.001, 2019. 

Gudmundsson, L., Boulange, J., Do, H. X., Gosling, S. N., Grillakis, M. G., Koutroulis, A. G., Leonard, M., Liu, J., Müller 

Schmied, H., Papadimitriou, L., Pokhrel, Y., Seneviratne, S. I., Satoh, Y., Thiery, W., Westra, S., Zhang, X., and Zhao, F.: 

Globally observed trends in mean and extreme river flow attributed to climate change, Science, 371, 1159–1162, 725 

https://doi.org/10.1126/science.aba3996, 2021. 

Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, 

J., Stacke, T., Tessler, Z. D., Wada, Y., and Wisser, D.: Global water resources affected by human interventions and climate 

change, P. Natl. Acad. Sci. USA, 111, 3251–3256, https://doi.org/10.1073/pnas.1222475110, 2014. 

Hirsch, A. L., Wilhelm, M., Davin, E. L., Thiery, W., and Seneviratne, S. I.: Can climate-effective land management reduce 730 

regional warming?, J. Geophys. Res.-Atmos.,122, 2269–2288, https://doi.org/10.1002/2016JD026125, 2017. 



 

29 

 

Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein 

Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, 

T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., 

Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management 735 

for the period 850–2100 (LUH2) for CMIP6, 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020. 

IPCC, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report 

of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, 

C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., 

Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B., Cambridge University Press, 2021. 740 

Jägermeyr, J., Gerten, D., Schaphoff, S., Heinke, J., Lucht, W., and Rockström, J.: Integrated crop water management might 

sustainably halve the global food gap, Environ. Res. Lett., 11, 025002, https://doi.org/10.1088/1748-9326/11/2/025002, 2016. 

Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A., 

Fuchs, K., Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T., Jain, A. K., Kelly, D., Khabarov, N., Lange, S., Lin, T.-S., 

Liu, W., Mialyk, O., Minoli, S., Moyer, E. J., Okada, M., Phillips, M., Porter, C., Rabin, S. S., Scheer, C., Schneider, J. M., 745 

Schyns, J. F., Skalsky, R., Smerald, A., Stella, T., Stephens, H., Webber, H., Zabel, F., and Rosenzweig, C.: Climate impacts 

on global agriculture emerge earlier in new generation of climate and crop models, Nat Food, 2, 873–885, 

https://doi.org/10.1038/s43016-021-00400-y, 2021. 

Kerr, Y. H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.-J., Font, J., Reul, N., Gruhier, 

C., Juglea, S. E., Drinkwater, M. R., Hahne, A., Martín-Neira, M., and Mecklenburg, S.: The SMOS Mission: New Tool for 750 

Monitoring Key Elements ofthe Global Water Cycle, IEEE, 98, 666–687, https://doi.org/10.1109/JPROC.2010.2043032, 2010. 

Keune, J., Sulis, M., Kollet, S., Siebert, S., and Wada, Y.: Human Water Use Impacts on the Strength of the Continental Sink 

for Atmospheric Water, Geophys. Res. Lett., 45, 4068–4076, https://doi.org/10.1029/2018GL077621, 2018. 

Kim, H., Wigneron, J.-P., Kumar, S., Dong, J., Wagner, W., Cosh, M. H., Bosch, D. D., Collins, C. H., Starks, P. J., Seyfried, 

M., and Lakshmi, V.: Global scale error assessments of soil moisture estimates from microwave-based active and passive 755 

satellites and land surface models over forest and mixed irrigated/dryland agriculture regions, Proc. SPIE, 251, 112052, 

https://doi.org/10.1016/j.rse.2020.112052, 2020. 

King, M., Altdorff, D., Li, P., Galagedara, L., Holden, J., and Unc, A.: Northward shift of the agricultural climate zone under 

21st-century global climate change, Sci Rep, 8, 7904, https://doi.org/10.1038/s41598-018-26321-8, 2018. 

Konzmann, M., Gerten, D., and Heinke, J.: Climate impacts on global irrigation requirements under 19 GCMs, simulated with 760 

a vegetation and hydrology model, Hydrolog. Sci. J., 58, 88–105, https://doi.org/10.1080/02626667.2013.746495, 2013. 

Lange, S.: WFDE5 over land merged with ERA5 over the ocean (W5E5) (1.0), GFZ Data Services, 

https://doi.org/10.5880/PIK.2019.023, 2019a. 

Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), Geosci. Model Dev., 12, 

3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019b. 765 

Lange, S.: ISIMIP3BASD (2.4.1), Zenodo, https://doi.org/10.5281/ZENODO.3898426, 2020. 

Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., Reyer, C. P. O., Warszawski, L., Huber, V., Jägermeyr, 

J., Schewe, J., Bresch, D. N., Büchner, M., Chang, J., Ciais, P., Dury, M., Emanuel, K., Folberth, C., Gerten, D., Gosling, S. 

N., Grillakis, M., Hanasaki, N., Henrot, A.-J., Hickler, T., Honda, Y., Ito, A., Khabarov, N., Koutroulis, A., Liu, W., Müller, 



 

30 

 

C., Nishina, K., Ostberg, S., Müller Schmied, H., Seneviratne, S. I., Stacke, T., Steinkamp, J., Thiery, W., Wada, Y., Willner, 770 

S., Yang, H., Yoshikawa, M., Yue, C., and Frieler, K.: Projecting Exposure to Extreme Climate Impact Events Across Six 

Event Categories and Three Spatial Scales, Earth’s Future, 8, e2020EF001616, https://doi.org/10.1029/2020EF001616, 2020. 

Leggett, J., Pepper, W. J., Swart, R. J., Edmonds, J., Meira Filho, L. G., Mintzer, I., and Wang, M. X.: Emissions scenarios for 

the IPCC: an update, Climate Change, 1040, 75–95, 1992. 

Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., Knutti, R., and Hawkins, E.: Partitioning climate 775 

projection uncertainty with multiple large ensembles and CMIP5/6, Earth Syst. Dynam., 11, 491–508, 

https://doi.org/10.5194/esd-11-491-2020, 2020. 

Liu, J. and Yang, H.: Spatially explicit assessment of global consumptive water uses in cropland: Green and blue water, Journal 

of Hydrology, 384, 187–197, https://doi.org/10.1016/j.jhydrol.2009.11.024, 2010. 

Mahanama, S. P., Koster, R. D., Walker, G. K., Tackacs, L., Reichle, R. H., De Lannoy, G., Liu, Q., Zhao, B., and Suarez, M.: 780 

Land Boundary Conditions for the Goddard Earth Observing System Model Version 5 (GEOS-5) Climate Modeling System 

– Recent Updates and Data File Descriptions, NASA Technical Report Series on Global Modeling and Data Assimilation 

104606, Vol. 39, NASA Goddard Space Flight Center, MD, USA, 51 pp., 2015.  

Massari, C., Modanesi, S., Dari, J., Gruber, A., De Lannoy, G. J. M., Girotto, M., Quintana-Seguí, P., Le Page, M., Jarlan, L., 

Zribi, M., Ouaadi, N., Vreugdenhil, M., Zappa, L., Dorigo, W., Wagner, W., Brombacher, J., Pelgrum, H., Jaquot, P., Freeman, 785 

V., Volden, E., Fernandez Prieto, D., Tarpanelli, A., Barbetta, S., and Brocca, L.: A Review of Irrigation Information Retrievals 

from Space and Their Utility for Users, Remote Sens.-Basel., 13, 4112, https://doi.org/10.3390/rs13204112, 2021. 

McSweeney, C. F. and Jones, R. G.: How representative is the spread of climate projections from the 5 CMIP5 GCMs used in 

ISI-MIP?, Climate Services, 1, 24–29, https://doi.org/10.1016/j.cliser.2016.02.001, 2016. 

Menzel, A. and Fabian, P.: Growing season extended in Europe, 397, 659–659, https://doi.org/10.1038/17709, 1999. 790 

Monaghan, J. M., Daccache, A., Vickers, L. H., Hess, T. M., Weatherhead, E. K., Grove, I. G., and Knox, J. W.: More ‘crop 

per drop’: constraints and opportunities for precision irrigation in European agriculture, 93, 977–980, 

https://doi.org/10.1002/jsfa.6051, 2013. 

Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2. Geographic distribution of crop areas, yields, 

physiological types, and net primary production in the year 2000, 22, https://doi.org/10.1029/2007GB002947, 2008. 795 

Monteith, J. L.: The Quest for Balance in Crop Modeling, Agron. J., 88, 695–697, 

https://doi.org/10.2134/agronj1996.00021962008800050003x, 1996. 

Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Folberth, C., Glotter, M., Hoek, 

S., Iizumi, T., Izaurralde, R. C., Jones, C., Khabarov, N., Lawrence, P., Liu, W., Olin, S., Pugh, T. A. M., Ray, D. K., Reddy, 

A., Rosenzweig, C., Ruane, A. C., Sakurai, G., Schmid, E., Skalsky, R., Song, C. X., Wang, X., de Wit, A., and Yang, H.: 800 

Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications, Geosci. Model Dev., 10, 1403–

1422, https://doi.org/10.5194/gmd-10-1403-2017, 2017. 

Mushtaq, S. and Moghaddasi, M.: Evaluating the potentials of deficit irrigation as an adaptive response to climate change and 

environmental demand, Environ. Sci. Policy, 14, 1139–1150, https://doi.org/10.1016/j.envsci.2011.07.007, 2011. 

Nakicenovic, N., Alcamo, J., Davis, G., Vries, B. de, Fenhann, J., Gaffin, S., Gregory, K., Grubler, A., Jung, T. Y., Kram, T., 805 

Rovere, E. L. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., 



 

31 

 

Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., Rooijen, S. van, Victor, N., and Zhou, D.: Special report on 

emissions scenarios, Lawrence Berkeley National Laboratory, LBNL-59940, retrieved from: 

https://escholarship.org/uc/item/9sz5p22f, 2000. 

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., 810 

Tewari, M., and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model 

description and evaluation with local-scale measurements, J. Geophys. Res.-Atmos., 116, 

https://doi.org/10.1029/2010JD015139, 2011. 

O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., and van Vuuren, D. P.: A new 

scenario framework for climate change research: the concept of shared socioeconomic pathways, Climatic Change, 122, 387–815 

400, https://doi.org/10.1007/s10584-013-0905-2, 2014. 

Oliva, R., Daganzo, E., Kerr, Y. H., Mecklenburg, S., Nieto, S., Richaume, P., and Gruhier, C.: SMOS Radio Frequency 

Interference Scenario: Status and Actions Taken to Improve the RFI Environment in the 1400–1427-MHz Passive Band, IEEE 

T. Geosci. Remote, 50, 1427–1439, https://doi.org/10.1109/TGRS.2012.2182775, 2012. 

Pfister, S., Bayer, P., Koehler, A., and Hellweg, S.: Projected water consumption in future global agriculture: Scenarios and 820 

related impacts, Sci. Total Environ., 409, 4206–4216, https://doi.org/10.1016/j.scitotenv.2011.07.019, 2011. 

Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., Gerten, D., Gosling, S. N., Grillakis, M., 

Gudmundsson, L., Hanasaki, N., Kim, H., Koutroulis, A., Liu, J., Papadimitriou, L., Schewe, J., Müller Schmied, H., Stacke, 

T., Telteu, C.-E., Thiery, W., Veldkamp, T., Zhao, F., and Wada, Y.: Global terrestrial water storage and drought severity 

under climate change, Nat. Clim. Change, 11, 226–233, https://doi.org/10.1038/s41558-020-00972-w, 2021. 825 

Prăvălie, R., Piticar, A., Roșca, B., Sfîcă, L., Bandoc, G., Tiscovschi, A., and Patriche, C.: Spatio-temporal changes of the 

climatic water balance in Romania as a response to precipitation and reference evapotranspiration trends during 1961–2013, 

CATENA, 172, 295–312, https://doi.org/10.1016/j.catena.2018.08.028, 2019. 

Prestele, R., Alexander, P., Rounsevell, M. D. A., Arneth, A., Calvin, K., Doelman, J., Eitelberg, D. A., Engström, K., Fujimori, 

S., Hasegawa, T., Havlik, P., Humpenöder, F., Jain, A. K., Krisztin, T., Kyle, P., Meiyappan, P., Popp, A., Sands, R. D., 830 

Schaldach, R., Schüngel, J., Stehfest, E., Tabeau, A., Van Meijl, H., Van Vliet, J., and Verburg, P. H.: Hotspots of uncertainty 

in land-use and land-cover change projections: a global-scale model comparison, 22, 3967–3983, 

https://doi.org/10.1111/gcb.13337, 2016. 

Raes, D., Steduto, P., Hsiao, T. C., and Fereres, E.: AquaCrop – the FAO crop model to simulate yield response to water: II. 

Main algorithms and software description, Agron. J., 101, 438–447, https://doi.org/10.2134/agronj2008.0140s, 2009.  835 

Raes, D., Steduto, P., Hsiao, T.C., and Fereres, E. AquaCrop on-line reference manual. 

http://www.fao.org/nr/water/aquacrop.html, 2017. 

Raes, D., Waongo, M., Vanuytrecht, E., and Mejias Moreno, P.: Improved management may alleviate some but not all of the 

adverse effects of climate change on crop yields in smallholder farms in West Africa, Agr. Forest Meteorol., 308–309, 108563, 

https://doi.org/10.1016/j.agrformet.2021.108563, 2021. 840 

Reichle, R. H., Liu, Q., Koster, R. D., Crow, W. T., De Lannoy, G. J. M., Kimball, J. S., Ardizzone, J. V., Bosch, D., Colliander, 

A., Cosh, M., Kolassa, J., Mahanama, S. P., Prueger, J., Starks, P., and Walker, J. P.: Version 4 of the SMAP Level-4 Soil 

Moisture Algorithm and Data Product, 11, 3106–3130, https://doi.org/10.1029/2019MS001729, 2019. 

https://doi.org/10.1029/2019MS001729


 

32 

 

Reinecke, R., Müller Schmied, H., Trautmann, T., Andersen, L. S., Burek, P., Flörke, M., Gosling, S. N., Grillakis, M., 

Hanasaki, N., Koutroulis, A., Pokhrel, Y., Thiery, W., Wada, Y., Yusuke, S., and Döll, P.: Uncertainty of simulated 845 

groundwater recharge at different global warming levels: a global-scale multi-model ensemble study, Hydrol. Earth Syst. Sci., 

25, 787–810, https://doi.org/10.5194/hess-25-787-2021, 2021. 

Riahi, K., Grübler, A., and Nakicenovic, N.: Scenarios of long-term socio-economic and environmental development under 

climate stabilization, Technol. Forecast Soc., 74, 887–935, https://doi.org/10.1016/j.techfore.2006.05.026, 2007. 

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., 850 

Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data Assimilation System, B. AM. 

Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004. 

Rohwer, J., Gerten, D., and Lucht, W.: Development of functional irrigation types for improved global crop modelling, 2007. 

Rosa, L., Chiarelli, D. D., Sangiorgio, M., Beltran-Peña, A. A., Rulli, M. C., D’Odorico, P., and Fung, I.: Potential for 

sustainable irrigation expansion in a 3 °C warmer climate, P. Natl. Acad. Sci. USA, 117, 29526–29534, 855 

https://doi.org/10.1073/pnas.2017796117, 2020. 

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, 

N., Neumann, K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., and Jones, J. W.: Assessing agricultural risks 

of climate change in the 21st century in a global gridded crop model intercomparison, P. Natl. Acad. Sci. USA, 111, 3268–

3273, https://doi.org/10.1073/pnas.1222463110, 2014. 860 

Rosenzweig, C., Arnell, N. W., Ebi, K. L., Lotze-Campen, H., Raes, F., Rapley, C., Smith, M. S., Cramer, W., Frieler, K., 

Reyer, C. P. O., Schewe, J., Vuuren, D. van, and Warszawski, L.: Assessing inter-sectoral climate change risks: the role of 

ISIMIP, Environ. Res. Lett., 12, 010301, https://doi.org/10.1088/1748-9326/12/1/010301, 2017. 

Ruosteenoja, K., Markkanen, T., Venäläinen, A., Räisänen, P., and Peltola, H.: Seasonal soil moisture and drought occurrence 

in Europe in CMIP5 projections for the 21st century, Clim. Dynam., 50, 1177–1192, https://doi.org/10.1007/s00382-017-3671-865 

4, 2018. 

Russo, S., Dosio, A., Sterl, A., Barbosa, P., and Vogt, J.: Projection of occurrence of extreme dry-wet years and seasons in 

Europe with stationary and nonstationary Standardized Precipitation Indices, J. Geophys. Res.-Atmos, 118, 7628–7639, 

https://doi.org/10.1002/jgrd.50571, 2013. 

Satoh, Y., Shiogama, H., Hanasaki, N., Pokhrel, Y., Boulange, J. E. S., Burek, P., Gosling, S. N., Grillakis, M., Koutroulis, 870 

A., Schmied, H. M., Thiery, W., and Yokohata, T.: A quantitative evaluation of the issue of drought definition: a source of 

disagreement in future drought assessments, Environ. Res. Lett., 16, 104001, https://doi.org/10.1088/1748-9326/ac2348, 2021. 

Schaldach, R., Koch, J., Aus der Beek, T., Kynast, E., and Flörke, M.: Current and future irrigation water requirements in pan-

Europe: An integrated analysis of socio-economic and climate scenarios, Global Planet. Change, 94–95, 33–45, 

https://doi.org/10.1016/j.gloplacha.2012.06.004, 2012. 875 

Schleussner, C.-F., Deryng, D., Müller, C., Elliott, J., Saeed, F., Folberth, C., Liu, W., Wang, X., Pugh, T. A. M., Thiery, W., 

Seneviratne, S. I., and Rogelj, J.: Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty, 

Environ. Res. Lett., 13, 064007, https://doi.org/10.1088/1748-9326/aab63b, 2018. 

Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., and Dai, Y.: Mapping the global depth to bedrock for land surface 

modeling, J. Adv. Model. Earth Sy., 9, 65–88, https://doi.org/10.1002/2016MS000686, 2017. 880 



 

33 

 

Sheffield, J. and Wood, E. F.: Projected changes in drought occurrence under future global warming from multi-model, multi-

scenario, IPCC AR4 simulations, Clim. Dynam., 31, 79–105, https://doi.org/10.1007/s00382-007-0340-z, 2008. 

Siebert, S. and Döll, P.: Quantifying blue and green virtual water contents in global crop production as well as potential 

production losses without irrigation, Journal of Hydrology, 384, 198–217, https://doi.org/10.1016/j.jhydrol.2009.07.031, 2010. 

Siebert, S., Henrich, V., Frenken, K., and Burke, J.: Global Map of Irrigation Areas version 5, Rheinische Friedrich-Wilhelms-885 

University, Bonn, Germany/Food and Agriculture Organization of the United Nations, Rome, Italy, [data set], available at 

https://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/latest-version/, (last access: 10 February 

2021), 2013.   

Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., and Scanlon, B. R.: A global data set of the extent of irrigated 

land from 1900 to 2005, Hydrol. Earth Syst. Sci., 19, 1521–1545, https://doi.org/10.5194/hess-19-1521-2015, 2015. 890 

Smith, M.: CROPWAT: A Computer Program for Irrigation Planning and Management, FAO, 140 pp., 1992. 

Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., and Dosio, A.: Will drought events become more frequent and severe in 

Europe?, Int. J. Climatol., 38, 1718–1736, https://doi.org/10.1002/joc.5291, 2018. 

Steduto, P., Hsiao, T. C., Raes, D., and Fereres, E.: AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: 

I. Concepts and Underlying Principles, Agron. J., 101, 426–437, https://doi.org/10.2134/agronj2008.0139s, 2009. 895 

Still, C. J., Berry, J. A., Collatz, G. J., and DeFries, R. S.: Global distribution of C3 and C4 vegetation: Carbon cycle 

implications, 17, 6-1-6–14, https://doi.org/10.1029/2001GB001807, 2003.Stöckle, C. O., Kemanian, A. R., Nelson, R. L., 

Adam, J. C., Sommer, R., and Carlson, B.: CropSyst model evolution: From field to regional to global scales and from research 

to decision support systems, Environ. Modell. Softw., 62, 361–369, https://doi.org/10.1016/j.envsoft.2014.09.006, 2014. 

Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., 900 

Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. 

M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J.-F., Holman, I., and Treidel, H.: Ground 

water and climate change, Nat. Clim. Change, 3, 322–329, https://doi.org/10.1038/nclimate1744, 2013. 

Telteu, C.-E., Müller Schmied, H., Thiery, W., Leng, G., Burek, P., Liu, X., Boulange, J. E. S., Andersen, L. S., Grillakis, M., 

Gosling, S. N., Satoh, Y., Rakovec, O., Stacke, T., Chang, J., Wanders, N., Shah, H. L., Trautmann, T., Mao, G., Hanasaki, 905 

N., Koutroulis, A., Pokhrel, Y., Samaniego, L., Wada, Y., Mishra, V., Liu, J., Döll, P., Zhao, F., Gädeke, A., Rabin, S. S., and 

Herz, F.: Understanding each other’s models: an introduction and a standard representation of 16 global water models to 

support intercomparison, improvement, and communication, Geosci. Model Dev., 14, 3843–3878, 

https://doi.org/10.5194/gmd-14-3843-2021, 2021. 

Thiery, W., Davin, E. L., Lawrence, D. M., Hirsch, A. L., Hauser, M., and Seneviratne, S. I.: Present-day irrigation mitigates 910 

heat extremes, J. Geophys. Res.-Atmos, 122, 1403–1422, https://doi.org/10.1002/2016JD025740, 2017. 

Thiery, W., Visser, A. J., Fischer, E. M., Hauser, M., Hirsch, A. L., Lawrence, D. M., Lejeune, Q., Davin, E. L., and 

Seneviratne, S. I.: Warming of hot extremes alleviated by expanding irrigation, Nat. Commun., 11, 290, 

https://doi.org/10.1038/s41467-019-14075-4, 2020. 

Thiery, W., Lange, S., Rogelj, J., Schleussner, C.-F., Gudmundsson, L., Seneviratne, S. I., Andrijevic, M., Frieler, K., Emanuel, 915 

K., Geiger, T., Bresch, D. N., Zhao, F., Willner, S. N., Büchner, M., Volkholz, J., Bauer, N., Chang, J., Ciais, P., Dury, M., 

François, L., Grillakis, M., Gosling, S. N., Hanasaki, N., Hickler, T., Huber, V., Ito, A., Jägermeyr, J., Khabarov, N., 

Koutroulis, A., Liu, W., Lutz, W., Mengel, M., Müller, C., Ostberg, S., Reyer, C. P. O., Stacke, T., and Wada, Y.: 



 

34 

 

Intergenerational inequities in exposure to climate extremes, Science, 374, 158–160, https://doi.org/10.1126/science.abi7339, 

2021. 920 

van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., 

Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration 

pathways: an overview, Climatic Change, 109, 5, https://doi.org/10.1007/s10584-011-0148-z, 2011. 

van Vuuren, D. P., Kriegler, E., O’Neill, B. C., Ebi, K. L., Riahi, K., Carter, T. R., Edmonds, J., Hallegatte, S., Kram, T., 

Mathur, R., and Winkler, H.: A new scenario framework for Climate Change Research: scenario matrix architecture, Climatic 925 

Change, 122, 373–386, https://doi.org/10.1007/s10584-013-0906-1, 2014. 

Vanuytrecht, E.: The effects on crop cultivation of increased CO2, temperature and ozone levels due to climate change, 

Burleigh Dodds Science Publishing Ltd; Cambridge, https://doi.org/10.19103/AS.2020.0064.01, 2020. 

Vanuytrecht, E., Raes, D., and Willems, P.: Considering sink strength to model crop production under elevated atmospheric 

CO2, Agr. Forest Meterol., 151, 1753–1762, https://doi.org/10.1016/j.agrformet.2011.07.011, 2011. 930 

Vanuytrecht, E., Raes, D., Willems, P., and Geerts, S.: Quantifying field-scale effects of elevated carbon dioxide concentration 

on crops, Clim. Res., 54, 35–47, https://doi.org/10.3354/cr01096, 2012. 

Vicente-Serrano, S. M., Van der Schrier, G., Beguería, S., Azorin-Molina, C., and Lopez-Moreno, J.-I.: Contribution of 

precipitation and reference evapotranspiration to drought indices under different climates, J. Hydrol., 526, 42–54, 

https://doi.org/10.1016/j.jhydrol.2014.11.025, 2015. 935 

Wada, Y., Wisser, D., Eisner, S., Flörke, M., Gerten, D., Haddeland, I., Hanasaki, N., Masaki, Y., Portmann, F. T., Stacke, T., 

Tessler, Z., and Schewe, J.: Multimodel projections and uncertainties of irrigation water demand under climate change, 

Geophys. Res. Lett., 40, 4626–4632, https://doi.org/10.1002/grl.50686, 2013. 

Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J.: The Inter-Sectoral Impact Model 

Intercomparison Project (ISI–MIP): Project framework, P. Natl. Acad. Sci. USA, 111, 3228–3232, 940 

https://doi.org/10.1073/pnas.1312330110, 2014. 

Webber, H., Gaiser, T., Oomen, R., Teixeira, E., Zhao, G., Wallach, D., Zimmermann, A., and Ewert, F.: Uncertainty in future 

irrigation water demand and risk of crop failure for maize in Europe, Environ. Res. Lett., 11, 074007, 

https://doi.org/10.1088/1748-9326/11/7/074007, 2016. 

Williams, J. R., Jones, C. A., Kiniry, J. R., and Spanel, D. A.: The EPIC Crop Growth Model, Transactions of the ASAE, 32, 945 

497–0511, https://doi.org/10.13031/2013.31032, 1989. 

Wriedt, G., Van der Velde, M., Aloe, A., and Bouraoui, F.: Estimating irrigation water requirements in Europe, J. Hydrol., 

373, 527–544, https://doi.org/10.1016/j.jhydrol.2009.05.018, 2009. 


