
Response to Reviewer’s Comments  
This document contains copies of all comments of the reviewer 3 (in italicized, blue text) and our 

planned effort to address them (in normal, black text). Our proposed manuscript revisions are 

underlined. 

 
 

Reviewer 3 
Sheikholeslami and Hall, 2022 utilize machine learning approach to build a random forest model of 
nitrogen concentration in major river basins. They apply the model to global river basins to identify 
nitrogen concentration hot-spots and decadal increase in nitrogen concentration. The manuscript applies 
random forest approach for estimating riverine nitrogen concentration, but their findings are not filling a 
gap in the literature. Their finding that highest nitrogen concentrations are observed in United States, 
Europe, China, and India is not new given that these regions are agriculture dominated and utilize large 
amount of fertilizer and manure. The manuscript lacks a novel motivation, several important predictor 
variables are not considered, and the final analysis does not provide any new information. 

Thank you very much for your comprehensive review and identification of key areas of 

improvement. We provide detailed response to your comments in the subsequent section. 

Below, we list your main concerns, and a summary of our proposed revisions to address them.   

Overall, we believe that the reviewer has under-estimated the contribution in the paper. As 

outlined in this rebuttal document, the application of the random forest model can be considered 

to be state-of-the-art in a rapidly evolving field. The use of these techniques in the very 

challenging field of global water quality modelling is novel and has yielded predictive results that 

exceed other approaches in important respects. We think reviewer does not seem to have 

recognized (or has dismissed) the merit of the utilized methodology considering our 

comprehensive exercise in data processing, model selection, adaptation, and validation. We 

appreciate reviewer’s suggestions on potential topics, and we provide responses to individual 

ones as following: 

(1) Lack of a novel motivation: First, despite a plethora of powerful machine learning 

methods, ANN is the most popular method for water quality modelling. To fill this gap, 

we implemented random forest algorithm to examine its predictive performance when 

applied to large spatial scales. Second, our thorough search of the relevant literature 

indicated that machine learning methods, particularly random forests, have not been 

implemented at global scale to identify nitrogen hotspots and key drivers of nitrogen 

variability. Third, despite being successful in simulating and predicting surface water 

quality at catchment-scale, machine learning methods have not been utilized to provide 

spatially explicit (gridded) estimates of nitrogen levels. Based on our observation, 



almost all machine learning models are lumped in space (see Table 1). This gap further 

motivated our development of the spatiotemporal random forest-based global model 

in the present study. Please note that these gaps have been discussed in Section 1.2. In 

the revised manuscript, we will improve the writing to reduce the reviewer’s confusion 

that appear to have arisen due to lack of sufficient clarity in the original versions.  

(2) Missing several important predictors: It would be helpful to have an indicator from 

the reviewer what important predictors they consider to have been missed out. As 

proposed in this rebuttal document, based on the reviewers’ suggestion we are also 

planning to include additional variables, such as forest fraction, urban fraction, and 

hydrography data, to the structure of the model. We will also investigate their impact 

on model performance during the revision. 

(3) Lack of new information: First, we restate that the model provided much higher 

spatial resolution than we were able to contain in our high-level summary of the results. 

Our model was used to predict nitrogen concentrations in large river basins globally, 

providing new information about dynamics of nitrogen concentrations in location with 

scarce/no observations. Furthermore, we provide NOx-N concentrations (mg/l) 

worldwide (180°E–180°W; 90°S–90°N) at a spatial grain of 0.5-degree. The NOx-N 

concentrations, mapped across the globe for 1992-2010, are available in a compressed 

GeoTiff file format in the WGS84 coordinate reference system (EPSG:4326 code). The 

developed stream nitrogen concentration maps have a wide array of potential 

applications in stream ecology, biodiversity research, conservation science, and stream 

and lake restoration ecology. For instance, the produced maps can be used to quantify 

the overall mass of nitrogen discharged into a specific lake or ocean body, enabling a 

deeper understanding of global-scale eutrophication. Furthermore, our estimates of 

nitrogen concentration can be used to verify new process-based models that predict 

nitrogen concentrations and transformations in inland waters worldwide. We 

encourage potential users of the described geo-dataset to contact the authors for 

future product updates. We will add this to the revised manuscript to better highlight 

the usefulness of our findings.  

In addition, to improve the linkage between study objectives and results, we propose to present 

additional results to highlight several model capabilities. These include model validation using a 

new validation strategy, adding partial dependence plots, presenting the distribution of R2 

values, and further discussions on limitations of our approach along with recommendations for 

future studies.  

 



Introduction: 

1. The authors include “three critical observations” from the literature review of ML applications for 
studying water quality. What is the reason for including these observations? 

As stated in our response to previous comment, these three observations essentially motivated 

us to develop the proposed random forest-based global water quality model. To resolve this 

comment, we will make necessary changes in the revised manuscript to improve the quality and 

presentation of the Introduction section. 

 

2. The two main objectives of the study related to identifying global nitrogen pollution hotspots and key 
drivers of nitrogen variability at a global scale are weak since various studies have examined these and it 
is not a novelty. 

Politely disagree. To authors’ knowledge, there is no parallel in the literature in terms of time 

scale and spatial resolution with similar approach to identify nitrogen pollution hotspots and key 

drivers of nitrogen variability at a global scale. In fact, one essential purpose of the developed 

model is to enable water quality assessment and quantification of future scenarios (e.g., of 

livestock pasture extent) at a ‘global scale’. Though some instances of analysis of these questions 

exist (see, e.g., Mayorga et al., 2010; He et al., 2011; Beusen et al., 2016; etc.) they all have 

inevitable limitations, and none have used our proposed approach which we believe yields 

worthwhile results. Therefore, we believe that both objectives are strong enough to motivate 

our analyses. The reviewer argued that “various studies have examined these” we’d be more than 

happy if the reviewer helps us identify these studies, so we can cite them in the revised 

manuscript. For more discussion, please see our response to your first comment in this rebuttal 

document.  

 

3. The Introduction currently has three section and is quite long. Condensing this section will improve the 
readability of the manuscript. 

We will condense this section in the revised version, while keeping some important background 

information for the broad readership of the HESS as a multi-disciplinary journal. 

 

Data and Methodology: 

4. Lines 218-222: The authors mention reshaping all predictors to 0.5-degree resolution, but they have not 
described how precipitation, runoff, and other predictors from the entire upstream catchment/watershed 
is accounted for in predicting river nitrogen concentration. It appears that they only considered the 
contribution of the various predictors from the 0.5-degree grid. It is highly likely that only a fraction of this 



grid falls in the upstream catchment and for several observations large fraction of the upstream catchment 
is not included in this grid. Thus, the estimation of contribution from various predictor variables is likely 
flawed. 

Thank you, for this important comment, and we confirm that your interpretation about the 

spatial resolution of our study is all correct, i.e., the current variable used for predicting in-stream 

nitrogen concentrations only cover the properties within the grid cell of interest.  

Regarding the catchment characteristics, this can be resolved, for example, by adding 

hydrography data delineating global river networks, though it will presumably add more 

complexity to the model. In the revision, we will add more variables to the list of predictors, 

including upstream characteristics, stream proximity (e.g., distance up to the stream) or log-

transformed flow accumulation for better capturing spatial characteristics of watersheds. 

Previous studies have shown that these variables can be key drivers of water quality responses 

in rivers (see, e.g., Staponites et al., 2017; Lintern et al., 2017; Grabowski et al., 2016; Peterson 

et al., 2010). Particularly, they reported that accounting for the hydrological flow paths and flow 

accumulation through the landscape and coupling these processes with specific landscape 

features can improve model performance. We will also elaborate more on this with the 

supporting literature. 

 

5. Adding latitude and longitude as predictor variables does not fully capture the spatial relationship 
between observations and predictors. 

Agreed. But, as we extensively discussed in Section 3.1.1, two strategies have been proposed in 

the literature to account for spatial information: (1) using a hybrid modelling framework by 

embedding Kriging and Gaussian process modelling into the standard random forest method 

(Saha et al., 2021; Canion et al., 2019); and (2) using geographic information as the auxiliary 

inputs, for example, adding geographic coordinates (Behrens et al., 2018; Meng et al., 2018) or 

other spatial distances (Li et al., 2011; Wei et al., 2019) into the list of predictors. Since adding 

lat/lon as predictor variables to represent spatial relationship is common in data-driven 

modelling of Earth and environmental systems, we followed this strategy and incorporated 

lat/lon into our random forest model. During the revision, we will highlight the weakness of the 

second strategy in not fully capturing the spatial relationships between observations and 

predictors. 

 

6. Additional land use predictors should be considered in the study for example, forest fraction, urban 
fraction. 



Thank you for this suggestion. Please note that from our review of literature we observe that 

cropland fraction is one of the chief determinants of the nitrogen variability, as evident from our 

variable importance analysis (Fig 9). To address this comment, additional predictors such as 

forest fraction and urban fraction will be added to the list of predictors. Further, we will examine 

the relative importance of these variables when simulating nitrogen concentrations. 

 

7. In addition to considering monthly precipitation, extreme precipitation variables and variables capturing 
dry spells should also be considered as they impact nitrogen concentration. For example, a long dry spell 
will result in high nitrogen concentrations however, if the dry spell is followed by a large precipitation event 
concentrations will drop. The monthly mean precipitation will ignore this temporal variability and thus not 
accurately predict nitrogen concentration. 

Thanks for sharing the interesting idea. Perhaps you missed it, but we have already discussed the 

impact of extreme and/or prolonged hydroclimatic events on nutrient concentrations in Section 

4.3 (line 454-464). We believe quantifying the impact of extreme events on nitrogen 

concentrations using machine learning is an interesting topic, which we’d like to explore in future. 

In the Discussion section of the revised manuscript, we will mention this as an important 

recommendation for future research. 

 

8. Table 2 should be replaced with a table containing the final 17 predictor variables. In its current format 
the table 2 does not list the four time and space predictors and lists the livestock predictors in a single row 
that makes it appear as a single predictor not five different predictors. 

Thanks for this comment. We will update Table 2 in the revised manuscript based on reviewer’s 

suggestion. 

 

Results: 

9. In the Results section, the authors have not compared their findings with any of studies listed in Table 
1. The authors should discuss the similarity and differences between their findings and that of others using 
similar model building approach. 

As we mentioned in our response to your second comment, there is no parallel in the literature 

with similar approach. None of the studies listed in Table 1 systematically investigated the key 

drivers of nitrogen variability, which was one of the main objectives of our study. Additionally, 

none of them provided spatially grided estimates of nitrogen concentration, as all of them were 

lumped in space. However, we will add some evaluation of the closest relevant studies in the 

revised manuscript to compare our findings and that of others. 



We want to highlight that our paper has been sufficiently contextualized, particularly in the 

Introduction section by (i) placing our research topic within its larger setting, (ii) providing 

important perspective by citing similar examples or relevant background, (iii) explaining what 

historical circumstances led up to the topic we are discussing, (iv) citing other scholars who have 

recently contributed to the field, and (v) exploring how our analysis fits into a larger discussion 

about the field. Indeed, we agree that the regional observations would benefit from further 

contextualization in relation to previous regional studies, which we will do in the revised 

manuscript. 

 

10. In addition to the annual concentrations (Figure 6), authors should also analyze and discuss monthly 
or seasonal maximum concentration. 

Thanks for pointing this out. We will present more results on monthly/seasonal variability of 

maximum concentrations in the Results section of the revised manuscript. 

 

11. The authors had developed spatial plots of nitrogen concentration for every month between 1992-
2010, then why did the limit the analysis of change in nitrogen concentration to a decadal scale difference 
only. For large river basins, they can perform trend analysis. This will me more useful information for policy 
makers than decadal scale difference. 

Thanks for this comment, we strongly believe that decadal analysis is also helpful to identify long-

term trends. While we decided to focus this study on the decadal scale, we have noted trend 

analysis for the selected large river basins as a possible option, and we would like to explore its 

usefulness in future studies. 

 

12. Line 387 – 389: What factors contributed to the decline in nitrogen concentrations? Just merrily stating 
decline is not enough and the drivers behind this observation should be discussed especially given that few 
regions with highest nitrogen concentration (India and South Korea) also have the largest decline. 

Thank you for raising this point, and we confirm the reviewer’s interpretation that significant 

decline in nitrogen concentrations has been occurred in a few basins with highest nitrogen 

concentrations. Our focus, however, was not to explore which factors were mainly responsible 

for decline in nitrogen level in some regions. We therefore think a thorough analysis of this 

question is beyond the scope of the present study. There might be several reasons for this 

observation, such as dietary behavior change, improved nitrogen fertilizer management, 

increasing efficiency of crop production, hydroclimatic regime shifts, change in upstream 



management, etc. We will elaborate more on the possible causes of the observed decline in 

nitrogen concentrations with the supporting literature.  

 

13. The fact that month of year (MOY) is significantly more important than precipitation, runoff, and 
temperature seems concerning. If precipitation, runoff, and/or temperature, were selected as predictor 
variables it would have a direct physical meaning. For example, increase/decrease in precipitation can 
decrease/increase the nitrogen concentration. 

We are unclear on the interpretation of your comment. Please note that this variable has been 

included in our model to represent ‘distance’ in the time domain, particularly to capture the 

seasonality effect. Based on our factor importance analysis, therefore, the most important 

covariate for predicting monthly nitrogen concentration given the utilized datasets is: time. One 

possible reason is that the data used in the model has a strong seasonality that makes the variable 

“month of year” highly important. This can be justified because generally there is a considerable 

seasonal variability in major factors influencing nitrogen level, such as vegetation, land-use 

change, hydro-climatic parameters, and farming activities, which strongly influence constituents’ 

concentrations in different seasons (see, e.g., Pejman et al., 2009; Shabalala et al., 2013; Xu et 

al., 2019; etc.). Consequently, it is expected to observe seasonal variation of water quality in 

many regions of the world. Furthermore, to avoid confusion, we have to clarify that the 

importance of this variable should not be miss-understood as a strong trend in the sense that the 

monthly nitrogen concentrations increase over time or the like.  

 

14. What is the physical meaning behind cumulative month (CM) variable being identified as the second 
most influential predictor? 

We should again highlight that this variable has been included in our model to capture the long-

term trends. Furthermore, it somehow can compensate for biogeochemical legacy and the long 

travel time between N input and riverine N export signals. The covariate CM allows the random 

forest model to fit different spatial patterns for each month underpinning that the observed 

nitrogen level is different from month to month. To address this comment, we will add more 

details to the relevant discussions in Section 4.3 (High importance factors influencing predictions 

of nitrogen levels). 

 

15. Figure 9 - Why is the relative importance of 3-15 predictors almost same? 



We believe that for the top 7 important variables the ranking is distinguishable. However, for the 

rest of predictors, i.e., 8th to 15th, we agree that the difference in variable importance values is 

not significant. It means that randomly permuting the values of these predictors resulted in quite 

the same change in prediction accuracy. In other words, the importance of these variables cannot 

be robustly ranked, even though they are all influential. As mentioned in the manuscript (Section 

5), to comprehensively analyze how various factors influence model output variability a more 

advanced approach is required. Global sensitivity analysis methods are suitable candidates in this 

regard. 

 

16. Did the most influential predictors vary over space and/or time? 

Of course. Considering the spatio-temporal variability in both target and predictor variables, we 

can assert that ‘factor sensitivity’ also varies over time and/or space. However, the inherent 

feature of the random forest algorithm for evaluating variables' predicting strength (expressed 

as variable importance ranking) can only measure variable importance for all input data using the 

whole space-time regression matrix. Thus, it cannot provide spatial-temporal characteristic of 

the factor sensitivity.  

Assessing how the impact of predictors and their interactions varies in both space and time 

requires a more systematic approach, such as using advanced global sensitivity analysis methods, 

which we’d like to explore in future studies. To clarify this, we will add a brief discussion on spatio-

temporal sensitivity analysis of random forest model and will elaborate more on this issue with 

the supporting literature. 
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