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Reviewer 1: 

Accurate quantification of the climatic contributions for global land 

evapotranspiration change is necessary for understanding variability in the global 

water cycle. This study assembled four ET datasets based on various methodological 

sources, further adopted the Budyko framework and sensitivity experiment analysis to 

quantifying the contribution of climatic variables (P, Rn, T, VPD and u) to ET trend. 

The analysis identified the main climatic factor controls ET trend on a global scale. 

This research is systemic and detailed, helps reveal the controlling factors of global 

ET change. The main comments can be found as follows: 

Response: We thank this reviewer for constructive comments, which significantly 

improves the quality of the manuscript. The following is our detailed responses to the 

reviewer’s comments. 

1.The expression should be improved.  

Response: We have improved unclear expressions in the manuscript. 

2.Budyko method was used to conduct a control experiment to compare with ET 

product results, and the ω parameters were obtained by least squares fitting, did the 

authors use annual data for the entire period for the fitting? If this were the case, it 

would not be possible to consider the effect of land use changes on the ω parameters 

and thus bias the estimated ET simulations, especially considering that such a long 

study period (1980-2010) with significant land use changes must have an important 

impact on ω. 

Response: We appreciate this comment. 

In this study, ω parameters are fitted with annual precipitation, potential 

evapotranspiration, and actual evapotranspiration. The parameters ω in Budyko 

framework are determined by landscape characteristics (e.g. vegetation cover, soil 

properties, and topography) (Yang et al., 2008), in particular ω, which parameters can 

be related to vegetation changes (Greve et al., 2014). As the reviewer pointed out, 

land-use changes during such a long study period (1980-2010) significantly affect 

evapotranspiration as a function of ω. For example, vegetation greening is indicated to 

control interannual evapotranspiration variation (Lu et al., 2021). However, all the 

four ET data used in this paper assume no interannual vegetation changes (satellite 

phenology driven), when simulating ET(detailed landcover types in each product have 

been shown in Table S1). It is worth noting that the assumption mentioned above does 

not discredit the reliability of the ET products. Furthermore, the contributions of 

climatic variables to ET trends already include information of the vegetation 
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indirectly. The accuracy of the ET products has been validated in different studies 

such as Li et al (2018) in China, Wang et al (2018) over the Yellow River basin, and 

Nooni et al (2019) in the Nile River basin, among others, suggesting good 

performances of these products. Therefore, our study only focuses on climatic factors 

affecting interannual ET changes. 

We have added discussions about vegetation changes in the manuscript. The text there 

reads as: “Vegetation can alter water cycle, and energy cycle by biophysical and 

biochemical feedback to climate change (Forzieri et al., 2020). For example, global 

surface greening increases ET/transpiration (Lian et al., 2018; Lu et al., 2021), and 

reduce soil water content (Li et al., 2018a). However, the complex interaction 

between vegetation and surface makes it difficult to simulate the influence of dynamic 

vegetation change on ET (Gentine et al., 2019). Meanwhile, strictly disengaging the 

contributions of climatic variables and vegetation to ET is very difficult due to the 

interaction between vegetation and climatic variables (Li et al., 2018b). For 

water-limited regions, precipitation as main water supply to vegetation controls 

interannual ET changes (Wang et al., 2021). Thus, the dominating factor of 

interannual ET changes is not vegetation, but rather, atmospheric climate variables 

(Zhang et al., 2020). Those studies indicate that contribution of climatic variables 

have already included information of vegetation, indirectly. 

Given the above reasons, the ET products used in this study do not consider the effect 

of land use /vegetation changes on ET. When simulating ET, the model frameworks 

assume no interannual land use changes, so they are regarded as static conditions. 

Detailed landcover types in each product have been shown in Table S1”. 

Table S1. Comparisons of landcover types data used by the four ET products 

ET product Landcover types data Period 

GLEAM3.0a MOD44B Static 

GLDAS2.0-Noah MCD12Q1 Static 

MERRA-Land Global Land Cover Characterization Static 

EartH2Observe-En 

W3RA MOD44B Static 

HTESSEL-CaMa 

Global Land Cover Characterization 

Static 

JULES Static 

PCR-GLOBWB Static 

LISFLOOD 
GlobCover2009 

Static 

HBV-SIMREG Static 

WaterGAP3 MOD12Q1 Static 

Note: However, regarding EartH2Observe-En, the LUC datasets used by seven (in this table) and two models (i.e., 

ORCHIDEE and SURFEX-TRIP) are available and unavailable, respectively; the LUC is not the necessary input 

for SWBM. 
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3. Figure 7: As the percentage of grids in each dominant factor controlling annual ET 

linear trends has been distinguished in Table 2, I suggest to focus on the regions 

where VPD plays a dominant factor in Figure 7.  

Response: Thank you for your comment. 

We have highlighted the regions where VPD plays a dominant factor with the dotted 

areas in Figure 7. 

 
Figure 7. Distribution of dominant factor in VPD changes in global land during 1980-2010 for 

GLEAM3.0a (a), EartH2Observe-En (b), GLDAS2.0-Noah (c), and MERRA-Land (d). T2 and H 

mean air temperature and specific humidity respectively. Dotted areas are where VPD is a 

dominant factor. 

4. 3.3 Validations of attribution method belongs to the 4.2 Uncertainties, as this 

section discusses the reliability of Budyko method in ET estimation and attribution 

analysis. 

Response: Thank you for your comment. 

We have added section 3.3 Validations of attribution method into section 4.2.1 

Validations of attribution method.  

5. Abstract Line 22: “land-atmosphere interactions” & Page 10 Line 24: “The positive 

feedbacks”: The main conclusion of this article is demonstrating the main factor 

affecting ET trend. However, it appears that this study did not address the interaction 

or feedback between ET and VPD. 

Response: Thank you for your comment. 
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Abstract Line 22: “land-atmosphere interactions” has been changed to 

“carbon-water-energy cycle”.  

Page 10 Line 24: “The positive feedbacks” has been changed to “The positive 

influences”. 

6.  As the authors mentioned choice of ET data may add significant uncertainties into 

the ET attribution. The authors need to show how the impact of the results due to ET 

datasets uncertainty is reduced and summarize the combined results from multiple 

data sets, rather than one data set with one result without giving a combined 

conclusion. And this should also be summarized in Conclusion. 

Response: Thank you for your comment. 

It is challenging to study ET change mechanisms only depending on one product. 

Because the model structures, algorithms, and forcing data sets can affect ET 

accuracy (Martens et al., 2017), when simulating ET. Therefore, we decided to use 

multi-source ET products and their forcing data sets. As described in Figure 2, there 

are evident differences in ET trends among those products. Different trends of 

climatic variables can directly affect ET trends. Figure S2 shows the spatial 

distribution of the annual linear trend in each driving factor (i.e., P, Rn, T, VPD, and u) 

during 1980-2010. We can find that precipitation and net radiation have differences 

between the products, especially for precipitation trends in MERRA-Land and net 

radiation trends in GLDAS2.0-Noah. By the attribution method with Budyko 

framework, the global long-term annual ET linear trend responses to climatic 

variables’ changes can be quantified in Figure S3. Compared to air temperature and 

wind speed, precipitation, net radiation, VPD provide the biggest contribution to ET 

trends. As the reviewer said, we need to summarize ET conclusions from different 

products’ results. To do this, we obtain the consistency of the dominant factor in ET 

trends among those products by summarizing the results in Figure 4. 

Similar descriptions in this manuscript can be added. The text there reads as: 

“Spatially, P, Rn, VPD also provide the biggest contributions to ET trend (Figure S3), 

which are positively correlated with their respective trends (Figure S2)”. Meanwhile, 

we summarize this in Conclusion, and the text there reads as “Global ET trends 

among the products are determined by their climate variables. Different sources of 

forcing data sets result in different magnitudes of ET trends, even the reversing signs. 

But consistent above attribution results in those products confirm that ET mechanisms 

are robust”. 
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Figure S2. Spatial distribution of annual linear trend in each driving factor during 1980-2010. 

Small letters (a-e) respectively indicate P, Rn, T, VPD, and u and numbers (1-4) represent 

GLEAM3.0a, EartH2Observe-En, GLDAS2.0-Noah, and MERRA-Land. Dotted area indicates the 

trend passes significance level (p<0.05). 
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Figure S3. Attributions of the global long-term annual ET linear trend during 1980-2010. Small 

letters (a-e) indicate P, Rn, T, VPD and u respectively; and numbers (1-4) indicate the ET 

products of GLEAM3.0a, EartH2Observe-En, GLDAS2.0-Noah and MERRA-Land respectively. 
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7.  Table 2 gives the percentage of grids in each dominant factor controlling annual 

ET linear trends with positive and negative. Meanwhile, Figure 2 shows the spatial 

distribution of annual ET linear trends for 4 datasets, opposite trends between 

different products in the same pixel can be found. My concern is whether the areas 

with positive ET trend in one dataset are changing negatively in the other dataset. 

Response: Thank you for your comment. 

As shown in Figure 2, there are divergences in the ET trends of the products over 

some regions. Different ET trends among the products result from different forcing 

data (Table 1). Each climatic factor’s contribution to ET trends in Figure S3 is 

determined by the respective factor’s trend in Figure S2. For example, MERRA-Land 

has abnormal negative ET trends over South America and the central part of Africa. 

By comparing Figure S1 with Figure S2, we find that negative ET trends over the 

central part of Africa are due to abnormally decreased precipitation providing a 

negative contribution to ET trends. Similar description has been added, and The text 

there reads as: “As shown in Figure 2, there are divergences in the ET trends of the 

products over some regions. For example, MERRA-Land has abnormal negative ET 

trends over South America and the central part of Africa. This is due to abnormally 

decreased precipitation providing a negative contribution to ET trends”. 

Some specific comments: 

1 Page 1, Line 25: As you mentioned “terrestrial water flux component”, “accounting 

for more than 60% of global precipitation” should be “land precipitation”.  

Response: Thank you for your comment. 

We have changed “global precipitation” to“global land precipitation”. 

2 Page 3, 2.1 Data: Forcing data in Budyko framework and Köppen climate 

classification should also be summarized. 

Response: Thank you for your comment. 

We have added the description, liking “In the attribution method with Budyko 

framework, we use respective forcing data of each product (please see detail 
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description in section 2.2 Forcing data)”; and “The Köppen climate classification is 

produced according to the empirical relationship between climatic variables and 

vegetation”. 

3 Page 5, Line 35: What’s the meaning of Ci? 

Response: Thank you for your comment. 

Ci means the contribution of each factor to ET change in each product. 

4 Figure 4: The image color scheme can be more distinguishable. 

Response: Thank you for your comment. 

Figure 4’s color scheme has been changed: 

 
Figure 4. The consistency of spatial distribution of dominant climatic factors to global long-term 

ET trends between GLEAM3.0a, EartH2Observe-En, GLDAS2.0-Noah and MERRA-Land for 

Precipitation (a), net radiation (b), and VPD (c). The land fraction of air temperature (T1) and 
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wind speed is limited so their results are not shown here. Numbers 1-4 represent the count of these 

models with the same dominant factor in one pixel, and indicate different confidence level from 

low to high. 

5 Page 5, Line 10: How do you define the “dominant factor of ET trends”? Please 

give an explanation or algorithm. 

Response: Thank you for your comment. 

We have added the explanation. The text there reads as: “The dominant climatic 

factor is identified with the absolute value of maximum contribution to ET trends 

among those factors”.  

6 Figure 5 & 8: Please use density scatter plot to improve image quality. 

Response: Thank you for your comment. 

Figure 5 & 8’s color scheme have been changed: 

 
Figure 5. The pixel-wise scatterplots of global long-term annual ET linear trend against the control 

trend (trendCTL) in ET for GLEAM3.0a (a), EartH2Observe-En (b), GLDAS2.0-Noah (c), and 

MERRA-Land (d). The red line indicates a fitted line of the scatter points along with the 1:1 blue 

dotted line. 
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Figure 8. Pixel-wise scatterplots of (x-axis) annual ET in each product against (y-axis) annual ET 

estimated by Budyko Framework. Small letters (a-d) represent GLEAM3.0a, EartH2Observe-En, 

GLDAS2.0-Noah, and MERRA-Land, respectively. 

7 Please avoid citing a large number of references in one place. 

Response: Thank you for your comment. 

We have deleted some unnecessary references in one place. 

 


