



| 1                                      | Bedrock depth influences spatial patterns of summer baseflow, temperature, and flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                      | disconnection for mountainous headwater streams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                      | Martin A. Briggs <sup>1*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6                                      | Phillip Goodling <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7                                      | Zachary C. Johnson <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                      | Karli M. Rogers <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9                                      | Nathaniel P. Hitt <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10                                     | Jennifer B. Fair <sup>4,5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11                                     | Craig D. Snyder <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13<br>14<br>15<br>16<br>17<br>18<br>19 | <ul> <li><sup>1</sup>U.S. Geological Survey, Earth System Processes Division, Hydrogeophysics Branch, 11<br/>Sherman Place, Unit 5015, Storrs, CT 06269 USA</li> <li><sup>2</sup>U.S. Geological Survey, Maryland-Delaware-District of Colombia Water Science Center, 5522<br/>Research Park Drive, Catonsville, MD, 21228, USA</li> <li><sup>3</sup>U.S. Geological Survey, Washington Water Science Center, 934 Broadway, Suite 300, Tacoma,<br/>WA 98402 USA</li> <li><sup>4</sup>U.S. Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road,</li> </ul> |

- 20 Kearneysville, WV 25430 USA
- <sup>5</sup>U.S. Geological Survey, New England Water Science Center, 10 Bearfoot Road, Northborough,
- 22 MA 01532 ŬSA
- 23
- 24 Corresponding author: Martin Briggs, mbriggs@usgs.gov





# 26 Abstract

| 27 | In mountain headwater streams the quality and resilience of cold-water habitat is regulated by    |  |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 28 | surface stream channel connectivity and groundwater exchange. These critical hydrologic           |  |  |  |  |  |
| 29 | processes are thought to be influenced by the stream corridor bedrock contact depth (sediment     |  |  |  |  |  |
| 30 | thickness), which is often inferred from sparse hillslope borehole information, piezometer        |  |  |  |  |  |
| 31 | refusal, and remotely sensed data. To investigate how local bedrock depth might control summer    |  |  |  |  |  |
| 32 | stream temperature and channel disconnection (dewatering) patterns, we measured stream            |  |  |  |  |  |
| 33 | corridor bedrock depth by collecting and interpreting 191 passive seismic datasets along eight    |  |  |  |  |  |
| 34 | headwater streams in Shenandoah National Park (Virginia USA). In addition, we used multiyear      |  |  |  |  |  |
| 35 | stream temperature and streamflow records to calculate summer baseflow metrics along and          |  |  |  |  |  |
| 36 | among the study streams. Finally, comprehensive visual surveys of stream channel dewatering       |  |  |  |  |  |
| 37 | were conducted in 2016, 2019, and 2021 during summer baseflow conditions (124 total km of         |  |  |  |  |  |
| 38 | stream length). We found that measured bedrock depths were not well-characterized by soils        |  |  |  |  |  |
| 39 | maps or an existing global-scale geologic dataset, where the latter overpredicted measured        |  |  |  |  |  |
| 40 | depths by 12.2 m (mean), or approximately four times the average bedrock depth of 2.9 m. Half     |  |  |  |  |  |
| 41 | of the eight study stream corridors had an average bedrock depth of less than 2 m. Of the eight   |  |  |  |  |  |
| 42 | study streams, Staunton River had the deepest average bedrock depth (3.4 m), the coldest          |  |  |  |  |  |
| 43 | summer temperature profiles, and substantially higher summer baseflow indices compared to the     |  |  |  |  |  |
| 44 | other study steams. Staunton River also exhibited paired air and water annual temperature signals |  |  |  |  |  |
| 45 | suggesting deeper groundwater influence, and the stream channel did not dewater in lower          |  |  |  |  |  |
| 46 | sections during any baseflow survey. In contrast, streams Paine Run and Piney River did show      |  |  |  |  |  |
| 47 | pronounced, patchy channel dewatering, with Paine Run having dozens of discrete dry channel       |  |  |  |  |  |
| 48 | sections ranging 1 to greater than 300 m in length. Stream dewatering patterns were apparently    |  |  |  |  |  |





- 49 influenced by a combination of discrete deep bedrock (20 m+) features and more subtle sediment
- 50 thickness variation (1-4 m), depending on local stream valley hydrogeology. In combination
- 51 these unique datasets show the first large-scale empirical support for existing conceptual models
- 52 of headwater stream disconnection based on underflow capacity and shallow groundwater
- 53 supply.





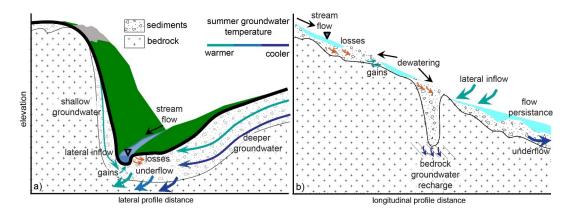
#### 55 1. Introduction

| 56 | Mountain headwater stream habitat is influenced by hydrologic connectivity along the             |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 57 | surface channel, and connectivity between the channel and multiscale groundwater flowpaths       |  |  |  |  |  |
| 58 | (Covino, 2017; Wohl, 2017). Discharge from shallow groundwater within the critical zone is a     |  |  |  |  |  |
| 59 | primary component of stream baseflow, attenuating maximum summer temperatures and                |  |  |  |  |  |
| 60 | creating cold water habitat (Singha and Navarre-Sitchler, 2021; Sullivan et al., 2021). In       |  |  |  |  |  |
| 61 | headwater stream valleys characterized by irregular bedrock topography and thin, permeable       |  |  |  |  |  |
| 62 | sediments, nested physical processes interact to control the connectivity of groundwater/surface |  |  |  |  |  |
| 63 | water exchange (Tonina and Buffington, 2009). Between stormflow and snowmelt events,             |  |  |  |  |  |
| 64 | headwater streamflow (baseflow) is primarily generated by groundwater discharge due to a         |  |  |  |  |  |
| 65 | relative lack of soil water storage and release (Winter et al., 1998). Unlike in lower valley    |  |  |  |  |  |
| 66 | settings, mountain headwaters accumulate reduced fine soil, facilitating efficient routing of    |  |  |  |  |  |
| 67 | quickflow to streams through macropores and other preferential flowpaths within regolith and     |  |  |  |  |  |
| 68 | saprolite (Sidle et al., 2000). Recharge that does percolate vertically contributes to shallow   |  |  |  |  |  |
| 69 | groundwater along steep hillslopes and valley floors, where groundwater flowpath depths are      |  |  |  |  |  |
| 70 | constrained by bedrock topography (Buttle et al., 2004). Although deeper groundwater may also    |  |  |  |  |  |
| 71 | represent an important contribution to summer streamflow in systems with relatively permeable    |  |  |  |  |  |
| 72 | bedrock (Burns et al., 1998; O'Sullivan et al., 2020), shallow, low permeability bedrock         |  |  |  |  |  |
| 73 | generally restricts stream-groundwater connectivity to the thin layers of unconsolidated         |  |  |  |  |  |
| 74 | sediments (Briggs et al., 2018b).                                                                |  |  |  |  |  |
| 75 | In addition to baseflow drainage along headwater stream networks, down-valley shallow            |  |  |  |  |  |
| 76 | groundwater 'underflow' can be substantial when high gradient streams lack sinuosity and flow    |  |  |  |  |  |

77 over permeable sediment (Figure 1a, Figure A1). In fact, headwater stream channels may only be

78 expected to show surface flow when the transmission ability of the underlying alluvium and






| 79  | colluvium is exceeded, and bedrock depth is thought a primary control of this underflow capacity |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 80  | (Ward et al., 2020). In some hydrogeologic settings, underflow can dominate groundwater export   |  |  |  |  |  |
| 81  | from mountain catchments compared to groundwater drainage via the surficial stream channel       |  |  |  |  |  |
| 82  | (Larkin and Sharp, 1992; Tiwari et al., 2017). Moreover, in addition to longitudinal transport   |  |  |  |  |  |
| 83  | down-valley, underflow also acts as a reservoir of exchange for hyporheic flowpaths that may     |  |  |  |  |  |
| 84  | mix with shallow groundwater before returning to channel flow (Payn et al., 2009), transporting  |  |  |  |  |  |
| 85  | buffered temperature signals back to channel waters (Wu et al., 2020). Local underflow is        |  |  |  |  |  |
| 86  | recharged from upgradient flowpaths and adjacent hillslopes, creating complex seasonal and       |  |  |  |  |  |
| 87  | interannual patterns in groundwater connectivity and discharge to surface water (Jencso et al.,  |  |  |  |  |  |
| 88  | 2010; Johnson et al., 2017). A major challenge to understanding groundwater exchange in          |  |  |  |  |  |
| 89  | headwaters is that attributes of the streambed subsurface, such as the depth to the underlying   |  |  |  |  |  |
| 90  | bedrock contact, are often only available from limited direct measurements, coarse spatial       |  |  |  |  |  |
| 91  | interpolations, or inferred remotely based on landscape forms. Therefore, methods that allow     |  |  |  |  |  |
| 92  | efficient, local measurements of the streambed subsurface are critically needed.                 |  |  |  |  |  |
| 93  | Seasonal thermal regimes of mountain headwater streams can be profoundly impacted by             |  |  |  |  |  |
| 94  | groundwater inflow from multiple depths (Briggs et al 2018a). In lower valley settings, the      |  |  |  |  |  |
| 95  | temperature of groundwater discharge along stream networks is often assumed to approximate       |  |  |  |  |  |
| 96  | the average annual land surface temperature throughout the year (Stonestrom and Constantz,       |  |  |  |  |  |
| 97  | 2003). Conversely, shallow groundwater temperature (within several m from land surface) can      |  |  |  |  |  |
| 98  | show pronounced seasonality (Bundschuh, 1993; Lapham, 1989) and high spatial variability,        |  |  |  |  |  |
| 99  | even over small spatial extents (Snyder et al. 2015). The warming of shallow groundwater during  |  |  |  |  |  |
| 100 | the summer and fall seasons can limit the ability of gaining mountain streams to support cold-   |  |  |  |  |  |
| 101 | water fish populations during the low flow season, even if baseflow (assumed to be dominated     |  |  |  |  |  |





- 102 by groundwater discharge) fractions are large (Johnson et al., 2020). In systems with low
- 103 permeability bedrock, thicker hillslope sediments may generate deeper, colder lateral
- 104 groundwater flow to streams in summer (Figure 1a), increasing cold water habitat resiliency
- 105 (Briggs et al., 2018b). For example, a recent meta-analysis of stream and air temperature records
- 106 across the contiguous United States found that a substantial fraction of shallow groundwater
- 107 dominated streams displayed summer warming trends in recent decades, while deeper
- 108 groundwater dominated streams were more stable (Hare et al., 2021). Steep mountain stream
- 109 systems such as those found in the Blue Ridge and Cascade mountains of the USA have been
- 110 found to show annual thermal regimes dominated by the annual thermal signals of shallow
- 111 groundwater (Johnson et al., 2020), indicating such streams may also be at risk for warming over
- 112 time, contrary to assumptions based on elevation alone.



114 Figure 1. A conceptual mountain stream valley cross section (panel a) and longitudinal profile

(panel b) indicating the expected control of low permeability bedrock topography on

- 116 groundwater temperature, stream-groundwater exchange, patchy stream dewatering, and the 117 underflow reservoir.
- 118 Beyond warm summer stream temperatures, the dewatering and disconnection of the
- 119 active stream channel during summer low flows can adversely impact fish habitat by impeding
- 120 fish movement (Edge et al., 2017; Labbe & Fausch, 2000; Rolls et al., 2012; Snyder et al.,
- 121 2013), locally degrading water quality (Hopper et al., 2020), and increasing predation risks in





| 122 | isolated pools (Magoulick and Kobza 2003). However, the physical controls on localized stream    |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 123 | channel dewatering are not well characterized and likely involve a spectrum of nested gaining    |  |  |  |  |  |
| 124 | and losing flowpaths. For mountain headwater streams, previous research has documented           |  |  |  |  |  |
| 125 | general seasonal shifts in hydraulic gradients from gaining to losing, with closely coupled      |  |  |  |  |  |
| 126 | streamflow and precipitation events, indicating a dominance of shallow routing rather than       |  |  |  |  |  |
| 127 | deeper groundwater connectivity in maintaining streamflow (Zimmer and McGlynn, 2017).            |  |  |  |  |  |
| 128 | Locally-losing sections of headwater stream channels can be associated with coarse, permeable    |  |  |  |  |  |
| 129 | colluvial deposits from hillslope mass wasting processes (Costigan et al., 2016; Weekes et al.,  |  |  |  |  |  |
| 130 | 2015), as local enhancement of the total pore space under mountain streams can drive             |  |  |  |  |  |
| 131 | downwelling of streamwater (Figure 1b, Tonina & Buffington, 2009). Main channel dewatering       |  |  |  |  |  |
| 132 | occurs when the bed sediments have a storage and transport capacity that exceeds stream          |  |  |  |  |  |
| 133 | discharge (Rolls et al., 2012; Ward et al., 2018), though stream water losses can also be driven |  |  |  |  |  |
| 134 | by local changes in bed morphology and slope (Costigan et al., 2016). The shallowing of the      |  |  |  |  |  |
| 135 | underlying bedrock contact may drive lateral underflow toward the surface causing the channel    |  |  |  |  |  |
| 136 | to gain water (Herzog et al., 2019)(Figure 1b), though such hypothesized dynamics are not well   |  |  |  |  |  |
| 137 | documented in existing literature due to a relative lack of bedrock topography data along        |  |  |  |  |  |
| 138 | headwater streams.                                                                               |  |  |  |  |  |
| 139 | At large scales, contiguous bedrock depth layers are interpolated from a combination of          |  |  |  |  |  |
| 140 | relatively sparse borehole data and surface topography (Kauffman et al., 2018; Pelletier et al., |  |  |  |  |  |
| 141 | 2016; Shangguan et al., 2017). However, in steep headwater systems with little borehole data,    |  |  |  |  |  |
| 142 | bedrock topography is difficult to predict accurately from land surface topography alone. The    |  |  |  |  |  |
| 143 | development of improved tools for predicting bedrock depth is an active area of research which   |  |  |  |  |  |
| 144 | has recently demonstrated promise when bedrock outcrop data are included (e.g. Furze et al.,     |  |  |  |  |  |





| 145 | 2021; Odom et al., 2021). The limitations of using landform data to predict bedrock depth are        |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 146 | compounded by inherent challenges in collecting physical data via soil pits and monitoring wells     |  |  |  |  |  |
| 147 | in rugged, rocky terrain, and so direct measurement data are often limited to highly studied         |  |  |  |  |  |
| 148 | experimental watersheds where bedrock depth is inferred from piezometer installation refusal         |  |  |  |  |  |
| 149 | (e.g. Jencso et al., 2010; Ward et al., 2018).                                                       |  |  |  |  |  |
| 150 | Application of near surface geophysical methods to stream corridor research has                      |  |  |  |  |  |
| 151 | increased appreciably in recent years (McLachlan et al., 2017), and several methods are sensitive    |  |  |  |  |  |
| 152 | to shallow subsurface flow and geologic attributes including bedrock depth. Active seismic           |  |  |  |  |  |
| 153 | refraction measurements can provide high resolution (10s of cm) bedrock depth information            |  |  |  |  |  |
| 154 | along transect-based cross-sections (e.g. Flinchum et al., 2018), but are less suited for            |  |  |  |  |  |
| 155 | exploration throughout rugged mountain stream valleys at the many km-scale due to logistical         |  |  |  |  |  |
| 156 | challenges in using active seismic methods to obtain a sufficient amount of data to effectively      |  |  |  |  |  |
| 157 | characterize important variation in bedrock depth at relatively small, ecologically-relevant spatial |  |  |  |  |  |
| 158 | scales. Point-based, efficient passive seismic measurements represent a unique combination of        |  |  |  |  |  |
| 159 | high mobility and relative precision for measuring bedrock depth along mountain valleys. The         |  |  |  |  |  |
| 160 | horizontal-to-vertical spectral ratio (HVSR) method is a passive seismic technique that evaluates    |  |  |  |  |  |
| 161 | ambient seismic noise recorded using handheld instruments placed on the ground surface to            |  |  |  |  |  |
| 162 | identify seismic resonance, which occurs at distinct unconsolidated sediment/bedrock interfaces      |  |  |  |  |  |
| 163 | (Yanamaka et al., 1994).                                                                             |  |  |  |  |  |
| 164 | The control of stream to groundwater exchange (i.e. 'transmission losses') on streamflow             |  |  |  |  |  |
| 165 | permeance has been highlighted as an important research need by the comprehensive review of          |  |  |  |  |  |
|     |                                                                                                      |  |  |  |  |  |

166 intermittent stream systems by Costigan et al., (2016). Following the conceptual model of Ward

167 et al., (2018), a central hypothesis of our research was that bedrock depth along the stream





| 168 | corridor will act as a first-order control on stream dewatering patterns when shallow bedrock is |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 169 | of low permeability. Based on the concepts presented by Tonina & Buffington, (2009), we          |  |  |  |  |  |
| 170 | postulated that relatively thick, permeable surficial sediment zones could locally accommodate   |  |  |  |  |  |
| 171 | the entirety of low streamflow volumes, dewatering main channel sections at varied scales when   |  |  |  |  |  |
| 172 | not balanced by groundwater inflow (Figure 1b). We further hypothesized that summer stream       |  |  |  |  |  |
| 173 | channel thermal regimes would also be influenced by bedrock depth, as the temperature of         |  |  |  |  |  |
| 174 | groundwater flowpaths that generate baseflow is depth dependent (Briggs et al., 2018b),          |  |  |  |  |  |
| 175 | indicated conceptually in Figure 1a. To test our hypotheses, we extended the existing mountain   |  |  |  |  |  |
| 176 | headwater bedrock depth surveys from Shenandoah National Park (SNP), Virginia, USA to            |  |  |  |  |  |
| 177 | seven additional subwatersheds and compared results to physical mapping of stream dewatering,    |  |  |  |  |  |
| 178 | multi-year stream temperature data and derived groundwater influence metrics, and baseflow       |  |  |  |  |  |
| 179 | separation analysis to address the following research questions:                                 |  |  |  |  |  |
| 180 | 1. Does stream corridor bedrock depth exhibit longitudinal spatial structure in mountainous      |  |  |  |  |  |
| 181 | streams? Can measured bedrock depth dynamics be accurately extracted from existing large-        |  |  |  |  |  |
| 182 | scale datasets or inferred from high resolution soils maps?                                      |  |  |  |  |  |
| 183 | 2. Does underflow generally represent a net source or sink of summer flow for headwater          |  |  |  |  |  |
| 184 | streams based on observed dewatering patterns and groundwater influence metrics?                 |  |  |  |  |  |
| 185 | 3. Does bedrock depth explain spatial variation in stream temperature and summer baseflow        |  |  |  |  |  |
| 186 | indices within headwater streams?                                                                |  |  |  |  |  |
|     |                                                                                                  |  |  |  |  |  |

# 187 2. Study Area

188 The SNP is an 800 km<sup>2</sup> area of preserved headwater forest perched along a major 189 ridgeline of the Blue Ridge Mountains in northern VA, USA (Figure 2). The bedrock of the park 190 is predominantly low permeability basaltic and granitic material in the central and northern





| 191 | sections, and siliciclastic along the southern section (Southworth et al., 2009), though many    |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 192 | subwatersheds also transition in dominant bedrock type. Stream valleys of SNP are typically      |  |  |  |  |  |
| 193 | steep and feature a perennial channel with mainly non-perennial tributaries (Johnson et al.,     |  |  |  |  |  |
| 194 | 2017), Figure A1) and stream baseflow consists of less than 3-yr old groundwater on average      |  |  |  |  |  |
| 195 | (Plummer et al., 2001). In contrast, water collected from SNP hillslope wells completed in       |  |  |  |  |  |
| 196 | shallow fractured rock generally have higher ages of 10-20 yr (Plummer et al., 2001), indicating |  |  |  |  |  |
| 197 | minimal contributions from bedrock groundwater to streamflow. Previous ecohydrological           |  |  |  |  |  |
| 198 | research in SNP has noted that some mainstem stream channels show patchy dewatering at           |  |  |  |  |  |
| 199 | summer low flows (Snyder et al., 2013), though the physical controls on these patterns of stream |  |  |  |  |  |
| 200 | drying were not clear.                                                                           |  |  |  |  |  |
| 201 | In SNP, stream baseflow is thought to be predominantly generated by near-surface                 |  |  |  |  |  |
| 202 | drainage of coarse unconsolidated alluvium and colluvium (DeKay, 1972; Nelms and Moberg,         |  |  |  |  |  |
| 203 | 2010). The mountain ridgeline streamflow systems are expected to drain near-surface flowpaths    |  |  |  |  |  |
| 204 | and accommodate substantial down valley underflow below perennial stream channels (Figure        |  |  |  |  |  |
| 205 | A1). A portion of hillslope recharge is expected to percolate downward through connected         |  |  |  |  |  |
| 206 | bedrock fractures into the deeper groundwater reservoir contributing to mountain block recharge  |  |  |  |  |  |
| 207 | along the Shenandoah River Valley. Narrow alluvium deposits mapped along the stream              |  |  |  |  |  |
| 208 | corridors of SNP are thought to generally range up to 6 m in thickness and be more clay rich     |  |  |  |  |  |
| 209 | when sourced by basaltic bedrock (Southworth et al., 2009). Data at sparse wells drilled along   |  |  |  |  |  |
| 210 | the SNP ridgeline indicate bedrock depth can range over 20 m on hillslopes and be highly         |  |  |  |  |  |
| 211 | variable (DeKay, 1972; Goodling et al., 2020; Lynch, 1987).                                      |  |  |  |  |  |
| 212 | Previous research has inferred summer and annual groundwater discharge patterns                  |  |  |  |  |  |

213 throughout SNP subwatersheds based on paired, local air and stream water temperature



214



215 analyses indicated groundwater exchange is highly variable in space along singular stream 216 valleys and between subwatersheds, and dependent upon local- to subwatershed-scale 217 characteristics. A combination of landform features that include stream slope and stream valley 218 confinement operate in conjunction with seasonal precipitation to drive groundwater influence 219 on summer stream temperatures (Johnson et al., 2017). Multi-week lags in time between 220 streamwater and local air annual temperature signals (i.e. phase shifts toward later time) were 221 observed from dozens of the 120 total monitored stream sites indicating a dominance of shallow 222 groundwater discharge, originating generally within approximately 3 m of land surface (Briggs

dynamics (Briggs et al., 2018a; Johnson et al., 2017; Snyder et al., 2015). Combined, these

- et al., 2018a).
- 224

- 226
- 227





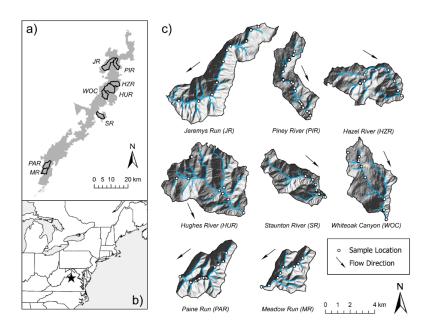



Figure 2. This study was based in Shenandoah National Park (panel a) located in the Blue Ridge
 Mountains of northeast USA (panel b). LiDAR hillshade cutouts of each subwatershed illustrate
 the rugged terrain and varied valley morphology (panel c). The mainstem stream channel and

232 tributaries are traced and HVSR measurement locations noted.

# **3.0 Methods**

- 234 3.1 Passive Seismic Bedrock Depth Measurements
- Periodically from the summer of 2016 to the spring of 2020, we acquired 323 HVSR
- 236 measurements across SNP. The geophysical data were collected along the perennial streams of
- 237 seven subwatersheds with extensive existing stream temperature and ecological datasets, and at
- 238 known ridgeline and hillslope borehole locations. This effort added to previously interpreted
- 239 HVSR data from 22 riparian sites collected along the Whiteoak Canyon subwatershed in late
- 240 2015 (Briggs et al., 2017), for a total of 8 mountain streams for analysis in this study (Figure 2).
- 241 In July 2016, HVSR data were collected in the following subwatersheds: Piney River, Paine
- 242 Run, Meadow Run, Jeremy's Run, Hazel River, and Hughes River.







Figure 3. Typical sections of a) Paine Run, b) Piney River, c) Staunton River, and d) a section of
Paine Run that was dewatered at baseflow leaving isolated pools. The passive seismic HVSR
instruments are shown deployed in panels a), b) and d) (Photographs by the U.S. Geological
Survey).

| 249 | Measurement locations mostly coincided with existing stream temperature monitoring               |
|-----|--------------------------------------------------------------------------------------------------|
| 250 | stations (described by Snyder et al., 2017), and were typically made at points immediately       |
| 251 | adjacent to the stream or on larger rocks within the channel (Figure 3). In July 2019, HVSR data |
| 252 | were again collected along Paine Run and Piney River subwatersheds, and throughout the lower     |
| 253 | Staunton River (Figure 3). The 2019 survey design differed in that transect measurements were    |
| 254 | made at 4 locations along the stream channel waterline spaced approximately 25 m apart at        |
| 255 | longitudinal locations that differed from the 2016 survey. This was done to assess potential     |
| 256 | variation in bedrock depth along short subreaches of these three streams. Finally, clustered     |
| 257 | HVSR data were collected in March 2020 in Paine Run and Piney River in zones previously          |





| 258 | observed to show channel disconnection and streamflow re-emergence. Measurement locations        |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------|--|--|--|--|
| 259 | were chosen to test the hypothesis that the dewatering patterns were controlled by bedrock depth |  |  |  |  |
| 260 | as shown conceptually in Figure 1b.                                                              |  |  |  |  |
| 261 | HVSR data were collected using multi-component Tromino seismometers (MOHO,                       |  |  |  |  |
| 262 | S.R.L.) directly coupled to the land surface or placed on heavy metal plates where sediment was  |  |  |  |  |
| 263 | loose. Collection times ranged 10-20 min at either 128 or 256 Hz sampling rates. HVSR data       |  |  |  |  |
| 264 | collection locations were determined by a combination of internal Tromino GPS and external       |  |  |  |  |
| 265 | GPS units. HVSR measurements were processed to derive a resonant frequency using a               |  |  |  |  |
| 266 | commercially available program (GRILLA® v. 8.0 (2018); further details regarding data            |  |  |  |  |
| 267 | processing are given by Goodling et al., (2020).                                                 |  |  |  |  |
| 268 | Resonant frequency measurements that passed a series of quality criteria were then               |  |  |  |  |
| 269 | converted to a bedrock depth estimate following Briggs et al., (2017). This conversion           |  |  |  |  |
| 270 | necessitates a shear wave velocity estimate for the unconsolidated sediments over bedrcok.       |  |  |  |  |
| 271 | HVSR data collected at spatially distributed boreholes with documented depth to varied-type      |  |  |  |  |
| 272 | bedrock along the SNP ridgeline indicated a shear wave velocity of 358.7 +/- 56 m/s (Goodling    |  |  |  |  |
| 273 | et al., 2020). A similar shear wave velocity of 346 m/s was measured at two locations along the  |  |  |  |  |
| 274 | Whiteoak Canyon riparian zone spaced several km apart using active seismic methods (Briggs et    |  |  |  |  |
| 275 | al., 2018b). This agreement indicates a common shear wave velocity can be assumed for the        |  |  |  |  |
| 276 | unconsolidated material of SNP subwatersheds. For this study we used the average of these        |  |  |  |  |
| 277 | spatially distributed active and passive seismic methods at 352 m/s. The mean shear wave         |  |  |  |  |
| 278 | velocity calculated in this study is comparable to the mean shear wave velocity ranges in firm   |  |  |  |  |
| 279 | soils (180 - 360 m/s) and very dense soil and soft rock (360-760 m/s), according to National     |  |  |  |  |
| 280 | Earthquake Hazards Reduction Program (NEHRP) guidelines (Building Seismic Safety Council,        |  |  |  |  |





- 281 1994). As an example of measurement sensitivity to the shear wave velocity parameter for
- shallow bedrock contacts, a velocity change in either direction by 25 m/s would generally shift
- the bedrock depth estimate by <0.2 m.
- 284 *3.2 Observations of spatial dewatering patterns*
- 285 Longitudinal (upstream to downstream) patterns of dewatering were determined in the 286 summers of 2016, 2019, and 2021 during baseflow conditions over 124 total km of stream length 287 for all surveys combined. In July-August of 2016 all eight subwatersheds (Figure 2) were 288 surveyed. In September of 2019 and August 2021, dewatering surveys were repeated in three 289 subwatersheds (Paine Run, Piney River, and Staunton River) to evaluate annual variation in 290 dewatering patterns. Data were collected by team of investigators walking each stream from an 291 upstream location defined by the point along the stream draining 75-hectares (assumed capture 292 area required to generate perennial streamflow, determined using watershed tools in ArcGIS) to 293 the bottom of each watershed near the park boundary, and mapping transition points between 294 three hydrologic categories: Wet, dry, or isolated pools based upon investigator observation. 295 "Wet" segments were defined as reaches where entire channel was wet with flow between pools; "Dry" segments were defined as reaches containing no water, or isolated pools of insufficient 296 297 depth to sustain 1+ year old brook trout; and "Isolated Pools" were defined as reaches containing 298 pools of sufficient depth to support brook trout but were hydrologically disconnected from other 299 parts of the channel. An example of isolated pools is photographically depicted in Figure 3d. 300 Spatial coordinates of transition points were mapped using a Trimble R2 GNSS receiver for <1-301 meter accuracy. Surveys for each subwatershed were completed within a single day to minimize 302 effects of temporal variation in precipitation.





| 303        | In addition to local variability in bedrock depth, spatial patterns of dewatering and stream                                                     |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 304        | temperature are likely to be influenced by seasonal precipitation and air temperature proximate                                                  |  |  |  |  |  |
| 305        | to the period of measurement (i.e., summer conditions, 2016 and 2019). We used historical                                                        |  |  |  |  |  |
| 306        | weather records (1942 - 2020) collected from the nearby Luray Weather Station located within                                                     |  |  |  |  |  |
| 307        | SNP (Station No. GHCND:USC00445096) to compare weather conditions during the two study                                                           |  |  |  |  |  |
| 308        | years with historical norms. Finally, 3D surface area of each subwatershed was determined from                                                   |  |  |  |  |  |
| 309        | existing LiDAR data using Add Surface Information in 3D Analyst Tools in ArcGIS and mean                                                         |  |  |  |  |  |
| 310        | valley width was evaluated from LiDAR data using 100-m transects measured approximately 2                                                        |  |  |  |  |  |
| 311        | m above the valley floor.                                                                                                                        |  |  |  |  |  |
| 312<br>313 | 3.3 Stream channel temperature data and baseflow separation<br>Multi-year SNP stream temperature data were collected at hourly time intervals as |  |  |  |  |  |
| 314        | described by Snyder et al., (2017) using HOBO Pro V2 thermographs (+/- 0.2 °C expected                                                           |  |  |  |  |  |
| 315        | accuracy). From this larger dataset, 64 main channel locations within the 8 study subwatersheds                                                  |  |  |  |  |  |
| 316        | were extracted and processed for summary statistics such as the maximum and minimum of the                                                       |  |  |  |  |  |
| 317        | 7-day running mean using Matlab R2019b software (Mathworks, Inc.). Only complete 7-day                                                           |  |  |  |  |  |
| 318        | periods were included in the running average. Warm season data (July, August, September) were                                                    |  |  |  |  |  |
| 319        | isolated and analyzed to coincide with the stream dewatering surveys and a larger body of                                                        |  |  |  |  |  |
| 320        | research regarding summer cold-water brook trout habitat in SNP. We utilized stream                                                              |  |  |  |  |  |
| 321        | temperature data processed by Briggs et al., (2018a) where dry sensor periods were identified                                                    |  |  |  |  |  |
| 322        | and removed, impacting a handful of the upper stream sites. Data were visualized and                                                             |  |  |  |  |  |
| 323        | downstream trends explored using Sigmaplot 14.0 software (Systat Software Inc.). Baseflow                                                        |  |  |  |  |  |
| 324        | separation was conducted for the three continuously gaged streams of this study (Paine Run,                                                      |  |  |  |  |  |
| 325        | Piney River, Staunton River) over summer months for the period of record (1993-2020).                                                            |  |  |  |  |  |
| 326        | Following the approach of (Hare et al., 2021), the daily Baseflow Index (BFI) was calculated                                                     |  |  |  |  |  |





| 327 | using the USGS-R 'DVstats' | package (version 0.3.4) | by dividing the | e calculated baseflow |
|-----|----------------------------|-------------------------|-----------------|-----------------------|
|     | 8                          |                         | 5 6             |                       |

- 328 discharge by the corresponding stream discharge, where a value of one would indicate stream
- 329 discharge was entirely composed of baseflow. BFI was then averaged (mean) across each
- 330 summer season, along with the mean and standard deviation of summer stream discharge.

#### 331 4. Results

### 332 4.1 Stream Corridor Bedrock depth

333 Approximately 60% of individual HVSR measurements (191 of the 323) were of high 334 enough quality to be interpreted for bedrock depth using objective data quality metrics reported 335 by the GRILLA software. This ratio of interpretable to total HVSR measurements was similar to 336 the previous 2015 Whiteoak Canyon Run study using the same instrument type (Briggs et al., 337 2017). For the 132 datasets that could not be interpreted, the primary reason was no identifiably 338 resonant frequency 'peak' in the multicomponent seismic data, as described in more detail in the 339 data release of Goodling et al., (2020). The loosely consolidated, rocky surficial soils of many 340 SNP subwatershed riparian zones likely contributed to poor instrument coupling to the land 341 surface, and therefore reduced measurement sensitivity/success compared to firmer soils. 342 However, due to spatial redundancy in the measurements, the 191 locations where bedrock depth 343 was evaluated generally covered all the intended longitudinal stream measurement locations 344 throughout the subwatersheds.







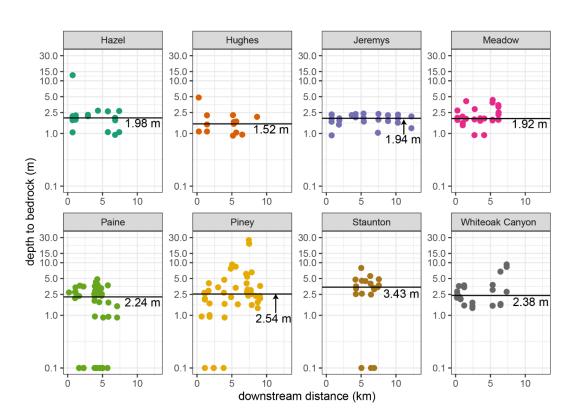



Figure 4. Measured depth to rock along the stream channel and riparian zones of the eight study
subwatersheds. Exposed bedrock (i.e., zero depth) observed at the intended measurement
location is noted here by a value of '0.1' on the log scale. The median value is shown as a

351

352 The median bedrock depth was smallest for Hughes River (1.52 m), and similar for

353 Meadow Run, Jeremy's Run, Hazel River (1.92, 1.94, 1.98, respectively, Table 1, Table B1,

Figure 4). Paine Run had a median of 2.24 m, Whiteoak Canyon of 2.38 m, and Piney River of

- 2.54 m. Lower Staunton River had the largest median depth to rock of 3.43 m (Table 1). Piney
- 356 River had the largest variation in bedrock depth, including a discrete zone greater than 20 m
- deep, along with several zones of exposed bedrock along the channel. Visual observations of

<sup>350</sup> *labelled horizontal line.* 





- 358 exposed channel bedrock were not incorporated into the bedrock depth averages presented in
- 359 Table 1.

360 *Table 1.* The median bedrock depth along with the elevation, mean, and 7-d maximum summer

temperatures over the period of record collected at most downstream site location in each
 subwatershed.

|                | 3D<br>subwatershed | mean<br>valley | median           | most downst | ream stream i<br>site | temperature |
|----------------|--------------------|----------------|------------------|-------------|-----------------------|-------------|
|                | surface area       | width          | bedrock<br>depth | elevation   | mean                  | 7-d max     |
| site           | (km <sup>2</sup> ) | (m)            | (m)              | (m)         | (°C)                  | (°C)        |
| Hughes River   | 42.2               | 73.7           | 1.52             | 307         | 18.7                  | 21.2        |
| Meadow Run     | 15.0               | 55.3           | 1.93             | 450         | 18.4                  | 20.4        |
| Jeremy's Run   | 37.5               | 51.8           | 1.94             | 286         | 19.6                  | 23.6        |
| Hazel River    | 22.5               | 48.3           | 1.98             | 328         | 18.5                  | 21.7        |
| Paine Run      | 21.7               | 51.6           | 2.24             | 426         | 18.8                  | 20.9        |
| Whiteoak Cyn.  | 22.4               | 45.0           | 2.38             | 348         | 18.7                  | 21.2        |
| Piney River    | 20.6               | 48.6           | 2.54             | 371         | 17.9                  | 20.6        |
| Staunton River | 18.0               | 45.6           | 3.43             | 309         | 17.4                  | 19.9        |

363

#### 364 *4.2 Spatial Dewatering Patterns and Climate Data*

365 Cumulative monthly precipitation during baseflow summer (July-September) was higher

than normal in 2016 and near average or lower than average (period of record 1942-2020),

depending on the month, in 2019 (Figure A2). Mean monthly air temperatures were higher than

368 average for both study years during baseflow summer reflecting the long-term trend of

369 increasing air temperatures in the park (Luray weather station GHCND:USC00445096; see

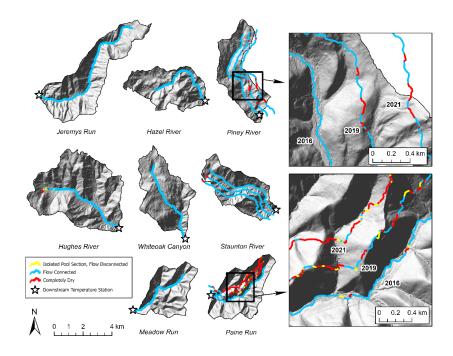
370 Menne et al. 2012). Patches of stream dewatering were observed along five of the eight study

371 subwatersheds between 19-27 July, 2016, when over 98 km of total stream length were mapped

372 (Figure 5). However, for Meadow Run, Hazel River, and Hughes River stream dewatering only

373 occurred near the upper stream origination point. In contrast, Paine Run and Jeremy's Run had

374 several discrete dewatering sections further from their origination points (examples shown in


Figure 3d, Figure A3). During the drier period 17-19 September 2019, no dewatering was found

376 along lower Staunton River, though Piney River had seven discrete dry patches where none were





- 377 mapped in 2016, and similar patterns were observed for those two streams in 2021 (Figure 6).
- 378 Paine Run had 29 points of dewatering in 2019, distributed mainly along the central and upper
- 379 sections of the stream corridor, and showed extensive dewatering in 2021 (Figures 5, 6, 7). The
- two Paine locations that were dry in 2016 were also dry in 2019 and 2021.



- 382 Figure 5. Results from 2016, 2019, and 2021 longitudinal channel dewatering surveys conducted
- by physical observation, where the 2019 and 2021 data are shown offset laterally from the
- 384 stream channel where those surveys occurred.





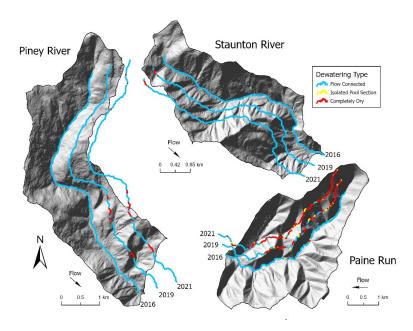
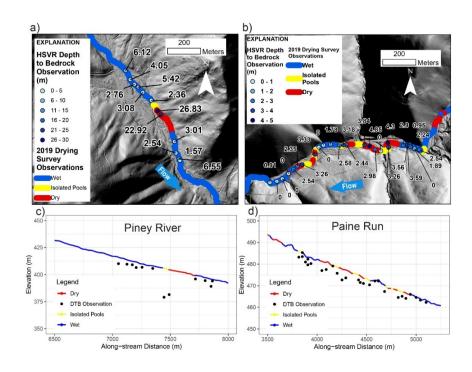
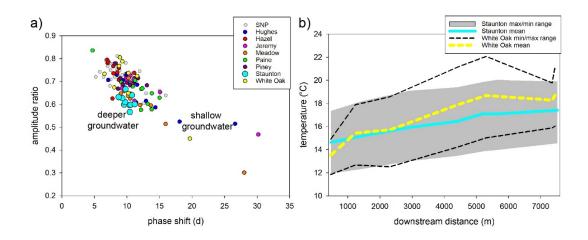




Figure 6. Zoom views for the three subwatersheds where stream dewatering observations were
 also collected in 2021.

- 388
- 389
- 390



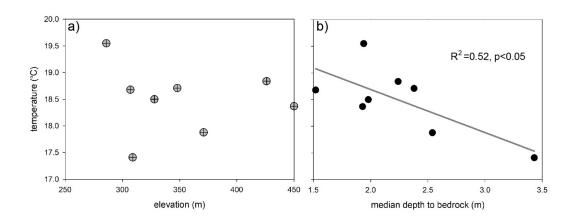





- 392 *Figure 7. The results of the 2019 stream drying survey and 2020 high spatial resolution HVSR*
- 393 measurements are shown over the LiDAR hillshade in plan view (panels a, b) and along a
- 394 LiDAR-derived stream elevation profile cross-section view (panels c, d) for Piney River (panels
- 395 *a, c) and Paine Run (panels b, d).*
- 396 *4.3 Stream Temperature Patterns*
- 397 Paired air and water annual temperature signals exhibited a spectrum of shallow
- 398 groundwater influences: phase shifts between stream and local air signals ranged from
- approximately 5 to 30 d with a mean of 11 d. Reduced annual temperature signal amplitude ratio
- 400 generally corresponded with increased phase shift when all SNP stream monitoring sites are
- 401 plotted in aggregate (Figure 8a). Staunton River stream sites cluster together and show less
- 402 signal phase shift (mean of 10 d) for similar low amplitude ratio values (mean of 0.6) observed in
- 403 other subwatersheds.








<sup>405</sup> Figure 8. Panel a) shows the annual temperature signal metrics for the study subwatersheds 406 highlighted within the larger SNP dataset with conceptual groundwater end member signature 407 trajectories. Panel b) displays the downstream mean summer temperature profiles and 7-d 408 maximum and minimum temperature ranges for Staunton River and Whiteoak Canyon. 409 410 Although originating in a similar place, the downstream mean, 7-d maximum, and 7-d 411 minimum stream temperature profiles differed between Staunton River and Whiteoak Canyon, 412 where the latter had greater temperature variation and warming with downstream distance 413 (Figure 8b). The mean summer stream temperature had an approximate 2 °C total range over the 414 period of record. The warmest average (19.6 °C) and 7-d maximum (23.6 °C) was observed for 415 the lower Jeremy's Run site, which was also at the lowest elevation. However, only 23 m higher 416 in elevation, the downstream Staunton River site had the coldest average (17.4 °C) and 7-d 417 maximum (19.9 °C) summer temperature. Piney River, which has the second largest median 418 bedrock depth (2.54 m), had the second lowest average temperature (17.4 °C) at the lower site. 419 No significant relation was observed between elevation and mean summer temperature at the 420 lower stream monitoring site (Figure 9a), but a significant negative linear relation ( $R^2=0.52$ ; 421 p < 0.05) was determined between median stream corridor bedrock depth and mean summer 422 stream temperature (Figure 9b). However, there is strong leverage on the linear fit from the





423 Staunton River datapoint such that the Spearman rank test was not significant upon its removal



424 (r=-0.42; p=0.29).

Figure 9. Mean summer temperature at the downstream monitoring site is shown plotted by a)
elevation, and b) median subwatershed bedrock depth. A significant linear relation was
determined with bedrock depth but not elevation.

429 4.4 Baseflow Separation (Index)

```
430
              The summer season BFI determined for Paine Run, Piney River, and Staunton River over
431
       show substantial variability, but the median summer BFI over the period of flow record for
       Staunton River (0.62) is approximately 50% greater than Paine Run and Piney River (0.46 and
432
433
       0.41, respectively, Table 2). For the primary study years of 2016-2019, Staunton River BFI is
434
       always largest, and all sites are above their respective interquartile range in 2017 but below their
435
       interquartile range in 2018 (Figure 10). The anomalously low 2018 BFI values can be explained
436
       by extremely high summer precipitation that year (Figure S2), resulting in total streamflow being
437
       dominated by runoff and quickflow as parsed with baseflow separation. Mean summer
438
       streamflow over the period of record was highest for Piney River and lowest for Pain Run, and
439
       overall summer streamflow was most stable for Staunton River (lowest coefficient of variation).
440
       Table 2. The median summer Baseflow Index (BFI), mean summer streamflow, and mean summer
```





| site           | median BFI | mean streamflow<br>(L/s) | mean coefficient of streamflow variation |
|----------------|------------|--------------------------|------------------------------------------|
| Paine Run      | 0.46       | 93.0                     | 1.6                                      |
| Piney River    | 0.41       | 164.4                    | 1.7                                      |
| Staunton River | 0.62       | 157.3                    | 0.7                                      |

442

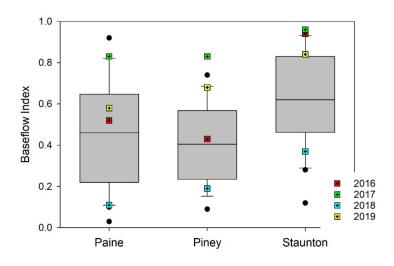



Figure 10. Summer Baseflow Index metrics summarized from 1993-2020 for three streams, with
 specific values from the primary study years identified.

### 446 5.0 Discussion

## 447 5.1 Longitudinal Spatial Structure in Observed Bedrock Depth

448 Seminal groundwater/surface water exchange research has indicated that bedrock

topography along headwater streams may be a first-order control on the arrangement of nested

- 450 gaining and losing flowpaths (e.g. Tonina & Buffington, 2009), and increased (low permeability)
- 451 bedrock depth is recognized as a primary driver of stream disconnection during dry periods that
- 452 could be exacerbated by climate change (Ward et al 2020). However, despite the apparent
- 453 importance to a range of headwater stream physical processes and cold-water habitat, local





| 454 | bedrock depth data are almost universally lacking, even in heavily studied experimental             |
|-----|-----------------------------------------------------------------------------------------------------|
| 455 | watersheds. Our study provides new inferences regarding the effects of bedrock depth on stream      |
| 456 | flow continuity, groundwater exchange, and temperature patterns in mountain streams. The            |
| 457 | combined datasets indicate stream channel bedrock depth assessments may be necessary to             |
| 458 | support stream habitat assessments and predictions of stream connectivity under drought and         |
| 459 | climate change when existing large-scale geologic datasets are not of sufficient spatial resolution |
| 460 | to support natural resource management applications.                                                |
| 461 | Bedrock depth varied substantially within and among several of the eight study SNP                  |
| 462 | subwatersheds but was predominantly shallow. For half of the subwatersheds (Hughest River,          |
| 463 | Meadow Run, Jeremy's Run, and Hazel River), median bedrock depth along the stream channel           |
| 464 | and lateral riparian zone was less than 2 m and did not show notable variability with distance,     |
| 465 | outside of one 12.8 m depth to rock location at upper Hazel River (Figure 4). This anomalous        |
| 466 | measurement at Hazel was collected lateral to the stream on a valley terrace of colluvium, in the   |
| 467 | vicinity of the only cold (approximately 10 °C at land surface) riparian spring that was observed   |
| 468 | during all HVSR surveys. Bedrock depths of greater than 8 m were found along the upper              |
| 469 | Whiteoak Canyon riparian zone as well (Briggs et al 2018a), also associated with surficial          |
| 470 | seepage. Two anomalous bedrock depth measurements of 22.9 and 26.8 m were collected along           |
| 471 | the Piney River channel, but instead of being associated with groundwater springs, they             |
| 472 | coincided with a discrete sections of channel dewatering at baseflow during 2019 and 2021.          |
| 473 | Therefore, it appears that discrete zones of thick surficial material are the exception along SNP   |
| 474 | streams, though they can be important to localized processes such as focused riparian discharge     |
| 475 | and streamflow disconnection (latter discussed in Section 5.2).                                     |





| 476                             | There are several existing sources of bedrock depth data that could potentially be used to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 477                             | inform headwater stream modeling and habitat assessment, but the accuracy of such datasets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 478                             | along headwater streams (typically away from existing boreholes) has generally not been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 479                             | evaluated. We conducted a point-scale comparison of our relatively high-resolution bedrock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 480                             | depth measurements to the global bedrock depth map of Shangguan et al., (2017) and found that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 481                             | bedrock depths were almost universally overpredicted at the SNP by large margins (Figure A4).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 482                             | Specifically, predictions from the global-scale dataset exceeded HSVR measured depths by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 483                             | +12.2 m (mean), or approximately four times the average bedrock depth (2.9 m). As baseflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 484                             | generation is expected to be dominated by shallow groundwater sourced from unconsolidated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 485                             | sediment in these headwater systems, this differential could propagate substantial uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 486                             | into process-based groundwater flow model predictions if the global-scale dataset was used to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 487                             | inform model structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 488                             | Publicly available maps of surficial geologic materials are another potential source of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 | Fubicity available maps of surficial geologic materials are another potential source of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 489                             | bedrock depth information. High-resolution digital soils maps are now widely available,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 489<br>490                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | bedrock depth information. High-resolution digital soils maps are now widely available,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 490                             | bedrock depth information. High-resolution digital soils maps are now widely available,<br>including for the catchments of SNP, and these maps do capture some of the general depth to                                                                                                                                                                                                                                                                                                                                                                                         |
| 490<br>491                      | bedrock depth information. High-resolution digital soils maps are now widely available,<br>including for the catchments of SNP, and these maps do capture some of the general depth to<br>rock transitions between subwatersheds observed in this study. For example, NRCS (2020)                                                                                                                                                                                                                                                                                              |
| 490<br>491<br>492               | bedrock depth information. High-resolution digital soils maps are now widely available,<br>including for the catchments of SNP, and these maps do capture some of the general depth to<br>rock transitions between subwatersheds observed in this study. For example, NRCS (2020)<br>(https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx, accessed 12/10/2020)                                                                                                                                                                                                      |
| 490<br>491<br>492<br>493        | bedrock depth information. High-resolution digital soils maps are now widely available,<br>including for the catchments of SNP, and these maps do capture some of the general depth to<br>rock transitions between subwatersheds observed in this study. For example, NRCS (2020)<br>(https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx, accessed 12/10/2020)<br>indicate that the Whiteoak Canyon stream corridor is comprised of silts, loams, and stony soils                                                                                                   |
| 490<br>491<br>492<br>493<br>494 | bedrock depth information. High-resolution digital soils maps are now widely available,<br>including for the catchments of SNP, and these maps do capture some of the general depth to<br>rock transitions between subwatersheds observed in this study. For example, NRCS (2020)<br>(https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx, accessed 12/10/2020)<br>indicate that the Whiteoak Canyon stream corridor is comprised of silts, loams, and stony soils<br>with a general bedrock depth of approximately 1.2 m., which is in a similar range as most HVSR |

498 is critical. Along lower Piney River, where HVSR data had depths to rock ranging 1.4 to 3.6 m,





| 499        | the NRCS soils map universally indicates silt and stony material > 2 m. Along Paine Run, where                                                                                          |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 500        | the stream is often scoured to bedrock, the soils map shows consistent highly permeable sandy                                                                                           |
| 501        | material with $> 2$ m thickness. This discrepancy is understandable given most of the test pits                                                                                         |
| 502        | were likely substantially further downstream in better terrain for agriculture. In conclusion,                                                                                          |
| 503        | analysis of large-scale patterns from existing soils maps and interpolated/predicted bedrock                                                                                            |
| 504        | depth layers indicates that more precise geophysical mapping of bedrock depth may be needed to                                                                                          |
| 505        | inform stream research and management, particularly in shallow, low-permeability bedrock                                                                                                |
| 506        | terrain.                                                                                                                                                                                |
| 507<br>508 | 5.2 Summer Stream Dewatering Related to Bedrock depth<br>Aligned with the conceptual model of Ward et al., (2018), our central hypothesis was                                           |
| 509        | bedrock depth along the stream corridor acts as a primary control on longitudinal stream                                                                                                |
| 510        | dewatering and flow disconnection during summer low flows (visual example shown in Figure                                                                                               |
| 511        |                                                                                                                                                                                         |
|            | A3). We postulated that permeable streambed thickness may undulate along mountain stream                                                                                                |
| 512        | A3). We postulated that permeable streambed thickness may undulate along mountain stream channels, and relatively thick sub-stream sediment zones could accommodate the entirety of low |
| 512<br>513 |                                                                                                                                                                                         |

subwatersheds that had dry channel zones just downstream of their respective stream origination

516 points in 2016, and these two riparian corridors also had their deepest riparian bedrock depths in

517 those high-elevation areas. However, as discussed above, Whiteoak Canyon had relatively thick,

518 porous sediment zone near the subwatershed outlet but did not show any zones of dewatering,

- 519 nor did lower Staunton River in 2016, 2019, or 2021, despite having the deepest median bedrock
- 520 contact. Jeremy's Run had three mapped dry zones in 2016 (not surveyed in 2019), yet depth to
- 521 rock in those areas was only approximately 2 m, though the HVSR data collection points were
- 522 not perfectly aligned with the dry patches. To address this spatial mismatch in stream dewatering





523 and HVSR data, we used the stream dewatering maps to guide two new high-resolution HVSR

524 surveys in March 2020 along sections of Paine Run and Piney River with dynamic patterns of

525 channel drying, as described below.

526 When bedrock depth data were collected at high-resolution, even more variability in 527 bedrock topography/sediment thickness was revealed then in the original larger-scale surveys, 528 and that finer scale of information was relevant to understanding stream dewatering patterns. 529 For example, during summer 2019, a 291 m length section of lower Piney River was observed to 530 be dry, and immediately preceded by 62 m of isolated stream channel pools, and a nearly 531 identical dewatering pattern was observed there in 2021 (Figures 6,7a,c). The upper portion of 532 this major feature of stream disconnection corresponded directly with a transition in bedrock 533 depth along the channel from approximately 3 m to adjacent measurements of 27 and 23 m. This 534 'trough' in the bedrock surface can likely act as a streamwater sink (shown conceptually in 535 Figure 1b), routing surface water downward to the point of draining the channel locally in the 536 summers of 2019 and 2021, but not in 2016 when precipitation (groundwater supply) was higher 537 than normal. Further downstream, the bedrock depth returned to approximately 3 m near the 538 furthest downstream measurement point, and flowing channel water was again noted during the 539 drying surveys. Such a section of stream dewatering in the lower watershed would serve to 540 impede fish passage along Piney River during the lowest flows, likely corresponding to times of 541 maximum thermal stress when fish mobility is critical to seeking thermal refuge (Magoulick and 542 Kobza, 2003).

543 Not all variability in bedrock depth below streams associated with stream drying was as 544 dramatic as the Piney River example but can be important in disconnecting channel habitat in 545 summer. Paine Run is a more strongly confined stream valley that had 29 discrete zones of





| 546 | stream channel dewatering during September of 2019 and extensive dewatering in 2021, when          |
|-----|----------------------------------------------------------------------------------------------------|
| 547 | numerous dead brook trout were also noted (Figures 5,6,7b,d). Paine also had the greatest total    |
| 548 | exposed bedrock out of any of the SNP subwatersheds in this study, indicating a highly             |
| 549 | constrained valley underflow reservoir. High resolution bedrock depth data was collected over a    |
| 550 | Paine Run subreach with seven discrete dry patches ranging from 17 m to 185 m in channel           |
| 551 | length, with many bordered by zones of isolated pools (Figure 7b). A comparison of these           |
| 552 | patterns with bedrock depth along the channel shows the flowing sections of stream were            |
| 553 | dominated by exposed bedrock surfaces or thin sediment. However, a notable exception is            |
| 554 | toward the upstream end of this focus reach, where depth to rock was consistently $> 2$ m over the |
| 555 | run up to a large zone of disconnected channel with some isolated pools (Figure 7b,d). This        |
| 556 | result suggests the losses of stream water accumulated over this approximately 80 m channel        |
| 557 | distance. In the following downstream contiguous sections of dry channel and/or isolated pools,    |
| 558 | bedrock depth averaged a larger 3.3 m, indicating the entirety of streamflow was accommodated      |
| 559 | by the subsurface, congruent with our original hypothesis. However, knowledge of bedrock           |
| 560 | depth in isolation is clearly not sufficient to predict stream channel gaining, losing, and        |
| 561 | disconnection patterns as the stream with the largest average bedrock depth, lower Staunton        |
| 562 | River (median depth to rock 3.4 m, Figure 4), was not observed to dewater during any of the        |
| 563 | three physical surveys (Figures 5,6).                                                              |
|     |                                                                                                    |

- 564
- 5.3 Summer Stream Temperature and Groundwater Exchange Dynamics

Although headwater stream heat budgets are complex, our data indicates groundwater 565 connectivity plays an important role when stream temperatures are already close to aquatic 566 567 species thermal tolerances. The apparent dominance of shallow (<3 m depth) groundwater 568 discharge along Whiteoak Canyon contributed to the Briggs et al. (2018b) prediction that the 569 lower reaches would not provide suitable brook trout habitat by the end of the century given





anticipated atmospheric warming. Jeremy's Run, a long (13.4 km) stream consistently underlain
by a shallow bedrock contact (median depth < 2 m), already shows a 7-d maximum summer</li>
temperature that exceeds expected brook trout tolerances (i.e., >23.3 °C mean weekly average
temperature, Wehrly et al., (2007)) along the lowest reach.

574 The underflow reservoir of headwater stream valleys integrates upgradient and lateral 575 hillslope groundwater flowpaths, which accumulate with distance when bounded by low 576 permeability bedrock. The two subwatersheds with largest median bedrock depth along their respective upstream corridors had the coldest mean summer temperatures, with Staunton River 577 578 standing out as distinctly colder, and having the only 7-d max temperature below 20 °C (Table 579 1). There was a significant relation between median bedrock depth and mean summer stream 580 temperature at the lower stream sites but not with elevation (Figure 9), indicating exchange with 581 groundwater had disrupted the expected elevation control on lower reach cold water habitat. 582 Surficial hillslope contributing area is often assumed a primary control on potential groundwater 583 discharge at the stream subreach scale. However, Staunton River also had the second smallest 584 drainage surface area of all study subwatersheds, and it is often assumed that lateral groundwater 585 inflow to headwater streams is related to presumed upslope contributing area. Further, Staunton 586 River did not have an average valley bottom width that was greater than other streams that were 587 observed to dewater.

588 Our research indicates that the vertical shallow aquifer dimension, as represented by 589 bedrock depth, is likely an important control of groundwater storage and connectivity to the 590 stream corridor. This conclusion is supported by the paired air/water annual temperature signal 591 metrics, indicating Staunton River sites cluster in the stronger, deeper groundwater influence 592 compared to most observations along the other SNP streams (Figure 8a). Therefore, it seems



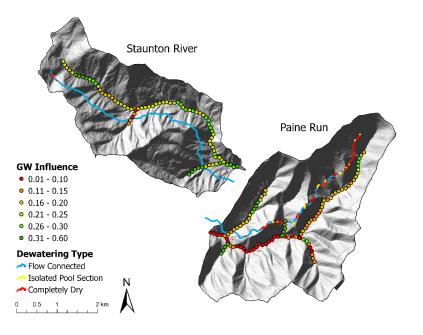


593 there are important tradeoffs between bedrock depth along the stream channel as a driver of 594 stream dewatering and sediment thickness along the valley floor and hillslopes as a potential 595 source of stream baseflow.

596 For a more in-depth analysis the paired bedrock depth and groundwater inflow controls 597 on headwater summer stream dynamics, Staunton River can be contrasted with Paine Run. The 598 latter had a similar drainage surface area to Staunton River, but a 1.2 m shallower bedrock depth 599 on average, showed dozens of dewatered stream channel sections in 2019 and 2021, and had a 600 downstream boundary summer stream temperature that was 1.4 °C warmer. In addition to a 601 reduced average bedrock depth, Paine Run had numerous sections of exposed bedrock adjacent 602 to localized pockets of stream channel alluvium and colluvium (Figure 4, 7), while extensive 603 colluvial deposits along the Staunton River channel limited exposed bedrock to a few m-scale 604 sections associated with pool steps (Figure 4). Lower Staunton experienced major debris flows in 605 June, 1995 (Morgan and Wieczorek, 1996), events that likely created an enhanced local 606 groundwater reservoir within coarse hillslope material compared to other SNP subwatersheds. 607 Based on the integrated datasets from these two SNP streams, we conclude that 608 groundwater exchange is a critical factor determining whether headwater streams will warm and 609 dewater in summer, which in turn is controlled in part by the thickness of supra-bedrock 610 unconsolidated aquifer. As noted above, annual temperature metrics indicated a consistently 611 deeper groundwater discharge influence along Staunton River, while Paine Run had annual 612 signal metrics that mainly indicated reduced and/or more shallow groundwater influence (Figure 613 9a). Long term streamflow and baseflow analysis from these streams showed Staunton River had higher, but more stable summer discharge (Table 1), and substantially higher median summer 614 615 BFI (0.62 vs 0.46), indicating greater dominance of groundwater as a generator of streamflow






616 compared to runoff and quickflow. Previous research in SNP used paired air/stream water 617 temperature records, precipitation, and landscape characteristics to statistically model 618 'groundwater influence' by year on a scale of 0-1 at the 100-m scale along the streams of this 619 study, where details are described by Johnson et al., (2017). Although this previous work only 620 extended to 2015, that year had analogous BFI scores to 2019 for Staunton River (0.88 vs 0.84) 621 and Paine Run (0.60 vs 0.58). Comparing the 2019 drying survey observations to the 2015 high 622 spatial resolution modeling of groundwater influence we found that Paine Run was predicted to 623 have groundwater influenced tributaries, but along the mainstem, where extensive dewatering 624 was observed, there was substantially reduced modeled groundwater influence compared to the 625 mainstem of Staunton River (Figure 11). 626

020

627







- 630 Figure 11. The 2019 stream dewatering survey data (lines; this study), plotted offset of the
- 631 mainstem, and 100-m groundwater influence predictions (points from Johnson et al., 2017),
- 632 plotted along the mainstem and tributaries, of Staunton River and Paine Run.
- 633 This observation and model comparison represents another line of evidence that groundwater
- 634 connectivity at the sub-reach scale is key in determining whether local increases in depth to
- 635 bedrock drive channel dewatering at low flow. The impact of reduced underflow groundwater
- supply on stream disconnection is likely exasperated by the extensive zones of exposed bedrock
- along Paine Run (Figure 4, 7d), which locally reduce groundwater mounding in stream valley
- 638 sediments as shown conceptually in Figure 1b, such that abrupt increases in bedrock depth cause
- 639 stream dewatering. Among the eight streams investigated here, Staunton River likely represents
- the most resilient summer cold water habitat, which could not be predicted using bedrock depth
- 641 data alone but necessitated paired assessment of groundwater discharge dynamics.





## 642 6 Conclusions

| 643 | In steep mountain valley stream systems underlain by low-permeability bedrock, the               |
|-----|--------------------------------------------------------------------------------------------------|
| 644 | longitudinal underflow reservoir serves as a complex mechanism of streamflow generation,         |
| 645 | streamflow losses, and stream temperature control (Figure 1, Supplementary Figure S1). Our       |
| 646 | study utilized complimentary geophysical, temperature, and hydrologic data at the scale of eight |
| 647 | subwatersheds to highlight apparent tradeoffs in bedrock depth, shallow groundwater supply, and  |
| 648 | the quality of cold-water habitat. Certain mountain stream corridor parameters may be            |
| 649 | reasonable to assume or infer from high-resolution topographic data, such surficial sediment     |
| 650 | permeability (based on land surface roughness) and stream valley width, which are primary        |
| 651 | controls on whether underflow serves as a net source or sink of stream water (Flinchum et al.,   |
| 652 | 2018; Ward et al., 2018). However, as shown here, advances in predicting hydrologic              |
| 653 | connectivity and thermal variation along mountain stream networks may also require local         |
| 654 | evaluation of bedrock depth and stream-groundwater exchange.                                     |
| 655 | When local increases in bedrock depth are not balanced by groundwater inflow, streams            |
| 656 | may be expected to dewater and disconnect under low flow conditions, and streams with reduced    |
| 657 | deeper groundwater influence show warmer summer temperatures. Contrary to what might be          |
| 658 | expected, we found that mean summer stream temperature at was not significantly related to       |
| 659 | elevation at all lower study boundaries, but instead was (negatively) related to average stream  |
| 660 | bedrock depth. Staunton River had the coldest summer stream temperatures and most                |
| 661 | pronounced deeper groundwater signatures. However, that subwatershed was of relatively small     |
| 662 | total surface area and average valley width. The defining physical feature of Staunton River was |
| 663 | that it had the largest average bedrock depth of all the eight SNP study streams at 3.4 m,       |
| 664 | allowing greater overall storage of recharge and baseflow generation. The other two gaged        |





streams had substantially reduced baseflow indices, indicating streamflow generation was

666 dominated by runoff and quickflow.

667 Overall, SNP streams tended to have consistently shallow bedrock depth, though a subset 668 were more variable or had spatial trends and discrete features. Observed channel dewatering 669 patterns during late summer baseflow periods were related to local scale variation in bedrock 670 depth, such as a discrete feature of greater than 20 m depth observed along Piney River that 671 caused repeated streamflow disconnection. However, in other streams more subtle bedrock depth 672 variation also caused channel dewatering, indicating the importance of local hydrogeological 673 context in determining the importance of bedrock depth on streamflow connectivity. For 674 example, patchy 2-4 m deposits of sediment adjacent to exposed bedrock along Paine Run 675 caused extensive summer dewatering in 2019 and 2021, and during the latter survey many dead 676 brook trout were noted in the disconnected sections. Paine and Piney also showed enhanced 677 dewatering during the summers of 2019 and 2021 compared to the wetter 2016 summer, 678 demonstrating the additional control of recent precipitation on stream disconnection in headwater 679 systems that do not efficiently store water.

680 Lateral groundwater inflow through high permeability, unconsolidated sediments is a 681 critical component of headwater stream baseflow (Tran et al., 2020). Shallow, low permeability 682 bedrock can constrain lateral flowpaths and underflow to the near surface critical zone, where it 683 is highly sensitive to enhanced evapotranspiration, temperature increase, and drought under 684 climate change (Condon et al., 2020; Hare et al., 2021). As it becomes increasingly important to 685 understand and predict the resilience of mountain cold-water stream habitat at a fine spatial 686 grain, continued coupled advances in geophysical characterization, stream temperature 687 monitoring, and groundwater exchange analysis are needed.





## 688 Data Availability

- The data described in this manuscript are available at: doi.org/10.5066/F7B56H72,
- 690 doi.org/10.5066/F7JW8C04, and doi.org/10.5066/P9IJMGIB

### 691 Author contribution

- 692 Conceptualization: M.A. Briggs, Z.C. Johnson, C.D. Snyder, N.P. Hitt; Investigation: M.A.
- 693 Briggs, P. Goodling, Z.C. Johnson, C.D. Snyder, K.M. Rogers, N.P. Hitt; Visualization: M.A.
- 694 Briggs, K.M. Rogers, P. Goodling, J.B. Fair, C.D. Snyder. All authors contributed to the formal
- analysis varied stages of writing.

## 696 Competing interests

697 The authors declare that they have no conflict of interest.

#### 698 Acknowledgments

- 699 The authors gratefully acknowledge support from Natural Resource Preservation Program and
- the U.S. Geological Survey (USGS) Chesapeake Bay Priority Ecosystems Science and Fisheries
- 701 Program. We also thank the Shenandoah National Park Staff for site access and general support
- and field support from John Lane, David Nelms, Adam Haynes, Erin Snook, David Weller, Evan
- Rodway, Jacob Roach, Matt Marshall, Joe Dehnert, and Mary Mandt. Any use of trade, firm, or
- product names is for descriptive purposes only and does not imply endorsement by the U.S.
- 705 Government.





## 707 References

| 708               | Briggs, M.A., Johnson, Z.C., Snyder, C.D., Hitt, N.P., Kurylyk, B.L., Lautz, L., Irvine, D.J.,                                                                                                                              |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 709               | Hurley, S.T., Lane, J.W., 2018a. Inferring watershed hydraulics and cold-water habitat                                                                                                                                      |
| 710               | persistence using multi-year air and stream temperature signals. Sci. Total Environ. 636.                                                                                                                                   |
| 711               | https://doi.org/10.1016/j.scitotenv.2018.04.344                                                                                                                                                                             |
| 712               | Briggs, M.A., Lane, J.W., Snyder, C.D., White, E.A., Johnson, Z.C., Nelms, D.L., Hitt, N.P.,                                                                                                                                |
| 713               | 2018b. Shallow bedrock limits groundwater seepage-based headwater climate refugia.                                                                                                                                          |
| 714               | Limnologica 68, 142–156. https://doi.org/10.1016/j.limno.2017.02.005                                                                                                                                                        |
| 715               | Briggs, M.A., Lane, J.W., Snyder, C.D., White, E.A., Johnson, Z.C., Nelms, D.L., Hitt, N.P.,                                                                                                                                |
| 716               | 2017. Seismic data for study of shallow mountain bedrock limits seepage-based headwater                                                                                                                                     |
| 717               | climate refugia, Shenandoah National Park, Virginia: U.S. Geological Survey data release.                                                                                                                                   |
| 718               | https://doi.org/10.5066/F7JW8C04                                                                                                                                                                                            |
| 719<br>720        | Bundschuh, J., 1993. Modeling annual variations of spring and groundwater temperatures associated with shallow aquifer systems Computer model. J. Hydraul. Eng. 142, 427–444.                                               |
| 721               | Burns, D.A., Murdoch, P.S., Lawrence, G.B., Michel, R.L., 1998. Effect of groundwater springs                                                                                                                               |
| 722               | on NO3/- concentrations during summer in Catskill Mountain streams. Water Resour. Res.                                                                                                                                      |
| 723               | 34, 1987–1996. https://doi.org/Cited By (since 1996) 98Export Date 4 April 2012                                                                                                                                             |
| 724               | Condon, L.E., Atchley, A.L., Maxwell, R.M., 2020. Evapotranspiration depletes groundwater                                                                                                                                   |
| 725               | under warming over the contiguous United States. Nat. Commun. 11.                                                                                                                                                           |
| 726               | https://doi.org/10.1038/s41467-020-14688-0                                                                                                                                                                                  |
| 727               | Costigan, K.H., Jaeger, K.L., Goss, C.W., Fritz, K.M., Goebel, P.C., 2016. Understanding                                                                                                                                    |
| 728               | controls on flow permanence in intermittent rivers to aid ecological research: integrating                                                                                                                                  |
| 729               | meteorology, geology and land cover. Ecohydrology 9, 1141–1153.                                                                                                                                                             |
| 730               | https://doi.org/10.1002/eco.1712                                                                                                                                                                                            |
| 731<br>732<br>733 | Covino, T., 2017. Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks. Geomorphology 277, 133–144.<br>https://doi.org/10.1016/j.geomorph.2016.09.030 |
| 734               | DeKay, R.H., 1972. Development of ground-water supplies in Shenandoah National Park,                                                                                                                                        |
| 735               | Virginia. Virginia Div. Miner. Resour. Rep. 10, 158.                                                                                                                                                                        |
| 736               | Edge, C.B., Fortin, M.J., Jackson, D.A., Lawrie, D., Stanfield, L., Shrestha, N., 2017. Habitat                                                                                                                             |
| 737               | alteration and habitat fragmentation differentially affect beta diversity of stream fish                                                                                                                                    |
| 738               | communities. Landsc. Ecol. 32, 647–662. https://doi.org/10.1007/s10980-016-0472-9                                                                                                                                           |
| 739               | Flinchum, B.A., Holbrook, W.S., Grana, D., Parsekian, A.D., Carr, B.J., Hayes, J.L., Jiao, J.,                                                                                                                              |
| 740               | 2018. Estimating the water holding capacity of the critical zone using near-surface                                                                                                                                         |
| 741               | geophysics. Hydrol. Process. 32, 3308–3326. https://doi.org/10.1002/hyp.13260                                                                                                                                               |
| 742               | Furze, S., Sullivan, A.M.O., Allard, S., Pronk, T., Curry, R.A., 2021. A High-Resolution,                                                                                                                                   |
| 743               | Random Forest Approach to Mapping Depth-to-Bedrock across Shallow Overburden and                                                                                                                                            |
| 744               | Post-Glacial Terrain 1–23.                                                                                                                                                                                                  |
| 745               | Goodling, P.J., Briggs, M.A., White, E.A., Johnson, Z.C., Haynes, A.B., Nelms, D.L., Lane,                                                                                                                                  |





- J.W., 2020. Passive seismic data collected along headwater stream corridors in Shenandoah
- 747 National Park in 2016 2020: US Geol. Surv. Data Release.
- 748 https://doi.org/doi.org/10.5066/P9IJMGIB
- Hare, D.K., Helton, A.M., Johnson, Z.C., Lane, J.W., Briggs, M.A., 2021. Continental-scale
  analysis of shallow and deep groundwater contributions to streams. Nat. Commun. 1–10. https://doi.org/10.1038/s41467-021-21651-0
- Herzog, S.P., Ward, A.S., Wondzell, S.M., 2019. Multiscale Feature-feature Interactions Control
  Patterns of Hyporheic Exchange in a Simulated Headwater Mountain Stream. Water
  Resour. Res. 55, 10976–10992. https://doi.org/10.1029/2019WR025763
- Hopper, G.W., Gido, K.B., Pennock, C.A., Hedden, S.C., Frenette, B.D., Barts, N., Hedden,
  C.K., Bruckerhoff, L.A., 2020. Nowhere to swim: interspecific responses of prairie stream
- 757 fishes in isolated pools during severe drought. Aquat. Sci. 82, 1–15.
- 758 https://doi.org/10.1007/s00027-020-0716-2
- Jencso, K.G., McGlynn, B.L., Gooseff, M.N., Bencala, K.E., Wondzell, S.M., 2010. Hillslope
   hydrologic connectivity controls riparian groundwater turnover: Implications of catchment
   structure for riparian buffering and stream water sources. Water Resour. Res. 46, 1–18.
   https://doi.org/10.1029/2009WR008818
- Johnson, Z.C., Johnson, B.G., Briggs, M.A., Devine, W.D., Snyder, C.D., Hitt, N.P., Hare, D.K.,
  Minkova, T. V., 2020. Paired air-water annual temperature patterns reveal hydrogeological
  controls on stream thermal regimes at watershed to continental scales. J. Hydrol. 587,
  124929. https://doi.org/10.1016/j.jhydrol.2020.124929
- Johnson, Z.C., Snyder, C.D., Hitt, N.P., 2017. Landformfeatures and seasonal precipitation
   predict shallow groundwater influence on temperature in headwater streams. Water Resour.
   Res. 53, 5788–5812. https://doi.org/10.1002/2017WR020455
- Kauffman, L.J., Yager, R.M., Reddy, J.E., 2018. Sediment and Aquifer Characteristics of
   Quaternary Sediments in the Glaciated Conterminous United States: U.S. Geol. Surv. data
   release. https://doi.org/10.5066/F7HH6J8X
- Labbe, T.R., Fausch, K.D., 2000. Dynamics of intermittent stream habitat regulate persistence of
  a threatened fish at multiple scales. Ecol. Appl. 10, 1774–1791.
  https://doi.org/10.1890/1051-0761
- Lapham, W.W., 1989. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity. US Geol. Surv. Water-Supply Pap. 2337.
- Larkin, R.G., Sharp, J.M., 1992. On the relationship between river-basin geomorphology, aquifer
   hydraulics, and ground-water flow direction in alluvial aquifers. Geol. Soc. Am. Bull. 104,
   1608–1620.
- Lynch, D.D., 1987. Hydrologic conditions and trends in Shenandoah National Park, Virginia,
   1983–84. Water- Resour. Investig. Rep. 87–4131.
- Magoulick, D.D., Kobza, R.M., 2003. The role of refugia for fishes during drought: A review and synthesis. Freshw. Biol. 48, 1186–1198. https://doi.org/10.1046/j.1365-





| 786 | 2427.2003.01089.x |
|-----|-------------------|
|     |                   |

| 787<br>788<br>789        | McLachlan, P.J., Chambers, J.E., Uhlemann, S.S., Binley, A., 2017. Geophysical characterisation of the groundwater–surface water interface. Adv. Water Resour. 109, 302–319. https://doi.org/10.1016/j.advwatres.2017.09.016                                                                    |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 790<br>791               | Meisner, J.D., Rosenfeld, J.S., Regier, H.A., 1988. The Role of Groundwater in the Impact of Climate Warming on Stream Salmonines. Fisheries 13, 2–8.                                                                                                                                           |
| 792                      | Nelms, D.L., Moberg, R.M., 2010. Preliminary Assessment of the Hydrogeology and                                                                                                                                                                                                                 |
| 793                      | Groundwater Availability in the Metamorphic and Siliciclastic Fractured-Rock Aquifer                                                                                                                                                                                                            |
| 794                      | Systems of Warren County, Virginia. U.S. Geol. Surv. Investig. Rep. 2010–5190.                                                                                                                                                                                                                  |
| 795                      | O'Sullivan, A.M., Devito, K.J., Ogilvie, J., Linnansaari, T., Pronk, T., Allard, S., Curry, R.A.,                                                                                                                                                                                               |
| 796                      | 2020. Effects of Topographic Resolution and Geologic Setting on Spatial Statistical River                                                                                                                                                                                                       |
| 797                      | Temperature Models. Water Resour. Res. 56, 1–23. https://doi.org/10.1029/2020WR028122                                                                                                                                                                                                           |
| 798<br>799<br>800<br>801 | Odom, W.E., Doctor, D.H., Burke, C.E., Cox, C.L., 2021. Using high-resolution LiDAR and deep learning models to generate mimum thickness maps of surficial sediments, in: Geological Society of America Abstracts with Programs, v. 53. Portland, OR. https://doi.org/10.1130/abs/2021AM-367681 |
| 802                      | Payn, R.A., Gooseff, M.N., McGlynn, B.L., Bencala, K.E., Wondzell, S.M., 2009. Channel                                                                                                                                                                                                          |
| 803                      | water balance and exchange with subsurface flow along a mountain headwater stream in                                                                                                                                                                                                            |
| 804                      | Montana, United States. Water Resour. Res. 45. https://doi.org/Artn W11427Doi                                                                                                                                                                                                                   |
| 805                      | 10.1029/2008wr007644                                                                                                                                                                                                                                                                            |
| 806                      | Pelletier, J.D., Broxton, P.D., Hazenberg, P., Zeng, X., Troch, P.A., Niu, GY., Williams, Z.,                                                                                                                                                                                                   |
| 807                      | Brunke, M.A., Gochis, D., 2016. A gridded global data set of soil, intact regolith, and                                                                                                                                                                                                         |
| 808                      | sedimentary deposit thicknesses for regional and global land surface modeling. J. Adv.                                                                                                                                                                                                          |
| 809                      | Model. Earth Syst. 8. https://doi.org/10.1002/2015MS000526                                                                                                                                                                                                                                      |
| 810                      | Plummer, L.N., Busenberg, E., Bohlke, J.K., Nelms, D.L., Michel, R.L., Schlosser, P., 2001.                                                                                                                                                                                                     |
| 811                      | Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains,                                                                                                                                                                                                                  |
| 812                      | Virginia, USA: a multi-tracer approach. Chem. Geol. 179, 93–111.                                                                                                                                                                                                                                |
| 813                      | Rolls, R.J., Leigh, C., Sheldon, F., 2012. Mechanistic effects of low-flow hydrology on riverine                                                                                                                                                                                                |
| 814                      | ecosystems: Ecological principles and consequences of alteration. Freshw. Sci. 31, 1163–                                                                                                                                                                                                        |
| 815                      | 1186. https://doi.org/10.1899/12-002.1                                                                                                                                                                                                                                                          |
| 816                      | Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., Dai, Y., 2017. Mapping the global                                                                                                                                                                                                      |
| 817                      | depth to bedrock for land surface modeling. J. Adv. Model. Earth Syst. 9, 65–88.                                                                                                                                                                                                                |
| 818                      | https://doi.org/10.1002/2016MS000686                                                                                                                                                                                                                                                            |
| 819                      | Sidle, R.C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., Shimizu, T., 2000. Stormflow                                                                                                                                                                                                  |
| 820                      | generation in steep forested headwaters: A linked hydrogeomorphic paradigm. Hydrol.                                                                                                                                                                                                             |
| 821                      | Process. 14, 369–385. https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3<369::AID-                                                                                                                                                                                                           |
| 822                      | HYP943>3.0.CO;2-P                                                                                                                                                                                                                                                                               |
| 823                      | Singha, K., Navarre-Sitchler, A., 2021. The importance of groundwater in critical zone science.                                                                                                                                                                                                 |
| 824                      | Groundwater 1–8. https://doi.org/10.1111/gwat.13143                                                                                                                                                                                                                                             |

825 Snyder, C.D., Hitt, N.P., Johnson, Z.C., 2017. Air-water temperature data for the study of



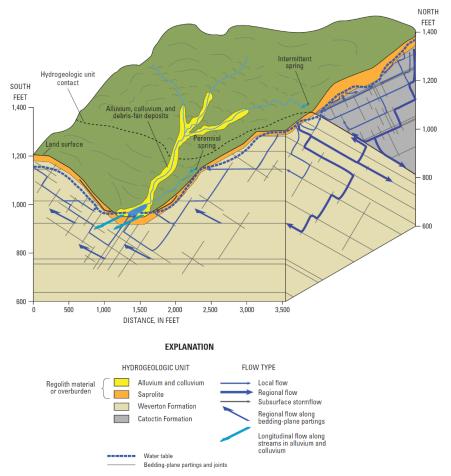


| 826<br>827 | groundwater influence on stream thermal regimes in Shenandoah National Park, Virginia: U.S. Geological Survey data release. https://doi.org/https://doi.org/10.5066/F7B56H72 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 828<br>829 | Snyder, C.D., Hitt, N.P., Young, J.A., 2015. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecol. Appl. 00, 281–304.                 |
| 830        | Snyder, C.D., Webb, J.R., Young, J.A., Johnson, Z.B., Jewell, S., Survey, U.S.G., 2013.                                                                                      |
| 831        | Significance of Headwater Streams and Perennial Springs in Ecological Monitoring in                                                                                          |
| 832        | Shenandoah National Park. Open-File Rep. 2013–1178 46.                                                                                                                       |
| 833        | Southworth, S., Aleinikoff, J.N., Bailey, C.M., Burton, W.C., Crider, E.A., Hackley, P.C.,                                                                                   |
| 834        | Smoot, J.P., Tollo, R.P., 2009. Geologic Map of the Shenandoah National Park Region,                                                                                         |
| 835        | Virginia. US Geol. Surv. Open-File Rep. 2009–1153 1.                                                                                                                         |
| 836        | Stonestrom, D.A., Constantz, J., 2003. Heat as a Tool for Studying the Movement of Ground                                                                                    |
| 837        | Water Near Streams. U.S. Geol. Surv. Circ., 1260, 1–6. 96.                                                                                                                   |
| 838        | Sullivan, C., Vokoun, J., Helton, A., Briggs, M.A., Kurylyk, B., 2021. An ecohydrological                                                                                    |
| 839        | typology for thermal refuges in streams and rivers. Ecohydrology.                                                                                                            |
| 840        | https://doi.org/10.1002/eco.2295                                                                                                                                             |
| 841        | Tiwari, T., Buffam, I., Sponseller, R.A., Laudon, H., 2017. Inferring scale-dependent processes                                                                              |
| 842        | influencing stream water biogeochemistry from headwater to sea. Limnol. Oceanogr. 62,                                                                                        |
| 843        | S58–S70. https://doi.org/10.1002/lno.10738                                                                                                                                   |
| 844        | Tonina, D., Buffington, J.M., 2009. Hyporheic Exchange in Mountain Rivers I: Mechanics and                                                                                   |
| 845        | Environmental Effects. Geogr. Compass 3, 1063–1086. https://doi.org/10.1111/j.1749-                                                                                          |
| 846        | 8198.2009.00226.x                                                                                                                                                            |
| 847        | Tran, H., Zhang, J., Cohard, J.M., Condon, L.E., Maxwell, R.M., 2020. Simulating                                                                                             |
| 848        | Groundwater-Streamflow Connections in the Upper Colorado River Basin. Groundwater                                                                                            |
| 849        | 58, 392–405. https://doi.org/10.1111/gwat.13000                                                                                                                              |
| 850        | Ward, A.S., Schmadel, N.M., Wondzell, S.M., 2018. Simulation of dynamic expansion,                                                                                           |
| 851        | contraction, and connectivity in a mountain stream network. Adv. Water Resour. 114, 64–                                                                                      |
| 852        | 82. https://doi.org/10.1016/j.advwatres.2018.01.018                                                                                                                          |
| 853        | Ward, A.S., Wondzell, S.M., Schmadel, N.M., Herzog, S.P., 2020. Climate Change Causes River                                                                                  |
| 854        | Network Contraction and Disconnection in the H.J. Andrews Experimental Forest, Oregon,                                                                                       |
| 855        | USA. Front. Water 2, 1–10. https://doi.org/10.3389/frwa.2020.00007                                                                                                           |
| 856        | Weekes, A.A., Torgersen, C.E., Montgomery, D.R., Woodward, A., Bolton, S.M., 2015.                                                                                           |
| 857        | Hydrologic response to valley-scale structure in alpine headwaters. Hydrol. Process. 29,                                                                                     |
| 858        | 356–372. https://doi.org/10.1002/hyp.10141                                                                                                                                   |
| 859        | Wehrly, K., Wang, L., Mitro, M., 2007. Field-based estimates of thermal tolerance limits for                                                                                 |
| 860        | trout: incorporating exposure time and temperature fluctuation. Trans. Am. Fish. Soc. 136,                                                                                   |
| 861        | 365–374.                                                                                                                                                                     |
| 862<br>863 | Winter, T.C., Harvey, J.W., Franke, O.L., Alley, W.M., 1998. Ground water and surface water: a single resource. U. S. Geol. Surv. Circ. 1139 79.                             |
| 864        | Wohl, E., 2017. Connectivity in rivers. Prog. Phys. Geogr. 41, 345–362.                                                                                                      |





865 https://doi.org/10.1177/0309133317714972


- 866 Wu, L., Gomez-Velez, J.D., Krause, S., Singh, T., Wörman, A., Lewandowski, J., 2020. Impact
- 867 of Flow Alteration and Temperature Variability on Hyporheic Exchange. Water Resour.
  868 Res. 56. https://doi.org/10.1029/2019WR026225
- Yanamaka, H., Takemura, M., Ishida, H., Niwa, M., 1994. Characteristics of long-period
  microtremors and their applicability in exploration of deep sedimentary layers. Bull. Seism.
  Soc. Am. 84, 1831–1841.
- 872 Zimmer, M.A., McGlynn, B.L., 2017. Bidirectional stream–groundwater flow in response to
- ephemeral and intermittent streamflow and groundwater seasonality. Hydrol. Process. 31,
  3871–3880. https://doi.org/10.1002/hyp.11301





875

876 Appendix A



- 878 Figure A1. The headwater streams of Shenandoah National Park, Virginia, USA are expected to
- 879 flow over coarse alluvium and colluvium and have connectivity to shallow hillslope groundwater
- and underflow, but reduced connectivity to deeper bedrock groundwater (Modified Figure 26 in
- 881 (Nelms and Moberg, 2010) U.S. Geol. Surv. Investigations Rep. 2010–5190.





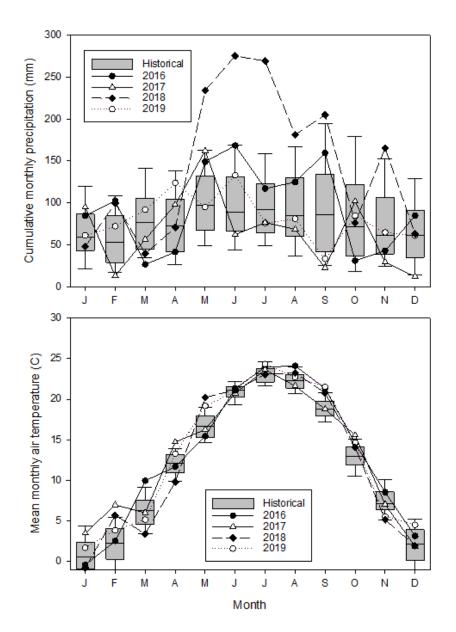



Figure A2. Monthly precipitation and air temperature data derived from the Luray weather
station (GHCND:USC00445096) located within Shenandoah National Park. Box plots show the
distribution of values for the period of record (1942-2020) with the limits of the box containing

887 50% of the values, whiskers containing 90% of the values, and solid line in boxes depicting the

888 median value. The lines represent values for the four primary study years.







- 891 Figure A3. Images from the same vantage point along Paine Run during a) high and b) low flow
- 892 times, the latter showing channel dewatering associated with a deposit of coarse alluvium across
- 893 the channel.





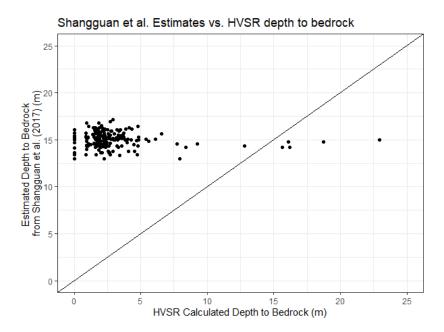



Figure A4: Comparison between bedrock depth modeled for the globe by Shangguan et al.,

896 (2017) at a 250m resolution and the HVSR-calculated depths to bedrock in this study.

897

# 898 Appendix B

Table B1. Summer stream temperature metrics for each study subwatershed determined from the
data set of Snyder et al. (2017), doi.org/10.5066/F7B56H72.

| Subwatershed | SitalD  | Facting | Northing | Downstream   | summer    | 7-d min | 7-d max | Stdev |
|--------------|---------|---------|----------|--------------|-----------|---------|---------|-------|
| Subwatersneu | SiteID  | Easting | Northing | Distance (m) | mean (°C) | (°C)    | (°C)    | (°C)  |
| Hughes       | HUR1MP  | 730038  | 4276000  | 242.50       | 13.43     | 11.50   | 16.07   | 0.98  |
| Hughes       | HUR3LCP | 731058  | 4275970  | 1634.44      | 15.73     | 13.23   | 18.21   | 1.24  |
| Hughes       | HUR5LCP | 732278  | 4275850  | 3308.93      | 16.21     | 13.48   | 18.62   | 1.24  |
| Hughes       | HUR6MP  | 733348  | 4275060  | 5163.46      | 16.39     | 13.86   | 17.95   | 1.13  |
| Hughes       | HUR12MP | 733698  | 4274880  | 5620.73      | 16.79     | 14.09   | 18.34   | 1.24  |
| Hughes       | HUR8LCP | 733988  | 4274619  | 6219.50      | 18.80     | 15.19   | 21.49   | 1.57  |
| Hughes       | HUR9LCP | 733968  | 4274529  | 6284.35      | 17.59     | 14.49   | 20.09   | 1.34  |
| Hughes       | HUR10MP | 734928  | 4273520  | 8187.04      | 18.05     | 15.01   | 20.05   | 1.40  |
| Hughes       | HUR13MP | 735258  | 4273330  | 8667.16      | 18.68     | 15.15   | 21.18   | 1.62  |
| Hazel        | HZR1MP  | 735158  | 4278560  | 707.45       | 16.80     | 13.26   | 19.75   | 1.46  |
| Hazel        | HZR3LCP | 735498  | 4278760  | 1190.18      | 16.74     | 13.08   | 19.41   | 1.50  |
| Hazel        | HZR11MP | 736378  | 4279640  | 2951.89      | 18.16     | 15.34   | 20.32   | 1.52  |





| Hazel    | HZR5MP  | 736638 | 4279790 | 3331.66  | 17.59 | 13.59 | 20.62 | 1.67 |
|----------|---------|--------|---------|----------|-------|-------|-------|------|
| Hazel    | HZR6MP  | 737498 | 4279059 | 5095.01  | 18.16 | 14.03 | 21.40 | 1.74 |
| Hazel    | HZR7MP  | 738048 | 4277990 | 6820.13  | 18.48 | 14.50 | 21.77 | 1.72 |
| Hazel    | HZR9MP  | 738368 | 4277620 | 7478.33  | 18.50 | 14.74 | 21.72 | 1.63 |
| Jeremy's | JR1MP   | 734618 | 4293430 | 102.97   | 15.48 | 12.42 | 18.74 | 1.41 |
| Jeremy's | JR2MP   | 733908 | 4293130 | 1268.08  | 16.49 | 13.38 | 19.42 | 1.38 |
| Jeremy's | JR4MP   | 732498 | 4292250 | 3699.53  | 16.84 | 14.23 | 18.22 | 1.11 |
| Jeremy's | JR5MP   | 731778 | 4290670 | 5961.22  | 17.54 | 14.15 | 20.24 | 1.43 |
| Jeremy's | JR13MP  | 731498 | 4289490 | 7506.87  | 18.16 | 14.57 | 21.28 | 1.67 |
| Jeremy's | JR7MP   | 730068 | 4288080 | 10327.83 | 18.76 | 16.79 | 21.07 | 1.10 |
| Jeremy's | JR9LCP  | 729888 | 4288080 | 10539.49 | 17.78 | 15.33 | 20.01 | 1.04 |
| Jeremy's | JR12MP  | 728758 | 4288080 | 12030.09 | 18.61 | 14.46 | 22.08 | 1.73 |
| Jeremy's | JR10MP  | 727758 | 4288440 | 13376.47 | 19.55 | 14.93 | 23.55 | 1.98 |
| Meadow   | MROMP   | 695318 | 4228150 | 0.00     | 14.16 | 12.01 | 15.57 | 1.07 |
| Meadow   | MR1MP   | 695038 | 4227980 | 217.46   | 16.82 | 13.82 | 18.39 | 1.28 |
| Meadow   | MR2MP   | 694678 | 4227520 | 979.43   | 17.11 | 13.71 | 18.78 | 1.48 |
| Meadow   | MR9MP   | 693488 | 4227270 | 2757.87  | 18.10 | 15.34 | 19.71 | 1.31 |
| Meadow   | MR4LCP  | 693428 | 4227240 | 2854.69  | 17.01 | 13.92 | 19.02 | 1.44 |
| Meadow   | MR8MP   | 693078 | 4226450 | 4036.50  | 17.53 | 14.32 | 19.48 | 1.35 |
| Meadow   | MR6LCP  | 692918 | 4226170 | 4446.20  | 17.08 | 14.34 | 19.32 | 1.29 |
| Meadow   | MR7MP   | 691738 | 4225700 | 6209.68  | 18.37 | 15.33 | 20.44 | 1.44 |
| Paine    | PAR1MP  | 696938 | 4232031 | 249.71   | 16.86 | 13.96 | 18.72 | 1.36 |
| Paine    | PARB1   | 696718 | 4231390 | 1115.08  | 17.20 | 14.81 | 18.70 | 1.15 |
| Paine    | PAR2MP  | 696468 | 4231210 | 1542.16  | 17.15 | 15.22 | 18.61 | 1.03 |
| Paine    | PAR3MP  | 695685 | 4230400 | 3169.18  | 17.48 | 14.93 | 19.28 | 1.15 |
| Paine    | PAR5LCP | 695369 | 4230040 | 3861.10  | 17.87 | 15.01 | 19.53 | 1.32 |
| Paine    | PAR9MP  | 694568 | 4229850 | 5016.00  | 18.04 | 15.43 | 19.60 | 1.12 |
| Paine    | PAR6MP  | 694218 | 4229700 | 5563.29  | 18.39 | 14.86 | 20.32 | 1.52 |
| Paine    | PAR10MP | 694068 | 4229730 | 5829.23  | 18.62 | 14.71 | 20.50 | 1.65 |
| Paine    | PARB2   | 693248 | 4230140 | 7055.48  | 18.60 | 14.54 | 20.57 | 1.67 |
| Paine    | PAR8MP  | 693137 | 4230180 | 7122.47  | 18.84 | 14.50 | 20.91 | 1.97 |
| Piney    | PIR1MP  | 736308 | 4292604 | 402.61   | 15.67 | 12.24 | 19.16 | 1.65 |
| Piney    | PIR3LCP | 736218 | 4291980 | 1199.93  | 16.43 | 12.76 | 19.78 | 1.65 |
| Piney    | PIR4MP  | 735598 | 4291160 | 2480.47  | 16.55 | 13.24 | 19.65 | 1.51 |
| Piney    | PIR5MP  | 735458 | 4290050 | 3955.00  | 16.82 | 13.62 | 19.97 | 1.48 |
| Piney    | PIR6MP  | 736408 | 4289180 | 5862.79  | 17.74 | 15.87 | 20.49 | 1.15 |
| Piney    | PIR7MP  | 736748 | 4288300 | 7115.97  | 17.40 | 15.07 | 20.22 | 1.17 |
| Piney    | PIR8MP  | 737538 | 4287390 | 8756.79  | 17.88 | 14.63 | 20.55 | 1.39 |
| Staunton | SR1MP   | 725248 | 4260810 | 477.07   | 14.64 | 11.96 | 17.33 | 1.32 |
| Staunton | SR2MP   | 725908 | 4260450 | 1412.13  | 15.16 | 12.34 | 18.15 | 1.44 |
| Staunton | SR5MP   | 726948 | 4259890 | 2907.57  | 15.92 | 13.03 | 19.08 | 1.51 |





| Staunton  | SR6MP   | 728018 | 4259921 | 4398.87 | 16.45 | 13.48 | 19.38 | 1.48 |
|-----------|---------|--------|---------|---------|-------|-------|-------|------|
| Staunton  | SR10MP  | 728598 | 4259660 | 5220.08 | 17.12 | 13.88 | 19.84 | 1.48 |
| Staunton  | SR7MP   | 728718 | 4259390 | 5627.21 | 17.09 | 13.99 | 20.02 | 1.52 |
| Staunton  | SR9MP   | 729448 | 4258420 | 7519.72 | 17.41 | 14.57 | 19.88 | 1.33 |
| White Oak | WOC1MP  | 728788 | 4273701 | 469.03  | 13.51 | 11.85 | 14.91 | 0.74 |
| White Oak | WOC3MP  | 728998 | 4273160 | 1237.37 | 15.43 | 12.67 | 17.90 | 1.29 |
| White Oak | WOC4MP  | 729268 | 4272400 | 2307.96 | 15.71 | 12.52 | 18.58 | 1.48 |
| White Oak | WOC5MP  | 730288 | 4271180 | 4428.05 | 17.90 | 14.23 | 21.16 | 1.77 |
| White Oak | WOC7LCP | 730758 | 4270690 | 5302.94 | 18.69 | 15.02 | 22.07 | 1.79 |
| White Oak | WOC8MP  | 730948 | 4269150 | 7356.87 | 18.29 | 15.88 | 19.78 | 1.07 |
| White Oak | WOCB    | 731018 | 4269110 | 7448.09 | 18.71 | 16.04 | 21.18 | 1.28 |