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Abstract 

Freshwater management is challenging, and advance warning that poor water quality was likely, a season ahead, could allow 

for preventative measures to be put in place. To this end, we developed a Bayesian network (BN) for seasonal lake water 

quality prediction. BNs have become popular in recent years, but the vast majority are discrete. Here, we developed a 10 

Gaussian Bayesian network (GBN), a simple class of continuous BN. The aim was to forecast, in spring, mean total 

phosphorus (TP), chlorophyll-a (chl-a) and water colour and maximum, cyanobacteria biovolume and water colour ffor the 

upcoming growing season (May-October) in lake Vansjø in southeast Norway. To develop the model, we first identified 

controls on inter-annual variability in seasonally-aggregated water quality using correlations, scatterplots, regression tree 

based feature importance analysis and process knowledge. Key predictors identified were lake conditions the previous 15 

summer, a TP control on algal variables, a colour-cyanobacteria relationship, and weaker relationships between precipitation 

and colour and between wind and chl-a. These variables were then included in athe GBN and conditional probability 

densities were fitted using observations (≤ 39 years). GBN predictions had R2 values of 0.387 (cyanobacteria) to 0.75 

(colour) and classification errors of 32% (TP) to 173% (cyanobacteria). For all but lake colour, including weather 

variablesnodes did not improve predictive performance (assessed through cross validation). Overall, we found the GBN 20 

approach to be well-suited to seasonal water quality forecasting. It was straightforward to produce probabilistic predictions, 

including the probability of exceeding management-relevant thresholds. The GBN could be sensibly purely parameterised 

using only the observed data, despite the small dataset. Developing a comparable discrete BN was much more subjective and 

time-consumingThis wasn’t possible using a discrete BN, highlighting a particular advantage of using GBNs when sample 

sizes are small. Although low interannual variability and high temporal autocorrelation in the study lake meant the GBN 25 

performed similarly to a seasonal naïve forecast (where the forecasted value is simply the value observed the previous 

growing season), we believe the forecasting approach presented could be particularly useful in areas with higher sensitivity 

to catchment nutrient delivery and seasonal climate, and for forecasting at shorter time scales (e.g. daily to monthly). Despite 

the parametric constraints of GBNs, their simplicity, together with the relative accessibility of BN software with GBN 
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handling, means they are a good first choice for BN development with continuous variables, particularly when datasets for 30 

model training are small. 

 Introduction 

Despite their importance, freshwaters are under intense pressure from human activities. Severe declines in the quantity and 

quality of habitats and species abundance are widespread, and freshwaters are now one of the most threatened ecosystem 

types in large parts of the world (Dudgeon et al., 2006; Gozlan et al., 2019; Reid et al., 2019). To try to safeguard freshwater 35 

condition, the EU Water Framework Directive (WFD) requires all waterbodies to achieve at least “Good” ecological status 

by 2027, assessed using a set of indicators of ecosystem integrity (EC, 2003). However, meeting environmental targets is 

challenging, and despite widespread implementation of measures to improve water quality, 60% of European surface waters 

were still below “Good” ecological status in 2018 (Kristensen et al., 2018). Harmful cyanobacterial blooms are a particular 

concern worldwide as they can produce harmful toxins, damage ecosystems, jeopardise drinking water supplies, fisheries 40 

and recreational areas, and are becoming more widespread, frequent and intense due to eutrophication and climate change 

(Huisman et al., 2018; Ibelings et al., 2016; Taranu et al., 2015). 

 

Advance warning, a season in advance, that poor water quality was likely could allow for measures to be put in place to 

reduce the impacts. For example, water levels could be raised or lowered in flow-regulated waterbodies or, more stringent 45 

farm management or effluent discharge advice could be issued, or measures could be taken to increase preparedness (for 

example if problems with drinking water supply were expected(Jackson-Blake et al., 2022)). Although many cyanobacteria 

forecasting systems have been developed, they allthe majority predict conditions at most a month in advance or focus on 

multi-decadal predictions climate and land use change impacts (reviewed in Rousso et al., 2020). Seasonal forecasts, issued 

with lead times of 1-6 months, could allow for more comprehensive preventative or mitigative measures. Seasonal 50 

forecasting is a growing area of research, often taking advantage of developments in seasonal climate forecasting, and there 

are many potential management applications (Bruno Soares & Dessai, 2016). However, seasonal forecasting within the water 

sector has so far been largely limited focused on to streamflow forecasting, with very limited only recent applications to lake 

water temperature (Mercado-Bettín et al., 2021) and noneapplications , to our knowledge, to lake water quality forecasting. 

The focus of the WATExR project, a European Union project funded by the European Research Area for Climate Services 55 

(ERA4CS), was to help address this gap by developing pilot seasonal forecasting tools for lake water quality and ecology. 

Tools were co-developed with water managers at five catchment–lake case study sites, with four in Europe and one in South 

Australia (Jackson-Blake et al., 2022). Tools linked seasonal climate forecasts with models for predicting river discharge, 

lake water level and water temperature (Mercado-Bettín et al., 2021), water quality, algal bloom risk, and fish migration. 

Here, we describe the model developed to forecast lake water quality at one of the case study sites, Lake Vansjø in Norway. 60 
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To issue a seasonal forecast for summer (e.g. May-October) lake water quality, we need to first understand the key factors 

controlling inter-annual variability in lake water quality. Here, we focus on three water quality indices used in WFD status 

assessments in Norway: total phosphorus (TP), as P is usually the limiting nutrient for phytoplankton (although see e.g. 65 

Dolman et al., 2012; Gobler et al., 2016); chl-a, as a basic indicator of algal biomass; and cyanobacterial biomass. We also 

forecast lake colour, of relevance for drinking water treatment(see e.g. Matilainen et al., 2010). To issue a seasonal forecast 

for summer (e.g. May-October) lake water quality, we need to first understand the key factors controlling inter-annual 

variability in lake water quality. Lake TP concentration and colour may be controlled by delivery from the surrounding 

catchment, interaction with lake sediments, lake stratification and mixing (Søndergaard et al., 2013; Welch & Cooke, 2005). 70 

Many studies have examined the drivers of algal biomass development in lakes and the causes of harmful algal blooms. The 

right combination of environmental conditions, including sufficiently high nutrient concentrations, in particular P (e.g. 

Heisler et al., 2008; Lürling et al., 2018; Stumpf et al., 2012), temperature (e.g. Kosten et al., 2012; Paerl & Huisman, 2009; 

Robarts & Zohary, 1987), light intensity (e.g. Kosten et al., 2012; Merel et al., 2013), and a stable water column (e.g. Huber 

et al., 2012; Yang et al., 2016) can lead to cyanobacteria bloom formation. The relative importance of different drivers varies 75 

according to lake type, with nutrients often providing a dominant control in polymictic lakes, whilst dimictic lakes are 

generally more sensitive to climatic variables through their effect on water column stability (Taranu et al., 2012). Because of 

the combination of factors that together control bloom formation, it is hard to make “one-size-fits-all” models, and models 

for predicting cyanobacteria bloom occurrence are therefore generally site specific (Rousso et al., 2020). 

 80 

A multitude of potential methods exist for seasonal forecasting of water quality modelling and forecasting. Here, we adopt a 

Bayesian network (BN) approach. BNs are a type of probabilistic multivariate model which is well suited to environmental 

modelling, risk assessment and forecasting (Aguilera et al., 2011; Kaikkonen et al., 2021; Uusitalo, 2007). In brief, BNs are 

graphical models in which the joint probability distribution among a set of variables X = [X1,…Xn] is represented in terms 

of: (1) a directed acyclic graph, where each vertex (or node) represents a variable in the model, and an edge (or arc) linking 85 

two variables indicates statistical dependence, and; (2) conditional distributions for each variable Xi, p(Xi|pa(Xi)), given the 

probability distribution pa(Xi) of any parent nodes, which quantify the strength and shape of dependencies between variables 

(Pearl, 1986). In recent years BNs have become popular in a broad range of environmental modelling disciplines, including 

modelling lake water quality and algal bloom risk (e.g. Couture et al., 2018; Gudimov et al., 2012; Rigosi et al., 2015; Shan 

et al., 2019; Williams & Cole, 2013). Particular strengths in terms of our seasonal forecasting aims are that, as nodes are 90 

modelled using probability distributions, risk and uncertainty can be estimated easily and accurately compared to many other 

modelling approaches. They can thus be powerful tools to assess the probability of events (e.g. WFD ecological status class). 

They are also well suited for communicating and visualizing the model to end users and it is easy to update the model given 

new data. Other benefits include the ability to model complex systems in a quick and efficient way, to combine data and 

expert knowledge, easy handling of missing values, and the potential to be used for inference as well as prediction. 95 
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BNs were originally designed to deal with discrete data. Relationships between nodes in discrete BNs can be non-linear and 

complex, thereby allowing for the full power of BN analysis, and the vast majority of environmental BN models are discrete 

(Aguilera et al., 2011). Any continuous variables must first be discretized, but this involves an information loss as 

discretization can only capture the rough characteristics of the original distribution. In addition,, and discretization choices 100 

(number of intervals and division points) affect BN results (e.g. Nojavan et al., 2017) and their interpretation (Qian & 

Miltner, 2015). In practice, it is usually necessary to restrict the number of intervals, often to just two or three classes, as the 

more intervals, the more data are needed to parameterise the model meaningfully (Hanea et al., 2015). However,  sSuch 

restrictions mean it then becomes difficult to capture complex relationships, thereby diminishing the theoretical benefits of 

using a discrete network (Uusitalo, 2007). . Continuous BNs, by contrast, represent continuous variables using continuous 105 

statistical distributions or equations, and therefore avoid the need for discretization. Hybrid BNs, which include both discrete 

and continuous nodes, have similar benefits.or hybrid BNs, where continuous nodes are allowed, avoid the need for 

discretization, 

 

In recent years, much focus on continuous networks has been aimed at developing algorithms  and a number of new 110 

algorithms for non-parametric continuous networks,  i.e. continuous networks which are not limited by assumptions about 

the nature of the statistical distribution of continuous variableshave been developed in recent years (Marcot & Penman, 

2019). However, Gaussian BNs (GBN) are a long-established, simple and powerful class of continuous BN, and are often the 

only type of continuous node available in commonly-used BN software (e.g. Bayes server, bnlBNLearn, Hugin). In GBNs, 

each random variable is defined by a Gaussian distribution and variables are linearly related to their parents (Geiger & 115 

Heckerman, 1994; Shachter & Kenley, 1989). In some situations these parametric constraints may be overly -limiting, but, 

when this approximation is appropriate, GBNs may be preferable over discretization. Despite the potential benefits, the use 

of continuous BNs in environmental modelling is rare. In a review of papers published over the period 1990-2010, Aguilera 

et al. (2011) found only 6% included continuous or hybrid data, and we could only find 9 more recent examples in the 

literature (web of science search in November 2021 with terms [(environmental AND modelling* AND “Bayesian network” 120 

AND continuous]), with manual sorting of results). 

 

HereOverall aims of the paper were therefore: (1) ,to develop a model for seasonal forecasting of lake water quality, and (2) 

to demonstrate the use of a continuous GBN, instead of more traditional discrete BN approaches. Our case study site iswe 

develop a GBN to forecast seasonally water quality in the western basin of lake Vansjø, a shallow mesotrophic/eutrophic 125 

lake in southeast Norway. A number of BN models have previously been applied in the lake (Barton et al., 2008; Couture et 

al., 2018; Couture et al., 2014; Moe et al., 2019; Moe et al., 2016), but these were all discrete meta-models, i.e. the 

underlying network nodes were ‘response surfaces’ summarising a combination of process-based model simulations, 

statistical relationships, expert opinion and/or data distributions, and the studies were focused on the longer-term impacts of 
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climate, land use and land management change. Here, the aim was to provide medium-term forecasts to support lake 130 

management, by developing a model able to  predict, in spring of a given year, water quality for the coming growing season 

(May – October), including the probability of lying within WFD ecological status classes for TP, chl-a and cyanobacterial. 

We also forecast lake colour, as elevated lake organic matter content (and associated colour) can cause a number of problems 

for drinking water treatment (see e.g. Matilainen et al., 2010). To develop the model we took a data-driven approach: we first 

used exploratory statistical analyses to identify the main controls on interannual variability in lake water quality, then 135 

combined the results of this with domain knowledge to develop the GBN, and finally parameterised it using 39 years of data. 

For comparison, we also developed a discrete version of this BN. We then explored the sources of predictability and the 

importance of weather variables by comparing predictive performance of GBNs with  predictive performance of different 

model structures within a cross validation scheme. We also , as well as compare GBN ing BN predictive ability to a 

comparable discrete BN and to a simple benchmark model.. 140 

 Methods and data 

2.1. Case study site 

Lake Vansjø is a large lake in southeast Norway (59°24′N 10°42′E,; 25 m asl), with a highly agricultural catchment by 

Norwegian standards (15% of the 690 km2 catchment is agriculture) with and clay- and P-rich soils. The lake has two main 

basins, Storefjorden in the east (24 km2) and Vanemfjorden in the west (12 km2) (Fig. 1). The largest input is the Hobøl 145 

River (catchment area 301 km2), which enters Storefjorden, and then water flows from Storefjorden to Vanemfjorden 

through a narrow channel (Grepperodfjorden), and and from Vanemfjorden through Moss Riverelva towards and into the 

Oslo Fjord (Fig. 1). Over the period 1989-2018, catchment mean annual air temperature was 7.2 °C and annual precipitation 

was 992 mm yr-1. 

 150 

Here, we focus on Vanemfjorden, which is shallower (mean depth 3.8 m, max depth 19 m) and more susceptible to 

eutrophication and cyanobacterial blooms than Storefjorden, due to stronger interactions between the water column and the 

P-rich lake sediments and a more agricultural local catchment. Vanemfjorden has a relatively short residence time (0.21 

years) and the water column remains oxygenated throughout the year. Vanemfjorden has a long history of eutrophication , 

and is usually in WFD ‘Moderate’ ecological status for in relation to mean growing season mean growing season TP (> 20 155 

μg/l), chl-a (> 10.5 mg/l) and maximum cyanobacteria (> 1.0 mg/l) (Skarbøvik et al., 2021). Vanemfjorden suffers from 

toxin-producing cyanobacterial blooms and bathing bans were in place during much of the early 2000s (Haande et al., 2011). 

 

The outlet of Vanemfjorden is dammed, and lake water level is regulated for hydropower, recreation, and flood protection. 

There is a management opportunity for the dam operators to adjust the water level in advance of an anticipated wet, dry or 160 

hot season if problematic water quality wereas expected, whilst the local catchment management group (Morsa), responsible 
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for WFD implementation, are interested in seasonal water quality forecasts to inform their management plan, in particular 

preparedness for cyanobacterial blooms. 
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 165 

Figure 1. Lake Vansjø in southeast Norway, showing the two main basins: , the larger eastern basin (Storefjorden) and 
Vanemfjorden (the study basin), which has its outlet at Moss River and the larger eastern basin (Storefjorden). The two basins are 
connected by a narrow channel. The largest tributary to Lake Vansjø is the Hobøl River. The two are connected by a narrow 
channel. Main NIVA monitoring sites are shown and arrows show the dominant flow directions. Here, we use data from VanAN2. 

2.2. Overview of the workflow 170 

The aim was to develop a seasonal forecasting model capable of model to producingce probabilistic forecasts, issued in 

spring of a given year, of expected growing season (May-October) mean concentrations of TP and chl-a and maximum 

cyanobacteria biovolumes, as used in WFD status classification for Norwegian lakes (Vanndirektivet, 2018). Mean lake 

colour was also forecast, both because it is of interest for drinking water treatment,, and because it may influence algal 

biomass by affecting nutrient and light conditions (Bergström & Karlsson, 2019; Carpenter et al., 1998). 175 

 

The model development and assessment workflow consisted of the following steps:  
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1. Feature generation: DData pre-processing and temporal aggregation to derive an array of potential explanatory 

variables (or potential explanatory variables (or features, in machine learning parlance)). 180 

2. Feature selection: Exploratory statistical analyses to identify key features, using a combination of correlation 

coefficients, scatterplots and feature importance analysis using regression trees, correlation coefficients and 

scatterplots. Process knowledge was used as the final selection criteria. 

3. BN development: the selected explanatory variables were incorporated into a GBN, using process knowledge to 

define the structure. Data from the study site were then used to fit the GBN parametersparameterise the model. 185 

3.4. Discrete BN development:  A discrete BN was also developed for comparison, using discretized data and .the same 

structure as the GBN. 

4.5. BN cross-validation and evaluation: Sselection of the most appropriate GBN structure for each target variable, with 

a particular focus on any added value from including weather variables, and comparison to the discrete BN. 

5.6. Benchmarking: Comparison of GBN predictive skill to a simple benchmark model, a seasonal naïve forecaster. 190 

 

All pre- and post-processing was carried out in the Python programming language. BN development and cross-validation 

were carried out using the BNLbnlearn R package (Scutari, 2009; Scutari & Ness, 2012). Scripts and data are available in the 

GitHub repository (see Section ‘Code and data availability’). 

2.3. Data and temporal aggregation 195 

Meteorological, river flow, river chemistry and lake chemistry data were used to derive potential explanatory variables. 

Precipitation and air temperature were derived from the seNorge 1 km2 gridded data (Lussana et al., 2019), averaged over the 

whole catchment. Wind speed data were from the met.no monitoring location at Rygge airport, by the southern edge of the 

lake. Hobøl RRiver discharge is measured hourly by NVE at Høgfoss and was aggregated to a daily sum. TP concentration 

data from the Hobøl River at Kure were downloaded from Vannmiljø (https://vannmiljo.miljodirektoratet.no/,; last accessed 200 

01/11Nov /2021). 

 

Lake water quality data were from the surface 0-3 m from monitoring point Van2 (see Fig. 1) were used. TP, chl-a and 

colour data were downloaded from Vannmiljø whilst cyanobacteria biovolume was provided by NIVA (pers. comm). NIVA 

colour data was were patchy over the period 1998-2007. However, water colour is also monitored by Movar, the local 205 

drinking water company, and data were was obtained for the period 2000-2012 (pers. comm.). Despite different sampling 

locations and depths (Movar monitoring is in Storefjorden at 20 m depth), the two datasets were highly correlated and from 

the same distribution. We therefore patched the series together, making maximum use of the higher-frequency MOVAR 

data: using NIVA data were used pre-1999, Movar data from 1999-2012 and NIVA data from 2013. Cyanobacteria 

monitoring began in 1996, whilst all other variables were monitored since from 1980. Prior to 2004, sampling took place 6-8 210 
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times a year during May/June to September/October. From 2005, the period changed to mid-April to mid-October, and with 

higher frequency (fortnightly for cyanobacteria, weekly for other variables between 2005 and 2014 and fortnightly 

thereafter). The number of samples per growing season therefore varies considerably throughout the period 1980-2018, from 

5 to -10 per year until 2004, increasing to around 25 (TP, chl-a, colour) until 2013, and then decreasing to around 12. 

Monthly and seasonally-aggregated values  means pre-2005 are therefore based on substantially fewer data points. 215 

 

Lake TP concentration in Vanemfjorden is fairly constant throughout the whole May-October growing season, and is almost 

always in the range 25-40 ug/l. Meanwhile, river Hobøl river TP concentrations are almost always above this, around 40-140 

ug/l. Chl-a and cyanobacteria biovolume tend to peak in July or August. Lake colour is highest in spring and winter and 

decreases through summer and autumn.  220 

 

TAs the aim was to predict the WFD status class of a number of key water quality parameters, which in Norwegian lakes are 

assessed using average or maximum values over the whole growing season (May-Oct) (Solheim et al., 2014). Daily data 

were therefore truncated to the growing season (May-Oct) and were aggregated over this period by calculating seasonal 

means, sums, counts or maxima. This 6-monthly aggregated data was then used in all subsequent analyses. Time series for 225 

the four lake water quality variables of interest and a number of potential explanatory variables, aggregated over the summer 

growing season, are shown in Fig. 2. Interannual variability in TP is low, aside from a general decline since around 2001. 

Chl-a is more variable, although longer-term trends still dominate, with an increase until around 1995, high values during 

1995-2006, and decreasing thereafter. Cyanobacteria was variable until 2008 and has been low since. There is a step change 

increase in lake colour between 1997 and 1999. Lake colour has been increasing across Scandinavia over recent decades, so 230 

this may be real (de Wit et al., 2016), but it may also be due to e.g. a change of labs or methods, but this could not be 

confirmed due to a lack of metadata. Some broad-scale trends are also apparent in in the potential explanatory variables. 

Growing season mean air temperature is generally between 12 and 14°C, but was somewhat higher after 2005. Mean wind 

speed was highest earlier in the period in the 1980s, lowest around 2006-2008, and increased thereafter. This increase over 

the last decade appears to be mostly due to a lack of calm wind days, and is observed at other nearby meteorological stations 235 

(e.g. Skarpsborg). Precipitation shows high variability, but was generally lower in the first half of the study period. 

 

Temporal aggregation over the whole growing season, although of WFD-relevance, is coarse and may miss causative 

relationships. WeWe therefore also carried out finer-scale aggregation, to check and expand on the results obtained from the 

6-monthly analyses (see Appendix A). including: (1) Algal peaks and pre-peak conditions for explanatory variables: For 240 

each year, we selected peak values for chl-a and cyanobacteria (i.e. maxima). We then calculated, for each of chl-a and 

cyanobacteria, means or sums of the potential explanatory variables over 14, 30, 60 and 90 days pre-peak. By ensuring that 

the potential explanatory variables only included data from before the observed algal peak, this aggregation method should 

have more power to identify causative relationships, whilst still focusing on factors controlling inter-annual variation. (2) 
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Monthly aggregation. A repeat of the exploratory statistical analysis (Section 2.5) using monthly data includes both within 245 

and between year variability. 
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Figure 2. Time series for Lake Vansjø of growing season (May-Oct) mean concentrations of lake chl-a (mg/l), total phosphorus 250 
(TP; µg/l), colour (mg Pt/l), and colour, seasonal maxima of cyanobacteria biovolume, seasonal mean wind speed (m/s), air 
temperature (°C) and Hobøl River TP concentration (µg/l), and ; seasonal maxima of cyanobacteria biovolume (mg/l); and 
seasonal sums of rainfall  (mm) and discharge (Q), ×106 m3) for the western basin (Vanemfjorden) of Lake Vansjø. 
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2.4. Feature generation 

To issue a forecast for seasonally-aggregated summer lake water quality, we need to first understand the key factors 255 

controlling inter-annual variability. Lake TP concentration and colour may be controlled by delivery from the surrounding 

catchment, interaction with lake sediments, lake stratification and mixing (Søndergaard et al., 2013; Welch & Cooke, 2005). 

For algal biomass and harmful algal blooms, the right combination of environmental conditions can lead to bloom formation, 

including sufficiently high nutrient concentrations, in particular P (e.g. Heisler et al., 2008; Lürling et al., 2018; Stumpf et 

al., 2012), temperature (e.g. Kosten et al., 2012; Paerl & Huisman, 2009; Robarts & Zohary, 1987), light intensity (e.g. 260 

Kosten et al., 2012; Merel et al., 2013), and a stable water column (e.g. Huber et al., 2012; Yang et al., 2016). The relative 

importance of different drivers varies according to lake type, with nutrients often providing a dominant control in polymictic 

lakes (shallow lakes whose waters frequently or continuously mix vertically throughout the ice-free period), whilst dimictic 

lakes (which fully mix vertically twice a year) are generally more sensitive to climatic variables through their effect on water 

column stability (Taranu et al., 2012). 265 

 

To determine the key explanatory variables in our study site, we generated a set of potential variables Using process 

knowledge and the literature as guidance, we used the daily data to generate a set of potential explanatory variables (or 

features, in machine learning parlance) for each of the lake water quality variables of interest. As the aim was to produce a 

seasonal forecasting model, our choice of variables was somewhat limited to data which would be available or could be 270 

readily modelled at the time the forecast was issued. Historic lake water quality observations and weather were therefore 

included, as were interrelationships between growing season water quality variables, as BNs allow for multiple variables to 

be predicted at the same time. Growing season weather variables and features relating to the delivery of water and TP from 

the catchment were also generated. For an operational seasonal forecasting model, these would need to be obtained from 

external forecasting efforts (e.g. seasonal climate forecasts, or catchment models driven by seasonal climate forecasts)These 275 

included weather-related features, features relating to the delivery of water and TP from the catchment, . For these variables, 

wand inter-connections between the dependent variablese had the choice of using either observed historic data or model-

derived hindcasts in our BN model development. We decided to use real observed data, to enable us to assess whether 

variables were genuinely important using best-available data, but see Section 4.1.2 for a discussion of the use of simulated 

data instead. . Feature generation was largely limited to variables that could be measured or potentially forecast (e.g. using a 280 

seasonal climate forecast) at the time when the forecast would be issued in spring of a given year. Some potentially relevant 

features (, e.g. water quality in the eastern lake basin, water temperature andor water column stability indices), were not 

included, as for operational forecasting these would need to be produced by a chain of models (seasonal climate – catchment 

hydrology – lake) or by adding latent variables to the GBN, both of which were thought to be too complex for the current 

workflow. In addition, these variables should be proxied by other variables that were included in the feature set (e.g. lake 285 

water column stability is likely controlled by discharge, air temperature and wind speed-related variables). 
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After choosing the variables to include, they would need to be included as latent variables in the GBN, increasing its 

complexity. Ffeatures were generated for the current May-October growing season,, for the previous year’s growing season 

and the previous winter (the November to April six6- month period prior to the current season) and the previous year’s 290 

growing season, to take into account the potential influence of previous conditions. Overall, we generated up to 29 potential 

explanatory variables, depending on the response variable (Table 1).. Features considered for all target variables are given in 

Table 1. Features were derived for the period The date range for the derived features was 1981 – 2018. Depending on the 

number of years with missing data, this gave 39 years of data for TP and chl-a, 36 for lake colour and 24 for cyanobacteria 

for model training and validation. 295 
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Table 1: Potential explanatory variables (Ffeatures)  generated for each of the all four dependenttarget variables. The temporal 
aggregation period is given relative to the forecast issue date in spring of the current year, y. All were repeated for the previous 6-
month winter period. Wind percentiles relate to the period 1980-2018. 

Dependent 
variable 

Feature name Description Temporal aggregation 
period feature is 
aggregated over 

Chl-a, cyano TP Mean lake TP concentration (µg/l) Current growing 
season (May – Oct), 
year y 
Current growing 
season (May – Oct, 
year y) 

Chl-a, cyano Colour Mean lake colour (mg Pt/l) 
Cyano Chl-a Mean lake chl-a concentration (mg/l) 
TP, chl-a, 
cyano 

TP river Mean TP concentration in the Hobøl River (µg/l) 

All PptnRain sum Precipitation sum (mm) 
 Rain _days Count of rain day (daily precipitation ≥ 1mm) 
 RainPptn _intense Count of intense rain days (daily precipitation ≥ 10 mm) 
 Q Inflow discharge sum (106 m3) 
 Temp Mean of daily mean temperature (°C) 
 Wind _speed Mean of daily mean wind speed (m/s) 
 Wind _under_< 

P20 
Count of days when daily mean wind speed < 20th 
percentile (2.0 m/s) 

 Wind < 
_under_P40 

Count of days when daily mean wind speed < 40th 
percentile (2.9 m/s) 

 Wind > 
_over_P60 

Count of days when daily mean wind speed > 60th 
percentile (3.8 m/s) 

 Wind > 
_over_P80 

Count of days when daily mean wind speed > 80th 
percentile (4.8 m/s) 

All Rain sum (W) Precipitation sum (mm) Previous winter (Nov 
year y-1 to April year 
y) 

 Rain days (W) Count of rain days (daily precipitation ≥ 1mm) 
 Rain intense (W) Count of intense rain days (daily precipitation ≥ 10 mm) 
 Q (W) Inflow discharge sum (106 m3) 
 Temp (W) Mean of daily mean temperature (°C) 
 Wind speed (W) Mean of daily mean wind speed (m/s) 
 Wind < P20 (W) Count of days when daily mean wind speed < 20th 

percentile (2.0 m/s) 
 Wind < P40 (W) Count of days when daily mean wind speed < 40th 

percentile (2.9 m/s) 
 Wind > P60 (W) Count of days when daily mean wind speed > 60th 

percentile (3.8 m/s) 
 Wind > P80 (W) Count of days when daily mean wind speed > 80th 

percentile (4.8 m/s) 
All Temp (PS) Mean air temperature (May-Oct; °C) Previous year’s 

growing season (May – 
Oct, year y-1) 

TP, chl-a, 
cyano 

TP (PS) Mean lake TP concentration (µg/l) 

Chl-a, cyano Chl-a (PS) Mean lake chl-a concentration (mg/l) 

Colour, chl-a, 
cyano 

Colour (PS) Mean lake colour (mg Pt/l) 

Cyano Cyano (PS) Meanimum lake cyanobacterial biovolume (mg/l) 
 300 
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Table 2: Additional features, specific to a given target variable. From TP onwards these are cumulative as you go down the table, 
so that additional features for chl-a, for example, are features listed for both TP and chl-a. 

Target 
variable 

Feature name Description 

colour colour_prevSummer Mean lake colour the previous summer (mg Pt/l) 
TP TP_catch Mean TP concentration in the Hobøl River (µg/l) 
 TP_prevSummer Mean lake TP concentration the previous summer (µg/l) 
chl-a TP Mean lake TP concentration (µg/l) 
 chl-a_prevSummer Mean chl-a concentration the previous summer (mg/l) 
cyano chl-a Mean chl-a concentration (mg/l) 
 cyano_prevSummer Maximum cyanobacterial biovolume the previous summer (mg/l) 
 colour Mean lake colour (mg Pt/l) 

2.5. Feature selection 

Having generated a list of potential explanatory variables for each target variable, we then carried out exploratory statistical 

analyses to select the features to include in the GBN, using a combination of: 305 

1. Ranked correlation coefficients: As a first screening, we used ranked absolute Pearson’s correlation coefficients to 

highlight potentially important features for each dependent variable. 

2. Feature importance: We also used a more formal machine learning approach to assess feature importance, using random 

forests implemented using the Scikit-Learn python package (Pedregosa et al., 2011). Random forests use bootstrapping 

to partition the data used by each tree, andand data not included in each bootstrap sample are used to perform internal 310 

validation. We used the “out-of-bag” (OOB) score and importance scores to rank feature importance. We used recursive 

feature elimination to try to find the best random forest regressor model using subsets of the available features. This is 

similar to stepwise regression, but uses cross- validation to avoid overfitting, rather than traditional significance testing, 

and in this case we used out-of-sample R2  to measure performance. Random forests have a number of hyperparameters 

that can be tuned to improve performance. The most important are the number of trees in the forest (n_estimators) and 315 

the size of the random subsets of features to consider when splitting a node (max_features). We selected values for these 

by plotting the OOB error rate (1 – OOB Score) as a function of n_estimators for various choices of max_features. 

3. Visual evaluation of relationships: for each target variable, sScatterplot matrices were used for a visual check of whether 

relationships appeared to be linear and for independence between explanatory variables (required for unconnected nodes 

in a BN). 320 

3.  

4. Process understanding: Finally, we excluded explanatory variables where we did not think we considered whether there 

were plausible physical mechanisms underpinning the relationship underlying the relationships. 
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2.6. Bayesian network development and use in prediction 

We first defined the BN structure manually, using results of the exploratory feature selection and process-knowledge, to 325 

ensure realistic causative relationships between nodes. This structure was then used in both the continuous Gaussian BN and 

a discrete BN. 

 

2.6.1. Gaussian Bayesian Network development 

As mentioned in the introduction, Gaussian Bayesian networks (GBNs) are a powerful class of continuous BNs in which all 330 

nodes are continuous and conditional probability distributions (CPDs) are linear Gaussians, which together define a joint 

Gaussian. Parent nodes therefore have simple normal distributions with mean µ and variance σ2. Gaussian CPDs of child 

nodes have a mean which is a linear combination of the parent nodes (with intercept β0 and coefficients βn). To meet the 

normality requirement of GBNs, we transformed the cyanobacteria data, which were right skewed with many zeros, by 

applying a box cox transformation (y* = (yλ - 1)/λ with λ = 0.1 to give a fairly symmetrical distribution). Predictions for 335 

cyanobacteria were then transformed back to the original data scale using bias-adjustment back-transformation (see Chapter 

3.2, Hyndman & Athanasopoulos, 2018). Normality tests were carried out for all variables using scipy.stats (based on 

D'Agostino & Pearson, 1973). for all variables showed hHigh p values (> 0.2) were found for all but lake colour (p = 0.03) 

and transformed cyanobacteria (p = 0.04 for both5). A step change in lake colour is seen around 1998 (Fig. 2) suggesting the 

distribution of lake colour may be bimodal. The normality assumption was therefore not invalidated at a 1% significance 340 

level, but would have been at a 5% level. This weakness should be taken into consideration when interpreting results. 

Coefficients were then derived for the CPDs at each node using maximum likelihood estimation. 

 

BNs can be used for prediction, our primary aim, by calculating a probability distribution over the variable(s) whose value 

we would like to know, given information (evidence) we have about some other variables. Predictions obtained using GBNs 345 

contain a mean and a variance, and here predictions were obtained we computed predictions in BNLearn by averaging 

likelihood weighting simulations using a subset of nodes as evidence. The predicted value is then the expected value of the 

conditional distribution. We chose the evidence nodes based on those nodes which cwould be updated whenever a forecast 

was produced, using historic data or future forecasts (i.e. observed water quality from the previous summer or forecasted 

meteorological conditions).  350 

 

A particular advantage of using GBNs is that they can be used not only to predict a given variable, but they also specify the 

posterior distribution of the response variable. This in turn can be used to determine the risk that the response variable passes 

a certain threshold, which may be particularly useful where the interest may be the probability of failing to meet certain 

environmental thresholds. As well as predicting absolute values, we therefore also estimated the probability of exceeding a 355 
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management-relevant threshold for each water quality variableprobable WFD-relevant ecological status class for each 

variable. We used a single WFD-relevant threshold per variable, i.e. a binary classification (Table 2).,  

 

Table 2: Management-relevant thresholds used for predicting the probability of lake water quality variables lying within a certain 
water quality class. The classification is summarised as low concentration (L) and high concentration (H) classes, which translate 360 
to a WFD-relevant classification as described. WFD is the Water Framework Directive. as follows: 

Variable Low/high 
concentration 
class 
boundary 

Relationship between concentration 
class and WFD class 

Rationale 

TP 29.5 µg/l Low = Upper Moderate 
High = Lower Moderate 

Almost all observations were within the 
Moderate WFD status class, so we used 
the mid-point of this class as the threshold. 

Chl-a 20.0 mg/l Low = Moderate or better 
High = Poor or worse 

WFD Moderate/Poor boundary 

Cyano 1.0 mg/l Low = Good or better 
High = Moderate or worse 

WFD Good/Moderate boundary 

Colour 48 mg Pt/l Not applicable Upper tercile (66th percentile) 

 

 

 TP: almost all TP observations are in the Moderate WFD status class, so used a threshold of 29.5 µg/l to classify TP 

as ‘Lower moderate’ or ‘Upper moderate’. 365 

 chl-a: Few data were under the Good/Moderate boundary of 10.5 mg/l, so we used the Moderate/Poor boundary of 

20.0 mg/l to classify chl-a as either ‘Moderate or better’ or ‘Poor or worse’. 

 Cyanobacteria: the majority of observations were below the Moderate/Poor threshold (2.0 mg/l), so we used the 1.0 

mg/l Good/Moderate boundary to classify status as ‘Moderate or worse’ or ‘Good or better’. 

 Colour: There were no obvious management-relevant thresholds to apply, so we used the 66th percentile (48 mg 370 

Pt/l) to classified colour as ‘High’ or ‘Low’. 

2.6.2. Discrete Bayesian network development 

Finally, we developed a discrete BN, for comparison towith the GBN. To do this, we first discretized the data, opting again 

for just two classes per for most variables, given the small sample size for fitting conditional probability tables (CPTs). The 

exception was colour_prevSummer, where we used three classes, given a strong relationship between lake colour in the 375 

previous and current growing season (Sect. 3.1). We used the management-relevant thresholds to discretize bounds 

mentioned above for the current growing season lake TP, chl-a, , cyanobactericyanobacteria and coloura and colour for the 

current season (Table 2). For all the other other variablesfeatures,  (including lake observations from the previous summer), 

as we were not constrained by having to discretize into management-relevant classes, we used regression trees to identify the 
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optimal splitting points, to improve the chances of identifying relationships between nodes in the BN.we used regression 380 

trees to discretize For each dependent variable (TP, chl-a, cyano, colour), we built a regression tree for each explanatory – 

dependent variable pair in turn, and then , used the first picksplit point in the tree as the boundary for discretizing that 

explanatory variable. ing the topmost division. For wind speed, this resulted in highly unbalanced class sizes, so we instead 

used the median. .The following boundaries were used: TP (PS): 29.5 mg/l, chl-a (PS): 16.8 mg/l, colour (PS): 32.6 and 61.0 

mg Pt/l, rain sum: 497 mm, wind speed: 3.56 m/s. Note that the different discretization methods used for current vs previous 385 

year’s growing season water quality means that the two variables are classified differently, despite the same underlying data. 

The resulting classes were relatively well balanced. 

 

 We then fitted the CPTs using Bayesian posterior estimation with uniform priors using BNLearn’s ‘bayes’ method, a classic 

Bayesian posterior estimator with a uniform prior. Including priors helps avoid overfitting, a common problem with 390 

maximum likelihood estimation (mle, where CPTs are fitted just using relative frequencies), particularly with small sample 

sizes when the data may not be representative of the underlying distribution. In our case, priors can be thought of as pseudo 

state counts added to the actual counts before normalization. The uniform priors were defined by the imaginary sample size 

(iss), whereby the pseudo counts are the equivalent of having observed iss uniform samples of each variable and each parent 

configuration. The higher the iss, the stronger the effect of the prior on the posterior parameter estimates, whilst with iss = 0, 395 

the method becomes mle. The iss parameter thus specifies the weight of the prior compared to the sample and therefore 

controls the smoothness of the posterior distribution. A common rule of thumb is to use a small non-zero iss to avoid zero 

entries. However, we experimented with larger values of iss (from 1 to 50), to avoiding overfitting. We did this using a trial-

by-error process. During each iteration, we examined the CPTs for spurious relationships and checked the predictive error of 

the network through cross validation (see Section 2.7.1). We found that an iss of 15 was the smallest value where the 400 

majority of unexpected CPT behaviour was smoothed out, without compromising on predictive performance. 

2.7. BN validation and assessment 

We then explored the most appropriate GBN model structure and assessed its predictive performance using three methods: 

(1) cross validation, carried out on several parts of the network separately and including comparison to the discrete BN,; (2) 

goodness of fit of the whole network compared to observations,; and (3) comparison to a simple benchmark model. 405 

2.7.1. Cross- validation of sub-networks 

The ability to carry out cross- validation (CV) is a great benefit of using BNLearn bnlearn compared to many graphical BN 

packages, as it is possible to assess the expected performance of the network for out-of-sample prediction,, and to compare 

different models structures t to robustly robustly assess whether certain nodes and arcs are providing woimproving rthwhile 

predictive power. Here, we used CV to compare the predictive performance of GBNs with and without meteorological 410 

nodes, and to compare the GBN and the discrete BN. We used leave-one-outleave-one-out cross-validation cross validation, 
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which should , which produces unbiased skill score estimates and even with is well suited when small sample sizes are small 

(e.g. Wong, 2015). In short, the cross-validation was repeated for each predicted node (chl-a, cyano, TP, colour) and 

involved the following steps. One year of data is left out at a time, the BN is fit using the remaining years of data, and is then 

used to predict the target node for the left out year. The procedure is repeated for all years, producing a single time series of 415 

predictions. These are then compared to observations to generate skill scores. As the main aim was prediction, we used 

posterior predictive correlation (reported as R2), and mean square error (MSE) as the network skill scoresand , and repeated 

the procedure for each dependent variable. We used the classification error  (the proportion of the time the classification was 

incorrect) as GBN skill scores, and just classification error as the skill score for thefor the  discrete BN., and we calculated 

this manually for the GBN for comparison. As the main aim was prediction, we used posterior predictive correlation 420 

(reported as R2) and mean square error (MSE) as the network skill scores, and repeated the procedure for each dependent 

variable. We used the classification error  (the proportion of the time the classification was incorrect) as the skill score for 

the discrete BN, and we calculated this manually for the GBN for comparison. Model predictions were derived from a 

specified set of nodes using likelihood weighting to obtain Bayesian posterior estimates. The cross validation is stochastic 

and was run a default 20 times and the mean of skill scores were calculated. The cross-validation is stochastic and was run a 425 

default 20 times and the mean of skill scores were calculated. 

 

Cross- validation requires complete data for all variables and years. For most variables there were few gaps, and so we filled 

up to one- year gaps by interpolation or backward/forward filling. However, cyanobacteria was only measured in the lake 

from 1996, whilst other variables were measured from 1980. Rather than dropping all data prior to 1996, which would result 430 

in a large loss of training data for TP, chl-a and colour, we instead split the network into a number of smaller networks for 

the target variables, and cross validated each of these in turn (see Section 3.3.1).  

2.7.2. Goodness-of-fit of the whole network 

Splitting the BN up into smaller sub-networks is likely to result in a loss of predictive power, so cross- validation could not 

be used to assess the expected predictive performance predictive performance ofof the whole network at performing out of 435 

sample forecasts. Instead, we also assessed the performance of the whole network, trained on all data, by simply calculating 

goodness-of-fit of predictions using the GBN with and without weather nodesagainst observations, and once again using a 

GBN with and without weather nodes. For this, wTo assess skill, we used the same correlation,  and MSE and classification 

error, statistics as during cross- validation, and as well as bias (mean of (predicted – observed)). We also calculated two the 

Matthew’s correlation coefficient (MCC), to provide additional information on categorical skill scores, which reflect how 440 

well the WFD status class was predicted. MCC : Matthew’s correlation coefficient (MCC), which is is in the range 0 (no 

skill) to 1 (perfect skill), and has been shown to be a is an informative and ttruthful score for evaluating binary classifiers 

(Chicco & Jurman, 2020), and the classification error. As the training and evaluation data were the same in this case, this 

may produce an optimistic assessment of model performance. 
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2.7.3. Comparison to a benchmark model 445 

Some extremely simple forecasting methods can be highly effective. As a final test, we compared predictive performance of 

the GBN to a simple benchmark model, a seasonal naïve forecast (Hyndman & Athanasopoulos, 2018). In this case, the 

seasonal naïve forecast for the current growing season is simply the observed value from the previous year’s growing season. 

 Results 

3.1. Feature selection 450 

3.1.1. Feature selection using 6-monthly temporal aggregation 

For lake TP concentration, key features identified were the strongest correlation was with TP concentration from the 

previous growing season and, to a lesser extent, wind-related features (Tables 3 and 4 3). Otherwise, the only correlation 

coefficients above 0.2 were with wind features, the strongest being a negative relationship with number of calm days 

(wind_under_P20). These two features were also selected as most important in the feature importance analysis; the rest all 455 

had importance scores under 0.1 (Table 4). A regression tree model with using just thesethe previous summer’s TP (TP (PS)) 

and the number of calm winter wind days  (wind < P20 (W)) two features had an “out-of-bag” (OOB) score of 0.35, slightly 

higher only a little lower than when all features were included (Table 4).  No features relating to delivery of P to the lake 

(e.g. discharge or river TP concentration) came out as being important. Temporal autocorrelation in lake TP concentration is 

highly plausible. It is however less clear whether the negative correlation with wind speed is causative. We might expect 460 

windier conditions to decrease stratification and increase mixing and sediment resuspension, and result in higher rather than 

lower TP concentrations (Hanlon, 1999), but in fact higher TP was associated with calmer weather (Fig. 3). Meanwhile, a A 

positive relationship was seen between the previous summer’s TP and winter wind the following winter (Fig. 3) which, 

together with results of analyses using monthly aggregated data (Appendix ASection 3.1.2), suggest the relationship may not 

be causative. Wind was not therefore selected for TP. 465 
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Figure 3: Relationships between seasonal mean lake TP concentration (µg/l)and potential explanatory variables of interest, 470 
including lake, TP observed the previous summer (PS), number of days when daily mean wind speed < 20th percentile (wind<P20), 
and mean winter (Nov-April) wind speed (m/s).. Density plots estimated using kernel density estimation (kde) are shown along the 
diagonal. 

Table 3: Pearson’s correlation coefficients (R) for the four target dependent variables (only |R| > 0.40 are shown). See Table 1 for a 
description of the variables. 475 

TP Chl-a Cyanobacteria Colour 

Variable R Variable R Variable R Variable R 

TP _prevSummer(PS) 0.65 
cChl-a 
(PS)_prevSummer 0.65 Cchl-a 0.77 

Ccolour 
(PS)_prevSummer 0.85 

Wwind < P20 0.51 TP 0.58 TP 0.58 Rain sumpptn 0.53 
Wwind < P20_ 
winter(W) 0.44 Wwind < P40 0.41 

Cchl-a 
(PS)_prevSummer 0.56 

Rain 
intensepptn_intense 0.46 

Wwind _speed 
(W)_winter -0.40 Wwind > P80 -0.49 

Ccyano_ 
prevSummer(PS) 0.55 Q 0.45 

   Wwind speed -0.51 
TP 
(PS)_prevSummer 0.49 

Ttemp 
(PS)_prevSummer 0.43 

   Wwind > P60 -0.51 Ccolour -0.44 wWind > P60 -0.45 

       
Ccolour_ 
(PS)prevSummer -0.50 Wwind _speed -0.46 

            Wwind > P80 -0.47 
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Table 4: Summary of feature importance analysis for each dependent variable. , and feature importance scores andThe out-of-bag 
( OOB) score gives the overall performance of the random forest regressor model. This was done for a variety of feature subsets, 
including all available features (All), features included in the best random forest regressor model, identified by recursive feature 
elimination (Optimum) and  the feature subset selected for further BN development (Selected) score for the proposed GBN feature 480 
set. OOB is the out-of-bag score. See Tables 1 and 2 for a description of the features. 

Target 
variable 

Feature subset Feature Importance 
scores 

OOB 

TP All TP (PS)_prevsummer 0.372 0..2940 
Wwind < P20 
(W)_under_P20 

0.154 

All others < 0.108 
Optimum 
(6)Top 1 
(for GBN) 

TP (PS)TP_prevsummer 10.43 0.410.10 
 Wind < P20 (W) 0.21  
 All others < 0.12  
 Selected TP (PS) 1 0.06 
Cchl-a All cChl-a _prevsummer(PS) 0.3029 0.48 

TP 0.1821 
Wwind _speed 0.065 
Aall others < 0.05 

 Optimum and 
selectedProposed 
for GBN 

Chl-a (PS)chl-
a_prevsummer 

0.410.41 0.490.49 

 TPTP 0.340.34  
 Wind speedwind_speed 0.240.24  
Ccyano All cChl-a 0.148 0.317 

Ccolour 0.088 
All others < 0.077 

Optimum cChl-a 1 0.345 
SelectedProposed 
for GBN 

Cchl-a 0.632 0.554 
cColour 0.378 

Ccolour All cColour (PS)_prevsummer 0.73 0.64 
All others < 0.056 

Optimum Ccolour _prevsummer(PS) 0.79 0.667 
Wwind < P20_under_P20 0.12 
Rain sumpptn 0.09 

SelectedProposed 
for GBN 

cColour (PS)_prevsummer 0.85 0.57 
Rain sumpptn 0.15 

 

For chl-a, strongest correlations were with chl-a the previous summer and lake TP concentration (Table 3). Otherwise, the 

only correlation coefficients above 0.4 were with wind-related features, includinge.g. a negative relationship with mean wind 

speed. This was partly supported by the feature importance analysis and, although  a model with chl-a (PS), lake TP and 485 

wind speed hadwind variables were not picked out as being important even though the highest OOB score included a wind 

feature (Table 4). There are plausible mechanisms underpinning relationships between these three variables and lake chl-a, 

and all were selected for BN development. In the case of wind, We therefore selected previous summer’s chl-a and lake TP 

as key predictors for chl-a, and there are plausible mechanisms that can underpin these relationships. It was less clear 

whether to include wind. wWindier summer weather can cause less stable lake stratification and lower chl-a concentrations 490 

Formatted Table
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(Huber et al., 2012; Yang et al., 2016), so there is a plausible mechanism. Including it could also help improve the TP 

forecast, through the TP - chl-a link. We therefore decided to include wind to start with, but to investigate its importance 

through cross validation. Air tAs we will see, temperature exerted an important control on within-year changes in chl-a (see 

Appendix ASection 3.1.2), but there was no evidence that years with higher summer air temperature were associated with 

higher mean chl-a concentration (Fig. 4). 495 
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Figure 4: Relationships between seasonal mean chl-a (mg/l) and potential explanatory variables of interest, including chl-a from 
the previous summer (PS), seasonal mean TP (µg/l), wind speed (m/s) and air temperature (°C). Density plots estimated using kde 500 
are shown along the diagonal. 

For cyanobacteria, by far the strongest correlation was with lake chl-a, although a number of other correlations were present 

(Table 3, Fig. 5) including with lake TP concentration and colour, and concentrations of chl-a, TP and cyanobacteria the 

previous summer. Cyanobacteria was less correlated with wind-related variables than chl-a, and there were no (or even 

negative) correlations with seasonal air temperature. Feature importance analysis also highlighted chl-a as the most 505 

important variable (Table 4). , and hHighest OOB values (0.54) were obtained using just chl-a and lake colour, and these 

were therefore . Given strong correlations between chl-a and TP and chl-a_prevSummer, these latter two features were 

dropped, and we selected just chl-a and colour as the key explanatory variables for cyanobacteria. The relationship between 

with lake colour and cyanobacteria is plausible, as an increase in organic matter can affect lake algal communities by 

reducing light availability and the availability of nutrients such as nitrogen, P and iron, as they become bound to the organic 510 

matter (Nagai et al., 2006), and. Senar et al. (2021) found that above DOC concentrations of 8-12 mg/l, similar to those 

observed in lake Vanemfjorden (7-10 mg/l over the period 1996-2018), cyanobacteria became replaced by mixotrophic 

species as lake colour increased. 
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Figure 5: Relationships between Box Cox transformed maximum seasonal cyanobacteria biovolume (original units mg/l; Box Cox 
transformed) and potential explanatory variables of interest, including seasonal means in lake chl-a (mg/l), TP (µg/l) and colour 
(mg Pt/l). Density plots estimated using kde are shown along the diagonal. 

Lake colour was very strongly correlated with the previous summer’s colour (colour (PS)) (R = 0.85), and, probably because 520 

of this, the OOB score for lake colour was the highest of all the target variables (0.66). Colour was also moderately 

correlated with factors relating to catchment delivery (Table 3, Fig. 6). Feature importance analysis resulted iThe best 

regressor model had n an optimum at 3 features, including the previous summer’s colour, calm wind days (wind < P20) and 

rain sumprecipitation, although the latter two had low their importance scores were low compared to the previous summer’s 

colour (Table 4).  Whilst it is clear that higher rainfall can lead to higher catchment delivery of organic matter, and therefore 525 

higher lake colour, oAs with TP, we suspect that the wind – colour relationship is not causative, as nce again lake it is less 

clear whether wind should be included as an explanatory variable. Lake colour is relatively uniform throughout the water 

column in Vansjø, and so the impact of wind on lake stratification should be minimal. Wind was therefore dropped, and only 

the previous summer’s colour and rain sum were selected.. In addition, there was a negative relationship between wind and 

rain (Fig. 6). We therefore decided to just select previous summer’s colour and precipitation as explanatory variables for 530 

colour. 
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Figure 6: Relationships between seasonal mean lake colour (mg Pt/l) and potential explanatory variables of interest, including 535 
colour the previous summer (PS), seasonal precipitation rain sum (mm) and mean wind speed (m/s). Density plots estimated using 
kde are shown along the diagonal. 
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In summary, the following features were selected for BN development for the four target variables: 

 
 TP: lake TP concentration from the previous summer. 540 

 Cchl-a: chl-a from the previous summer, lake TP concentration, wind speed. 

 Ccyanobacteria: lake chl-a and colour. 

 cColour: lake colour from the previous summer, precipitation. 

3.1.2.1.1.1. Exploratory statistical analyses using finer temporal aggregation 

 545 

a) Algal peaks and pre-peak conditions for the explanatory variables 

We then looked for relationships between seasonal maxima of chl-a and cyanobacteria, and potential explanatory variables 

aggregated over n days (n = 14, 30, 60, 90) before the maxima were observed (Section 2.3). For chl-a, strongest relationships 

were seen with wind speed and related variables and lake TP concentration (Table 5), as in the analysis using 6-monthly 

aggregation. No other weather variables were important. For cyanobacteria, strongest correlations were with lake TP and 550 

chl-a concentrations, and there was also a relationship with lake colour, as in the 6-monthly analysis. In contrast to the 

whole-seasonal analysis, relationships between cyanobacteria and variables relating to wetness and flow were seen for some 

temporal aggregation windows, suggesting that the larger the rainfall and river discharge (and the shorter the residence time) 

over the preceding 30-60 days, the lower the cyanobacterial biomass. Overall, this analysis using a shorter and more 

causally-plausible temporal aggregation resulted in very similar features being selected as being important as in the whole-555 

season aggregation. The exception was that hydrology and residence time may play more of a role in cyanobacteria bloom 

development than is acknowledged in the whole-season GBN. 

 

Table 5: Pearson’s R correlation coefficients between seasonal maxima of chl-a and cyanobacteria and potential explanatory 
variables aggregated (mean or sum) over n days before the algal peak occurred. For clarity, only |R| > 0.20 are shown for chl-a and 560 
|R| > 0.30 for cyanobacteria. 

 

b)a) Monthly aggregation 

For all variables, strongest relationships were with values observed the previous month(s), and there were strong correlations 

between values observed the previous summer. As well as this strong temporal auto-correlation, potentially important 565 

relationships included: 

 TP: weak relationships with wind, as in the 6-monthly analysis. For example, the calmer the previous 2-6 months, 

the higher the TP (R = 0.26 or less, depending on the lag), and the windier the previous winter or 6 months, the 

lower the TP (R = -0.2). That stronger relationships were seen between TP and wind over the previous ≥ 2 months, 

rather than the previous or current month, is suspicious given that wind would likely have an immediate and 570 
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relatively short-lived effect on TP via water column mixing, and supports our suspicion that the relationship is not 

causative. Relationships with all other variables were weak (R < 0.16). 

 Chl-a: strongest relationships were with air temperature from the current month (R = 0.54) and related lagged 

variables, discharge (R = -0.39), lake TP concentration (R = 0.32) and calm wind days (R = -0.33). 

 Cyanobacteria: strongest relationships were with chl-a concentration (R = 0.72), lake colour (R = -0.55), winter 575 

wind (R of 0.5 or lower, depending on the wind quantile), and air temperature from the previous month (R = 0.41). 

Overall, many of the same variables which were important in explaining inter-annual differences were highlighted as being 

important in this monthly analysis. However, a key difference is the appearance of a strong relationships between air 

temperature and chl-a concentration, as discussed further in Section 4.1. 

3.2. Gaussian Bayesian network development 580 

3.2.1. BN structure and GBN parameters 

The key relationships highlighted (Section 3.1) were then used to develop the BN structure, which is shown, together with 

fitted coefficients for the GBN, in Fig. 7. For parentless nodes, coefficients define normal distributions with mean β0 and 

variance σ2.  Child nodes are linear combinations of the parent nodes with intercept β0, coefficients βn and variance σ2. Fitted 

coefficients for the Gaussian BN were all credibleplausible, and matcheding the expected simple bivariate rrelationships 585 

between variables seen in the exploratory data analysis. 
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Figure 7: Gaussian Bayesian Network (GBN) structure and parameters defining the conditional probability densities CPDs at each 590 
node. . Units for standard deviations (σ) and intercepts (β00) are the same as the original data aside from cyanobacteria, where a 
box cox transformation was used (with λ = 0.1). Wind speed is the seasonal mean (m/s) and precipitation is the seasonal sum 
(mm).See Table 1 for a detailed description of the variables and Table B1 for 95% confidence intervals on the fitted coefficients. 

3.2.2. Fitted discrete BN 

 595 
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In contrast to the GBN, tThe fitted CPTs for the discrete network , using the same structure as the GBN (Fig.  78), did a 

slightly more mixed job of representing the expected relationships between variables. Despite using a relatively high iss 

value when fitting the network (i.e. giving the priors relatively high weight, see Section 2.62), several dubious relationships 

remain in the CPTs. For example, in the fitted probabilities for the chl-a node (Table 6) we see thatwe expected a negative or 

no wind effect on chl-a, but in the last two rows of the chl-a CPT the opposite effect is seen, with an increase in the chance 600 

of having high chl-a at higher wind speeds. high wind speed is associated with a greater probability of having high chl-a 

when the previous summer’s chl-a is high and TP is high. This is the opposite effect to that expected (we saw a negative 

relationship between chl-a and wind). Removing wind from the discrete BN did not fix the problem, as then the marginal 

probabilities for chl-a did not respond as expected to changing TP. For example, changing TP from low to high corresponded 

with a decrease in the probability of high chl-a (from 0.94 to 0.74), given high previous summer chl-a. In reality we would 605 

always expect a positive (or no) relationship between TP and chl-a. Similar problems were found with cyanobacteria and 

colour. These are likely artefacts, given low sample sizes for training. 

 

Table 6: conditional probability table for chl-a, fitted for a discrete version of the BN shown in Fig. 7. Probabilities which do 

not follow the expected physical response are highlighted. Continuous values were discretized into ‘Low’ or ‘High’ classes 610 

as described in Section 2.6. 
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Figure 8: Fitted conditional probability tables for the discrete Bayesian network. Values were discretized into low (L) or high (H) 
classes (a medium (M) class was also included for colour (PS)) as described in Section 2.6.2. 

 615 

3.3. GBN validation and assessment 

We then explored the most appropriate GBN model structure and assessed its predictive performance using: (1) cross- 

validation using sub-sets of the GBN to determine the most suitable model structure, including a comparison to the discrete 

BN,; (2) goodness of fit of the whole network compared to observations,; and (3) comparison to a simple benchmark model. 

3.3.1. Cross- validation using sub-sets of the network 620 

As mentioned in Section 2.7, cross- validation (CV) requires complete data for all variables and years. Given As that 

cyanobacteria was only monitored since 1996, to avoid a large loss of training and evaluation data for TP, chl-a and colour, 

we split the GBN up into smaller sub-networks before performing cross- validation for each target node separately, as 

follows: 

1. TP and chl-a: drop cyanobacteria, colour, previous summer’s colour and rain nodes from the BN, and use the whole 625 

1981-2018 period in cross- validation. 

2. Colour: as colour was linked to the network through cyanobacteria, to be able to include the full period 1981-2018 

we had to drop we had to drop all nodes aside from colour and its parents nodes to be able to include the full period 

1981-2018. 

3. Cyanobacteria: the whole network was used, but only uwith se the whole network, but only data from 1997. 630 

 

Cross validationCV results comparing the classification error of the GBN and the discrete BN are shown in Table 7. We 

might expect the discrete BN, which was fitted to discrete data, to do a better job of predicting the water quality class than 

the GBN. This was the case for all but. However, this was only the case for chl-a and colour TP, although it was only 

marginally better than the GBN for colour and cyanobacteria. 635 

 

Predictive performance of the GBN with and without weather nodes is also shown in Table 57. , and we can see that lLake 

colour was the only variable for which model performance was a little better when meteorological variables were included, 

although the gains were marginal. For chl-a and cyanobacteria, performance was similar with or without weather nodes, and 

it was identical for TP. For cyanobacteria, performance was slightly better without meteorological variability, and further 640 

investigation showed that this was because of the wind – chl-a relationship. When the wind speed node was dropped, the 

model skill was as good as when dropping all meteorological variables. Overall therefore, CV results suggest there was a 

small marginal benefit to keeping using precipitation when predicting lake colour, but that wind should be dropped from the 

no reason to keep wind in the GBN. 
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 645 

Table 57: Mean predictive performance of different Bayesian network (BN) structures, including the Gaussian Bayesian network 
(GBN) with and without weather nodes and a discrete BN, assessed through cross- validation. Note that tThe BNs used to make 
predictions for each target variable were sub-sets of the whole BN shown in Fig. 7 for all but cyanobacteria, to make the most of all 
available data (see text). R: Pearson’s correlation coefficient; RMSE: root mean square error; CE: classification error; GBN: 
Gaussian Bayesian network.GBN cyanobacteria predictions were back-transformed to the original data scale before calculating 650 
statistics. Note: RMSE is root mean square error, NA is not applicable. 

Variable BN type 
Weather nodesMet 

included? 
R2 RMSE Classification errorE (%) 

TP GBN ✓Y 0.33 3.96 33 

TP GBN ✗N 0.33 3.96 33 

TP Ddiscrete ✓Y NA NA 410 

cChl-a GBN 

GBN 
✓Y 0.30 4.76 34 

cChl-a ✗N 0.29 4.76 32 

cChl-a Ddiscrete ✓Y NA NA 8 

cColour GBN 

GBN 
✓Y 0.72 8.78 24 

cColour ✗N 0.68 9.35 24 

cColour Ddiscrete ✓Y NA NA 15 

cCyano GBN 

GBN 
✓Y 0.4014 1.001.91 1531 

cCyano ✗N 0.4622 0.961.76 1431 

cCyano Ddiscrete ✓Y NA NA 213 

3.3.2. Goodness-of-fit of the whole network 

Model performance of the whole network, assessed using the same data for fitting and assessment, assessed by comparing 

the predictions made using the whole network to observations is shown in Table 68. Performance was best for lake colour 

(R2 > 0.7), which showed particularly high temporal autocorrelation similar for lake TP and chl-a, and slightly lower for 655 

cyanobacteria. The same general lack of sensitivity to weather nodes, or for cyanobacteria slightly worse predictive skill 

when they were included, was seen here as in the CV results, and considering additional model performance measures such 

as bias and classification skill(Table 6, Fig. 9) (Table 8, Fig. 8). 
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Table 68: Model pPerformance for of the GBNs with and without weather nodes (BN-met) and without weather nodes (BN-660 
nomet), fit using the whole historic period (no cross- validation) and, using the whole BN rather than sub-sets of nodes. 
Performance of the seasonal naïve forecast is also shown. MCC and classification error reflect classifier skill, whilst other statistics 
the rest reflect how well the mean predicted values matched observations. Abbreviations: RMSE is: root mean square error, MCC 
is: Matthew’s correlation coefficient. 

Variable Model 
Weather 
variables 
included? 

R2 RMSE Bias MCC 
Classification 

error (%) 

TP 

naïve ✗ 0.40 4.39 0.49 0.18 41 

GBN-met ✓ 0.42 3.67 -0.04 0.34 32 

GBN-no met ✗ 0.42 3.68 -0.07 0.34 32 

Cchl-a 

naïvenaïve ✗ 0.42 4.60 0.06 0.71 11 

GBNBN-met ✓ 0.39 4.38 -0.08 0.23 27 

GBNBN-no 

met 

✗ 
0.37 4.44 -0.06 0.18 27 

Ccolour 

naïvenaïve ✗ 0.72 9.21 0.85 0.55 21 

GBNBN-met ✓ 0.75 8.39 -0.51 0.37 29 

GBNBN-no 

met 

✗ 
0.71 9.05 -0.75 0.44 26 

Ccyanobacteria 

naïvenaïve ✗ 0.32 1.76 0.18 0.57 22 

GBNBN-met ✓ 0.365 1.5379 -0.0382 0.704 173 

GBNBN-no 

met 

✗ 
0.387 1.5176 -0.0181 0.704 173 

3.3.3. GBN predictions compared to a benchmark model 665 

Model performance was then compared to the performance of a seasonal naïve forecaster (Table 68, Fig. 98). For TP and 

cyanobacteria, the GBN performed slightly better than the naïve forecaster for all performance statistics, in particular RMSE 

and bias. Similarly fFor lake colour and cyanobacteria, the GBN performed better than or comparably to the naïve 

forecasterat all but classification. , the only exception being that the naïve forecaster produced less biased cyanobacteria 

predictions. This bias is clear in the BN predictions on Fig. 8, and is likely due to the box-cox transformation used when 670 

fitting the BN. Although the GBN was a better cyanobacteria classifier than the naïve forecaster, it’s clear on Fig. 8 that, had 

the WFD-relevant threshold been set at 2 instead of 1 mg/l, the naïve forecaster would have been better. For chl-a, by 

contrast, the naïve forecaster performed slightly better than the GBN, although this varied among performance statistics. It 

was particularly better at classification and, from inspection of Fig. 9, this is likely because the GBN predictions happen to 

often be just slightly under the 20 mg/l threshold used in classification. 675 



39 
 

 



40 
 

 

Figure 98: Observed and predicted (mean) lLake water quality observations and predictionsvariables, including predictions from 
a range of models, including the Gaussian Bayesian Network (: BN) with and without weather variables, BN without weather 
variables and a seasonal naïve forecaster. Horizontal grey lines show the thresholds used to discretize classify predictions into two 680 
WFD-relevant classes (see Table 2). (units: colour: mg Pt/l, TP: µg/l, chl-a and cyanobacteria: mg/l). 

3.4. Forecasting to support water management 

An example of prototype seasonal forecasts, made using the GBN without weather nodes, is available at 

https://watexr.data.niva.no/ (last accessed 22/04/2022). The forecast includes the probability of being in one of two WFD-

relevant status classes, the expected (mean) value, some historic skill information, and a text summary to aid in the 685 

interpretation of the forecast (e.g. “Chl-a is expected to be Moderate or better. Confidence level: Medium”). The forecast’s 
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layout was developed together with the region’s water manager (Morsa) to ensure that it met their needs, and they have 

expressed optimism about the use of these kinds of forecasts to support water management, identifying actions which could 

be taken based on reliable-enough forecasts (Jackson-Blake et al., 2022). As well as providing an easy way of deriving 

probabilistic forecasts for both the expected value and the expected ecological status class, we found a real benefit of using 690 

BNs when co-developing models with stakeholders was the easy and transparent visualisation of the model used to derive 

the forecasts. We found that this increased stakeholder engagement with the model development process as well as their 

ability to correctly interpret the probabilistic predictions (Jackson-Blake et al., 2022)(Jackson-Blake, 2022). 

 

 Discussion 695 

The main aims of this study were: (1) to develop a model for seasonal forecasting of lake water quality, and (2) to 

demonstrate the use of a continuous GBN for environmental modelling, instead of more traditional discrete BN approaches. 

We discuss each of these in turn below. 

4.1. Key drivers of interannual variability in lake water qualitySeasonal forecasting of lake water quality 

3.3.4.4.1.1. Drivers of interannual variability in lake water quality 700 

In the study lakelake Vansjø, key water quality predictors were values observed the previous summer. Indeed, for lake TP 

concentration, this was the only predictor variable selected (Section 3.1). The strength of this annual autocorrelation, 

together with relatively low interannual variability in lake water quality (Fig. 98), are likely the reasons why the seasonal 

naïve forecast performed only slightly worse than the GBN, and even slightly better for chl-a (Section 3.3.3).  

 705 

Aside from high temporal autocorrelation, we found positive relationships between lake TP concentration and chl-a and 

cyanobacteria, as widely documented elsewhere (Rousso et al., 2020). We also found a decrease in cyanobacteria as lake 

colour increased, again a previously documented effect (Section 3.1). No link was seen between lake colour and chl-a 

however, perhaps due to quality issues with the colour data before 1998 (Section 2.3), whilst cyanobacteria data were only 

available from 1996 and so missed the colour step-change.  Although we found some evidence for relationships between 710 

weather variables (wind and precipitation) and water quality, subsequent analysis suggested the relationship was not strong 

enough to make it was not worth including weather nodes in the GBN, as the improvements in predictive performance were 

marginal (for lake colour) or absent (Section 3.3), and it is highly unlikely that the marginal improvements would still be 

seen after replacing real observed historical meteorological data with seasonal climate model hindcasts. 

 715 

The findings were relatively robust to the temporal aggregation window: statistical analyses using a shorter and more 

causally-plausible temporal aggregation resulted in very similar relationships being highlighted (Appendix A). The exception 



42 
 

was that higher rainfall and discharge may result in lower cyanobacteria peaks, probably due to flushing, a relationship 

which was not accounted for in the GBN using 6-monthly aggregation and a potential area for improvement. 

 720 

 Results were relatively robust to the temporal aggregation window: statistical analyses using a shorter and more causally-

plausible temporal aggregation resulted in very similar relationships being highlighted. The exception was that higher 

rainfall and discharge may result in lower cyanobacteria peaks (Section 3.1.2), probably due to flushing, a relationship which 

was not accounted for in the GBN using 6-monthly aggregation and a potential area for improvement. 

 725 

The lack of a temperature effect on algal biomass or cyanobacteria is interesting, as we might expect warmer summers to be 

accompanied by more intense blooms. However, results fit with a number of studies which found that warming effects were 

minor compared to nutrient effects (Lürling et al., 2018; Robarts & Zohary, 1987), and that water column stability was a key 

driver of cyanobacteria dynamics in dimictic lakes (Taranu et al., 2012), with wind playing a more dominant role than 

seasonal air temperature (Huber et al., 2012; Yang et al., 2016). We did however find a strong air temperature effect on 730 

within-year variation in chl-a and to a lesser extent cyanobacteria (Appendix ASection 3.1.2), likely because within-year 

variability is large compared to intra-annual variability and follows a systematic seasonal pattern. When looking in more 

detail at some of the BN studies in which relationships were identified between air temperature and algal variables (Couture 

et al., 2018; Moe et al., 2019; Rigosi et al., 2015; Shan et al., 2019; Williams & Cole, 2013), the observations used to fit the 

BN included in the training data in these studies were not annually aggregated, and so both with- and between-year 735 

variability were included. This may be appropriate if the aim is to look at algal dynamics within a year. However, it may not 

be appropriate for predicting inter-annual variation or longer term prognoses, as our analyses suggest different factors may 

be responsible for within-year versus between-year variability. Although temperature is certainly likely to be important in 

many areas, it seems likely that a number of studies will have over-estimated its importance, by assuming that within-year 

relationships between temperature and algal dynamics can be used to infer future algal responses to increases in summer 740 

temperature under climate change. 

4.1.2. Operational forecasting using seasonal climate data 

One of the original aims of the study was to explore whether the latest seasonal climate forecasting products could be used to 

support water management, by enabling improved seasonal water quality forecasting. However, as we did not find a strong 

sensitivity to seasonal climate, this aim became redundant. In systems which are more sensitive to seasonal climate, a next 745 

step would be to assess GBN predictive performance using seasonal climate model hindcasts when making predictions (as in 

Mercado-Bettín et al., 2021). A comparison of model forecasting skill using seasonal climate data vs observed weather data 

would then allow for an assessment of the value of seasonal climate data. Seasonal climate forecasts are probabilistic and 

should only be used to give a broad indication of the likely direction of change, often in terms of tercile probabilities (e.g. 



43 
 

“there is a 60% chance that next summer will be windier than normal”). A hybrid BN would therefore be a good option, with 750 

discrete nodes for the seasonal climate variables.  

3.3.5. Data limitations and potential for improvement 

3.3.6.4.1.3.  

As with all data-driven models, the quality of our model strongly relies on the availability and quality of the data, and in this 

regard we see potential for a number of improvements: 755 

 Although the lake has a long history of monitoring, the training dataset is very small for a data driven model (≤ 39 

data points). The lake showed low inter-annual variability, with gradual changes over time and few extreme events. 

Statistical power in a multivariate analysis is therefore limited, but will increase as more data become available. 

 Peaks in cyanobacteria were defined by a single point, as in WFD classification, using relatively low frequency 

monitoring. An improvement would be for this value to be calculated more robustly, for example from the mean of 760 

a number of consecutive highest points.This approach is non-robust, and it would be preferable to have higher 

frequency sampling and to then define peaks using, for example, the mean of a number of consecutive highest 

points. 

 We only used data from a single point in the lake, whilst lake water quality can have high spatial variability. In 

Vanemfjorden, for example, there were bathing bans in place from 2000-2007, and yet the cyanobacteria data from 765 

the monitoring point is not particularly high during this period. There is some limited data available from elsewhere 

in Vanemfjorden, which could help improve the model, as well as rRemote sensing products could help address this 

issue, and , which are increasingly being used in cyanobacteria bloom prediction (Bertani et al., 2017; Stumpf et al., 

2012). 

  770 

 Additional variables could have been considered in the feature generation and selection, e.g. radiation, 

water temperature, and water column stability indices, although at the expense of increasing model complexity. 

 

Overall, the GBN predictions developed produces predictions which are almost entirely reliant on conditions observed 

during the previous summer. Despite the short residence time of the lake, if TP concentrations are buffered by lake internal 775 

sediment P release, seasonal algal peaks are not temperature limited, and water column stability is relatively insensitive to 

seasonal wind and temperature (e.g. because the water column is regularly mixed under normal summer conditions), then 

this rather simple model may be appropriate. All these things are plausible in this shallow lake with a long history of 

eutrophication. However, it is also likely that our model was limited by the underlying data used to identify relationships and 

for training, as mentioned above, and, for cyanobacteria, by the 6-month temporal aggregation window used. As an example 780 

of the limitation of the model, any events which happened during the previous winter are not currently taken into account 
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when making forecasts. However, there is a general consensus that a large flooding in winter 2000 caused a large input of TP 

to the lake and was responsible for the cyanobacterial blooms that occurred in subsequent years (Haande et al., 2011). Our 

“bottom up” approach to selecting variables to include in the developing the predictive model meant that, as we did not find 

a relationship between winter discharge and lake TP concentration, it was not included in the model. Whilst this bottom up 785 

approach ensures that the model is not affected by pre-conceived (but potentially incorrect) beliefs, it also means that rarely 

observed but perhaps important relationships are not included. In this case, incorporating expert knowledge to decide on 

additional nodes to include in the BN and on coefficients to define CPDs, could increase the robustness of the BN at 

predicting out-of-sample conditionsusefulness of the predictions, in particular the impacts of extreme events. An alternative, 

albeit  and much more time-consuming approach, could be to include process-based model simulations to increase the size of 790 

the training data, assuming a robust model could be set up which adequately captured interannual variability. The BN could 

then be used as a “meta-model”, as has been done previously at the site in the context of longer-term climate and land use 

change studies (Couture et al., 2018; Moe et al., 2019). However, process-based lake models typically only predict chl-a, and 

so cyanobacteria forecasts would still rely on data-derived empirical relationships from the data or expert knowledge. 

3.4. Continuous GBNs for water qualityenvironmental prediction 795 

3.5.4.2.  

With GBNs, Once a GBN is defined, iit is straightforward to produce probabilistic predictions for water quality variables of 

interest, given knowledge or forecasts for a number of the remaining variables (not relevant here, but these could include, for 

example, seasonal climate or streamflow forecasts). Predicting the probability of reaching a management target such as a 

specific lying within a WFD status class is also straightforward and of direct management relevance (Section 3.4), and, 800 

although not demonstrated here, it is easy to update the training dataset using new data. These features make the approach 

well-suited to forecasting. In terms of performance, our GBN was modest in its prediction abilities. , with R2 values between 

0.37 (cyanobacteria) and 0.75 (colour) and classification error rates of  between 13 and 32%. As discussed above, 

performance was likely limited by the nature of the lake and the data available for training, but we believe the approach itself 

was highly promising, and would likely result in a more powerful forecasting tool in lakes or rivers which showed higher 805 

inter-annual variability and sensitivity to seasonal discharge and climate, or if used for forecasting at shorter timescales (e.g. 

within-year, for example). 

 

One of the great benefits of the GBN approach over traditional discrete approaches is that we avoid discretization and 

associated information loss. We found that perhaps one of the main benefits of using a GBN over a discrete BN to be the 810 

speed with which a sensible network can be developed. Our GBN parameters could be easily fit could be purely 

parameterised in a physically-plausible way only using observed data, despite the small dataset and the need to transform the 

cyanobacteria data.  Developing a comparable discrete BN was a much more subjective and time-consuming process, both 
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the discretization of the data, and also deciding on the weighting of the uniform prior to try to ensure sensible CPTs (Section 

3.2.2).This was not the case with a discrete BN (Sections 3.2.2 and 3.3.1), likely due to the small sample size, resulting in 815 

very low data counts in some CPT rows and associated spurious relationships. Despite the fact that the discrete BN was fit 

on the discrete data, the classification error of the GBN was lower for TP and cyanobacteria than the discrete BN. 

 

 

However, the GBN approach has limitations which may be problematic in some settings. Firstly,  tThe normality assumption 820 

may not be appropriate, nor may . In our study, transformed cyanobacteria and colour data almost violated this assumption, 

and the need for a transformation of the cyanobacteria data introduced an important bias into our back-transformed 

predictions. Secondly, assuming linear relationships between variables may not be appropriate. Although there was no clear 

evidence for non-linear relationships here (Section 3.1.1), non-linear structures are common in relationshipsthey are common 

in ecological pressure-response relationshipsbetween environmental pressures and ecological relationships, including 825 

cyanobacteria blooms (Solheim et al., 2008). Moreover, thresholds are sometimes used to define ecological pressure-

response relationships (e.g. Peretyatko et al., 2010; Scheffer et al., 1993). Overall, better performance might have been 

achieved with a continuous network with less stringent parametric requirements. Non-parametric or semi-parametric BN 

development has received a considerable amount of attention in recent years (Marcot & Penman, 2019), with a number of 

promising developments (e.g. Boukabour & Masmoudi, 2020; Hanea et al., 2015; Masmoudi & Masmoudi, 2019) and we 830 

expect that non-parametric continuous BN algorithms will increasingly become available in commonly-used BN software in 

future years. However, the simplicity of the normal approximation used in GBNs means they may remain a good first choice 

in many applications, particularly when datasets are small. For people who use BN software that cannot handle continuous 

nodes, a good alternative could be to make use of commonly-available functionality which allows the user to specify a 

continuous probability distribution for a node, and then this is discretized within the software. 835 

 

GBNs have much in common with Multiple Linear Regression (MLR), where linear relationships and Gaussian error 

distributions are usually assumed, and which are also able to produce probabilistic predictions of continuous variables. 

Indeed, the local distributions in a GBN are ordinary-least-squares regressions, i.e. univariate MLR involving only root 

nodes that are ancestors of the output. Both GBN and MLR approaches have advantages and disadvantages when it comes to 840 

environmental modelling and forecasting. MLR models have the advantage that input datasets do not need to be normally 

distributed and they are typically easy to implement with standard software. MLR has been successfully applied to algal 

bloom forecasting, for example in Lake Erie (Ho & Michalak, 2017). Benefits of the BN approach include, for example, ease 

of predicting multiple explanatory variables, as was the focus here, where the interest was in forecasting more than just algal 

bloom risk. Indeed, perhaps the main strength of using a GBN over MLR is that GBNs provide a powerful visual 845 

representation of potentially complex interdependencies between variables. By providing a convenient way of defining and 

visualising a multivariate model, where different outputs depend on different explanatory variables, it becomes easier to 
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explicitly incorporate domain knowledge into the model building process (such as which variables affect which other 

variables), as well as facilitating collaborative model development and communication of results (Section 3.4). Based on our 

experience in this study, we believe the process of constructing a GBN forces modellers to think about key relationships, and 850 

to consider more carefully common MLR pitfalls such as multicollinearity and omitted variable bias. 

 Conclusions 

We developed a continuous Gaussian Bayesian network (GBN) to produce probabilistic forecasts for average growing 

season (May-October) lake water quality (TP, chl-a and colour) and maximum cyanobacteria biovolume. The aim was to 

provide early warning, in spring of a given year, of the likely conditions for the coming season. This is, to our knowledge, 855 

one of the first continuous GBNs for water quality prediction, and one of few reported continuous BNs in environmental 

modelling more generally. Overall, we found the GBN approach to be well-suited to seasonal water quality forecasting. It is 

straightforward to produce probabilistic predictions, including the probability of lying within a WFD-relevant status class. 

By using a continuous BN we avoided the data loss associated with discretization of continuous variables, The process of 

developing the GBN was substantially less time-consuming and subjective than developing a discrete BN, and the GBN 860 

could be purely sensibly parameterised just using observed data, despite the small dataset (n ≤ 39, depending on the target 

variable).  This wasn’t possible using a discrete BN, highlighting a particular advantage of using GBNs when sample sizes 

are small, which is often the case when the focus is on interannual variability. Despite the parametric constraints of GBNs, 

their simplicity, together with the relative accessibility of BN software which includes GBN handling, means they are a good 

first choice for BN development, which should we think shouldperhaps be considered more widely when data are continuous 865 

and datasets for model training are small. 

 

Although the GBN approach itself proved to be promising, we had more mixed success with forecasting seasonal (or inter-

annual) lake water quality at our study site. Although our exploratory data analysis suggested that wind and , to a lesser 

extent, precipitation , exerted a control on interannual variability in lake water quality, these relationships were weak, and 870 

overall our lake showed relatively low sensitivity to seasonal climate. Instead, the dominant source of predictability was 

simply the lake water quality observed the previous year, together with inter-dependencies between water quality variables. 

Because of this strong inertia, the GBN did not perform much better than a naïve seasonal forecast (indeed, for chl-a, the 

naïve forecast performed better). Potential improvements, which could make the model more powerful at predicting seasonal 

water quality, include incorporating expert knowledge on the likely impacts of rare events into the BN structure and 875 

conditional probabilities, improving the quality of the training data (e.g. spatial representation), and expanding the training 

set using synthetic process-based model results. We found a much stronger weather control on within-year variability in lake 

water quality, and we envisage a more management-relevant forecasting tool could be developed by adapting the approach to 



47 
 

forecast water quality at sub-annual time scales, or by applying it to forecast seasonal water quality of water bodies (rivers or 

lakes) that show higher interannual variability and sensitivity to seasonal climate. 880 

Appendix A: Exploratory statistical analyses using finer-scale temporal aggregation 

A1. Method 

Temporal aggregation over the whole growing season is coarse and may miss causative relationships. We therefore also 

carried out finer-scale aggregation, to check and expand on the results obtained from the 6-monthly analyses. This finer-

scale aggregation included: 885 

 

(1) Algal peaks and pre-peak conditions for explanatory variables: For each year, we selected peak (maximum) values 

for chl-a and cyanobacteria. We then calculated, for each of chl-a and cyanobacteria, means or sums of the potential 

explanatory variables over 14, 30, 60 and 90 days pre-peak. By ensuring that the potential explanatory variables 

only include data from before the observed algal peak, this aggregation method should have more power to identify 890 

causative relationships, whilst still focusing on inter-annual variation. 

(2) Monthly aggregation. A repeat of the exploratory statistical analysis (Section 2.5) using monthly data, to explore 

the causes of both within- and between-year variability. 

A2. Results 

A2.1  Exploratory statistical analyses using finer temporal aggregation 895 

 

Algal peaks and pre-peak conditions for the explanatory variables 

We then looked for relationships between seasonal maxima of chl-a and cyanobacteria, and potential explanatory variables 

aggregated over n days (n = 14, 30, 60, 90) before the maxima were observed (Section 2.3). For chl-a, strongest relationships 

were seen with lake TP concentration and wind speed and wind-related variables and lake TP concentration (Table 5A1), as 900 

in the analysis using 6-monthly aggregation. No other weather variables were important. For cyanobacteria, strongest 

correlations were with lake TP and chl-a concentrations, and there was also a relationship with lake colour, as in the 6-

monthly analysis. In contrast to the whole-seasonal analysis, relationships between cyanobacteria and variables relating to 

wetness and flow were seen for some temporal aggregation windows, suggesting that the larger the rainfall and river 

discharge (and the shorter the lake water residence time) over the preceding 30-60 days, the lower the cyanobacterial 905 

biomass.  Overall, this analysis using a shorter and more causally-plausible temporal aggregation resulted in very similar 

features being selected as being important as in the whole-season aggregation, with . Tthe exception that was that hydrology 
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and residence time may play more of a role in cyanobacteria bloom development than is acknowledged in the whole-season 

GBN. 

 910 

Table A15: Pearson’s R correlation coefficients between seasonal maxima of chl-a and cyanobacteria and potential explanatory 
variables aggregated (mean or sum) over n days before the algal peak occurred. For clarity, only |R| > 0.20 are shown for chl-a and 
|R| > 0.30 for cyanobacteria. 

Variable 
Temporal aggregation over n days pre-peak 

n = 14 n = 30 n = 60 n = 90 

Chl-a Wwind _speed -0.35 Wwind _speed -0.24 wWind > P80 -0.31 Wwind > P80 -0.32 

Wwind > P80 -0.32 wWind > P80 -0.22 wWind _speed -0.25 Wwind _speed -0.23 

    
  

Wwind > P60 -0.23     

TP 0.21 TP 0.21 TP 0.34 TP 0.36 

Wwind < P40 0.23 wWind < P20 0.23         

Wwind < P20 0.27             

Cyano Ccolour -0.33 Rrain _days -0.41 Rrain _days -0.45 Ccolour -0.41 

Q -0.31 Rain sumpptn -0.36 Rain sumpptn -0.39     

    Q -0.33 Ccolour -0.38     

    Ccolour -0.33       

Cchl-a 0.48 Cchl-a 0.54 Cchl-a 0.48 TP 0.51 

TP 0.71 TP 0.63 TP 0.61 Cchl-a 0.55 

 

A2.2 Monthly aggregation 915 

For all variables, strongest relationships were with values observed the previous month(s), and there were strong correlations 

between values observed the previous summer. As well as this strong temporal auto-correlation, potentially important 

relationships included: 

 TP: As in the 6-monthly analysis, the strongest relationship was with the previous summer’s TP (R = 0.45), and 

there were weak relationships with wind, as in the 6-monthly analysis. For example, the calmer the previous winter 920 

or 2-6 months, the higher the TP (R = 0.2630 or less, depending on the lag), and the windier the previous winter or 

6 months, the lower the TP (R ≤= -0.22, depending on the lag). SThat stronger relationships were seen between TP 

and wind over the previous ≥ 2 months, rather than the previous or current month. , is suspicious given that wWind 

should would likely have an immediate and relatively short-lived effect on TP via water column mixing, so this 

suggests and supports our suspicion tthat the relationship is not causative. Relationships with all other variables 925 

were weak (R < |0.16|). 

 Chl-a: strongest relationships were with the current month’s air temperature from the current month (R = 0.504) and 

related lagged variables (lagged air temperature, number of days in the current or previous months with sub-zero 
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temperatures). , discharge (R = -0.39), lake TP concentration (R = 0.32) and calm wind days (R = -

0.33).Relationships with all other variables were weaker (R < |0.35|). 930 

 Cyanobacteria: strongest relationships were with chl-a concentration (R = 0.721), lake colour (R = -0.4355), lake 

TP concentration (R = 0.41), the previous summer’s cyanobacteria and TP concentrations (R = 0.39, R = 0.37, 

respectively) and winter wind (R =of 0.365 or lower, depending on the wind percentilequantile)., and air 

temperature from the previous month (R = 0.41). 

 Colour: As in the 6-monthly analysis, strongest correlations were with the previous summer’s colour (R = 0.72) and 935 

with rain variables. In particular, with the precipitation sum and the number of intense rain days over the previous 

five or six months (R in the range 0.56 – 0.60), and with discharge sum the previous 3 months (R = 0.54). There 

was also a negative correlation with air temperature in the current or previous 1-3 months (R in the range -0.51 to -

0.44). All other correlations had R < |0.41|. 

 940 

Overall, many of the same variables which were important in explaining inter-annual differences were highlighted as being 

important in this monthly analysis. However, a key difference is the appearance of a strong relationships between air 

temperature and chl-a concentration, as discussed further in Section 4.1. 

 

Appendix B 945 

Table B1: Fitted GBN coefficients with 95% confidence intervals 

GBN node Coefficient Value 95% confidence interval (±) 
Original data units % 

TP β0 10.73 7.53 70 
βTP (PS) 0.612 0.252 41 

TP (PS) β0 29.5 1.7 6 
Chl-a β0 15.3 25.2 165 

βTP 0.47 0.30 64 
βchl-a (PS) 0.327 0.302 92 
βwind speed -5.18 6.02 -116 

Chl-a (PS) β0 -2.55 9.15 -359 
βTP (PS) 0.616 0.306 50 

Wind speed β0 3.57 0.08 2 
Cyano β0 -1.84 1.94 -105 

βchl-a 0.169 0.069 41 
βcolour -0.0237 0.0241 -102 

Colour (PS) β0 41.2 6.0 15 
Colour β0 -7.76 16.04 -207 

βcolour (PS) 0.811 0.221 27 
βrain sum 0.0286 0.0342 119 

Rain sum β0 514.2 33.3 6 
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Code and data availability 

Data and scripts are available at https://github.com/NIVANorge/seasonal_forecasting_watexr, within the ‘Norway_Morsa’ 

folder. 
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