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Abstract. Anthropogenic nitrogen fluxes into surface freshwater bodies significantly impair water quality (WQ), pose 

serious health hazards, and create critical environmental threats. Quantification of the magnitude and impact of WQ issues 

requires identifying the key controls of nitrogen dynamics and assessing past and future patterns of global nitrogen flows. To 

achieve this, we adopted a data-driven, machine learning approach to build a space-time random forest model for simulating 10 

nitrogen concentration in 115 major river basins of the world. The proposed random forest-based WQ model regressed the 

monthly measured nitrogen concentration collected at 718 river stations across the globe for the period of 1992–2010 onto a 

set of 17 predictor variables with a spatial resolution of 0.5-degree. The resulting model was validated with data from river 

basins outside the training dataset, and was used to predict nitrogen concentrations in all river basins globally, including 

many with scarce or no observations. We predict that the regions with highest median nitrogen concentrations in their rivers 15 

(in 2010) were: United States, India, Pakistan, Bangladesh, China, and most of Europe.  Furthermore, our results showed that 

the rate of increase between 1990s and 2000s was greatest in rivers located in eastern China, eastern and central parts of 

Canada, Baltic states, southern Finland, Pakistan, parts of Russia, mainland southeast Asia, and south-eastern Australia. We 

found that, globally, the most influential predictors of nitrogen concentrations are temporal: month of the year and 

cumulative month count, reflecting the secular trend. Apart from temporal variables, cattle density, nitrogen fertilizer 20 

application, temperature, precipitation, and pig population are the most influential predictors of nitrogen pollution of the 

river systems. The proposed global WQ model will provide a new tool to explore agricultural and land management 

strategies designed to reduce nitrogen pollution in freshwater bodies at large spatial scales. 

1 Introduction 

1.1 Background: anthropogenic nitrogen enrichment in global waters 25 

Water quality (WQ) management and pollution control are vital for achieving water security and attaining human wellbeing 

as reflected in the UN Sustainable Development Goals (SDG6: clean water and sanitation; UNGA, 2015). However, 

intensifying human-induced changes on Earth and the environment have imposed immense challenges in sustainable WQ 

management (van Vliet et al., 2017). During the past century, WQ has declined because of unregulated wastewater 

https://doi.org/10.5194/hess-2021-618
Preprint. Discussion started: 1 February 2022
c© Author(s) 2022. CC BY 4.0 License.



2 

 

discharge, livestock manure and fertilizer draining into catchments (and aquifers). In addition, extensive construction of 30 

dams, excessive extraction of groundwater, deforestation, and expanding agricultural land use have altered sedimentary 

processes, mobilization of salts, and nutrient export to river systems, all of which drive WQ deterioration and groundwater 

pollution in many parts of the world (Scanlon et al., 2007; Seitzinger et al., 2010; Struyf et al., 2010). Furthermore, climate 

change is expected to have detrimental impacts on WQ due to perturbations of precipitation and temperature patterns in 

hydrological cycle (Lu et al., 2020; Yang et al., 2019). 35 

In particular, the modification of global nitrogen, which is one of the relevant substances for WQ requirements, is 

significant. As shown by Green et al. (2008), from 1800 to mid-1990, nitrogen loading to land surface has increased twofold 

because of the accelerated anthropogenic activities. For example, the reactive nitrogen produced by human in 2010 was 

approximately four times more than reactive nitrogen created by natural processes (i.e., biological nitrogen fixation) (Fowler 

et al., 2013; Vitousek et al., 2013). The increased nitrogen flows can be mostly attributed to farming practices. In the past 40 

half-century, the global demand for food has boosted the agricultural intensification and expansion, accompanied by use of 

fertilizer and animal manure for enhancing crop yields (Foley et al., 2005; Godfray et al., 2010). The excessive use of 

fertilizer and manure together with a relatively low nutrient use efficiency by crops have resulted in large losses of nitrogen. 

Zhang et al. (2017) estimated that total manure nitrogen production increased six times during 1860–2014 with an overall 

significant increasing trend. Additionally, the application of nitrogen fertilizer accounts for more than half of the total direct 45 

input of nitrogen to cropland (Fowler et al., 2013), and is expected to triple by 2050 (Mogollón et al., 2018).  

Nitrogen is an essential nutrient for growth and nourishment of all living organisms and is a key element of dietary proteins. 

Nevertheless, an overabundance of nitrogen in water can cause highly undesirable consequences for human health (Miller et 

al., 2021). There is evidence that high nitrogen levels in drinking water is a plausible risk factor for infant 

methemoglobinemia (Greer and Shannon, 2005) and colon cancer (McElroy et al., 2008). Excessive nitrogen loading of 50 

rivers can also create adverse environmental effects on aquatic and terrestrial ecosystems through three biochemical 

mechanisms (Jones et al., 2014): eutrophication, acidification, and direct toxicity, which might lead to numerous problems, 

such as proliferation of harmful algal blooms, exacerbation of hypoxic zones, fish mortality, and loss of biodiversity (Turner 

et al., 2003; Diaz and Rosenberg, 2008; Clark and Tilman, 2008). 

Curbing the aforementioned negative effects of excess levels of nitrogen underscores the need to develop effective WQ 55 

management and restoration practices. A successful management plan typically requires mathematical models to simulate 

and predict nutrient cycling through the hydrosphere. There is a large variety of models and modelling concepts which differ 

in terms of process complexity, process inclusivity, time scale, and spatial resolution of input data and simulations. These 

models try to provide better understanding of how multiple hydrologic, atmospheric, and anthropogenic factors and their 

interactions control water and nutrient flows (Arheimer and Olsson, 2003; Wellen et al., 2015). Importantly, with a growing 60 

understanding that WQ problems are global and pervasive, several attempts have been made in the last two decades aimed at 
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introducing and improving large-scale models. These models, in principle, have been built to investigate the regional, 

continental, and global patterns of WQ by considering biogeochemical fluxes between the atmosphere, terrestrial, and 

aquatic ecosystems.  

Bearing in mind that our imperfect knowledge of the real-world systems and the associated uncertainties impede fully 65 

capturing the nutrient dynamics (Sheikholeslami, 2019), large-scale models are indispensable tools for sustainable WQ 

management because (for more discussion see Kroeze et al. (2012) and Tang et al. (2019)): 

1. They can provide globally consistent assessments which are necessary for identifying global WQ trends and hotspot 

areas of water pollution.  

2. They can elucidate the interplays among various large-scale drivers of global nutrient cycling that are difficult to 70 

account for in smaller scales, such as international trade of food and animal feed.  

3. They can help extrapolate WQ estimates in regions where there is no or insufficient data for a detailed assessment. 

4. They can be used to examine the spatiotemporal trends of nutrient concentrations under a wide range of future 

global scenarios, such as hydrometeorological conditions, land use change, hydrology regulation, etc.  

5. They can be effectively coupled with other global models constructed for replicating economy, land use dynamics, 75 

climate, livestock population, crop growth, and other components related to WQ. 

In line with this, the hydrology and WQ modelling community has become increasingly sophisticated in the use of large-

scale models. Despite a considerable advancement in model development, practical limitations, such as data scarcity and 

computational costs, still preclude effective application of the existing models on global scale (Döll et al., 2008; Kauffeldt et 

al., 2013). This calls for continued improvement of efficient large-scale models to deepen our knowledge of spatiotemporal 80 

variability of WQ indicators globally. In the next subsection, we provide an overview of recent large-scale modelling studies, 

with particular focus on data-driven and machine learning models. We also discuss their characteristics and identify 

shortcomings. 

1.2 Motivation: harnessing the power of machine learning for large-scale WQ modelling 

In the last two decades, Earth system sciences have seen substantial effort in the development of large-scale WQ models 85 

simulating the nutrient cycle on continental and global scales. The complexity of large-scale models varies based on their 

objectives and applications. These models broadly fall into two groups. Process-based mechanistic models historically 

evolved to incorporate known (basin/local-scale) processes of system behaviors, and their development has mainly focused 

on solving the conservation equations for mass, energy, momentum, and kinematics under certain simplified assumptions. In 
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contrast, data-driven models link WQ parameters (i.e., pollutants) to environmental and anthropogenic variables based on 90 

weaker physical constraints. Data-driven models are often constructed using either empirical/statistical relationships or 

machine learning techniques. Note that this classification is not exclusive. Indeed, some of the large-scale models integrate 

both process-based and empirical representations of physical mechanisms; see, for example, He et al., 2011a; Beusen et al., 

2015; Jackson-Blake et al., 2017. 

Although process-based models are the important tool for understanding physical mechanisms, their robustness and accuracy 95 

may suffer from our incomplete knowledge of the hydrogeochemical processes and physical properties of the system when 

upscaling. These models often have many parameters that need to be calibrated or estimated, which is sometimes 

troublesome due to wide ranges of parameters and complex interactions among them. Further, a limited number of 

observation sites, required to configure (i.e., initialize, parameterize, and calibrate) such models, restricts their usefulness. 

Another critical limiting factor for the application of these models at large scales is computational demand. Their simulation 100 

time typically exceeds the computational resources available for a comprehensive analysis of the model behavior under 

different conditions. Examples of process-based models that have been previously applied to large-scale WQ modelling 

include INCA (Whitehead et al., 1998), SWIM (Huang et al., 2009), DLBRM (He and DeMarchi, 2010), HYPE (Donnelly et 

al., 2013), SWAT (Abbaspour et al., 2015), and VIC-RBM (Raptis et al., 2016).  

On the other hand, data-driven machine learning (ML)-based models can learn nonlinear, non-monotonic relationships 105 

between system state variables without explicit mechanistic information on the processes. ML algorithms can model the 

spatiotemporal dynamics of a dependent variable (e.g., nitrogen concentration) as the function of a set of chosen predictor 

variables (e.g., precipitation and temperature values, fertilizer use, etc.), purely based on given data. More importantly, ML-

based models can extract information from diverse datasets, possibly including those that are typically not used in process-

based models. In addition to solving prediction problems, ML algorithms are useful tools for performing classification and 110 

grouping of data as well as building rule-based systems. It is important to note that establishing a physics foundation for ML-

based models can be achieved by supplying the physical knowledge to the model via a proper statistical analysis of the input-

output data and the choice of adequate input variables (Guillemot et al., 2021; Guo et al., 2020), and applying physical 

constraints on input-output relationships by penalizing solutions that violate physical principles. 

The opportunity presented by ML-based models is based on the fact that although observational data for global WQ 115 

indicators are scarce, data that measure the drivers of these parameters (i.e., covariates) are not. In fact, the explosion of large 

environmental datasets along with rapid advancements in artificial intelligence technology have caused ML methods to 

attain outstanding results in the regression estimation of WQ indicators at a range of spatiotemporal scales (Tiyasha et al., 

2020; Sujay Raghavendra and Deka, 2014). Another important advantage of modern ML algorithms is their high efficiency 

during the training procedure. Thus, ML-based models can offer valid and computationally frugal alternatives for projection 120 

of future change effects on surface WQ. Notwithstanding the success of ML-based WQ models, a few pitfalls have 
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hampered their wider adoption (Reichstein et al., 2019): first is the lack of interpretability of ML-based models. These 

models are often built for prediction and do not provide physical relationships, i.e., they are treated as “black boxes”. 

Second, and more fundamentally, the ML-based estimations are typically prone to uncertainty because of the finite sample 

size, i.e., not knowing the output variable at unsampled regions outside the training dataset. Third, choosing the best ML 125 

algorithm might not be easy due to the existence of many different algorithms. To further synthesize the literature from the 

last decade, Table 1 provides an overview of papers that have employed ML to simulate WQ at large spatial scales. 

Table 1. Recent studies published from 2011 to 2021 that applied ML to large-scale surface WQ modelling. 

Reference 
ML 

algorithm 

Spatial scale Temporal scale WQ 

constituent(s) Resolution Extent Time step Extent 

He et al. (2011b) ANN River basins Japan Monthly 1995 TNC 

Álvarez-Cabria et al. (2016) RF River basins Spain Annual 2003-2009 N, P 

Ceccaroni et al. (2018) DT - Wadden Sea Daily 2003-2015 Forel-Ule index 

Collins et al. (2019) MLT Lakes 
United 

States 
Seasonal 1980-2011 TN, TP 

Ross and Stock (2019) DT - 
Chesapeake 

Bay 
Monthly 1986-2007 DO 

Russ et al. (2019) RF 0.5-degree Global Annual 1992-2013 EC 

Chen et al. (2020) 
DT, RF, 

DCF 
River basins China Weekly 2012-2018 

pH, DO, 

CODMn, NH3-N 

Dony (2020) RF River basins Great Lakes Annual 2000-2016 DIN, SRP, PP 

Mellios et al. (2020) 
DT, SVM, 

RF 
Lakes Europe Monthly 1980-2009 CBB 

Shen et al. (2020) RF 30-arc-second  
United 

States 
Seasonal 1994-2018 N, P 

Arias-Rodriguez et al. (2021) ELM, SVR Lakes Mexico Daily 2013-2019 Chl-a, TSM, SDD 

Thorslund et al., 2021 RF River basins Global Monthly 1980-2010 EC 

Wang et al. (2021) RF River basins 
Texas Gulf 

Region 
Seasonal 2011 

NO3−N, TP, 

E.coli 

Zhi et al. (2021) LSTM River basins 
United 

States 
Monthly 1980-2014 DO 

 

From our review of literature, we make three critical observations:  130 

1. Despite a plethora of powerful ML methods, ANN is the most popular method for WQ modelling. As reported by 

Tiyasha et al. (2020), from 2013 to 2019, the average number of published papers that used ANN-based WQ 

models was 20 paper per year and is still increasing. 
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2. Unlike the data driven empirical WQ models (e.g., Green et al., 2004; Schultz et al., 2006; Mayorga et al., 2010; 

McDowell et al., 2020), our thorough search of the relevant literature indicated that ML methods have rarely been 135 

implemented at global scale. 

3. Despite being successful in simulating and predicting surface WQ at catchment-scale, ML methods have not been 

utilized to provide spatially explicit (gridded) estimates of WQ indicators. Based on our observation, almost all ML 

models are lumped in space (see Table 1). 

The above-mentioned issues highlight the need for an improved ML-based model for efficient and effective estimation and 140 

mapping of the global WQ constituents at a higher spatial resolution. Such global model can further help assess the state of 

worldwide aquatic biodiversity, determine water-related health hazard over large areas, and evaluate impacts of global 

drivers such as climate change on WQ. This gap motivated our development of the spatiotemporal ML-based global WQ 

model in the present study.  

1.3 Objectives and outline 145 

The primary goal of this study is to introduce a global WQ model that is based on ML approach. The model is designed to 

estimate the distribution of nitrogen concentrations (nitrate-nitrite) across large global river basins for the period of 1992–

2010 based on the observations recorded in the United Nations Global Freshwater Quality Database (GEMStat; 

https://gemstat.org/) and other environmental and anthropogenic variables. Our global model maps the predicted nitrogen 

levels at a 0.5-degree (≈ 55 km) spatial resolution and with a monthly time step.  150 

To achieve this, we developed a spatiotemporal random forest WQ model. Random forest is a well-known ML technique 

that creates many decision trees from bootstrap samples of data. Random forest can efficiently handle large, complex, and 

heterogeneous geo-environmental datasets with a superior predictive performance (Fox et al., 2020; Knoll et al., 2019). To 

our knowledge, this study is one of the first attempts to estimate nitrogen concentrations at global scale using ML methods. 

Although we demonstrate the utility of the proposed random forest in simulating nitrogen levels, the overall modelling 155 

procedure presented here can also be implemented in conjunction with any ML technique for predicting other WQ indicators 

at large scales. Therefore, the main objectives of this research are: 

1. To develop and validate a random forest-based predictive model for evaluating global levels of nitrogen using 

existing monitoring data. 

2. To identify where the nitrogen pollution is most severe using predicted patterns of nitrogen concentration in large 160 

global river basins. 

3. To determine key drivers of nitrogen variability at global scale.   
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The remainder of this paper will proceed as follows. Section 2 describes data gathering procedure and discusses our 

approach to selection of predictor variables. Details of model construction and the utilized validation strategy are presented 

in Section 3. In Section 4, first, model performance evaluation and out-of-sample validation results are analysed, then we 165 

illustrate our model’s usefulness for understanding the state of the WQ issue, i.e., nitrogen pollution hotspots and its causes. 

Finally, conclusions and recommendations for future research are given in Section 5. 

2 Data collection and pre-processing 

2.1 Global nitrate-nitrite measurements 

For training our ML-based global WQ model and analysing its performance, we focused on nitrate-nitrite nitrogen 170 

(NOx―N) as the response variable in this study. NOx―N is one of the dominant forms of nitrogen and is very soluble in 

water, which can significantly deteriorate the quality of surface water. Nitrogen in synthetic fertilizer, manure, and 

wastewater can be decomposed to ammonia, which is then oxidized to NOx―N and will subsequently enter the 

groundwater, streams, and lakes, leading to eutrophication, hypoxia, or human health implications. We collected NOx―N 

monitoring data from the GEMStat repository which was established by the UNEP GEMS Water Programme (Barker et al., 175 

2007). GEMStat provides an online, globally harmonized, open-access database for WQ at global, regional, and local scales. 

It currently contains more than 3.5 million observations for rivers, lakes, reservoirs, wetlands, and groundwater systems from 

approximately 3,000 stations. Overall, data is available from 1965 to 2017 and for approximately 250 WQ indicators.  

NOx―N is well represented in the data repository of GEMStat, with more observations and fewer missing values (da Costa 

Silva and Dubé, 2013). In total, GEMStat records 82,302 NOx―N observations from 718 stations located in 75 countries 180 

(see Fig. 1). For our modelling purpose, we extracted data with the length of 18 years across all river monitoring stations. 

This resulted in 42,413 temporally consistent NOx―N observations within the 1992–2010 period, from which we computed 

the monthly aggregated values. The selected period was also compatible with most of our predictor variable datasets (see 

section 2.2). 

 185 
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Figure 1: Spatial distribution of GEMStat (https://gemstat.org/) monitoring stations (blue dots) used in this study for building ML-

based WQ model. 

 

Fig. 2 displays the distribution (PDF) of the global NOx―N values. Note that 10% of the monthly observations in our 190 

training dataset have values smaller than 0.02 mg/L (10th percentile) and 10% of them have values larger than 1.46 mg/L 

(90th percentile). Also, about 7.24% of the GEMStat-monthly NOx―N measurements are less than 0.001 mg/L. The mean 

and standard deviation of the monthly measurements are 0.63 and 2.23 mg/L, respectively. To improve the data symmetry 

and suitability for use in our ML-based model, all observed NOx―N concentrations were transformed using Box–Cox 

technique. The optimal Box–Cox transformation parameter was obtained using the maximum-likelihood approach. 195 
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Figure 2: Probability density function (PDF) estimate of the global (monthly aggregated) NOx―N measurements across all 

GEMStat monitoring stations, over the 1992-2010 period. Note that the sum of the bar areas is less than or equal to 1. 

2.2 Predictive variables selection 200 

Several processes interacting at different spatiotemporal scales, along with varying intensities, drive variability of the 

nitrogen in water. Thus, the primary concern of using any ML method for global modelling is selecting an optimal 

combination of the predictor variables. In this study, we systematically identified predictors considering three selection 

criteria, including process representation, model complexity, and data availability, as follows.  

Using domain knowledge obtained from consultation with experienced modelers, we first determined an initial set of 205 

variables likely to control nitrogen concentration. As a result, a total of 27 potential explanatory variables were identified. 

Then, we screened the list of variables to reduce the risk of including a bevy of redundant information and generated a more 

parsimonious selection. This has been achieved in a process-informed manner through an extensive literature review (for 

more discussion see Lintern et al., 2018; Billen et al., 2013; Bouwman et al., 2013 and the references therein). Lastly, among 

these widely known controls on constituent concentrations, we chose a subset of relevant and discriminative predictors based 210 

on the open data criterion. Therefore, when data were not readily available in existing resources, the variables were excluded 

from the list. As can be seen from Table 2, the selected space-time predictors can be generally categorized into three classes 

of anthropogenic, hydroclimatic, and geographic factors. 

Table 2 An overview of predictor variables, their spatiotemporal scales, and sources used in this study 

Variable 
Spatial scale Temporal scale 

Source 
Resolution Extent Time step Extent 

Livestock population 

(Sheep, chicken, pig, cattle, buffalo) 
5-arcmin Global - 2010 

Gilbert et al. 

(2018) 

0

1

2

3

4

5

0.03 0.72 1.41 2.10 2.78 3.47 4.16 4.85

P
D

F
 e

s
ti

m
a
te

NOx−N concentration (mg/L)

1st Quartile: 0.06
Median: 0.25

3rd Quartile: 0.61
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Human population 0.5-degree Global Annual 1990-2015 
Kummu et al. 

(2018) 

Wastewater production 5-arcmin Global - 2015 Jones et al. (2021) 

Cropland area 0.5-degree Global Annual 1961-2014 
Jackson et al. 

(2019) 

Synthetic nitrogen fertilizer use 0.5-degree Global Annual 1900-2013 Lu and Tian (2017) 

Precipitation 0.5-degree Global Monthly 1900-2013 
Willmott, and 

Matsuura (2001) 

Temperature 0.5-degree Global Monthly 1900-2014 
Willmott, and 

Matsuura (2001) 

Runoff 0.5-degree Global Monthly 1902-2014 
Ghiggi et al. 

(2019) 

DEM 
15-arc-

second 
Global - 2010 

Danielson, and 

Gesch (2011) 

 215 

For these datasets, all coordinates were projected into WGS84 global reference system. Then, for each predictor, the k-

nearest neighbour imputation was applied to replace the missing values with the mean values obtained from the 100 nearest 

neighbours found in the data via a Euclidean distance metric. Because of the different resolutions, we subsequently reshaped 

all predictors to the same spatial resolution of 0.5-degree using bilinear interpolation resampling technique and the same 

temporal interval. After standardizing data (i.e., cantering at the mean and scaling by the standard deviation), all predictor 220 

variables were Box-Cox transformed. Finally, the 13 selected predictors were matched to the monthly NOx―N 

concentrations of monitoring stations shown in Figure 1. This resulted in a training dataset containing a total of 34,115 

matched monthly measurements and all predictors. In this way, we produced a consistent, spatially explicit global-coverage 

datasets for the years 1992–2010. 

3 Model development 225 

The assembled dataset is represented by a collection of observations 𝐘 = {𝑦(𝑠𝑙 , 𝑡𝜏), (𝑠, 𝑡) ∈ 𝒮 × 𝒯 ⊆ ℝ2 × ℝ} measured at 

𝑙 = 1,2, … , 𝑛 spatial locations and at 𝜏 = 1,2, … , 𝑇 time points over spatial domain 𝒮 and temporal domain 𝒯. In the present 

study, 𝑦(𝑠, 𝑡) can be considered as a realization of water quality process, i.e., NOx―N concentrations. There are various 

data-driven approaches for analysing and automatically extracting information from Y without the need to construct explicit 

physical models. Compared to traditional data-driven methods such as Kriging, inverse distance weighting, and nearest 230 

neighbor interpolation, ML methods are increasingly becoming more popular mainly because they cope better with high-

dimensional data and are not restricted to linear relations (Domingos, 2012). For this study, as described in the next sub-

sections, we designed a space-time ML-based model using the random forest method. 

3.1 Proposed spatiotemporal random forest model 

Random forest is a relatively modern ML method that basically uses the assemblage of multiple iterations of decision trees. 235 

With the capability of processing large environmental datasets and handling nonlinear relationships, random forest has been 
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increasingly become a popular data analysis method that outperforms other ML-based tools (Fox et al., 2020). Details of 

random forest algorithm can be found in Breiman (2001); Liaw and Wiener (2002); Friedman et al. (2009) and were briefly 

described below. 

In summary, random forest is nonparametric regression technique which contains a collection, or “forest,” of independent 240 

regression trees {𝑡(𝑘): 𝑘 = 1,2, … , 𝐵} as base learners. Each growing tree, 𝑡(𝑘), in the forest is made from bootstrap samples 

drawn, with replacement, from the original training dataset. These trees are formed by randomly selecting 𝑚 variables out of 

𝑝 predictors at each parent node, and the best split-point is found among these m variables using greedy recursive algorithm 

to create two child nodes. This greedy algorithm recursively partitions a group of 𝑚 predictor variables based on identifying 

the predictor that minimizes error when regressed against the output of interest. Note that trees are grown deep with no 245 

pruning.  

In the random forest algorithm, the remaining observations, which are not included in the bootstrap sample, are called Out-

Of-Bag (OOB) sample (also referred to as test set). For each tree the prediction performance (measured, for example, by 

mean squared error (MSE)) on the OOB sample is recorded and is used for measuring the prediction error of the k-th 

regression tree. After calculating all individual tree predictions, they are averaged to obtain the final random forest 250 

prediction. This process works as a cross-validation for each tree in the forest and provides an unbiased overall model error 

estimate (Prasad et al., 2006). Hence, the prediction at a new site, 𝑓𝜑,, with predictor vector 𝒙, is found by estimating the 

mean value of all regression trees, 𝑓(𝑘), i.e., 

𝑓𝜑(𝒙) =
1

𝐵
∑ 𝑓(𝑘)(𝒙; 𝜃𝑘)𝐵

𝑘=1  ,          (1) 

where the variable 𝜃𝑘  determines which predictors get included in the k-th tree. Eq. (1) explains the main idea behind 255 

random forest, which is averaging over B fitted regression trees to reduce variance, and thus to improve predictive 

performance compared to a single regression tree. 

3.1.2 Measuring variable importance using random forest 

An important built-in feature of the random forest is its ability to assess the variables' predicting strength (expressed as 

variable importance ranking) using the recorded OOB prediction errors. This feature helps screen the relatively small 260 

number of important factors from the pool of selected predictor variables, thereby identifying which variables are strongly 

driving the WQ indicator of interest. Random forest evaluates variable importance by estimating the mean decrease in 

prediction accuracy before and after randomly permuting the values of a given predictor in the OOB data.  For the k-th tree, 

when randomly permuting the i-th predictor, MSE of the OOB data can be calculated as (Wei et al., 2015): 

𝑀𝑆𝐸(𝑘) =
1

𝑁𝑂𝑂𝐵
∑ (𝑦𝑗

(𝑘) − 𝑓𝑗
(𝑘)

)
𝑁𝑂𝑂𝐵
𝑗=1      and    𝑀𝑆𝐸(𝑘)

𝑖 =
1

𝑁𝑂𝑂𝐵
∑ (𝑦𝑗

(𝑘) − 𝑓𝑗,𝑖
(𝑘)

)
𝑁𝑂𝑂𝐵
𝑗=1  ,    (2) 265 
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where 𝑁𝑂𝑂𝐵 is the OOB sample size; 𝑦𝑗
(𝑘) is the j-th observation in the OOB data of the k-th tree; and  𝑓𝑗

(𝑘)
 and 𝑓𝑗,𝑖

(𝑘)
 are 

predictions of the OOB data before and after randomly permuting i-th predictor, respectively. Note that, in Eq. (2), if the i-th 

predictor is not selected on the split-point of any node of the k-th tree, then then 𝑓𝑗
(𝑘)

= 𝑓𝑗,𝑖
(𝑘)

 (for all j), and thus 𝑀𝑆𝐸(𝑘) =

𝑀𝑆𝐸(𝑘)
𝑖.  

Assuming that permuting the values of one predictor cannot increase prediction errors if that predictor dose not significantly 270 

impact model accuracy, the difference between 𝑀𝑆𝐸(𝑘) and 𝑀𝑆𝐸(𝑘)
𝑖 is then averaged over all trees and considered as 

importance measure. In other words, the overall importance of i-th predictor, 𝑃𝐼𝑀𝑖, can be expressed as the mean decrease in 

accuracy values of all trees: 

𝑃𝐼𝑀𝑖 =
1

𝐵
∑ (𝑀𝑆𝐸(𝑘)

𝑖 − 𝑀𝑆𝐸(𝑘))𝐵
𝑘=1  ,         (3) 

The worse the model performs when the i-th predictor variable is randomized (i.e, higher 𝑃𝐼𝑀𝑖), the more important that 275 

variable is in terms of predicting the response variable. 

3.1.3 Incorporating space and time into standard random forest 

The standard random forest method does not exploit the spatial and temporal information of the observations, essentially 

being ‘aspatial’ and ‘nontemporal’ algorithm. When used for modelling spatiotemporal data, the standard method generates 

a single output which is estimated from the whole extent of the study area, using all available data points over time. For WQ 280 

modelling, however, this can be a crucial problem since WQ constituents are naturally characterized by spatial and temporal 

heterogeneity, which indicates that the true underlying relationship between predictant and predictor variables can be 

spatially and temporally varying. In the present work, therefore, it is necessary to construct a random forest model that can 

adequately capture the spatial-temporal characteristics of the nitrogen levels.  

Two strategies have been proposed in the literature to account for spatial information. The first strategy uses a hybrid 285 

modelling framework by embedding Kriging and Gaussian process modelling into the standard random forest method (Saha 

et al., 2021; Canion et al., 2019). The second strategy is more straightforward because it explicitly utilizes geographic 

information as the auxiliary inputs, for example, by adding geographic coordinates (Behrens et al., 2018; Meng et al., 2018) 

or other spatial distances (Li et al., 2011; Wei et al., 2019) into the list of predictors. We followed the second strategy by 

incorporating latitude and longitude into our WQ model as two additional predictors since they contain geographical 290 

information. Regarding the time dimension, we added two more time-variables, namely Cumulative Month since 1992 (CM) 

and Month of the Year (MOY) to represent distance in the time domain, thereby better capturing dynamics of nitrogen 

levels. 

Next, we produced a global space-time regression matrix for our model by binding these auxiliary variables and values of 

predictors together. As a result, the final set of predictors consists of 17 variables which are expected to be key determinants 295 
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of source, mobilization, or delivery of nitrogen concentrations globally. Fitting a random forest model for this space-time 

regression matrix follows the same procedure as described previously in section 3.1.1. Based on the fitted model, we 

generated timeseries of NOx―N concentrations as raster maps within the space-time domain of interest. Fig. 3 is the 

schematic illustration of how the proposed spatiotemporal random forest can be applied to predict NOx―N at a new 

location. 300 

 

 

Figure 3: A schematic representation of the proposed spatiotemporal random forest model. 

3.2 Model training and tuning 

When training ML methods, the performance of algorithm is highly sensitive to how the dataset is partitioned into training 305 

and testing samples. To tackle this issue, we implemented k-fold cross validation strategy. This validation strategy starts by 

randomly splitting dataset into k subsets of similar size. Then, a random forest is learned using observations in 𝑘 − 1 subsets, 

and an error value is calculated by testing the algorithm on the remaining set. The k-fold cross validation estimation of the 

error is the average value of the errors committed in each fold. Additionally, the process of partitioning can be repeated 

several times (known as repeated k-fold cross validation) to create multiple random splits of the dataset. It has been often 310 

presumed that performing repeated k-fold cross validation on different random partitions can stabilize the error estimation, 

leading to the reduction in the variance of the estimator (Rodriguez et al., 2010).  In the present work, we conducted 10-fold 

cross validation with 3 repeats. The overall cross validation accuracy was taken as the average of mean absolute error (MAE) 

obtained from each repeat.  

Input: Spatiotemporal covariates Output: NOx-N concentration Random forests

…

Overlaying and binding all variables Generating predictions

Temporal information

Model fitting

Features
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Unlike many data-driven algorithms, there are only two tuning parameters need to be calibrated for random forest: (i) the 315 

number of variables selected randomly at each node (m) and (ii) the number of trees in the forest (B). For a random forest 

model, B controls the variation among different regression trees and m determines the extent of overfitting. Increasing the 

number of trees typically decreases the prediction error of the random forest up to a certain point. For B values larger than 

this threshold, model accuracy changes very slightly, whereas computational demand increases significantly (Liaw and 

Wiener, 2002; Freeman et al., 2015). 320 

4 Results and discussion 

4.1 Model performance assessment 

Our global random forest model was tuned by varying B between 300, 400, 500, 800, and 1000, and m between 2, 4, 8, 12, 

and 14. Based on these experiments, the optimal setting was found to be 𝐵 = 500 and 𝑚 = 2. For the final model, the 10-

fold cross-validation (repeated 3 times) yielded average MAE value of 0.44, suggesting a good performance of the model. 325 

Fig. 4(a) further verifies the effectiveness of the model by comparing response values estimated by the trained model with 

the observed values (in a Box-Cox transformed scale), across all monitoring sites. As additional performance criteria, we 

calculated the coefficient of determination ((𝑅2) and Nash-Sutcliffe efficiency criterion (𝑒𝑁𝑆) between all cross-validated 

predictions and their corresponding observations. In Fig. 4(a), we can see that the observations lie reasonably close to the 

predicted concentrations, with 𝑒𝑁𝑆 = 0.86. The obtained 𝑅2value implies that the proposed random forest algorithm has 330 

accounted for 81% of the variability of the observed NOx―N values. This confirms the ability of the random forest model in 

accurately establishing the relationships between monthly NOx―N observations and predictor variables. Note that, for 

poorly predicted NOx―N values, the observations are, in general, larger than predicted values, indicating conservative 

estimations by the proposed model. Attending to this issue is particularly important when applying our model to evaluate 

risk of high nitrogen concentrations. 335 

 

 

Figure 4: Performance of the random forest model for predicting NOx―N concentrations. Subplot (a) shows the pairwise scatter 

plot of the monthly average observations versus corresponding cross-validated predictions. The solid red line represents the linear 
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regression fit. Subplot (b) shows temporal distribution (annual average) of the residuals and subplot (c) depicts histogram of the 340 
residuals, obtained from all training stations. Note that subplots (a) and (b) are in Box–Cox-transformed space, whereas subplot 

(c) is in the original scale (back transformed). 

We performed a thorough residual analysis in Fig. 4(b) and (c). The temporal trend of residuals for all monitoring stations (in 

a Box-Cox transformed scale) are displayed in Fig. 4(b). As can be seen, the average annual residuals are approximately 

cantered around zero and are relatively constant over time and space. This confirms that our model can capture the 345 

spatiotemporal structure in the NOx―N data. Fig. 4(c) depicts the histogram of the residuals obtained from all simulated and 

observed (back transformed) data, which has mean of 0.10 mg/L and standard deviation of 1.93 mg/L. We observe that the 

distribution of the residuals is close to being approximately normally distributed, though it has heavier tail than a normal 

distribution. 

Also, we carried out an out-of-sample validation where a portion of the data which was not used to build the model served as 350 

an independent test set for out-of-sample estimation of the performance of the proposed model. Recall that, to train the 

random forest model, we used monthly NOx―N observations which cover 1992 to 2010 (sample size = 34,117). The rest of 

the observations (sample size = 28,802) which does not belong to this period was considered as ‘new’ data for out-of-sample 

testing. The scatterplot in Fig. 5(a) shows the out-of-sample validation results for NOx―N estimates. We see that global 

monthly NOx―N estimates are well correlated with ground measurements, with 𝑒𝑁𝑆  and 𝑅2 values of 0.60 and 0.61, 355 

respectively. Hence, the proposed model reproduced the new NOx―N values with a reasonable accuracy. This fair 

agreement between random forest predictions and independent NOx―N observations provides confidence to the overall 

approach. The histogram of the residuals obtained from all simulated and observed out-of-sample data is shown in Fig. 5(b), 

with mean of -0.51 mg/L and standard deviation of 4.10 mg/L. 

 360 

 

Figure 5: Out-of-sample performance-estimation of the random forest model for predicting out-of-sample NOx―N values. Subplot 

(a) shows the pairwise scatter plot of the monthly average observations versus corresponding predictions in out-of-sample set. The 

solid red line represents the linear regression fit. Subplot (b) depicts histogram of the residuals, obtained from all out-of-sample 

data. Note that subplot (a) is in Box–Cox-transformed space, while subplot (b) is in the original scale (back transformed). 365 
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4.2 Patterns of nitrogen concentrations and global hotspots 

To characterize temporal and spatial variations of nitrogen, we generated global spatial maps for each month using our 

random forest model for every year in the period of 1992–2010. Since large drainage basins have historically played a vital 

role in the localization of cities as well as the distribution of human activities, our temporal and spatial analysis was cantered 

on the world’s 115 major river basins. In this paper, the basin polygons (in black) were derived from the Global Runoff Data 370 

Centre (GRDC, 2020). The total area of this river basins covers ~70% of the global land surface area with ~60% of the 

global population. Fig. 6 presents the estimated spatial distributions of mean NOx―N across 115 major river basins 

averaged over 1992-2010. As can be seen, the estimated NOx―N concentrations exhibited a considerable spatial variability 

over the globe. The highest rates of nitrogen can be especially found in many European basins, United States, parts of 

Mexico, southern Brazil, eastern Argentina, West Africa, South Asia, eastern China, parts of South Korea and Japan. 375 

 

 

Figure 6: Simulated global map of NOx―N concentrations averaged over 1992–2010, across major river basins of the world.  

To investigate the spatial pattern of nitrogen changes from the year 1992 through 2010, we averaged the estimated NOx―N 

concentration in each grid cell during the 1990s (1992–1999) and 2000s (2000–2010). Fig. 7 depicts the relative percentage 380 

change between these two periods. This map can reflect the spatial heterogeneity of NOx―N concentration change over 

study period, avoiding extreme values in a specific year. As shown in Fig. 7, almost entire eastern China has experienced an 

enhancement of NOx―N concentration. In addition, eastern and central parts of Canada, parts of South America, southern 

France, Switzerland, parts of Balkans, Belarus, Baltic states (Latvia, Lithuania, and Estonia), southern Finland, Pakistan, 

Afghanistan, parts of Russia, mainland southeast Asia (Cambodia, Laos, Burma, Thailand, and Vietnam), and south-eastern 385 

Australia showed a significant increasing gradient of NOx―N concentration in their rivers from 1990s to 2000s (over 20% 

at some locations). However, model results also indicate that in many regions of the world there has been a considerable 

decline in nitrogen levels (at some locations more than 20% decrease) during the past decades, including south Korea, India, 

Ukraine, Poland, Germany, United Kingdom, Central Africa, and northern Brazil. 

https://doi.org/10.5194/hess-2021-618
Preprint. Discussion started: 1 February 2022
c© Author(s) 2022. CC BY 4.0 License.



17 

 

 390 

 

Figure 7: Spatial pattern of NOx―N concentrations change during the 1990s (1992–1999) and recent decade (2000–2010).  

The latitudinal distribution of average (annual) estimated NOx―N concentrations during 1992-2010 is shown in Fig. 8. We 

clearly observe that the NOx―N concentrations were low for areas with low temperature and little precipitation. In contrast, 

the dominant regions of the concentrations can be found in the Northern Hemisphere, where maximum values occurred in 395 

20°N–60°N. These latitudes correspond to the high agricultural activity and high livestock densities (Potter and Ramankutty, 

2009). In the Southern Hemisphere, the concentrations are generally much lower, except for 20°S–40°S, possibly due to high 

fertilizer use by Brazil, Argentina, and South Africa (Lu and Tian; 2017).  

 

 400 

Figure 8: The latitudinal distribution of predicted NOx―N concentrations obtained from Fig. 7. Each blue dot represents the 

value of each 0.5° resolution grid cell. 
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By combining the results shown in Fig. 6-8 we identified several river basins over the globe where NOx―N was densely 

concentrated, and accordingly the nitrogen pollution might be most serious. Based on our results, the high nitrogen level has 

occurred in basins with extensive agriculture and low precipitation surpluses, which was also reported by previous studies 405 

(see, e.g., Shindo et al., 2003; He et al., 2011a). Overall, major hotspots of NOx―N were the river basins of the Mississippi , 

Sebou, Egypt’s Nile Delta, Indus, Gang, Yellow, Yangtze, Yongding He, Huai He, Nakdong, Kitakami, Lower Amur, and 

the Lake Urmia basin as well as most of the European river basins, such as Rhine, Danube, Vistula, Thames, Trent, and 

Severn. 

4.3 High importance factors influencing predictions of nitrogen levels 410 

For the proposed random forest model, we examined predictor variable importance in Fig. 9. The relative importance of the 

17 selected variables to predicting nitrogen levels was measured by mean decrease accuracy criterion (as described in section 

3.1.2). As shown in Fig. 9, two variables representing temporal dynamics of nitrogen (MOY and CM) are the most 

influential variables. This reveals that, distinctly, the most important factor for predicting monthly NOx―N concentrations is 

time, i.e., cumulative and/or month of the year. In other words, incorporating these variables into the random forest allows 415 

our model to fit different spatial patterns for each month.  Other strongly influential predictors are (in rank order): (i) cattle 

population, (ii) nitrogen fertilizer use, (iii) temperature, (iv) precipitation, and (v) pig population. We also observe that 

elevation (DEM) proved less important to overall model accuracy. Presumably, the effect of elevation was already accounted 

for by the other spatial covariates (i.e., latitude and longitude). 

 420 

 

Figure 9: Importance plot derived from the proposed random forest model. The horizontal axis lists predictor variables in order of 

decreasing importance. The vertical axis (unitless) represents the mean decrease in accuracy divided by the standard deviation of 
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the decrease in accuracy after permuting the variable of interest. Note that only the relative importance scores between predictors 

should be interpreted, not the absolute values of the scores on y-axis. 425 

As demonstrated in Fig. 9, among different livestock categories used in this study, the number of cattle and pigs contributed 

the most to model accuracy, followed by sheep and chicken densities, while buffalo population is a non-influential variable 

mainly because buffaloes are likely less common than other species. It is worth mentioning that, based on FAO (2018)’s 

estimates, more than 50% of the global manure-nitrogen input (both manure applied to soil and manure left on pasture) was 

produced by cattle in 2005. Moreover, stocks of pigs increased by ~140% worldwide, which caused more than five-fold 430 

increases in the nitrogen applied to soils from pig manure during 1961-2014 in Africa and Asia (FAO; 2018). This together 

with our modelling results highlight that livestock activities (e.g., manure/slurry application, animal housing, milk parlour 

washings, etc.) is one of the primary accelerators of water contamination in global scale.  

The role of nitrogen fertilizer use as a chief determinant of nitrogen level is also reflected in Fig. 9 wherein nitrogen fertilizer 

use is among the top four strongly influential predictors. The high importance of this variable can be justified because of 435 

both cropland expansion and raised fertilizer application rate in per unit cropland area globally. This supports the results 

presented in our hotspot analysis as well (see Fig. 6). Based on our analysis, some of the river basins, where nitrogen 

pollution is most severe, are in the top five fertilizer-consuming countries (China, India, the US, Brazil, and Pakistan), which 

accounted for more than 60% of global fertilizer consumption (Lu and Tian, 2017). We also found that wastewater 

production is a moderately influential predictor for the NOx―N concentrations, clearly because it is not the largest source of 440 

nitrogen contamination of surface water in global scale (Billen et al., 2013). However, the disposal of wastewater with a low 

level of treatment might have considerable implications for managing anthropogenic nitrogen flows in highly populated river 

basins, as the point sources of nitrogen are primarily associated with wastewater drainage. 

Although stream WQ is significantly related to runoff from agricultural areas and synthetic fertilizer application during 

agricultural production, the fraction of cropland area does not seem to have a significant contribution to the model 445 

performance (see Fig. 9). It is very surprising to see such a low importance score for cropland area. This might be partially 

due to a high correlation between agricultural fraction of land area and nitrogen fertilizer use. In fact, the impact of cropland 

area might be accounted for by the other correlated variable (i.e., nitrogen fertilizer use). Strobl et al. (2007) reported that 

when using permutation-based mean decrease in prediction accuracy as an importance measure, there might be a bias in 

estimating importance of correlated variables by random forest algorithm. Another possible reason for this observation might 450 

be related to the nature and scale of the predictor variable itself. Pham et al. (2021) asserted that permutation-based metrics 

can underestimate importance of zero-inflated variables that are heavily skewed (e.g., cropland area) compared to variables 

that are more normally distributed (e.g., temperature). 

As illustrated in Fig. 9, model performance was also highly sensitive to both temperature and precipitation, though 

temperature tends to be slightly more important. The high importance of these hydroclimatic variables implies that climate 455 
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change can strongly control nitrogen contamination across the globe. For example, there is evidence that high temperatures 

(e.g., summer heatwaves) promote blooms of harmful cyanobacteria, through increased biological growth rate when nitrogen 

is present (Myer et al., 2020). However, evidence for the impact of precipitation on WQ is mixed, depending on the timing, 

magnitude, and recurrence of precipitation, though random forest should be capable of capturing these non-linear effects. It 

is generally hypothesized that more extreme precipitation events generate greater nutrient runoff (Lu et al., 2020). On the 460 

other hand, nutrient concentrations can be reduced through greater flushing due to precipitation (Ho and Michalak, 2019). It 

is noteworthy that, with climate change expected to perturb temperature and precipitation regimes in most regions across the 

world, climate change impacts on WQ have often been overshadowed by water quantity-related problems (i.e., droughts and 

floods). 

5 Conclusions and future research 465 

The high-volume and intensive crop and livestock production permitted by widespread fertilizer use has led to substantial 

change in nitrogen loads in rivers globally. Given the anticipated increase in human and livestock population, reactive 

nitrogen is a major environmental threat not only to water bodies but the air and soils with repercussions for human health 

and biodiversity. Tackling this problem requires understanding of the trends in global nitrogen cycle. Our knowledge of 

global nitrogen cycle has deepened rapidly over the last decades with the aid of new measurement technologies and 470 

advanced mathematical models. Yet, the salient processes are extremely complex and process-based models have struggled 

to fully represent the spatial variability that is evident in measured nitrogen concentrations.  

To address this issue, we proposed a dynamic ML-based WQ model that uses random forest algorithm to simulate nitrogen 

levels (i.e., nitrate-nitrite concentrations) at large spatial scales. Random forest estimates nonlinear regression functions 

using an ensemble of non-smooth, data-adaptive family of learners known as regression trees. Our proposed random forest-475 

based WQ model offers two notable advantages: 

1. First, it is a data-driven approach. As such, it estimates nitrogen concentration directly from data by exploiting the 

random forest’s ability of finding complex spatiotemporal patterns (without providing explicit form of them). This 

makes our model easier to construct in comparison to process-based models. 

2. Second, unlike process-based models that are computationally expensive in nature and often suffer from over-480 

parameterization and calibration issues, our model is computationally efficient and is less sensitive to different 

parameter settings, so it can function quickly over large datasets. 

In this study, we assembled several site-level measurements and a comprehensive set of readily available gridded 

environmental data to build a random forest-based predictive model. The predictor variables used in this paper represent 
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various anthropogenic, hydroclimatic, and geographic factors. The algorithm was trained using repeated 10-fold cross 485 

validation strategy and the results indicated that the proposed model has a high predictive performance. We then predicted 

monthly nitrogen levels worldwide (180°E–180°W; 90°S–90°N) with a spatial resolution of 0.5° × 0.5° (55 km × 55 km at 

the equator) and a time span from 1992 to 2010. The produced maps (in GeoTIFF format) were also used to characterize 

global WQ trends and hotspot areas of nitrogen concentration across 115 major river basins of the world. Furthermore, we 

performed variable importance analysis to determine the contribution of each predictor variable to model performance. 490 

Consequently, we identified a subset of important predictors (and the associated processes) for the nitrogen concentrations in 

global scale. Overall, based on the numerical results presented in this paper, our main findings are as follows: 

1. On average, in United States, Europe, India, Pakistan, and China nitrogen pressures have occurred over large areas 

during 1992-2010, where severe water pollution occurs, depending on climate, drainage networks, and other factors. 

2. We observed an increasing gradient of nitrogen concentration change from 1990s to 2000s in China, eastern and 495 

central parts of Canada, western United States, Baltic states, southern Finland, Pakistan, parts of Russia, mainland 

southeast Asia, and south-eastern Australia. 

3. Variable importance analysis revealed the prominent role of nitrogen fertilizer use and livestock density in nitrogen 

pollution of the river systems. Thus, implementing technical measures for improving crop-livestock farming 

practices must be at the forefront in reducing nitrogen environmental losses. 500 

4. The predicted nitrogen levels also showed a significant sensitivity to hydroclimatic variables (i.e., temperature and 

precipitation), which will be of growing concern in the context of global climate change. 

For future research, the spatial and temporal results on WQ derived from our proposed model can be used by ecological, 

hydrological, and human health models as well as by decision makers in two important directions. First, they can be applied 

in the context of scenario analysis to explore the nitrogen concentration’s sensitivity to a wide range of plausible future 505 

changes. Second, they are particularly useful for assessing the impacts of nitrogen enrichment on public health, water 

resources, and biodiversity. Also, future work may include employing advanced global sensitivity and uncertainty analysis 

techniques for uncertainty apportionment. As suggested by Sheikholeslami and Razavi (2020), the given-data techniques are 

well-suited for this purpose when dealing with data-driven models. 

Nevertheless, we do not advocate ceasing development of physical process-based models. Depending on the scale of spatial 510 

and temporal inference, we encourage use of hybrid models and model ensembles that integrate ML methods and process-

based approach (see, e.g., Corzo et al., 2009; Kraft et al., 2020). Furthermore, there are ample possibilities for development 

of physics-informed (or physics-constrained) ML-based WQ models to learn a wide range of physics relevant to hydrologic 

processes (Nearing et al., 2020). For example, an intriguing, simple strategy is that the performance metric used to train ML-
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based models can be modified to account for the physical consistency of the model predictions. Finally, it should be noted 515 

that, given the flexibility of the random forest algorithm, this paper does not aim to draw any conclusive remarks on the 

extrapolation capability of the random forest-based models. 

Code Availability 

The modelling was performed in R statistical computing environment, which provides multiple open-source packages for 

ML. The results obtained in R can be easily converted into any of the standard georeferenced formats to produce digital 520 

images or maps afterwards. Our code uses a set of fast and scalable R packages, such as “randomForest”, “sp”, “caret”, 

“ranger”, and “CAST”, which facilitate automated raster-based workflows. The modelling experiment was run on an Intel(R) 

Core(TM) i5-4670 CPU @ 3.40 GHz computer and 32.0 GB of RAM. The parallel processing was enabled using the 

“doParallel” package in R. In the spirit of reproducible research, the full procedure of the proposed  global model, starting 

from the data collection and pre-processing to the 0.5-degree raster predictions will be available on GitHub upon publication 525 

of the manuscript (https://github.com/Razi-Sheikh/GLOBAL_WQ). 
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