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Editor: 

The editorial board has received constructive but contrast comments from two 

reviewers, one rejection and one minor revision. The major issue seems to be the 

attribution methodology, which neglected the impacts of landuse change and human 

activities on the trend of evaporation. I would recommend "reconsidered after major 

revisions. 

Response: Thank you very much for your consideration. Hope you are well and 

healthy. 

We are grateful to two reviewers for the very helpful comments they have given. We 

know that by addressing these comments, we can improve not just the quality of the 

write-up, but also the quality of the research. We have attempted to address all the 

concerns raised to the best of our abilities, and we welcome further comments where 

necessary. Especially, two reviewers both care about the accuracy of attribution 

method, which ignores the impact of land use change and human activities on the ET 

trends. To prove the accuracy of this method, we have discussed the impacts of 

vegetation changes and human activities on ET trends, respectively. The following 

paragraphs are newly added to discussion section in the manuscript. 

We have added discussions about vegetation changes in section 4.2.2 in Line 16-27 in 

page 12, such as “Vegetation can alter water cycle, and energy cycle by biophysical 

and biochemical feedback to climate change (Forzieri et al., 2020). For example, 

global surface greening increases ET/transpiration (Lian et al., 2018; Lu et al., 2021), 

and reduce soil water content (Li et al., 2018a). However, the complex interaction 

between vegetation and surface makes it difficult to simulate the influence of dynamic 

vegetation change on ET (Gentine et al., 2019). Meanwhile, strictly disengaging the 

contributions of climatic variables and vegetation to ET is very difficult due to the 

interaction between vegetation and climatic variables (Li et al., 2018b). For 

water-limited regions, precipitation as main water supply to vegetation controls 

interannual ET changes (Wang et al., 2021). Thus, the dominating factor of 

interannual ET changes is not vegetation, but rather, atmospheric climate variables 

(Zhang et al., 2020). Those studies indicate that contribution of climatic variables 

have already included information of vegetation, indirectly. Given the above reasons, 

the ET products used in this study do not consider the effect of land use /vegetation 

changes on ET. When simulating ET, the model frameworks assume no interannual 

land use changes, so they are regarded as static conditions. Detailed landcover types 

in each product have been shown in Table S1”. 
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To discuss impact of human activities, we add a new section 4.2.2 in Line 28-41 in 

page 12 and Line 1-5 in page 13, such as “Human activities (e.g. irrigation and 

reservoir construction) have been affecting the components (i.e. ET, runoff, and 

groundwater storage) of water cycles (Ashraf et al., 2017; Long et al., 2017). For 

example, the groundwater over North Plain in China, the High Plain in US, and 

northern India is pumped for agricultural irrigation and contribute to accelerate ET 

process. Lv et al (2017) indicate that the estimated ET will be more accurate if 

irrigation water affects hydrological cycles. Unfortunately, most ET products do not 

consider human activities due to the limited factors of estimated algorithm and model 

parameters. The GLDAS2.0-Noah and MERRA-Land in this study also do not 

consider the effect of human activities. GLEAM3.0a partly contains the information of 

groundwater by considering the effect of ESA-CCI soil moisture on ET. As for 

EartH2Observe-En, the six models either consider one of groundwater, reservoir, or 

water use (see Table S1 from Li et al., 2021). However, the attribution results to ET 

trends in this study show GLEAM3.0a and EartH2Observe-En’s validation results are 

good, indicating that the effect of human activities on ET may be contained in climatic 

variables. These ET products are produced with appropriate algorithms, 

parameterizations of models and forcing data sets. The accuracy of ET has been 

validated by the respective developers; Li et al (2018) in China, Wang et al (2018) in 

Yellow River basin, and Nooni et al (2019) in Nile River basin, suggesting good 

performances of these products. Therefore, our study only focuses on climatic factors 

affecting interannual ET changes. For future studies, the contribution of land surface 

such as human activities to ET should be investigated to understand the mechanism of 

global ET trend better. Additionally, we only consider local contributions of ET here. 

In fact, large-scale modes of climate variability (e.g. El Niño Southern Oscillation, 

the North Atlantic Oscillation,) can also affect terrestrial evaporation. For example, 

Martens et al (2018) indicate that El Niño Southern Oscillation controls the overall 

dynamic of global land ET, while some models dominate regional ET change, such as 

East Pacific–North Pacific teleconnection patterns”.  

 

Reviewer 1: 

Accurate quantification of the climatic contributions for global land 

evapotranspiration change is necessary for understanding variability in the global 

water cycle. This study assembled four ET datasets based on various methodological 

sources, further adopted the Budyko framework and sensitivity experiment analysis to 
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quantifying the contribution of climatic variables (P, Rn, T, VPD and u) to ET trend. 

The analysis identified the main climatic factor controls ET trend on a global scale. 

This research is systemic and detailed, helps reveal the controlling factors of global 

ET change. The main comments can be found as follows: 

Response: We thank this reviewer for constructive comments, which significantly 

improves the quality of the manuscript. The following is our detailed responses to the 

reviewer’s comments. 

1.The expression should be improved.  

Response: We have improved unclear expressions in the manuscript. 

2.Budyko method was used to conduct a control experiment to compare with ET 

product results, and the ω parameters were obtained by least squares fitting, did the 

authors use annual data for the entire period for the fitting? If this were the case, it 

would not be possible to consider the effect of land use changes on the ω parameters 

and thus bias the estimated ET simulations, especially considering that such a long 

study period (1980-2010) with significant land use changes must have an important 

impact on ω. 

Response: We appreciate this comment. 

In this study, ω parameters are fitted with annual precipitation, potential 

evapotranspiration, and actual evapotranspiration. The parameters ω in Budyko 

framework are determined by landscape characteristics (e.g. vegetation cover, soil 

properties, and topography) (Yang et al., 2008), in particular ω, which parameters can 

be related to vegetation changes (Greve et al., 2014). As the reviewer pointed out, 

land-use changes during such a long study period (1980-2010) significantly affect 

evapotranspiration as a function of ω. For example, vegetation greening is indicated to 

control interannual evapotranspiration variation (Lu et al., 2021). However, all the 

four ET data used in this paper assume no interannual vegetation changes (satellite 

phenology driven), when simulating ET(detailed landcover types in each product have 

been shown in Table S1). It is worth noting that the assumption mentioned above does 

not discredit the reliability of the ET products. Furthermore, the contributions of 

climatic variables to ET trends already include information of the vegetation 

indirectly. The accuracy of the ET products has been validated in different studies 

such as Li et al (2018) in China, Wang et al (2018) over the Yellow River basin, and 

Nooni et al (2019) in the Nile River basin, among others, suggesting good 

performances of these products. Therefore, our study only focuses on climatic factors 

affecting interannual ET changes. 
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We have added discussions about vegetation changes in section 4.2.2 in Line 16-27 in 

page 12, such as “Vegetation can alter water cycle, and energy cycle by biophysical 

and biochemical feedback to climate change (Forzieri et al., 2020). For example, 

global surface greening increases ET/transpiration (Lian et al., 2018; Lu et al., 2021), 

and reduce soil water content (Li et al., 2018a). However, the complex interaction 

between vegetation and surface makes it difficult to simulate the influence of dynamic 

vegetation change on ET (Gentine et al., 2019). Meanwhile, strictly disengaging the 

contributions of climatic variables and vegetation to ET is very difficult due to the 

interaction between vegetation and climatic variables (Li et al., 2018b). For 

water-limited regions, precipitation as main water supply to vegetation controls 

interannual ET changes (Wang et al., 2021). Thus, the dominating factor of 

interannual ET changes is not vegetation, but rather, atmospheric climate variables 

(Zhang et al., 2020). Those studies indicate that contribution of climatic variables 

have already included information of vegetation, indirectly. 

Given the above reasons, the ET products used in this study do not consider the effect 

of land use /vegetation changes on ET. When simulating ET, the model frameworks 

assume no interannual land use changes, so they are regarded as static conditions. 

Detailed landcover types in each product have been shown in Table S1”. 

Table S1. Comparisons of landcover types data used by the four ET products 

ET product Landcover types data Period 

GLEAM3.0a MOD44B Static 

GLDAS2.0-Noah MCD12Q1 Static 

MERRA-Land Global Land Cover Characterization Static 

EartH2Observe-En 

W3RA MOD44B Static 

HTESSEL-CaMa 

Global Land Cover Characterization 

Static 

JULES Static 

PCR-GLOBWB Static 

LISFLOOD 
GlobCover2009 

Static 

HBV-SIMREG Static 

WaterGAP3 MOD12Q1 Static 

Note: However, regarding EartH2Observe-En, the LUC datasets used by seven (in this table) and two models (i.e., 

ORCHIDEE and SURFEX-TRIP) are available and unavailable, respectively; the LUC is not the necessary input 

for SWBM. 
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3. Figure 7: As the percentage of grids in each dominant factor controlling annual ET 

linear trends has been distinguished in Table 2, I suggest to focus on the regions 

where VPD plays a dominant factor in Figure 7.  
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Response: Thank you for your comment. 

We have highlighted the regions where VPD plays a dominant factor with the dotted 

areas in Figure 7. 

 
Figure 7. Distribution of dominant factor in VPD changes in global land during 1980-2010 for 

GLEAM3.0a (a), EartH2Observe-En (b), GLDAS2.0-Noah (c), and MERRA-Land (d). T2 and H 

mean air temperature and specific humidity respectively. Dotted areas are where VPD is a 

dominant factor. 

4. 3.3 Validations of attribution method belongs to the 4.2 Uncertainties, as this 

section discusses the reliability of Budyko method in ET estimation and attribution 

analysis. 

Response: Thank you for your comment. 

We have added section 3.3 Validations of attribution method into section 4.2.1 

Validations of attribution method. Please see line 6-14 in page 12. 

5. Abstract Line 22: “land-atmosphere interactions” & Page 10 Line 24: “The positive 

feedbacks”: The main conclusion of this article is demonstrating the main factor 

affecting ET trend. However, it appears that this study did not address the interaction 

or feedback between ET and VPD. 

Response: Thank you for your comment. 

Abstract Line 22: “land-atmosphere interactions” has been changed to 

“carbon-water-energy cycle”.  

Page 10 Line 24: “The positive feedbacks” has been changed to “The positive 

influences”. 

6.  As the authors mentioned choice of ET data may add significant uncertainties into 

the ET attribution. The authors need to show how the impact of the results due to ET 
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datasets uncertainty is reduced and summarize the combined results from multiple 

data sets, rather than one data set with one result without giving a combined 

conclusion. And this should also be summarized in Conclusion. 

Response: Thank you for your comment. 

It is challenging to study ET change mechanisms only depending on one product. 

Because the model structures, algorithms, and forcing data sets can affect ET 

accuracy (Martens et al., 2017), when simulating ET. Therefore, we decided to use 

multi-source ET products and their forcing data sets. As described in Figure 2, there 

are evident differences in ET trends among those products. Different trends of 

climatic variables can directly affect ET trends. Figure S2 shows the spatial 

distribution of the annual linear trend in each driving factor (i.e., P, Rn, T, VPD, and u) 

during 1980-2010. We can find that precipitation and net radiation have differences 

between the products, especially for precipitation trends in MERRA-Land and net 

radiation trends in GLDAS2.0-Noah. By the attribution method with Budyko 

framework, the global long-term annual ET linear trend responses to climatic 

variables’ changes can be quantified in Figure S3. Compared to air temperature and 

wind speed, precipitation, net radiation, VPD provide the biggest contribution to ET 

trends. As the reviewer said, we need to summarize ET conclusions from different 

products’ results. To do this, we obtain the consistency of the dominant factor in ET 

trends among those products by summarizing the results in Figure 4. 

Similar descriptions in this manuscript can be added, liking line 7-8 in page 7, such as 

“From spatial scale, P, Rn, VPD also provide the biggest contributions to ET trend 

(Figure S3), which positively correlate with their respective trends (Figure S2)”. 

Meanwhile, we summarize this in Conclusion, such as line 5-7 in page 14, 

“Uncertainties of ET trends: Global ET trends among the products are determined by 

their climate variables. Different sources of forcing data sets result in different 

magnitudes of ET trends, even the reversing signs. But consistent above attribution 

results in those products confirm that ET mechanisms are robust”. 
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Figure S2. Spatial distribution of annual linear trend in each driving factor during 1980-2010. 

Small letters (a-e) respectively indicate P, Rn, T, VPD, and u and numbers (1-4) represent 

GLEAM3.0a, EartH2Observe-En, GLDAS2.0-Noah, and MERRA-Land. Dotted area indicates the 

trend passes significance level (p<0.05). 
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Figure S3. Attributions of the global long-term annual ET linear trend during 1980-2010. Small 

letters (a-e) indicate P, Rn, T, VPD and u respectively; and numbers (1-4) indicate the ET 

products of GLEAM3.0a, EartH2Observe-En, GLDAS2.0-Noah and MERRA-Land respectively. 

 

References: 

Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, 

D., Beck, H.E.,Dorigo,W.A., Verhoest, N.E.C.: GLEAM v3: Satellite-based land evaporation and 

root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925, 10.5194/gmd-10-1903-2017, 2017. 

 

7.  Table 2 gives the percentage of grids in each dominant factor controlling annual 

ET linear trends with positive and negative. Meanwhile, Figure 2 shows the spatial 

distribution of annual ET linear trends for 4 datasets, opposite trends between 

different products in the same pixel can be found. My concern is whether the areas 

with positive ET trend in one dataset are changing negatively in the other dataset. 

Response: Thank you for your comment. 

As shown in Figure 2, there are divergences in the ET trends of the products over 

some regions. Different ET trends among the products result from different forcing 

data (Table 1). Each climatic factor’s contribution to ET trends in Figure S3 is 

determined by the respective factor’s trend in Figure S2. For example, MERRA-Land 

has abnormal negative ET trends over South America and the central part of Africa. 

By comparing Figure S1 with Figure S2, we find that negative ET trends over the 

central part of Africa are due to abnormally decreased precipitation providing a 

negative contribution to ET trends. Similar description has been added in Line 11-14 

in page 9, such as “As shown in Figure 2, there are divergences in the ET trends of 

the products over some regions. For example, MERRA-Land has abnormal negative 

ET trends over South America and the central part of Africa. This is due to 

abnormally decreased precipitation providing a negative contribution to ET trends”. 

Some specific comments: 

1 Page 1, Line 25: As you mentioned “terrestrial water flux component”, “accounting 

for more than 60% of global precipitation” should be “land precipitation”.  

Response: Thank you for your comment. 

We have changed “global precipitation” to“global land precipitation”. 

2 Page 3, 2.1 Data: Forcing data in Budyko framework and Köppen climate 

classification should also be summarized. 

Response: Thank you for your comment. 

We have added the description, liking “In the attribution method with Budyko 

framework, we use respective forcing data of each product (please see detail 
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description in section 2.2 Forcing data)” in line 7-9 in page 3; and “The Köppen 

climate classification is produced according to the empirical relationship between 

climatic variables and vegetation” in line 11-12 in page 3. 

3 Page 5, Line 35: What’s the meaning of Ci? 

Response: Thank you for your comment. 

Ci means the contribution of each factor to ET change in each product. 

4 Figure 4: The image color scheme can be more distinguishable. 

Response: Thank you for your comment. 

Figure 4’s color scheme has been changed: 

 
Figure 4. The consistency of spatial distribution of dominant climatic factors to global long-term 

ET trends between GLEAM3.0a, EartH2Observe-En, GLDAS2.0-Noah and MERRA-Land for 

Precipitation (a), net radiation (b), and VPD (c). The land fraction of air temperature (T1) and 
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wind speed is limited so their results are not shown here. Numbers 1-4 represent the count of these 

models with the same dominant factor in one pixel, and indicate different confidence level from 

low to high. 

 

5 Page 5, Line 10: How do you define the “dominant factor of ET trends”? Please 

give an explanation or algorithm. 

Response: Thank you for your comment. 

The explanation has been added to Line 12-13 on page 8 to read “The dominant 

climatic factor is identified with the absolute value of maximum contribution to ET 

trends”.  

6 Figure 5 & 8: Please use density scatter plot to improve image quality. 

Response: Thank you for your comment. 

Figure 5 & 8’s color scheme have been changed: 

 
Figure 5. The pixel-wise scatterplots of global long-term annual ET linear trend against the control 

trend (trendCTL) in ET for GLEAM3.0a (a), EartH2Observe-En (b), GLDAS2.0-Noah (c), and 

MERRA-Land (d). The red line indicates a fitted line of the scatter points along with the 1:1 blue 

dotted line. 
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Figure 8. Pixel-wise scatterplots of (x-axis) annual ET in each product against (y-axis) annual ET 

estimated by Budyko Framework. Small letters (a-d) represent GLEAM3.0a, EartH2Observe-En, 

GLDAS2.0-Noah, and MERRA-Land, respectively. 

7 Please avoid citing a large number of references in one place. 

Response: Thank you for your comment. 

We have deleted some unnecessary references in one place. 

 

 

Reviewer 2: 

The manuscript “Attributing of global evapotranspiration trends based on the Budyko 

framework” by Li et al. investigated the trend of evapotranspiration (ET) at global 

scale and its contributing factors, including precipitation (P), net radiation (Rn), air 

temperature (T1), VPD, and wind speed (u), by using multiple datasets (GLEAM3.0a, 

EartH2Observe ensemble, GLDAS2.0-Noah and MERRA-Land). The methods and 

datasets used in this study is similar to a previous study (Li. et al., Journal of 

Hydrology, 2021) by the same author except this manuscript extends previous study 

in China to global. This study is more like a numerical sensitivity exercise, suffers 

from methodological methodological flaws and does not provide insights to 

understand ET trend and its contributing factors. 

Response: We thank this reviewer for constructive comments about the accuracy of 

the attribution method in our work, which significantly improves the quality of the 

manuscript. The following is our detailed responses to the reviewer’s comments. 

Compared to JH et al., 2021, we discuss evident differences in results and 

uncertainties of the attribution method in this manuscript. 

For new added result differences in Line 27-37 in page 2, “Li et al (2021) attempted 

to quantify the contribution of those forcing variables to ET trends over China with 

the Budyko theory. Their study indicates that precipitation dominates ET trends over 

water-limited regions, while VPD controls ET of energy-limited regions. However, 
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there are still unclear questions about the global land ET mechanism. For example, 

how differently would the conclusions of dominating ET factors over water-limited 

regions be for global dry lands? Which variable controls ET over the global tropical 

zone is unclear, despite the results of VPD controlling ET over the energy-limited 

region of China. Wang et al (2022) indicate that global significantly increased ET 

mostly results from increasing air temperature, especially in the humid region. Pan et 

al (2020) point out that precipitation, air temperature, and radiation control 

Amazon’s ET changes. On the other hand, the boreal ET mechanisms are also not 

entirely clear. Increasing air temperature is significantly correlated with ET (Wang et 

al., 2022), while increasing VPD contributes to ET process over the boreal region 

(Helbig et al., 2020). Therefore, it is necessary to assess global ET mechanisms using 

the same attribution method for solving these problems”. 

For uncertainties of the attribution method, we quantify the contribution of air 

temperature T2 and specific humidity to global VPD changes following our proposed 

sensitivity method in Figure 5. Our study concludes that the specific humidity 

controls VPD only in some regions of North and South Asia, northern Australia, 

southern Africa, and South America. A similar description can refer to Line 2-10 in 

page 10. We also discuss the relationship between fitted parameter ω and ET trend 

analysis, vegetation, such as line 11-22 in page 13, “Here, we compare ET trends in 

each product to climate zones, which are represented by aridity index. The aridity 

index (PET/precipitation) in each product is calculated with respective precipitation 

and PET data. Figure S5(a1-d1) show that the biggest ET trends of all products exit 

the wettest regions (low aridity index). To study the influence of fitted parameter ω on 

ET trend analysis, we compare the control on ET trend (trendCTL) to the aridity index. 

The results in Figure S5(a2-d2) show similar results to the actual ET trend, meaning 

the ET trend analysis in the attributed method can capture actual ET change 

characteristics. Meanwhile, we also quantify the relationship of parameter ω fitted by 

precipitation, potential evapotranspiration, and actual evapotranspiration in each 

product to multi-year average GIMMS NDVI during 1982-2010. Figure 8 shows the 

linear relationship between fitted parameter ω and NDVI for all products with R2 

values of 0.13-0.38. In general, parameter ω can be calculated according to the 

linear relationship between ω and NDVI (Bai et al, 2019; Greve et al, 2014). The 

results show that our trend analysis keeps the relationship, spatially. However, we 

admit that time-varying ω (e.g. vegetation, soil property) will directly affect ET (Lu et 
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al., 2021). The impact of ω would vary as a function of the chosen timescale which 

requires a more indepth study beyond the scope of the current study”. 

References: 
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Major comments 

1. The Budyko equation assumes that precipitation is the only water supply for ET. At 

global scale during the study period (1980-2010), many regions have experienced 

long-term trends in groundwater storage.  For example, in many regions (e.g., the 

North Plain in China, the High Plain in US, the northern India) where groundwater is 

used for agricultural irrigation, the depleted groundwater provides an additional 

source for ET.  In this study, both the analytical framework (Budyko equation) 

and some of the datasets (e.g., GLDAS2-Noah) do not capture groundwater 

dynamics.  Therefore, this study only investigated the climatic factors on ET 

trend and cannot provide a full picture of ET trend.  Even if the ET trend caused 

by groundwater is captured (e.g., by the remote sensing based GLEAM ET product), 

this manuscript may mistakenly attribute ET trend caused by groundwater to 

climatic factors. 

Response: Thank you for your comments. 

We agree that human activities (irrigation and reservoir construction) have been 

playing an important role in water cycle. To discuss that, we add a new section 4.2.2 

in Line 28-41 in page 12 and Line 1-5 in page 13, such as “Human activities (e.g. 

irrigation and reservoir construction) have been affecting the components (i.e. ET, 

runoff, and groundwater storage) of water cycles (Ashraf et al., 2017; Long et al., 

2017). For example, the groundwater over North Plain in China, the High Plain in 

US, and northern India is pumped for agricultural irrigation and contribute to 

accelerate ET process. Lv et al (2017) indicate that the estimated ET will be more 

accurate if irrigation water affects hydrological cycles. Unfortunately, most ET 
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products do not consider human activities due to the limited factors of estimated 

algorithm and model parameters. The GLDAS2.0-Noah and MERRA-Land in this 

study also do not consider the effect of human activities. GLEAM3.0a partly contains 

the information of groundwater by considering the effect of ESA-CCI soil moisture on 

ET. As for EartH2Observe-En, the six models either consider one of groundwater, 

reservoir, or water use (see Table S1 from Li et al., 2021). However, the attribution 

results to ET trends in this study show GLEAM3.0a and EartH2Observe-En’s 

validation results are good, indicating that the effect of human activities on ET may be 

contained in climatic variables. These ET products are produced with appropriate 

algorithms, parameterizations of models and forcing data sets. The accuracy of ET 

has been validated by the respective developers; Li et al (2018) in China, Wang et al 

(2018) in Yellow River basin, and Nooni et al (2019) in Nile River basin, suggesting 

good performances of these products. Therefore, our study only focuses on climatic 

factors affecting interannual ET changes. For future studies, the contribution of land 

surface such as human activities to ET should be investigated to understand the 

mechanism of global ET trend better. Additionally, we only consider local 

contributions of ET here. In fact, large-scale modes of climate variability (e.g. El Niño 

Southern Oscillation, the North Atlantic Oscillation,) can also affect terrestrial 

evaporation. For example, Martens et al (2018) indicate that El Niño Southern 

Oscillation controls the overall dynamic of global land ET, while some models 

dominate regional ET change, such as East Pacific–North Pacific teleconnection 

patterns”.  

 

Therefore, the direct contributions of ground water and soil moisture are not 

considered, although we are aware that they do play a role since we mainly focus on 

atmospheric factors. Additionally, water transport from the ocean and other sources 

(remote sources) such as shown in Wei et al. (2012, 2016) are also not considered. 

The goal was to simplify this whole framework and then in following studies, we also 

look into the impact of land and other remote sources. 

 

 

Table S1. Members of Eearth2Observe-En ET product of considering human activities (ground 

water, reservoir lakes, and water use) (Li et al., 2021). 

Name Ground water Reservoir/ Lakes Water use 

HTESSEL-CaMa NO NO NO 

JULES NO NO NO 
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LISFLOOD YES YES YES 

ORCHIDEE YES NO Irrigation only 

PCR-GLOBWB YES Only lakes NO 

SURFEX-TRIP YES NO NO 

HBV-SIMREG NO NO NO 

SWBM NO NO NO 

W3RA YES NO NO 

WaterGAP3 YES YES YES 

Note: HTESSEL-CaMa is Hydrology Tiled ECMWF Scheme for Surface Exchanges over 

Land-Catchment-based Macro-scale Floodplain model; JULES is the Joint UK Land Environment 

Simulator; PCR-GLOBWB is PCRaster GLOBal Water Balance model; HBV-SIMREG is 

Hydrologiska Byråns Vattenbalansavdelning model; SWBM is Simple Water Balance Model; 

W3RA is Water Resources Assessment; WaterGAP3 is Water-Global Assessment and Prognosis. 

Detail information refers to Schellekens et al. (2017). 
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2. The parameter w in Budyko equation in Equation 1 is obtained by regression using 

each set of data product (Line 7-8). I assume that the authors repeat the regression 

four times using the four sets of P, PET and ET data.  The parameter w is usually 

associated with land surface characteristics (e.g., land use, vegetation).  However, 

this study assumes the parameter w is static.  Therefore, the trends of ET caused by 

land surface characteristics are neglected. 

Response: Thank you for your comments. 

We apologize for the confusion. It is true that ω are fitted with annual precipitation, 

potential evapotranspiration, and actual evapotranspiration with the least-squares 

regression in this study. Actually, ω in Budyko framework are determined by 

landscape characteristics (e.g. vegetation cover, soil properties, and topography) 

(Yang et al., 2008). Generally, ω parameters can be calculated by vegetation changes 

(Greve et al., 2014). During a long study period (1980-2010), Land surface 

characteristics significantly affect evapotranspiration by ω parameters. For example, 

vegetation greening controls interannual evapotranspiration variation (Lu et al., 2021).  

However, all the four ET data used in this paper assume no interannual vegetation 

changes (satellite phenology driven), when simulating ET(detailed landcover types in 

each product have been shown in Table S1). It is worth noting that the assumption 

mentioned above does not discredit the reliability of the ET products. Furthermore, 

the contributions of climatic variables to ET trends already include information of the 

vegetation indirectly. The accuracy of the ET products has been validated in different 

studies such as Li et al (2018) in China, Wang et al (2018) over the Yellow River 

basin, and Nooni et al (2019) in the Nile River basin, among others, suggesting good 

performances of these products. Therefore, our study only focuses on climatic factors 

affecting interannual ET changes. 

To explain this, we have discussed the influences of vegetation and climate change on 

ET changes. Please refer to Line 16-27 in page 12, such as “Vegetation can alter 

water cycle, and energy cycle by biophysical and biochemical feedback to climate 

change (Forzieri et al., 2020). For example, global surface greening increases 

ET/transpiration (Lian et al., 2018; Lu et al., 2021), and reduce soil water content (Li 

et al., 2018a). However, the complex interaction between vegetation and surface 

makes it difficult to simulate the influence of dynamic vegetation change on ET 

(Gentine et al., 2019). Meanwhile, strictly disengaging the contributions of climatic 

variables and vegetation to ET is very difficult due to the interaction between 

vegetation and climatic variables (Li et al., 2018b). For water-limited regions, 
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precipitation as main water supply to vegetation controls interannual ET changes 

(Wang et al., 2021). Thus, the dominating factor of interannual ET changes is not 

vegetation, but rather, atmospheric climate variables (Zhang et al., 2020). Those 

studies indicate that contribution of climatic variables have already included 

information of vegetation, indirectly. 

Given the above reasons, the ET products used in this study do not consider the effect 

of land use /vegetation changes on ET. When simulating ET, the model frameworks 

assume no interannual land use changes, so they are regarded as static conditions. 

Detailed landcover types in each product have been shown in Table S1”. 

Table S1. Comparisons of landcover types data used by the four ET products 

ET product Landcover types data Period 

GLEAM3.0a MOD44B Static 

GLDAS2.0-Noah MCD12Q1 Static 

MERRA-Land Global Land Cover Characterization Static 

EartH2Observe-En 

W3RA MOD44B Static 

HTESSEL-CaMa 

Global Land Cover Characterization 

Static 

JULES Static 

PCR-GLOBWB Static 

LISFLOOD 
GlobCover2009 

Static 

HBV-SIMREG Static 

WaterGAP3 MOD12Q1 Static 

Note: However, regarding EartH2Observe-En, the LUC datasets used by seven (in 

this table) and two models (i.e., ORCHIDEE and SURFEX-TRIP) are available and 

unavailable, respectively; the LUC is not the necessary input for SWBM. 

 

 

References: 

Forzieri, Giovanni; Miralles, Diego G.; Ciais, Philippe; Alkama, Ramdane; Ryu, Youngryel; 

Duveiller, Gregory; Zhang, Ke; Robertson, Eddy; Kautz, Markus; Martens, Brecht; Jiang, 

Chongya; Arneth, Almut; Georgievski, Goran; Li, Wei; Ceccherini, Guido; Anthoni, Peter; 

Lawrence, Peter; Wiltshire, Andy; Pongratz, Julia; Piao, Shilong; Sitch, Stephen; Goll, Daniel S.; 

Arora, Vivek K.; Lienert, Sebastian; Lombardozzi, Danica; Kato, Etsushi; Nabel, Julia E. M. S.; 

Tian, Hanqin; Friedlingstein, Pierre; Cescatti, Alessandro. Increased control of vegetation on 

global terrestrial energy fluxes. Nat. Clim. Chang. 2020, 10, 356–362. 

Gentine P, Green J K, Guerin M, et al. Coupling between the terrestrial carbon and water cycles - 

a review. Environmental Research Letters, 2019, 14(8). 

Greve P, Orlowsky B, Mueller B, et al. Global assessment of trends in wetting and drying over 

land. Nature Geoscience, 2014, 7(10):716-721. 

Greve, P., Gudmundsson, L., Orlowsky, B., and Seneviratne, S. I.: A two-parameter Budyko 

function to represent conditions under which evapotranspiration exceeds precipitation, Hydrol. 

Earth Syst. Sci., 20, 2195–2205, https://doi.org/10.5194/hess-20-2195-2016, 2016. 



19 
 

Li, S.J., Wang, G.J., Sun, S.L., Chen, H.S., et al., 2018. Assessment of Multi-Source 

Evapotranspiration Products over China Using Eddy Covariance Observations. Remote Sensing, 

210(11), 1692. 

Lian, X., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X., Wang, T., 2018. Partitioning 

global land evapotranspiration using CMIP5 models constrained by observations. Nature Climate 

Change 8 (7), 640–646. 

Lu, J., Wang, G., Li, S., Feng, A., Zhan, M., Jiang, T., et al. (2021). Projected land evaporation 

and its response to vegetation greening over China under multiple scenarios in the CMIP6 models. 

Journal of Geophysical Research: Biogeosciences, 126, e2021JG006327. 

Lu, J., Wang, G., Li, S., Feng, A., Zhan, M., Jiang, T., et al. (2021). Projected land evaporation 

and its response to vegetation greening over China under multiple scenarios in the CMIP6 models. 

Journal of Geophysical Research: Biogeosciences, 126, e2021JG006327. 

Nooni, I.K.; Wang, G.; Hagan, D.F.T.; Lu, J.; Ullah, W.; Li, S. Evapotranspiration and its 

Components in the Nile River Basin Based on Long-Term Satellite Assimilation Product. Water 

2019, 11, 1400. 

Wang, G.J., Pan, J., Shen, C.C., Li, S.J., Lu, J., Lou, D., Hagan, D. F. T., et al., 2018. Evaluation 

of Evapotranspiration Estimates in the Yellow River Basin against the Water Balance Method. 

Water, 10(12):1884. 

Wang, H.N., Lv, X.Z., Zhang, M.Y., 2021. Sensitivity and attribution analysis of vegetation 

changes on evapotranspiration with the Budyko framework in the Baiyangdian catchment, China. 

Ecol. Indic. 120, 106963. 

Y. Li, S. Piao, L. Z. X. Li, A. Chen, X. Wang, P. Ciais, L. Huang, X. Lian, S. Peng, Z. Zeng, K. 

Wang, L. Zhou, Divergent hydrological response to large-scale afforestation and vegetation 

greening in China. Sci. Adv., 2018a, 4, eaar4182. 

Yang, H., Yang, D., Lei, Z., & Sun, F. (2008). New analytical derivation of the mean annual 

water-energy balance equation. Water Resources Research, 44(3), W03410. 

Yue Li, Zhenzhong Zeng, Ling Huang, Xu Lian and Shilong Piao. Science. Comment on 

''Satellites reveal contrasting responses of regional climate to the widespread greening of Earth''. 

Science, 2018b, 360 (6394), eaap7950. 

Zhang, D., Liu, X., Zhang, L., Zhang, Q., Gan, R., Li, X., 2020. Attribution of evapotranspiration 

changes in humid regions of China from 1982 to 2016. J. Geophys. Res.: Atmos., 125 (13), 

e2020JD032404. 

 

3. The parameter w is more sensitive to regression in arid climate than in humid climate 

based on Budyko Equation 1. Therefore, without a detailed study of w, the ET 

trend analysis in this study may be biased for different climate zones.  In addition, 

as this study uses four sets of data, it is unclear how w’s obtained from each data set 

are different from each other. 

Response: Thank you for your comments. 

We appreciate this suggestion. The fitted parameter ω includes landscape 

characteristics (e.g. vegetation cover, soil properties, and topography), leading to the 

parameter with climatic characteristics (Xu et al., 2013). Meanwhile, ET trends of 
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used products in this study are directly related to climate zones. Here, we compare ET 

trends in each product to climate zones, in which are represented by aridity index. 

Aridity index (PET/precipitation) in each product is calculated with respective 

precipitation and PET data. Figure S5(a1-d1) show that the biggest ET trends of all 

products exit the wettest regions (low aridity index). To study the influence of fitted 

parameter ω on ET trend analysis, we compare control ET trend (trendCTL) to aridity 

index. The results in Figure S5(a2-d2) show similar results with actual ET trend, 

meaning the ET trend analysis in the attributed method can capture actual ET change 

characteristics. 

 

Figure S5. The pixel-wise scatterplots of multi-year average aridity index against actual ET annual 

values for GLEAM3.0a (a1), EartH2Observe-En (b1), GLDAS2.0-Noah (c1), and MERRA-Land 

(d1), the control ET trend (trendCTL) for GLEAM3.0a (a2), EartH2Observe-En (b2), 

GLDAS2.0-Noah (c2), and MERRA-Land (d2). Aridity index (PET/precipitation) in each product 

is calculated with respective precipitation and PET data. 

Meanwhile, we also quantify the relationship of parameter ω fitted by precipitation, 

potential evapotranspiration, and actual evapotranspiration in each product to 

multi-year average GIMMS NDVI during 1982-2010. Figure 8 shows linear 

relationship between fitted parameter ω and NDVI for all products with R
2
 value with 

0.13-0.38. In general, parameter ω can be calculated according to the linear 

relationship between ω and NDVI (Bai et al, 2019; Greve et al, 2014). The results 

show that our trend analysis keeps the relationship, spatially. 

Similar description is also added into the manuscript, such as line 11-22 in page 13, 

such as “Here, we compare ET trends in each product to climate zones, in which are 
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represented by aridity index. Aridity index (PET/precipitation) in each product is 

calculated with respective precipitation and PET data. Figure S5(a1-d1) show that 

the biggest ET trends of all products exit the wettest regions (low aridity index). To 

study the influence of fitted parameter ω on ET trend analysis, we compare control 

ET trend (trendCTL) to aridity index. The results in Figure S5(a2-d2) show similar 

results with actual ET trend, meaning the ET trend analysis in the attributed method 

can capture actual ET change characteristics. Meanwhile, we also quantify the 

relationship of parameter ω fitted by precipitation, potential evapotranspiration, and 

actual evapotranspiration in each product to multi-year average GIMMS NDVI 

during 1982-2010. Figure 8 shows the linear relationship between fitted parameter ω 

and NDVI for all products with R2 values of 0.13-0.38. In general, parameter ω can 

be calculated according to the linear relationship between ω and NDVI (Bai et al, 

2019; Greve et al, 2014). The results show that our trend analysis keeps the 

relationship, spatially. We admit that time-varying ω (e.g. vegetation, soil property) 

will directly affect ET (Lu et al., 2021). The impact of ω would vary as a function of 

the chosen timescale which requires a more indepth study beyond the scope of the 

current study”. 

 

 

Figure 8. Pixel-wise scatterplots of (x-axis) multi-year average NDVI against (y-axis) their fitted 

ω values in each product. Small letters (a-d) represent GLEAM3.0a, EartH2Observe-En, 

GLDAS2.0-Noah, and MERRA-Land. GIMMS NDVI data during 1982-2010 is used here. 
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4. It is a bit confusing on the control experiment setup for sensitivity analysis. The 

impact of a contributing factor trend on ET trend is analyzed by the difference using 

1980 data and the 1980-2010 average (Line 30-34).  As there is inter-annual 

variability in the climate foricngs, why comparing the 1980-year data to 1980-2010 

average would reflect the true trend.  For example, if a pixel has a decreasing trend in 

P during 1980-2010 and a dry year in 1980 (i.e., P in 1980 is below average), the 

experiment setup then would predict an opposite increasing P trend. Therefore, I am 

not sure if choosing a different year (e.g., 1981) would lead to different results on 

the trend analysis. 

Response: Thank you for your comments. 

In this study, the sim_CTL experiment can obtain the control ET changes for each 

product by using all the factors of 1980-2010, and the ET change controlled by one 

certain factor is simulated by the sensitivity experiment with the factor only in the 

1980 and the others factors of 1980-2010. The difference in ET trends between 

control experiment and each sensitivity experiment is considered as the contribution 

of that particular climatic variable to ET trends. Actually, choosing a different year in 

the sensitivity experiment of one factor may lead to different results. In general, there 

are two choices (i.e. one year or multi-year average) for this. The two choices are both 

applied to the attribution analysis of reference evapotranspiration and meteorological 

drought (Sun et al., 2017; Sun et al., 2019). We compare the PET/precipitation values 

between 1980s and multi-year average among those products (Figure S1). Overall 

results show a slight difference between 1980s and multi-year average for 

PET/precipitation. Similar description is added into line 37-38 in page 35, such as 

“Figure S1 shows that precipitation and PET values between 1980 and the multiyear 

average are very close”. 
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Figure S1. The pixel-wise scatterplots of PET in 1980s against multi-year average PET for 

GLEAM3.0a (a1), EartH2Observe-En (b1), GLDAS2.0-Noah (c1), and MERRA-Land (d1) and 

precipitation in 1980s against multi-year average precipitation for GLEAM3.0a (a2), 

EartH2Observe-En (b2), GLDAS2.0-Noah (c2), and MERRA-Land (d2). 
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