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Abstract. Actual evapotranspiration (ET) is an essential variable in the hydrological process, linking the carbon, water, and 

energy cycles. Global ET has significantly changed in the warming climate. Although increasing vapour pressure deficit 15 

(VPD) due to global warming enhances atmospheric water demand, it remains unclear how the dynamics of ET are affected. 

In this study, using multiple datasets, we disentangled the relative contributions of precipitation, net radiation, air 

temperature (T1), VPD, and wind speed on affecting annual ET linear trend using an advanced separation method that 

considers the Budyko framework. It is found that the precipitation variability dominantly controls global ET in the dry 

climates, the net radiation has substantial control over ET in the tropical regions, and VPD is impacting ET trends in boreal 20 

mid-latitude climate. The critical role of VPD in controlling ET trends is particularly emphasized due to its influence in 

controlling the land-atmosphere interactions. 

1 Introduction 

Actual evapotranspiration (ET) is the condition in which water transforms from liquid to gaseous state. Such transformation 

synchronously absorbs energy of the air making ET as the largest terrestrial water flux component accounting for more than 25 

60% of global precipitation (Trenberth et al., 2007). ET directly affects hydrological processes at both regional and global 

scales (Zhang et al., 2016) by being a strong linkage between water, energy, and carbon cycles.  As a result, ET plays a 

crucial role in land-atmosphere interactions amongst various climatic variables, including precipitation, air temperature, 

humidity, solar radiation and wind speed  (Koster et al., 2006; Wang et al., 2011; Miralles et al., 2018), which consequently 

influence the climate at global and regional scales. An accurately estimated ET can therefore make a comprehensive 30 

contribution to understand the changes of hydrological cycles and the associated extreme events, such as droughts and 

floods, as well as their impacts on ecosystem productivity, water-use efficiency, and irrigation needs for agriculture 

(Sheffield et al., 2012; Sun et al., 2017; Ahmadi et al., 2019; Jalilvand et al., 2019). 

However, the available ground ET measurements from traditional methods (e.g. eddy covariance, porometry and lysimeters, 

and scintillometry) have shortcomings such as sparse observational sites and short time span (Allen et al., 1991; Everson et 35 

al., 2009; Monteith et al., 1990). To overcome these limitations, various spatially distributed ET products have been 

developed and widely used, including those from remote sensing, land surface models, and reanalysis, such as the GLEAM 

(Global Land Evaporation Amsterdam Model) product and the GLDAS (Global Land Data Assimilation System) (Su et al., 

2002; Miralles et al., 2011a, b; Mu et al., 2011; Onogi et al., 2007; Dee et al., 2011; Reichle et al., 2017; Bosilovch et al., 

2017; Haddeland et al., 2011; Schellekens et al., 2017; Jung et al., 2009; Loew et al., 2016; Peng et al., 2020).  40 

 Studies of climate warming intensification on global water cycle have indicated the increasing importance of understanding 

ET changes in space and time (e.g., Allen et al., 2002; Wu et al., 2013; Pan et al., 2015). In recent decades, ET has shown a 
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sudden and unusual increasing or decreasing trends across the globe (Miralles et al., 2013; Pascolini-Campbell et al., 2019), 

so that an accurate attribution of the ET changes is urgently needed. The changing ET over the longer time scale is jointly 

determined by climatic modes (e.g. El Niño-Southern Oscillation) (Martens et al., 2018; Miralles et al., 2013) and the long-

term changes of climatic variables (Pan et al., 2020; Zeng et al., 2016; Rigden et al., 2016; Wang et al., 2011; Zhang et al., 

2015). For example, the upward trend of the global ET from 1982 to the late 1990 was attributed to increased radiation and 5 

air temperature (Douville et al., 2013; Jung et al., 2010). Similarly, the change of global ET during 1998-2008 was lapsing 

due to limited soil moisture supply in the Southern Hemisphere and transitions to the El Niño condition (Jung et al., 2010; 

Miralles et al., 2014). Zhang et al. (2015) demonstrated how the water supply, available energy, and atmospheric water 

demand jointly affected the global ET changes from 1982 to 2013, which accounted for 49%, 32%, and 19% of global ET 

changes respectively. 10 

However, different evapotranspiration algorithms, parameterizations, and input climate forcing datasets can cause 

uncertainties when attributing global ET changes. (Vinukollu et al., 2011; Badgley et al., 2015; Miralles et al., 2016; Michel 

et al., 2016). For example, Miralles et al (2016) evaluated the performances of three models using the same forcing data, 

finding that the GLEAM product was relatively better than the other global ET products over most wet and dry conditions. 

Similarly, Badgley et al (2015) used 19 different combinations of input forcing datasets to run the Priestly-Taylor Jet 15 

Propulsion Laboratory (PT-JPL) ET model, indicating that the choice of forcing datasets accounted for 20% error range 

averagely. Those results have indicated that the improper choice of ET models and forcing data may add significant 

uncertainties into the ET attributions. 

Potential ET (PET) is determined by radiation, air temperature, VPD, and wind speed, and it reflects the magnitude of 

atmospheric demand on land ET. In the warming climate, rising air temperature has increased atmospheric water demand 20 

(i.e. increased PET) (Fu et al., 2014; Feng et al., 2013; Dai et al., 2004). Studies have indicated that the recent PET increase 

is mostly determined by increased VPD which is a function of air temperature and humidity (Dai et al., 2017; Ficklin et al., 

2017). Increased VPD tends to make plants close their stomata to avoid water loss, and thus restrain transpiration (Novick et 

al., 2016; McAdam et al., 2015). A high atmospheric water demand induced by VPD promotes PET, while the increasing 

surface resistance limits ET. Li et al. (2021) have found VPD has dominated the increase of annual ET in energy-limited 25 

regions such as southeastern China. It’s not clear that how VPD affects global long term ET changes.  

Furthermore, the above studies focused on the influences of climatic variables on long term ET changes, but there was a 

distinct shortcoming in the these studies, in which researchers only demonstrated the responses of long term ET change 

(variance) to some certain factors (e.g. climatic variables and surface conductance). And few studies can disentangle the 

contributions of relatively complete climatic factors, including precipitation, net radiation, air temperature, VPD, and wind 30 

speed, to annual ET linear trend. The limitation hinders the understanding of global ET changes, and ecosystem water and 

carbon fluxes. 

In this study, we have adopted the Budyko theory to advance our understanding on the response of global ET trends to 

climatic variables, including precipitation (P), net radiation (Rn), air temperature (T1), VPD, and wind speed (u). The Budyko 

theory investigates the interactions between ET, PET, and P (Yokoo et al., 2008; Yang et al., 2008; Liu et al., 2011). For 35 

example, Teuling et al. (2019) explored the dynamics of ET in Europe at high resolution (1 km2) with Budyko model and key 

meteorological variables. Here we use multiple datasets such as GLEAM3.0a, EartH2Observe ensemble (EartH2Observe-

En), GLDAS2.0-Noah and MERRA-Land (Modern Era Retrospective-Analysis for Research and Application-Land). Using 

multiple datasets can reduce uncertainties of the forcing data so that we can accurately attribute global ET changes over 

different land covers and climate regimes (Michel et al., 2016; Dutra et al., 2015; Rodell et al., 2004; Reichle et al., 2011; Li 40 

et al., 2018).  

2 Data and Methods 
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2.1 Data 

We use various ET products and their respective forcing data, including the remote sensing-based GLEAM product, land 

surface model ensembled product (EartH2Oberve-En) and two reanalysis products (GLDAS2.0-Noah and MERRA-Land). 

These products have different temporal lengths, and we have used their overlapping period of 1980-2010. To study the ET 

mechanism within different climatic conditions, we have divided the global land into Tropical, Dry, Mild Temperate, Snow, 5 

and Polar zone respectively using the Köppen climate classification  (Kottek et al., 2006) (Fig. 1).  

2.1.1 ET products 

a) GLEAM3.0a ET 

The GLEAM3.0a is arguably the longest one of various ET products, which is determined mainly from remote sensing 

observations. It consists of soil evaporation, canopy transpiration, interception loss, snow sublimation, and open-water 10 

evaporation. A key feature of this product is where the Gash analytical model is used to estimate interception loss. The other 

components in this product are calculated according to Priestley-Taylor equation (Miralles et al., 2011b; Martens et al., 

2017).  

b)  EartH2Oberve-En ET 

The EartH2Oberve product uses ten models, including five hydrological models, four land surface models and a simple 15 

water balance model, which are forced by the same state-of-the-art-meteorological reanalysis (Dutra et al., 2015). 

Schellekens et al. (2017) indicated that the model ensemble outperforms individual model’s output, and thus we have used 

the ensembled mean data from the ten models here (regarded as EartH2Oberve-En). The EartH2Oberve-En product is 

demonstrated to be an accurate reanalysis data and has been used for multiple-scale water resource evaluation (Schellekens 

et al., 2017). 20 

c) GLDAS2.0-Noah ET 

The GLDAS was initially developed by National Aeronautics and Space Administration (NASA) Goddard Space Flight 

Center (GSFC) of America, based on the North American Land Data Assimilation System (NLDAS). GLDAS is a global, 

high-resolution, offline terrestrial modeling system and produces the outputs of land surface states and fluxes in near-real 

time, such as ET, soil moisture, latent, sensible, and ground heat flux. Satellite and ground-based observations are used to 25 

constrain the forcing and parameterization of used land surface models (i.e. Mosaic, Noah, the Community Land Model, and 

the Variable Infiltration Capacity model) (Rodell et al., 2004).  Here, the ET product derived from GLDAS2.0-Noah is used 

in our study.  

d) MERRA-Land ET 

The MERRA reanalysis was generated by Global Modeling and Assimilation Office (GMAO) in NASA. It was produced by 30 

the Goddard Earth Observing System model Version 5 (GEOS-5) along with its associated data assimilation system (DAS) 

Version 5.2.0 (Rienecker at al., 2011). Since there are significant errors in values and timing of precipitation in the original 

MERRA product (Reichle et al., 2011), we have used the offline MERRA-Land product forced by corrected precipitation. It 

is demonstrated that the hydrological performance in the MERRA-Land has been significantly improved than in the original 

MERRA product (Reichle et al., 2011). 35 
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Figure 1. Spatial distribution of five climatic zones with Köppen climate classification, including Tropical, Dry, Mild 

Temperate, Snow, and Polar zone (Kottek et al., 2006). 

2.2 Forcing data 

The forcing data in four ET products mainly include precipitation, net radiation, air temperature, specific humidity, and wind 5 

speed. The forcing data of respective ET product and their references are listed in Table 1 (Li et al., 2021). To reduce the 

uncertainties associated with inconsistent forcing data sources, the trends of each ET product are attributed using its own 

forcing data. Different from the other three products, the GLEAM algorithm does not use specific humidity and wind speed 

as inputs. Since the other forcing data of GLEAM product (e.g. radiation and air temperature) is derived from the ERA-

Interim reanalysis, specific humidity and wind speed from the same reanalysis is used for its attribution.  10 

Table 1. The main forcing data in four ET products 

ET Products Precipitation Radiation 
Air 

temperature 

Specific 

humidity 
Wind speed References 

GLEAM3.0a MSWEP ERA-Interim ERA-Interim 
ERA-

Interim 
ERA-Interim 

Martens et al.,  

2017 

EartH2Observe-En WFDEI WFDEI WFDEI WFDEI WFDEI 
Schellekens et 

al., 2017 

GLDAS2.0-Noah PUMFD PUMFD PUMFD PUMFD PUMFD 
Rodell et al., 

2004 

MERRA-Land CPC-U MERRA  MERRA  MERRA  MERRA  
Reichl et al., 

2011 

Note: MSWEP indicates the Multi-Source Weighted-Ensemble Precipitation product; WFDEI is the Water and Global 

Change FP7 project forcing dataset ERA-Interim (Weedon et al., 2015; Dee et al., 2011); PUMFD indicates the 

meteorological forcing data of Princeton University (Sheffield et al., 2006); CPC-U is Climate Prediction Center Unified. 

2.2 Method 15 

2.2.1 Determining trends 

We have used the Theil-Sen’s slope method to determine the trends of annual ET and climatic variables during 1980-2010. 

This method is non-parametric, and can provide more accurate trend estimation for skewed data, when compared to the 

linear regression approach (Wilcox, 2010). To detect the significance level of these data, we used the non-parametric Mann-

Kendall test to determine the significance level of the linear trends (Mann, 1945 and Kendall, 1975). Both methods have 20 

been widely used in climate change studies (Su et al., 2015; Wang et al., 2018a; Shan et al., 2015; Shi et al., 2016). 

2.2.2 Attribution method 

The attribution method consists of two steps: firstly, building the relationship between ET and five climatic variables 

abovementioned with Budyko and modified FAO Penman-Monteith equations; secondly, conducting sensitivity experiment 

analysis to quantifying the contribution of each climatic variable to the long-term ET trends of 1980-2010.  25 
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a) Budyko relationship 

The Budyko equation (Equation 1) is usually regarded as a common way to study how climatic factors influence the annual 

ET changes, based on the mathematical relationships between precipitation, PET, and ET (Yokoo et al., 2008; Yang et al., 

2009; Liu et al., 2011).  

𝐸𝑇

𝑃
= 1 +

𝑃𝐸𝑇

𝑃
− [1 + (

𝑃𝐸𝑇

𝑃
)𝜔]

1

𝜔
  (1) 5 

where ET, PET, and P reflect ET, potential ET, and precipitation, respectively; 𝜔 indicates the landscape property, such as 

vegetation cover, soil properties and topography. For a certain product, pixel-wise ω can be fitted by using the least-squared 

regression method because other variables during 1980-2010 are known (i.e. ET, P, and PET). PET reflects the atmospheric 

water demand, which can be determined by solar radiation, air temperature, actual vapor pressure, and wind speed etc.  

There are various methods for calculating PET, including Penman-Monteith (Allen et al., 1998), Hargreaves (Hargreaves and 10 

Samani, 1985), and Priestly-Taylor methods (Priestley and Taylor, 1972). Generally, the modified FAO Penman-Monteith 

equation is a universal method for estimating PET with meteorological data (Allen et al., 1998). In the study, annual PET is 

obtained with the modified Penman-Monteith equation: 

                𝑃𝐸𝑇 =
0.408∆(𝑅𝑛−𝐺)+𝛾

900

𝑇1+273
𝑢𝑉𝑃𝐷

∆+𝛾(1+0.34𝑢)
                (2) 

 15 

where Rn represents net radiation, calculated by net incoming shortwave minus net outgoing longwave radiation (unit: 

MJ/m2/yr); G is the soil heat flux density (unit: MJ/m2/yr), and can be neglected on monthly or longer time scales; γ and Δ 

reflect the psychometric constant and slope of vapor pressure curve, respectively (unit: kPa/℃); T1 indicates mean 

temperature in the 2-meter air (unit:℃), and is used to calculate Δ; u indicates 2-meter wind speed (unit: m/s); VPD (kPa) is 

the saturation vapour pressure deficit, as a function of air temperature T2 and specific humidity (i.e. VPD=f(T2, specific 20 

humidity)). In Eq(2), the effect of air temperature T on PET is separated into two parts: T1 and T2. T1 reflects the effect of air 

density and slope of vapor pressure curve, and T2 indicates the part effect of VPD. The more details of the calculation of 

VPD and difference between T1 and T2 can refer to Allen et al. (1998). 

By putting Eq(2) into Eq(1), we can obtain the direct relationship between ET and P, Rn, T1, VPD and u: 

𝐸𝑇 = 𝑃 +
0.408∆(𝑅𝑛−𝐺)+𝛾

900

𝑇1+273
𝑢𝑉𝑃𝐷

∆+𝛾(1+0.34𝑢)
− 𝑃[1 + (

0.408∆(𝑅𝑛−𝐺)+𝛾
900

𝑇1+273
𝑢𝑉𝑃𝐷

𝑃(∆+𝛾(1+0.34𝑢))
)𝜔]

1

𝜔  (3) 25 

b) Attribution experiments 

The trends of annual ET during 1980-2010 are determined by compound influences of the main climatic factors (i.e. P, Rn, 

T1, VPD, and u). To disentangle the impact of each climatic factor, six experiments have been designed based on Eq (3), 

including one control experiment (sim_CTL) and five individual factor’s sensitivity experiments (sim_P, sim_Rn, sim_T1, 

sim_VPD, and sim_u respectively). The sim_CTL experiment can obtain the control ET changes for each product by using 30 

all the factors of 1980-2010, while the ET change controlled by one certain factor is simulated by the sensitivity experiment 

with the factor only in the 1980 and the others factors of 1980-2010. For example, the ET change of 1980-2010 impacted by 

P (i.e. sim_P) can be computed by using constant value of P in 1980, as well as Rn, T1, VPD, and u of 1980-2010. The 

contributions of the other climatic factors (sim_Rn, sim_T1, sim_VPD, and sim_u) can be determined similarly for each 

product. The contribution of each factor to ET change in each product is obtained (Sun et al., 2016 and 2017): 35 

                𝐶𝑖 =
∑ 𝐸𝑠𝑖𝑚_𝑘
𝑛
𝑘≠𝑖 −(𝑛−2)∙𝐸𝑠𝑖𝑚_𝑖

𝑛−1
.                      (4) 

where n shows the number of sensitivity experiments, and n is equal to 5 here; and Esim_i indicates the ith sensitivity 

experiment. We should note that the total contribution of air temperature T to ET changes here is separated into two 

sensitivity experiments: sim_T1 and sim_VPD. The sim_T1 means the effect of air temperature T1 in Eq (2) on ET; the 
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sim_VPD, controlled by air temperature T2 and specific humidity, contains the contribution of air temperature T2. 

3 Results 

3.1 Trends of the ET products 

 

Figure 2. The spatial distribution of pixel-wise linear trends of annual ET for (a) GLEAM3.0a, (b) EartH2Observe-En, (c) 5 
GLDAS2.0-Noah and (d) MERRA-Land products during 1980-2010. The trend is estimated with the Theil-Sen’s slope 

method and the significance level is tested with the Mann-Kendall method. Dotted area indicates the trend has passed 

significance test at 5% level.  

The spatial distribution of long-term trends in annual ET is depicted in Fig. 2, with evident differences and similarities 

among the selected four products in different regions. Compared to the other products, the MERRA-Land shows more 10 

significant ET changes, for example, the declining trend with a rate of about -6.0 mm/yr in Africa and South America. In 

most regions of Eurasia continent, the ET changes for all products mainly amounts to -2.0-2.0 mm/yr. Significantly 

increasing ET is observed in the west Europe, southeast China and north Australia, while declining ET is observed in 

northeast China and Arabian Peninsula, despite differences existing among the used ET products. These products show quite 

different trends in Africa; while the MERRA-Land indicates significantly declining ET, the trends in the other products are 15 

obviously opposite.  

3.2 Attributions of ET trends 

The influence of each driving factor on long-term annual ET linear trend is quantified by the attribution method in Sect. 

2.2.2. Figure 3 shows the trends in each variable and its respective contribution to ET changes across different climate zones. 

Precipitation (P) appears to make the largest contribution, air temperature (T1) and wind speed (u) make the smallest (except 20 

u in MERRA-Land), and contributions of net radiation (Rn) and VPD are in between.  

Compared to other products, more sharply decreasing u in MERRA-Land leads to a negative ET trend. The grid number of P 

in the first and third quadrants is more than 85% of the sum in Fig. 3a, indicating P is positively correlated with ET. ET in 

Dry zone is more sensitive to changes in P, while it is insensitive in Tropical zone. Such a relationship also exists in Rn (Fig. 

3b), VPD (Fig. 3d), and u (Fig. 3e). Different contributions among climatic zones are also observed for Rn (Fig. 3b) and VPD 25 

(Fig. 3d). For example, the Rn contribution in Tropical zone exceeds that in Mild Temperate zone, while the VPD 

contribution in Mild Temperate zone is large than that in Tropical zone. Limited grids, mostly from water-limited region 

(Dry), fall in the fourth quadrant, amounting to 25.26%-41.96% of the sum, suggesting increasing T1 hinders ET. 
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Figure 3. Pixel-wise scatterplots of (x-axis) trends in each climatic variable against (y-axis) the contribution of each climatic 

variable to ET changes. Small letters (a-e) indicate precipitation, radiation, air temperature (T1), VPD and wind speed, 

respectively; and numbers (1-4) indicate GLEAM3.0a, EartH2Observe-En, GLDAS2.0-Noah and MERRA-Land 

respectively. The percentage is the ratio between the number of grid cells in each quadrant and the number of total grid cells; 5 
the sum of the percentage values in four quadrants equals to 100%. The color red, green, blue, black purple represents 

Tropical, Dry, Mild Temperate, Snow, Polar zones, respectively. 

https://doi.org/10.5194/hess-2021-616
Preprint. Discussion started: 14 January 2022
c© Author(s) 2022. CC BY 4.0 License.



8 

 

Figure 4. The consistency of spatial distribution of dominant climatic factors to global long-term ET trends between 

GLEAM3.0a, EartH2Observe-En, GLDAS2.0-Noah and MERRA-Land for Precipitation (a), net radiation (b), and VPD (c). 

The land fraction of air temperature (T1) and wind speed is limited, and the results of the two factors are not showed here. 

Number 1-4 represent the count of these models with the same dominant factor in one pixel, and indicate different 5 
confidence level from low to high. 

To further show the spatial distribution of these driving factors affecting ET, we compare the consistency of dominant 

climatic factors across these ET products in Fig. 4. The results indicate that precipitation is the dominant factor of ET trends 

in the entire Dry zone and some regions of the others climate zones in all models, such as northeast and south part of Snow 

zone, Mild Temperate zone in South America; net radiation dominates the ET trends in most of Tropical zone; and VPD 10 

dominates the ET trends in the entire Mild Temperate zone, Eastern Europe and Northeast Asia in Snow zone. In Table 2, we 

can see that precipitation, net radiation, and VPD are the dominant factors of ET changes in most global land. For example, 

precipitation makes dominant contribution to ET trends, either positive or negative, in 55.41 percentages of the global grids.  

Table 2. The percentage of grids in each dominant factor controlling annual ET linear trends for GLEAM3.0a, 

EartH2Observe-En, GLDAS2.0-Noah, and MERRA-Land. “+” and “-” represent positive, negative contributions to ET, 15 
respectively. 

  P Rn T1 VPD u 

GLEAM3.0a + 30.34% 4.03% 0.79% 27.32% 0.06% 

 - 25.07% 7.27% 0.08% 4.87% 0.18% 
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EartH2Observe-En + 42.70% 4.65% 0.44% 24.88% 0.06% 

 - 19.94% 4.90% 0.02% 2.30% 0.10% 

GLDAS2.0-Noah + 31.27% 4.17% 0.93% 20.88% 0.10% 

 - 23.67% 13.73% 0.01% 5.17% 0.07% 

MERRA-Land + 26.77% 5.60% 0.08% 29.09% 0.06% 

 - 30.43% 6.46% 0.22% 0.87% 0.42% 

3.3 Validations of attribution method 

 

Figure 5. The pixel-wise scatterplots of global long-term annual ET linear trend against the control trend (trendCTL) in ET for 

GLEAM3.0a (a), EartH2Observe-En (b), GLDAS2.0-Noah (c), and MERRA-Land (d). The red line indicates a fitted line of 

the scatter points along with the 1:1 blue dotted line. 5 

A separation method in this study is used to obtain the respective contribution of each driving factor to long-term annual ET 

linear trend, which inevitably is suspected to produce some uncertainties in the attribution results. Figure 5 shows the scatter 

plots of the pixel-wise ET trend in the four products against those from the CTL experiment, in order to validate the accuracy 

of reproducing ET with the fitted relations using Equation 3 and the five selected climatic variables. The resultant R2 values 

range from 0.48 to 0.76, indicating that the trendCTL simulated by Equation 3 can principally reproduce the ET trends as in 10 

the four products. Meanwhile, scatter plots of the accumulative contributions of the driving factors (∑ 𝐶𝑖
5
𝑖=1 ) in each product 

against the respectively simulated trendCTL are shown in Fig. 6, in order to understand the possible uncertainties of such an 

analysis. Strikingly, the R2 values are all higher than 0.99, indicating that the summed contributions of the driving factors are 

almost equals to the realistic global ET trends in all products.  
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Figure 6. The pixel-wise scatterplots of the accumulative contributions of five selected driving factors against the control 

trend (trendCTL) in ET for GLEAM3.0a (a), EartH2Observe-En (b), GLDAS2.0-Noah (c), and MERRA-Land (d). The red 

line indicates a fitted line of the scatter points along with the 1:1 blue dotted line. 

4 Discussions 5 

4.1 Results comparison 

In this study, we have found the global ET trends during 1980-2010 in GLEAM3.0a, EartH2Oberve-En, GLDAS2.0-Noah, 

and MERRA-Land products are relatively consistent. A significantly increasing ET pattern is found in some regions of the 

west Europe and southern Asia, north-middle region of Australia, while a declining ET pattern is observed in the west North 

America and South America. Similar global ET patterns are also found in Pan et al. (2020) based on multi-source products. 10 

However, different ET trends are observed among these products in Africa and South America, where the MERRA-Land 

shows a significant decrease of about -5.0 mm/yr. 

How climatic variable controls the global ET trend is one of the important questions we ask in this study. So that we have 

designed sensitivity experiments to disentangle contributions from each climatic driver (precipitation, net radiation, air 

temperature, VPD, and wind speed). Precipitation, net radiation, VPD, and wind speed contribute the most to the changes in 15 

global ET with an inferred positive relationship, while an increase in temperature shows the opposite in some regions. The 

positive relationships between ET and precipitation, net radiation have been confirmed by Lu et al. (2019), Wang et al. 

(2018b), Pan et al. (2020), and Soni et al. (2021). Precipitation supplies water, and net radiation provides energy for the ET 

process, respectively. However, the increased temperature appears to have influenced the mechanism of ET trend differently 

between the water-limited region (dry zone) and other regions. Rising air temperature can lead to soil moisture depletion 20 

followed by suppressed vegetation growth in the water-limited regions (Jung et al., 2010; Zhang et al., 2019).  

Meanwhile, we found that an increased VPD tends to promote atmospheric processes followed by global ET changes. Even 

if increased VPD reduces surface conductance, increased atmospheric water demand by VPD absorbs moisture from soil and 

vegetation, thus increasing ET (Grossiord et al., 2020). The positive feedbacks are also verified by Hogg and Hurdle, (1997); 

Admiral et al. (2006); Sottocornola and Kiely, (2010); Kochendorfer et al. (2011); Wang et al. (2012); Yang et al. (2019). 25 

However, Novick et al (2016) indicated increased VPD due to warming increased surface resistance, limiting ET over many 

biomes. Massmann et al. (2019) suggested that ET response to increased VPD varied from decreasing to increasing, 
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depending on plant water regulation strategies determined by climatic environment and plant types. For example, when 

compared to boreal and arctic climates, VPD increased ET in tropical and temperate climate; in terms of plant type, shrubs 

and gymnosperm trees decreased ET, while crops tended to increase ET. Therefore, we consider that the contrasting 

influence of VPD on ET should be addressed separately, emphasizing how the VPD affects the individual components of ET, 

which are evaporation from soil, and canopy interception and transpiration. To do this, more complex physical ET process 5 

combined with soil and plant resistance models should be used. For example, Grossiord et al. (2020) admitted that an 

increased VPD would make stomatal closure, but transpiration would still increase under a certain threshold across plants in 

different climate regions. Besides, they found the positive response of surface resistance to VPD increased from wetting to 

drying climate. 

Most studies used the effect of VPD on ET as a surrogate of high air temperature as VPD is determined by air temperature 10 

and specific humidity. Relative to rapid air warming, change in the specific humidity are weak, resulting in increased VPD 

controlled by the rising air temperature.  Figure 7 shows the spatial pattern of the climatic variables (i.e. air temperature T2 

and specific humidity) that dominates the global VPD changes following our proposed sensitivity method. Our study 

concludes that the specific humidity controls VPD only in some regions of North and South Asia, northern Australia, 

southern Africa, and South America. However, vegetation physiology controlled by VPD plays important role in reshaping 15 

the hydrological cycle and global water resources compared to air temperature (Grossiord et al., 2020). Meanwhile, 

considering a close relationship between T and VPD, we attempted to separate the contribution to ET between VPD and air 

temperature by designing sim_T1, sim_VPD in Sect. 2.2.2. 

 

Figure 7. Distribution of dominant factor in VPD changes in global land during 1980-2010 for GLEAM3.0a (a), 20 
EartH2Observe-En (b), GLDAS2.0-Noah (c), and MERRA-Land (d). T2 and H mean air temperature and specific humidity 

respectively. 

Figure 4 shows the spatial distribution of climatic drivers controlling ET implying that precipitation is the primary driver that 

controls ET in Dry zone. This includes northern and southeastern Eurasia, most of Africa, the middle-west of North America, 

southern parts of South America, and almost entire Australia, while net radiation dominates the tropical zone. Why these two 25 

climatic drivers are important for controlling ET changes has also attracted the interest among other scientists (Pan et al., 

(2020) and Zhang et al., (2015)). Interestingly, we find that the impact of VPD on ET is mostly emphasized in some high 

latitude regions of the northern hemisphere, such as eastern North America, Europe, and northeastern Asia. Long-term ET 

changes in these regions are reported to be controlled by air temperature (Pan et al., (2020); Zhang et al., (2015)). However, 

in our study, the increased VPD caused by rising air temperature plays a significant role in controlling ET changes (Admiral 30 

et al., 2006; Sottocornola and Kiely, 2010; Kochendorfer et al., 2011; Yang et al., 2019). Actually, ET in high latitude region 
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is controlled by VPD, rather than air temperature. Precipitation controls ET in water-deficit regions (Dry zone) by 

replenishing the storage deficit, and ET in the tropical rain forest (i.e. energy-limited region) is determined by available 

energy (i.e. net radiation). 

4.2 Uncertainties 

Budyko framework is the key component of the attribution method used in our study. Based on this hypothesis, Fu (1981) 5 

and Zhang et al. (2004) offered the best analytical solution (i.e. Sect. 2.2.1 equation (1)) through a dimensional mathematical 

analysis by providing the mathematical reasons. The key part of the analytical solution is that ET is determined by the ratio 

between PET and precipitation. The equation has been applied in numerous hydrological studies at the catchment scale. 

When using the hypothesis at the catchment scale, some details of the results related to the land features are often missing or 

ignored. However, when testing the same hypothesis at grid scales, the Budyko framework performance is outstanding 10 

(Greve et al., 2014; Teuling et al., 2019; Roderick et al., 2014). We have also validated the accuracy of the Budyko 

hypothesis by comparing the ET values estimated by the Budyko with actual ET values in Fig. 8. The results with high R2 

values for all products indicate the Budyko can be successfully applied in the attribution method. However, there are 

discrepancies among different PET calculation methods that may introduce some uncertainties into the attribution results. 

For example, Zhou et al. (2020) have compared four temperature-based models (Hamon, Hargreaves-Samani, Oudin, 15 

Thornthwaite), two radiation-based models (Energy-Only and Priestley-Taylor), and two synthesis models (Penman and 

Penman-Monteith) of PET calculation in China as an example, and pointed out that the Penman-Monteith and Penman 

methods are almost similar, but better than the other remaining methods. Based on the results, Penman-Monteith method 

outperforms the Penman method, thus used to calculate the standard values of PET in our study. 

 20 

Figure 8. Pixel-wise scatterplots of (x-axis) annual ET in each product against (y-axis) annual ET estimated by Budyko 

Framework. Small letters (a-d) represent GLEAM3.0a, EartH2Observe-En, GLDAS2.0-Noah, and MERRA-Land, 

respectively. 

The fitted parameter 𝜔  in Equ (3) includes landscape characteristics, such as vegetation cover, soil properties, and 

topography (Xu et al., 2013). The parameter contains each model’s characteristic, leading to uncertainties of the attribution 25 

method from forcing data and information in each product. The information consists of structure parameters of each model, 

and surface factors (land cover types, soil properties, and topography). The selected four products in the study use static 

surface factors when simulating ET. Given the reason, the attribution method has the limitation of not considering the 

influences of land surface on ET changes and only focuses on quantifying several climatic variables’ influences here. In Sect. 

3.3, we have evaluated the respective performance of this attributed method, suggesting these five climatic factors can 30 

represent ET changes.  

Except climatic variables, we also admit that vegetation variability, soil moisture, and even CO2 concentration can influence 

long-term ET changes (Zhang et al., 2015; Jung et al., 2010; Suzuki et al., 2007; Wang et al., 2010; Yang et al., 2019). For 

example, vegetation changes influence the inter-annual changes of ET in growing seasons and affect spatio-temporal patterns 

and trends in ET from regional to global scale. Jung et al. (2010) found that drying soil in the Southern Hemisphere, 35 

particularly in Africa and Australia, was responsible for a decline in ET during 1998-2008. Elevated CO2 concentration can 
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result in ET decrease by reducing the transpiration rate caused by the partial closure of the stomata in those regions where 

climate projections indicate excessive water-supply (Yang et al., 2019). For future studies, the contribution of land surface 

such as soil moisture, vegetation photosynthesis on ET should be investigated to better understand the mechanism of global 

ET trend.  

5. Conclusions 5 

We have estimated the linear ET trend globally during 1980-2010 from GLEAM3.0a, EartH2Oberve-En, GLDAS2.0-Noah, 

and MERRA-Land. Secondly, we obtained the respective contribution of each factor to ET trends with multiple sensitivity 

experiments and a separation method, and identified which factor controls global ET changes across different climate zones. 

The major findings are summarized below: 

(1) ET changes: Long-term trend in ET during 1980-2010 is evident globally, especially in Africa and South America. 10 

Significantly increase in ET is observed in Eurasia, northern and central Australia, northeast Africa, eastern parts 

of South America and eastern parts of central North America. Decreasing ET is found in the west of North and 

South America, northeast of Africa, and the Arabian Peninsula. MERRA-Land has more significant ET changes 

when compared to the other products.  

(2) Dominant factors: Precipitation, net radiation, VPD, and wind speed are positively correlated to global ET 15 

changes, while air temperature (T1) has contrast influences on ET between dry zone and other regions. 

Precipitation controls ET changes in Dry zone, including north, and central and southeast regions of Eurasia, most 

of Africa, central parts of western North America, southern parts of South America, and almost entire Australia, 

net radiation dominates the tropical zone. VPD dominates ET in some high latitude regions of the northern 

hemisphere, such as eastern North America, whole Europe, and northeastern Asia. 20 

Data availability. In this study, each ET global product and respective forcing climatic factors can be d-ownloaded : GLEA

M3.0a from https://www.gleam.eu/, EartH2Observe-En from http://www.earth2observe.eu/., GLDAS2.0-Noah from https://d
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land&page=1. 
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