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Reviewer 2: 

The manuscript “Attributing of global evapotranspiration trends based on the Budyko 

framework” by Li et al. investigated the trend of evapotranspiration (ET) at global 

scale and its contributing factors, including precipitation (P), net radiation (Rn), air 

temperature (T1), VPD, and wind speed (u), by using multiple datasets (GLEAM3.0a, 

EartH2Observe ensemble, GLDAS2.0-Noah and MERRA-Land). The methods and 

datasets used in this study is similar to a previous study (Li. et al., Journal of 

Hydrology, 2021) by the same author except this manuscript extends previous study 

in China to global. This study is more like a numerical sensitivity exercise, suffers 

from methodological methodological flaws and does not provide insights to 

understand ET trend and its contributing factors. 

Response: We thank this reviewer for constructive comments about the accuracy of 

the attribution method in our work, which significantly improves the quality of the 

manuscript. The following is our detailed responses to the reviewer’s comments. 

Compared to JH et al., 2021, we discuss evident differences in results and 

uncertainties of the attribution method in this manuscript. 

For result differences, “Li et al (2021) attempted to quantify the contribution of those 

forcing variables to ET trends over China with the Budyko theory. Their study 

indicates that precipitation dominates ET trends over water-limited regions, while 

VPD controls ET of energy-limited regions. However, there are still unclear questions 

about the global land ET mechanism. For example, how differently would the 

conclusions of dominating ET factors over water-limited regions be for global dry 

lands? Which variable controls ET over the global tropical zone is unclear, despite 

the results of VPD controlling ET over the energy-limited region of China. Wang et al 

(2022) indicate that global significantly increased ET mostly results from increasing 

air temperature, especially in the humid region. Pan et al (2020) point out that 

precipitation, air temperature, and radiation control Amazon’s ET changes. On the 

other hand, the boreal ET mechanisms are also not entirely clear. Increasing air 

temperature is significantly correlated with ET (Wang et al., 2022), while increasing 

VPD contributes to ET process over the boreal region (Helbig et al., 2020). Therefore, 

it is necessary to assess global ET mechanisms using the same attribution method for 

solving these problems”. 

For uncertainties of the attribution method, we quantify the contribution of air 

temperature T2 and specific humidity to global VPD changes following our proposed 

sensitivity method in Figure 5. Our study concludes that the specific humidity 
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controls VPD only in some regions of North and South Asia, northern Australia, 

southern Africa, and South America. We also discuss the relationship between fitted 

parameter ω and ET trend analysis, vegetation. The text there reads as: “Here, we 

compare ET trends in each product to climate zones, which are represented by aridity 

index. The aridity index (PET/precipitation) in each product is calculated with 

respective precipitation and PET data. Figure S5(a1-d1) show that the biggest ET 

trends of all products exit the wettest regions (low aridity index). To study the 

influence of fitted parameter ω on ET trend analysis, we compare the control on ET 

trend (trendCTL) to the aridity index. The results in Figure S5(a2-d2) show similar 

results to the actual ET trend, meaning the ET trend analysis in the attributed method 

can capture actual ET change characteristics. Meanwhile, we also quantify the 

relationship of parameter ω fitted by precipitation, potential evapotranspiration, and 

actual evapotranspiration in each product to multi-year average GIMMS NDVI 

during 1982-2010. Figure 8 shows the linear relationship between fitted parameter ω 

and NDVI for all products with R2 values of 0.13-0.38. In general, parameter ω can 

be calculated according to the linear relationship between ω and NDVI (Bai et al, 

2019; Greve et al, 2014). The results show that our trend analysis keeps the 

relationship, spatially. However, we admit that time-varying ω (e.g. vegetation, soil 

property) will directly affect ET (Lu et al., 2021). The impact of ω would vary as a 

function of the chosen timescale which requires a more indepth study beyond the 

scope of the current study”. 
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Major comments 

1. The Budyko equation assumes that precipitation is the only water supply for ET. At 

global scale during the study period (1980-2010), many regions have experienced 

long-term trends in groundwater storage.  For example, in many regions (e.g., the 
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North Plain in China, the High Plain in US, the northern India) where groundwater is 

used for agricultural irrigation, the depleted groundwater provides an additional 

source for ET.  In this study, both the analytical framework (Budyko equation) and 

some of the datasets (e.g., GLDAS2-Noah) do not capture groundwater 

dynamics.  Therefore, this study only investigated the climatic factors on ET trend 

and cannot provide a full picture of ET trend.  Even if the ET trend caused by 

groundwater is captured (e.g., by the remote sensing based GLEAM ET product), this 

manuscript may mistakenly attribute ET trend caused by groundwater to climatic 

factors. 

Response: Thank you for your comments. 

We agree that human activities (irrigation and reservoir construction) have been 

playing an important role in water cycle. To discuss that, we add a new section. The 

text there reads as: such as “Human activities (e.g. irrigation and reservoir 

construction) have been affecting the components (i.e. ET, runoff, and groundwater 

storage) of water cycles (Ashraf et al., 2017; Long et al., 2017). For example, the 

groundwater over North Plain in China, the High Plain in US, and northern India is 

pumped for agricultural irrigation and contribute to accelerate ET process. Lv et al 

(2017) indicate that the estimated ET will be more accurate if irrigation water affects 

hydrological cycles. Unfortunately, most ET products do not consider human 

activities due to the limited factors of estimated algorithm and model parameters. The 

GLDAS2.0-Noah and MERRA-Land in this study also do not consider the effect of 

human activities. GLEAM3.0a partly contains the information of groundwater by 

considering the effect of ESA-CCI soil moisture on ET. As for EartH2Observe-En, the 

six models either consider one of groundwater, reservoir, or water use (see Table S1 

from Li et al., 2021). However, the attribution results to ET trends in this study show 

GLEAM3.0a and EartH2Observe-En’s validation results are good, indicating that the 

effect of human activities on ET may be contained in climatic variables. These ET 

products are produced with appropriate algorithms, parameterizations of models and 

forcing data sets. The accuracy of ET has been validated by the respective developers; 

Li et al (2018) in China, Wang et al (2018) in Yellow River basin, and Nooni et al 

(2019) in Nile River basin, suggesting good performances of these products. 

Therefore, our study only focuses on climatic factors affecting interannual ET 

changes. For future studies, the contribution of land surface such as human activities 

to ET should be investigated to understand the mechanism of global ET trend better. 

Additionally, we only consider local contributions of ET here. In fact, large-scale 
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modes of climate variability (e.g. El Niño Southern Oscillation, the North Atlantic 

Oscillation,) can also affect terrestrial evaporation. For example, Martens et al (2018) 

indicate that El Niño Southern Oscillation controls the overall dynamic of global land 

ET, while some models dominate regional ET change, such as East Pacific–North 

Pacific teleconnection patterns”.  

Therefore, the direct contributions of ground water and soil moisture are not 

considered, although we are aware that they do play a role since we mainly focus on 

atmospheric factors. Additionally, water transport from the ocean and other sources 

(remote sources) such as shown in Wei et al. (2012, 2016) are also not considered. 

The goal was to simplify this whole framework and then in following studies, we also 

look into the impact of land and other remote sources. 

Table S1. Members of Eearth2Observe-En ET product of considering human activities (ground 

water, reservoir lakes, and water use) (Li et al., 2021). 

Name Ground water Reservoir/ Lakes Water use 

HTESSEL-CaMa NO NO NO 

JULES NO NO NO 

LISFLOOD YES YES YES 

ORCHIDEE YES NO Irrigation only 

PCR-GLOBWB YES Only lakes NO 

SURFEX-TRIP YES NO NO 

HBV-SIMREG NO NO NO 

SWBM NO NO NO 

W3RA YES NO NO 

WaterGAP3 YES YES YES 

Note: HTESSEL-CaMa is Hydrology Tiled ECMWF Scheme for Surface Exchanges over 

Land-Catchment-based Macro-scale Floodplain model; JULES is the Joint UK Land Environment 

Simulator; PCR-GLOBWB is PCRaster GLOBal Water Balance model; HBV-SIMREG is 

Hydrologiska Byråns Vattenbalansavdelning model; SWBM is Simple Water Balance Model; 

W3RA is Water Resources Assessment; WaterGAP3 is Water-Global Assessment and Prognosis. 

Detail information refers to Schellekens et al. (2017). 
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Lv, M., Ma, Z., Yuan, X., et al., 2017. Water budget closure based on GRACE measurements and 
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Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, 

D., Beck, H.E.,Dorigo,W.A., Verhoest, N.E.C.: GLEAM v3: Satellite-based land evaporation and 

root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925, 10.5194/gmd-10-1903-2017, 2017. 
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Syst. Sci. Data. 9, 389–413. 

2. The parameter w in Budyko equation in Equation 1 is obtained by regression using 

each set of data product (Line 7-8). I assume that the authors repeat the regression 

four times using the four sets of P, PET and ET data.  The parameter w is usually 

associated with land surface characteristics (e.g., land use, vegetation).  However, 

this study assumes the parameter w is static.  Therefore, the trends of ET caused by 

land surface characteristics are neglected. 

Response: Thank you for your comments. 

We apologize for the confusion. It is true that ω are fitted with annual precipitation, 

potential evapotranspiration, and actual evapotranspiration with the least-squares 

regression in this study. Actually, ω in Budyko framework are determined by 

landscape characteristics (e.g. vegetation cover, soil properties, and topography) 

(Yang et al., 2008). Generally, ω parameters can be calculated by vegetation changes 

(Greve et al., 2014). During a long study period (1980-2010), Land surface 

characteristics significantly affect evapotranspiration by ω parameters. For example, 

vegetation greening controls interannual evapotranspiration variation (Lu et al., 2021).  

However, all the four ET data used in this paper assume no interannual vegetation 

changes (satellite phenology driven), when simulating ET (detailed landcover types in 

each product have been shown in Table S1). It is worth noting that the assumption 

mentioned above does not discredit the reliability of the ET products. Furthermore, 

the contributions of climatic variables to ET trends already include information of the 

vegetation indirectly. The accuracy of the ET products has been validated in different 

studies such as Li et al (2018) in China, Wang et al (2018) over the Yellow River 

basin, and Nooni et al (2019) in the Nile River basin, among others, suggesting good 
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performances of these products. Therefore, our study only focuses on climatic factors 

affecting interannual ET changes. 

To explain this, we have discussed the influences of vegetation and climate change on 

ET changes. The text there reads as: such as “Vegetation can alter water cycle, and 

energy cycle by biophysical and biochemical feedback to climate change (Forzieri et 

al., 2020). For example, global surface greening increases ET/transpiration (Lian et 

al., 2018; Lu et al., 2021), and reduce soil water content (Li et al., 2018a). However, 

the complex interaction between vegetation and surface makes it difficult to simulate 

the influence of dynamic vegetation change on ET (Gentine et al., 2019). Meanwhile, 

strictly disengaging the contributions of climatic variables and vegetation to ET is 

very difficult due to the interaction between vegetation and climatic variables (Li et 

al., 2018b). For water-limited regions, precipitation as main water supply to 

vegetation controls interannual ET changes (Wang et al., 2021). Thus, the dominating 

factor of interannual ET changes is not vegetation, but rather, atmospheric climate 

variables (Zhang et al., 2020). Those studies indicate that contribution of climatic 

variables have already included information of vegetation, indirectly. 

Given the above reasons, the ET products used in this study do not consider the effect 

of land use /vegetation changes on ET. When simulating ET, the model frameworks 

assume no interannual land use changes, so they are regarded as static conditions. 

Detailed landcover types in each product have been shown in Table S1”. 

Table S1. Comparisons of landcover types data used by the four ET products 

ET product Landcover types data Period 

GLEAM3.0a MOD44B Static 

GLDAS2.0-Noah MCD12Q1 Static 

MERRA-Land Global Land Cover Characterization Static 

EartH2Observe-En 

W3RA MOD44B Static 

HTESSEL-CaMa 

Global Land Cover Characterization 

Static 

JULES Static 

PCR-GLOBWB Static 

LISFLOOD 
GlobCover2009 

Static 

HBV-SIMREG Static 

WaterGAP3 MOD12Q1 Static 

Note: However, regarding EartH2Observe-En, the LUC datasets used by seven (in 

this table) and two models (i.e., ORCHIDEE and SURFEX-TRIP) are available and 

unavailable, respectively; the LUC is not the necessary input for SWBM. 
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3. The parameter w is more sensitive to regression in arid climate than in humid climate 

based on Budyko Equation 1. Therefore, without a detailed study of w, the ET trend 

analysis in this study may be biased for different climate zones.  In addition, as this 

study uses four sets of data, it is unclear how w’s obtained from each data set are 

different from each other. 

Response: Thank you for your comments. 

We appreciate this suggestion. The fitted parameter ω includes landscape 

characteristics (e.g. vegetation cover, soil properties, and topography), leading to the 

parameter with climatic characteristics (Xu et al., 2013). Meanwhile, ET trends of 

used products in this study are directly related to climate zones. Here, we compare ET 

trends in each product to climate zones, in which are represented by aridity index. 

Aridity index (PET/precipitation) in each product is calculated with respective 

precipitation and PET data. Figure S5(a1-d1) show that the biggest ET trends of all 

products exit the wettest regions (low aridity index). To study the influence of fitted 

parameter ω on ET trend analysis, we compare control ET trend (trendCTL) to aridity 

index. The results in Figure S5(a2-d2) show similar results with actual ET trend, 

meaning the ET trend analysis in the attributed method can capture actual ET change 

characteristics. 
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Figure S5. The pixel-wise scatterplots of multi-year average aridity index against actual ET annual 

values for GLEAM3.0a (a1), EartH2Observe-En (b1), GLDAS2.0-Noah (c1), and MERRA-Land 

(d1), the control ET trend (trendCTL) for GLEAM3.0a (a2), EartH2Observe-En (b2), 

GLDAS2.0-Noah (c2), and MERRA-Land (d2). Aridity index (PET/precipitation) in each product 

is calculated with respective precipitation and PET data. 

Meanwhile, we also quantify the relationship of parameter ω fitted by precipitation, 

potential evapotranspiration, and actual evapotranspiration in each product to 

multi-year average GIMMS NDVI during 1982-2010. Figure 8 shows linear 

relationship between fitted parameter ω and NDVI for all products with R
2
 value with 

0.13-0.38. In general, parameter ω can be calculated according to the linear 

relationship between ω and NDVI (Bai et al, 2019; Greve et al, 2014). The results 

show that our trend analysis keeps the relationship, spatially. 

Similar description is also added into the manuscript. The text there reads as: “Here, 

we compare ET trends in each product to climate zones, in which are represented by 

aridity index. Aridity index (PET/precipitation) in each product is calculated with 

respective precipitation and PET data. Figure S5(a1-d1) show that the biggest ET 

trends of all products exit the wettest regions (low aridity index). To study the 

influence of fitted parameter ω on ET trend analysis, we compare control ET trend 

(trendCTL) to aridity index. The results in Figure S5(a2-d2) show similar results with 

actual ET trend, meaning the ET trend analysis in the attributed method can capture 

actual ET change characteristics. Meanwhile, we also quantify the relationship of 

parameter ω fitted by precipitation, potential evapotranspiration, and actual 

evapotranspiration in each product to multi-year average GIMMS NDVI during 

1982-2010. Figure 8 shows the linear relationship between fitted parameter ω and 

NDVI for all products with R2 values of 0.13-0.38. In general, parameter ω can be 

calculated according to the linear relationship between ω and NDVI (Bai et al, 2019; 

Greve et al, 2014). The results show that our trend analysis keeps the relationship, 

spatially. We admit that time-varying ω (e.g. vegetation, soil property) will directly 

affect ET (Lu et al., 2021). The impact of ω would vary as a function of the chosen 

timescale which requires a more indepth study beyond the scope of the current study”. 
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Figure 8. Pixel-wise scatterplots of (x-axis) multi-year average NDVI against (y-axis) their fitted 

ω values in each product. Small letters (a-d) represent GLEAM3.0a, EartH2Observe-En, 

GLDAS2.0-Noah, and MERRA-Land. GIMMS NDVI data during 1982-2010 is used here. 
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4. It is a bit confusing on the control experiment setup for sensitivity analysis. The 

impact of a contributing factor trend on ET trend is analyzed by the difference using 

1980 data and the 1980-2010 average (Line 30-34).  As there is inter-annual 

variability in the climate foricngs, why comparing the 1980-year data to 1980-2010 

average would reflect the true trend.  For example, if a pixel has a decreasing trend in 

P during 1980-2010 and a dry year in 1980 (i.e., P in 1980 is below average), the 

experiment setup then would predict an opposite increasing P trend. Therefore, I am 

not sure if choosing a different year (e.g., 1981) would lead to different results on the 

trend analysis. 

Response: Thank you for your comments. 

In this study, the sim_CTL experiment can obtain the control ET changes for each 

product by using all the factors of 1980-2010, and the ET change controlled by one 

certain factor is simulated by the sensitivity experiment with the factor only in the 

1980 and the others factors of 1980-2010. The difference in ET trends between 

control experiment and each sensitivity experiment is considered as the contribution 

of that particular climatic variable to ET trends. Actually, choosing a different year in 

the sensitivity experiment of one factor may lead to different results. In general, there 
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are two choices (i.e. one year or multi-year average) for this. The two choices are both 

applied to the attribution analysis of reference evapotranspiration and meteorological 

drought (Sun et al., 2017; Sun et al., 2019). We compare the PET/precipitation values 

between 1980s and multi-year average among those products (Figure S1). Overall 

results show a slight difference between 1980s and multi-year average for 

PET/precipitation. Similar description is added. The text there reads as: “The 

multiyear average can also replace a factor in 1980 during 1980-2010. Figure S1 

shows that precipitation and PET values between 1980 and the multiyear average are 

very close”. 

 
Figure S1. The pixel-wise scatterplots of PET in 1980s against multi-year average PET for 

GLEAM3.0a (a1), EartH2Observe-En (b1), GLDAS2.0-Noah (c1), and MERRA-Land (d1) and 

precipitation in 1980s against multi-year average precipitation for GLEAM3.0a (a2), 

EartH2Observe-En (b2), GLDAS2.0-Noah (c2), and MERRA-Land (d2). 
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