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Abstract. Errors, gaps and outliers complicate and sometimes invalidate the analysis of time series. While most fields have 

developed their own strategy to clean the raw data, no generic procedure has been promoted to standardize the pre-processing. 

This lack of harmonization makes the inter-comparison of studies difficult, and leads to screening methods that can be arbitrary 

or case-specific. This study provides a generic pre-processing procedure implemented in R (ctbi , for cyclic/trend 10 

decomposition using bin interpolation) dedicated to univariate time series. Ctbi  is based on data binning and decomposes the 

time series into a long-term trend and a cyclic component (quantified by a new metric, the Stacked Cycles Index) to finally 

aggregate the data. Outliers are flagged with an enhanced boxplot rule called Logbox that corrects biases due to the sample 

size and that is adapted to non-Gaussian residuals. Three different Earth Science datasets (contaminated with gaps and outliers) 

are successfully cleaned and aggregated with ctbi . This illustrates the robustness of this procedure that can be valuable to any 15 

discipline. 

1 Introduction 

In any discipline, raw data need to be evaluated during a pre-processing procedure before performing the analysis. Errors are 

removed, values that deviate from the rest of the population are flagged (outliers, see Aguinis et al., 2013), in some cases gaps 

are filled. Because the raw data are altered, pre-processing is a delicate and time-consuming task that can be neglected due to 20 

cognitive biases deflecting our understanding of reality (‘I see what I want to see’) , or due to our impatience to obtain results. 

The fate of extreme values is crucial as they usually challenge scientific or economic theories (Reiss et al., 2007). 

Time series are particularly difficult to pre-process (Chandola et al., 2009). A value can or cannot be considered as an outlier 

just depending on its timestamp (e.g., a freezing temperature in summer), large data gaps are common, abrupt changes can 

occur and a background noise covers the true signal. In Earth Science, in-situ or remote measurements routinely produce time 25 

series that first need to be visually inspected. The expert-knowledge of the researcher, technician or engineer is essential to 
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flag suspicious periods of possible instrument failure (e.g., a rain gauge blocked by snowflakes), violation of the experimental 

conditions (e.g., a passing car during CO2 measurements in a forest), or human error (e.g., calibration of the wrong sensor). 

Once these suspicious periods have been flagged, a pre-processing algorithm is necessary to evaluate the quality of the 

remaining portion of the measurements. However, there currently is no consensus on which procedure to use even in the simple 30 

univariate case: a recent review (Ranjan et al., 2021) covered more than 37 preprocessing methods for univariate time series, 

and Aguinis et al. (2013) listed 14 different outlier definitions that are mutually exclusive. Despite this (overwhelming) 

abundance of methods and conventions, there are surprisingly few R packages that offer a pre-processing function. It is worth 

mentioning hampel (package pracma, Borchers, 2021) that applies a Hampel filter (Pearson, 2002) to time series and flags 

outliers based on the Mean Absolute Deviation (MAD), which is a robust approximation of the standard deviation defined as 35 

𝑀𝐴𝐷(𝑥) = 1.4826 × M(|𝑥− M(𝑥)|) with M the median operator. However, the hampel function is not robust to missing 

values and the scaling factor of 1.4826 is not adapted to non-Gaussian residuals. Another option is the function tsoutliers 

(package forecast, Hyndman et al., 2008) that applies a Seasonal and Trend decomposition using Loess (STL, Cleveland et 

al., 1990) to data showing a seasonal pattern, complemented by a smoothing function to estimate the trend of non-seasonal 

time series (Friedman’s super smoother, Friedman, 1984). The residuals obtained can be transformed to follow a Gaussian 40 

distribution (Cox-Box method, Box & Cox, 1964), and then outliers are flagged using the boxplot rule (Tukey, 1977). This 

method will be proved in this study to work well with data associated with nearly-Gaussian residuals, but to show poor 

performance otherwise.  

This study offers an alternative pre-processing procedure (implemented in R) called ctbi  for cyclic/trend decomposition using 

bin interpolation. The time series is divided into a sequence of non-overlapping time intervals of equal period (called bins), 45 

and outliers are flagged with an enhanced version of the boxplot rule (called Logbox) that is adapted to non-Gaussian data for 

different sample sizes. Ctbi  fulfils four purposes:  

i) Data cleaning: bins with insufficient data are discarded, and outliers are flagged in the remaining bins. If there is a 

cyclic pattern within each bin, missing values can be imputed as well. 

ii) Decomposition: the time series is decomposed into a long-term trend and a cyclic component. 50 

iii) Cyclicity analysis: the mean cycle of the stacked bins is calculated, and the strength of the cyclicity is quantified by 

a novel index, the Stacked Cycles Index. 

iv) Aggregation: data are averaged (or summed) within each bin. 

This procedure is particularly adapted to univariate time series that are messy, with outliers, data gaps or irregular timesteps. 

The inputs offer a large flexibility in terms of imputation level or outlier cutoff, but also in the timestamp of the bins: a day 55 

does not necessarily start at midnight or a year the 1st of January. The timeline is not limited to daily or monthly data but  can 
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vary from milliseconds to millenaries. The outputs keep track of the changes brought to the data: contaminated bins are flagged, 

as well as outliers and imputed data points. 

This paper is divided into two distinct parts. The first part describes the Logbox method and compares its performance with 

five other outlier detection methods in the literature based on daily precipitation & temperature data extracted from century-60 

old weather stations. The second part describes the ctbi  procedure, and then applies it to three datasets that have been 

contaminated beforehand to show the efficiency of the algorithm. A comparison with tsoutliers is performed, and, finally, 

limitations and good practice recommendations are discussed. 

2 Part I, outliers 

2.1 Context 65 

This first part is dedicated to the detection of outliers present in univariate datasets (without the time component). The boxplot 

(or Tukey’s) rule is a commonly used method to flag outliers below a lower boundary 𝑙 and above an upper boundary 𝑢 (Tukey, 

1977): 

{
𝑙 = 𝑞(0.25) − α× (𝑞(0.75) − 𝑞(0.25))

𝑢 = 𝑞(0.75) + α× (𝑞(0.75) − 𝑞(0.25))
 

With 𝑞 the sample quantile (e.g., 𝑞(0.5) is the median) and α = 1.5 a constant that corresponds to 99.3% of Gaussian data 70 

falling within [𝑙, 𝑢]. This method is simple and robust to the presence of a maximum of 25% of outliers in the dataset (known 

as the breakdown point). When a real data point falls outside the [𝑙, 𝑢] range, it is considered as an erroneously flagged outlier 

(or type I error). Conversely, a type II error occurs when a real outlier is not flagged.  The type I error is more common for 

three reasons: 

(i) For small Gaussian samples (𝑛 < 30), up to 8.6% of data (Hoaglin et al., 1986) can be cut due to the 75 

inaccuracy of the sample quantile for small 𝑛. 

(ii) For large Gaussian samples (𝑛 > 103), α = 1.5 is inappropriate because the number of erroneously flagged 

outliers increases linearly with 𝑛 due to the 99.3% of data captured by [𝑙, 𝑢]. 

(iii) For non-Gaussian populations, α = 1.5 is generally too restrictive. For example, ~4.8 % of data following an 

Exponential distribution would be cut.  80 

Studies have corrected biases in the detection of outliers in small samples (see Carling, 2000; Schwertman et al., 2004) and 

large samples (Barbato et al., 2011), but these methods were adapted to Gaussian populations. For non-Gaussian populations, 

Kimber (1990) and Hubert & Vandervieren (2008) have adjusted α to the skewness (related to the asymmetry of a distribution) 

but did not consider the kurtosis (related to the tail weight) that will be proven to be a key variable in this study. Therefore, 

there currently is no generic procedure that can be used when the population is non-Gaussian. 85 
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To understand how to address this problem, two sets of common distributions with known skewness 𝑆, kurtosis excess 𝜅𝑒𝑥 

and quantile function 𝑄 are used (Fig. 1). The first set is the Pearson family composed of light-tailed distributions that represent 

any theoretically possible residuals with moderate 𝑆 & 𝜅𝑒𝑥. Pearson originally worked to create distributions that cover the 

entire (𝑆,𝜅𝑒𝑥) space (Pearson, 1895; 1901 & 1916), but they took their modern names later on (Gamma, Inverse-gamma, Beta 90 

prime, Student, Pearson IV). The second set is the Generalized Extreme Value family composed of the Gumbel, Weibull and 

Fréchet that are heavy-tailed distributions (high 𝑆 & 𝜅𝑒𝑥) used in Extreme Value Theory to model the behavior of extrema 

(Jenkinson, 1955). Based on this framework, this study finds that 𝛼(𝑛) = 𝐴 log(𝑛) + 𝐵 +
𝐶

𝑛
 reasonably addresses all 

previously mentioned issues, with 𝐶 fixed as a constant (𝐶 = 36). The two parameters 𝐴 and 𝐵 correspond to the nature of the 

distribution and are estimated based on a predictor of the maximum tail weight and inspired by Moors (1988). A comparison 95 

between this procedure (called Logbox) and five other existing models is performed on residuals obtained from 6307 weather 

stations with more than 100 years of daily temperature and precipitation measurements (Fig. 2). Finally, Logbox is 

implemented in part II to clean the residuals obtained after fitting the univariate time series with a robust and nonparametric 

method. 

2.2 Method 100 

2.2.1 Distributions 

Residuals with moderate 𝜅𝑒𝑥 & 𝑆 are represented in this study with 4999 light-tailed distributions from the Pearson family 

(Pearson, 1895; 1901 & 1916) composed of the Gaussian, Gamma (196 distributions, including the Exponential), Inverse 

gamma (170), Beta prime (1135), Pearson IV (3377) and Student (120) distributions (Fig. 1a). These distributions cover the 

entire (𝜅𝑒𝑥,𝑆
2) space without overlap, except for the Beta distribution that has been discarded due to a bounded support 105 

(unrealistic residuals). The shape parameters of each distribution have been chosen to produce regularly-spaced points with a 

mean distance of 0.05 in the (𝜅𝑒𝑥,𝑆
2) space and with a range between the Gaussian and the Exponential: 𝜅𝑒𝑥 ∈ [0,6] and 𝑆 ∈

[0,2]. Heavy-tailed residuals are represented with 368 distributions from the Generalized Extreme Value (GEV) family (Fig. 

1d) composed of the Gumbel, Weibull (244 distributions) and Fréchet (123). Their shape parameters cover a larger range: 

𝜅𝑒𝑥 ∈ [0,500] and 𝑆 ∈ [0,15]. 110 

 

2.2.2 The Logbox model 

Based on the boxplot rule, 𝛼 can be defined as: 
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𝛼(𝑛) =  
𝑄(1 −

𝑓(𝑛)
2𝑛

) −𝑄(0.75)

𝑄(0.75) − 𝑄(0.25)
 

With 𝑛 the sample size, 𝑄 the population quantile function and 𝑓 a function that gives the number of erroneously flagged 115 

outliers. In the original boxplot rule, 𝑄 = Φ−1 (with Φ the cumulative distribution function of the Gaussian) and 𝑓(𝑛) =

0.007𝑛 which leads to 𝛼 = 1.5. As explained in the introduction, this choice of 𝑓 is not valid for large sample sizes due to the 

linear dependence on 𝑛. A flat number of erroneously flagged outliers (𝑓(𝑛) = 𝑏) or a logarithmic relationship (𝑓(𝑛) =

𝑏 log (𝑛)) would not be appropriate either, because 𝛼(𝑛) could take arbitrary large values as 1 −
𝑓(𝑛)

2𝑛
 would approach 1 too 

rapidly (𝑄(1) = ∞). This study suggests instead 𝑓(𝑛) = 0.001√𝑛 as a compromise. For example, for a sample of size 𝑛 =120 

102, 104 or 106; respectively 0.01, 0.1 or 1 point would be erroneously flagged as outlier (instead of 0.7, 70 or 7000 points 

with the original boxplot rule). To characterize the relationship 𝛼(𝑛)  versus 𝑛 , 𝛼  is derived with high accuracy (𝑄 

implemented in 𝑅) for each distribution of the Pearson and GEV family for 5 sample sizes (𝑛𝑖 = 10
𝑖  with 𝑖 ∈ [2,6]). It appears 

that 𝛼(𝑛) = 𝐴 log(𝑛) + 𝐵 is an accurate model for both the Pearson family (mean of 𝑟2 =  0.994 ± 0.005) and the GEV 

family (𝑟2 =  0.99 ± 0.01). Barbato et al. (2011) found the same law for the Gaussian distribution based on empirical 125 

considerations only, with reported values of 𝐴 = 0.15 and 𝐵 = 1.15. For comparison, this study finds 𝐴 = 0.08 and 𝐵 = 2 

for the Gaussian distribution (𝑟2 = 0.999). 

 

The relationship 𝛼(𝑛) = 𝐴 log(𝑛)+ 𝐵 now needs to be extended to small or non-Gaussian samples. To account for biases 

emerging at small sample size, an additional term is added following Carling (2000): 𝛼(𝑛) = 𝐴 log(𝑛) + 𝐵 +
𝐶

𝑛
. The parameter 130 

𝐶 = 36 has been numerically determined with a Monte-Carlo simulation on the distributions of the Pearson family to ensure 

that the percentage of erroneously flagged outliers corresponds to ~0.1% for 𝑛 = 9 (supplementary material). To account for 

non-Gaussian populations, 𝐴 and 𝐵 will be estimated with a new robust predictor sensitive to the tail weight. Let (𝑚−, 𝑚+) be 

two functions defined as 𝑚−= (𝐸3 −𝐸1)/(𝐸6− 𝐸2) and 𝑚+ = (𝐸7−𝐸5)/(𝐸6−𝐸2) with 𝐸𝑖 = 𝑞(𝑖/8) the sample octile. 

The centered Moors 𝑚 = 𝑚−+𝑚+− 1.23 is a known robust predictor of the kurtosis excess with a breakdown point of 135 

12.5%  (Moors 1988, Kim & White 2004). However, this study introduces a modified version defined as 𝑚∗ =

 max (𝑚−,𝑚+) − 0.6165. The parameter 𝑚∗ is more appropriate than 𝑚 to determine if a sample is light-tailed or heavy-

tailed. For example, a Gaussian distribution (𝑚− = 𝑚+ ≈ 0.6165) and a right-skewed distribution with one heavy tail (𝑚−=

0.1 and 𝑚+ = 1.13) will share identical 𝑚 but different 𝑚∗. The relationships shown in Fig. 1 are 𝐴 = 𝑔𝐴(𝑚∗) and 𝐵 =

𝑔𝐵(𝑚∗), with 𝑔𝐴(𝑥) = 0.2294𝑒
2.9416𝑥−0.0512𝑥2−0.0684𝑥3  (𝑟2 = 0.999) and 𝑔𝐵(𝑥) = 1.0585 + 15.6960𝑥 − 17.3618𝑥

2 +140 

28.3511𝑥3 −11.4726𝑥4 (𝑟2 = 0.999) for 𝑥 ∈ [0,2]. Each function has been parametrized based on the Pearson and GEV 

family together (Fréchet has been excluded due to a different behavior). The coefficients have been determined with a Monte-

Carlo simulation that minimizes the root-mean square error (𝑁~108).  
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For an unknown sample of size 𝑛 ≥ 9, the Logbox procedure is finally the following: 𝑚∗ is computed (bounded by [0,2]) and 145 

the boxplot rule is used with 𝛼(𝑛) = 𝑔𝐴(𝑚∗)log(𝑛)+ 𝑔𝐵(𝑚∗) +
36

𝑛
. 

 

2.2.3 Former models 

Logbox is compared to five other models (Kimber, 1990; Hubert & Vandervieren, 2008; Schwertman et al., 2004; Leys et al., 

2013; Barbato et al., 2011). The first two models (Kim. and Hub.) adjust the boxplot method with respect to the skewness: 150 

{
𝑙𝐾𝑖𝑚. = 𝑞(0.25) −  3 × (𝑞(0.50) − 𝑞(0.25))

𝑢𝐾𝑖𝑚. = 𝑞(0.75) +  3 × (𝑞(0.75) − 𝑞(0.50))
 

And  

{
𝑙𝐻𝑢𝑏. = 𝑞(0.25) −  1.5 × ℎ(−𝑀𝐶) × (𝑞(0.75) − 𝑞(0.25))

𝑢𝐻𝑢𝑏. = 𝑞(0.75) +  1.5 × ℎ(𝑀𝐶) × (𝑞(0.75) − 𝑞(0.25))
 

With the function h defined as ℎ(𝑀𝐶) =  𝑒4𝑀𝐶 for 𝑀𝐶 <  0 and ℎ(𝑀𝐶) =  𝑒3𝑀𝐶 for 𝑀𝐶 ≥  0. The Medcouple MC ∈ [−1,1] 

is a robust estimator of S, with an algorithm complexity of 𝛰(𝑛 log 𝑛) and a breakdown point of 25% (Brys et al., 2004). The 155 

third model (Sch.) constructs the lower and upper boundary around the median: 

{
 

 𝑙𝑆𝑐ℎ. = 𝑞(0.50) − 
𝑍

𝑘𝑛
× 2(𝑞(0.50) − 𝑞(0.25))

𝑢𝑆𝑐ℎ. = 𝑞(0.50) + 
𝑍

𝑘𝑛
× 2(𝑞(0.75) − 𝑞(0.50))

 

With kn a function of the sample size n to adjust for small samples (given as a table in Schwertman et al., 2004) and Z a 

constant related to the percentage of data captured by [𝑙𝑆𝑐ℎ., 𝑢𝑆𝑐ℎ.], here picked as 𝑍 = 3 (Gaussian case for the ±3𝜎 window). 

The fourth model (Ley.) uses the MAD around the median:  160 

{
𝑙𝐿𝑒𝑦. = 𝑞(0.50) −  3 ×𝑀𝐴𝐷

𝑢𝐿𝑒𝑦. = 𝑞(0.50) +  3 × 𝑀𝐴𝐷
 

Finally, the last model (Bar.) is similar to the Logbox procedure but parametrized on the Gaussian distribution only: 

{
𝑙𝐵𝑎𝑟. = 𝑞(0.25) − (0.15 × log(𝑛)+ 1.15) × (𝑞(0.75) − 𝑞(0.25))

𝑢𝐵𝑎𝑟. = 𝑞(0.75) + (0.15 × log(𝑛)+ 1.15) × (𝑞(0.75) − 𝑞(0.25))
 

 

2.2.4 Comparison between models 165 

The comparison between models is performed on two sets of residuals obtained from weather stations part of the Global 

Historical Climatology Network (GHCN-daily) with at least 100 years of daily temperature (2693 stations, 9.4 ×107 days) or 

daily precipitation (6277 stations, 5.8 ×107  wet days, dry days are excluded). Because this network is used to calibrate 
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products that are remote-sensing based and because suspicious values are routinely flagged (Menne et al., 2012), the risk of 

errors in these century-old stations can be considered small. The residuals are extracted with the robust method described in 170 

part II based on non-overlapping bins (bins with less than 80% of data are discarded). To reduce the impact of the extraction 

method on the analysis, three bin intervals (5, 10 and 20 days) are used to obtain three replicas for each station. The sensitivity 

of each outlier detection method to the sample size has also been estimated. For each station and for each sample size 𝑙𝑖 = 10𝑖 

(𝑖 varying from 1 to 10), 𝑁𝑖 = 
100

𝑖
 samples are randomly selected and the number of flagged outliers is summed over all the 

𝑁𝑖 samples (the total number of points is constant, 𝑁𝑖 × 𝑙𝑖 = 1000). 175 

 

For the five models (Ley., Hub., Kim., Sch., Bar.), the percentage of flagged outliers is computed for each station, and then 

the mean (±1 SD) is calculated over all stations. For the Logbox model, this method is not appropriate because the expected 

number of erroneously flagged outlier per station is less than one (0.001√~104~ 0.1). Instead, the percentage of flagged 

outliers is calculated over the total number of points: 𝜌 = (Σ𝑛𝑗
𝑓𝑙𝑎𝑔𝑔𝑒𝑑) × 100/(Σ𝑛𝑗) with 𝑗  a station. The variability is 180 

estimated by subsampling the total number of stations 𝑁𝑠: √𝑁𝑠 sets of √𝑁𝑠 random stations are selected without replacement. 

The parameter 𝜌 is computed for each set, and the associated variability is calculated on all 𝜌 values (±1 𝑆𝐷 in Fig. 2f and 

quantiles in Fig. 2c).  

 

 185 
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Fig. 1. Location of the 4999 light-tailed distributions of the Pearson family (panel a) and the 368 heavy-tailed distributions of the GEV 

family (panel d) in the (𝜿𝒆𝒙, 𝑺
𝟐) space (kurtosis excess, squared skewness). The coefficients 𝑨 and 𝑩 correspond to 𝜶(𝒏) = 𝑨× 𝐥𝐨𝐠(𝒏)+

𝑩+
𝟑𝟔

𝒏
 used to replace 𝜶 = 𝟏.𝟓 in the boxplot rule. For the Pearson family, they are shown in the (𝜿𝒆𝒙, 𝑺

𝟐) space (panels b and c). For the 190 

GEV family (panels e  and f), they are shown against a predictor of the maximum tail weight defined for right-skewed distributions as 𝒎∗ =
(𝑬𝟕 − 𝑬𝟓)/(𝑬𝟔 − 𝑬𝟐)− 𝟎.𝟔𝟏𝟔𝟓  with 𝑬𝒊 = 𝒒(𝒊/𝟖) the sample octile. 

 

2.3 Results and discussion 

The parameter 𝛼 = 1.5 used in the boxplot rule is sensitive to the sample size 𝑛, and the relationship 𝛼(𝑛) = 𝐴 log(𝑛) + 𝐵 +195 

𝐶

𝑛
 corrects for this effect for both light-tailed distributions (Pearson family, Fig. 1a) and heavy-tailed distributions (GEV family, 

Fig. 1d). The value of 𝐴,𝐵 and 𝐶 depends on the outlier threshold level and the nature of the distribution. The convention in 

this study is to set the expected number of erroneously flagged outliers to 𝑓(𝑛) = 0.001√𝑛, which corresponds to a percentage 

of type I error of 0.1/√𝑛 %. This leads to homogeneous 𝐴 and 𝐵 values among the Pearson family (𝐴 = 0.8 ± 0.3, 𝐵 = 3 ±

1, Fig. 1b,c) used to numerically determine 𝐶 = 36 (supplementary material). Because the value of 𝐴 and 𝐵 rapidly diverges 200 
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for heavy-tailed distributions, a model adapted to the shape of the residuals is required (Fig. 1e,f). To keep this model simple, 

the asymmetry of a distribution (i.e., the skewness) is ignored in this study in order to only focus on the weight  of the heavier 

tail. Possible outliers might not be flagged on the light tail of an asymmetric distribution (risk of type II error), but residuals 

with strong asymmetry are usually produced when the range of possible values is semi-bounded (e.g., precipitation in [0,+∞[), 

which makes the detection of errors trivial (negative precipitation). For this purpose, the parameter 𝑚∗ is a robust predictor of 205 

the maximum tail weight with a breakdown point of 12.5%. Finally, 𝛼(𝑛) = 𝑔𝐴(𝑚∗) log(𝑛)+ 𝑔𝐵(𝑚∗) +
36

𝑛
 for 𝑛 ≥ 9 and 

𝑚∗ ∈ [0,2], with the functions 𝑔𝐴 and 𝑔𝐵 parametrized on both families (Fig. 1e,f). The Fréchet distribution has been excluded 

because its tails are decaying too rapidly (the 𝐴 and 𝐵 coefficients are bounded despite an extreme kurtosis). 

 

 210 

Fig. 2. Comparison between six outlier detection methods performed on two sets of residuals (temperature and precipitation) obtained from 

weather stations with daily measurements over at least 100 years. The two histograms (panels a and b) represent aggregated residuals from 

all stations (for visualization purpose only) and show counts with at least 100 daily occurrences, with the median of the lower/upper threshold 
displayed for each method. For the methods Ley. (Leys et al., 2013), Kim. (Kimber, 1990), Sch. (Schwertman et al., 2004), Hub. (Hubert & 

Vandervieren, 2008) and Bar. (Barbato et al., 2011), the mean percentage (±𝟏 𝑺𝑫) of flagged data is shown for sample sizes varying from 215 
10 to 100, and for all available points per station (𝒏~𝟒× 𝟏𝟎𝟒  for the temperature and 𝒏~𝟏𝟎𝟒 for the precipitation, panels d and e). For 
Logbox (panels c and f), this percentage is calculated by pooling all points, and the variability is estimated with a random resampling of 

stations (see method). The theoretical threshold is the expected percentage of erroneously flagged outliers (𝒑𝒕𝒉𝒆𝒐 = 𝒇(𝒏) ×
𝟏𝟎𝟎

𝒏
=

𝟎.𝟏

√𝒏
%). 

 

 220 
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The Logbox procedure is tested and compared with five other models on daily precipitation and temperature residuals from 

century-old weather stations (Fig. 2). It is firstly visually striking that the outlier threshold from the five traditional methods 

cut too many data points not only for the precipitation but also for the temperature residuals (Fig. 2a,b). The percentage of 

flagged data points per station varies around 1.7 ± 1% for the temperature (Fig. 2d, median of  36634 ≈ 4× 104 days per 

station), and from 4.1% (Bar.) to 10.5% (Ley.) for the precipitation (Fig. 2e, median of 8352 ≈ 104 wet days per station).  225 

The reason for the large discrepancy between observed and expected percentage of flagged outliers (~0.7% based on the 

boxplot rule) is that these methods have been designed for nearly-Gaussian residuals. Even daily temperatures are diverging 

from normality because the fitting model used to extract residuals from the time series minimizes the root-mean-square-error. 

The anomalies are therefore more concentrated around 0 than those produced by a Gaussian, but with larger extremes (Fig. 2a, 

leptokurtic distribution). Only the Bar. model correctly captures outliers present in the temperature residuals (0.17% data 230 

points flagged) as it accounts for large sample size effects (logarithmic law in 𝛼 similar to Logbox). However, Bar. fails at 

capturing outliers in the precipitation residuals because this method has been parametrized on the Gaussian only. For small 

samples, the type I error is even higher in all traditional methods due to the inaccuracy of the quantiles: from 1.4% (Bar.) to 

4.2% (Hub.) of temperature residuals are cut for 𝑛 = 100 (Fig. 2d). This analysis proves that none of the former methods is 

suitable to detect outliers in non-Gaussian residuals. 235 

 

In comparison, the Logbox procedure shows a percentage of flagged outliers close to the expected values for large sample 

sizes (Fig. 2c), with 0.0006 ± 0.0003 % for the temperature (expected value of 0.0005%) and 0.0017 ± 0.0009% for the 

precipitation (expected value of 0.001%). These results are surprisingly accurate knowing that 12.5% of the extreme values 

are disregarded for robustness reasons (𝑚∗), and also knowing that Logbox has only been parametrized on theoretical 240 

distributions (Pearson & GEV family). For smaller sample sizes (𝑛 < 30 in Fig. 2f), the precipitation residuals are cut too 

frequently (~0.25%) compared to the expected threshold (~0.03%), but the temperature residuals are not cut enough. The 

constant parameter used to correct for a sample size effect (𝐶 = 36) is only adapted to nearly-Gaussian residuals, and it cannot 

be better estimated because any predictor (such as 𝑚∗) becomes inaccurate at smaller sample sizes. However, the percentage 

of flagged outliers remains within one order of magnitude of the expected threshold, which is a reasonable compromise 245 

between type I errors (precipitation) and type II errors (temperature). 

 

To summarize, Logbox enhances the boxplot rule by considering the sample size effect and by adapting the cutting thresholds 

to the data. This method has been implemented in the function ctbi.outlier (in the R package ctbi) that will be used to flag 

potential outliers in the residuals obtained by the aggregation procedure described in part II.  250 
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3 Part II, the ctbi procedure 

3.1 Context 

This second part is dedicated to the pre-processing, partial imputation and aggregation of univariate time series. In order to 

flag outliers, one first needs to produce residuals that represent the variability around the signal. In its simplest form, the time 255 

series 𝑦𝑡 is represented with the following additive decomposition (Hyndman & Athanasopoulos, 2021): 𝑦𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝜖𝑡, 

with 𝑇𝑡 a long-term trend, 𝑆𝑡 a cyclic component (originally, seasonal component but the term cyclic is preferred here as it is 

more generic) with period 𝜏 (∀ 𝑡, 𝑆𝑡 = 𝑆𝑡+𝜏) and 𝜀𝑡 the residuals that are considered to be stationary. A popular algorithm that 

performs this decomposition is the Seasonal and Trend decomposition using Loess (or STL, Cleveland et al., 1990), that is 

robust to the presence of outliers. The enhanced version of the algorithm, STLplus (Hafen, 2016), is also robust to the presence 260 

of missing values and data gaps. Unfortunately, there are three major drawbacks to using STLplus in the general case: (i) This 

algorithm has specifically been designed for signals showing seasonal patterns, which makes it less relevant for other types of 

data; (ii) The long-term trend based on loess needs several input parameters (s.window, s.degree,..) and the decomposition is 

therefore not unique; (iii) The algorithm has a complexity of Ο(𝑛2) due to the loess, which is resource intensive and not 

adapted to long time series (𝑛 >  107). In particular, the first point explains why the function tsoutliers needs to use a 265 

smoothing function (Friedman, 1984) to complement the STL procedure. 

A new robust and nonparametric procedure (ctbi) is proposed instead to calculate 𝑇𝑡  and 𝑆𝑡  using non-overlapping bins. 

Outliers are flagged in the residuals 𝜖𝑡 with the Logbox method described in part I, and imputation is performed using 𝑇𝑡 + 𝑆𝑡 

if the cyclic pattern is strong enough, which is quantified by a new index introduced in this study (the Stacked Cycles Index 

or SCI). Bins with sufficient data can finally be aggregated, while other bins are discarded. The procedure is simple (entirely 270 

described in Fig. 3), the long-term trend 𝑇𝑡 is unique and non-parametrized (based on linear interpolations crossing each bin), 

the cyclic component 𝑆𝑡 is simply the mean stack of bins using detrended data (equivalent to STL for periodic time series). 

The algorithm complexity is of the order of Ο(𝑛 𝑙𝑜𝑔(𝑛)) because the loess is not necessary anymore. In the following, the 

procedure is first described more in details and then applied to three case studies (a temperature, precipitation and methane  

dataset) that have been contaminated with outliers, missing values and data gaps. Comparison with the raw data demonstrates 275 

the reliability of the ctbi  procedure, whose performance is compared to tsoutliers. 

 

3.2 Method 

3.2.1 Definitions 

Bin: a bin is a time window characterized by a left side (inclusive), a right side (exclusive), a center and a period (e.g., 1 year 280 

in Fig. 3a). Any univariate time series can be decomposed in a sequence of non-overlapping bins, with the first and last data 
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point contained in the first and last bin, respectively (Fig. 3a). The bin size 𝑛𝑏𝑖𝑛 is the rounded median of the number of points 

(including NA values) present in each non-empty bin. A bin is accepted when its number of non-NA data points is above 

𝑛𝑏𝑖𝑛(1− 𝑓𝑁𝐴) with 𝑓𝑁𝐴 ∈ [0,1] the maximum fraction of NA values per bin (input left to the user). Otherwise, the bin is 

rejected and all its data points are set to NA (Fig. 3a, bin 4). 285 

 

Long-term trend: the long-term trend (median based) is a linear interpolation of the median values associated with each side 

(calculated between two consecutive centers, see Fig. 3a). A side value is set as missing if the number of non-NA data points 

(between the two nearest consecutive centers) is below 𝑛𝑏𝑖𝑛(1− 𝑓𝑁𝐴). To solve for boundaries issues and missing sides values, 

the interpolation is extended using the median value associated with each center (bin 1, 3 & 5 in Fig. 3a). Once the outliers  290 

have been quarantined, the long-term trend (mean based) will be calculated following the same method but using the mean 

instead of the median (Fig. 3c). 

 

Cycle: the cycle (median based) is composed of 𝑛𝑏𝑖𝑛 points that are the medians of the stack of all accepted bins with the long-

term trend (median based) removed (Fig. 3b1). Once the outliers have been quarantined, the cycle (mean based) will be the 295 

mean stack of accepted bins with the long-term trend (mean based) removed (bin 2, 3 & 5 in Fig. 4a). The cyclic component 

𝑆𝑡 is the sequence of consecutive cycles.  
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 300 

Fig. 3. Example of the aggregation procedure with the following inputs: bin side = 2020-06-01, bin period = 1 year, 𝑓𝑁𝐴 = 0.2 (minimum 

of 10 months of data for a bin to be accepted) and 𝑆𝐶𝐼𝑚𝑖𝑛 = 0.6 (cyclic imputation level). The bin 4 has been rejected because it contains 
only 6 months of data (panel a). Two outliers have been flagged in the residuals (detrended and deseasonalized data, panel b.2). After the 
outliers have been replaced with NA values, the bin 1 has been rejected (9 months of data), and the long-term trend and cycle have been 

updated using the mean instead of the median (panel c). A point in bin 3 has been imputed based on the cyclicity (𝑆𝐶𝐼𝑚𝑖𝑛 ≤ 𝑆𝐶𝐼 = 0.61 ). 305 
 

Stacked Cycles Index:  SCI ≤ 1 is an adimensional parameter quantifying the strength of a cycle based on the variability 

around the mean stack (Fig. 4). Its structure is similar to another index developed in a former study (Wang et al., 2006), 

however a factor of 𝑁𝑏𝑖𝑛
−1 has been added to correct for a bias emerging at a small number of bins (𝑁𝑏𝑖𝑛 is the number of 

accepted bins). This correcting factor has been calculated based on stationary time series of Gaussian noise (with therefore a 310 

null cyclicity per definition, see supplementary material). 
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Fig. 4. The Stacked Cycles Index (𝑆𝐶𝐼 ≤ 1) quantifies the strength of the cyclicity associated with the period of a bin. The long-term trend 
(mean based) is first removed to compute the total sum of squares (panel a). Then the cyclic component (mean based) is also removed to 315 
compute the sum of squared residuals (panel b). SCI is the coefficient of determination minus 𝑁𝑏𝑖𝑛

−1  to correct for a bias emerging at a small 

number of bins, with 𝑁𝑏𝑖𝑛 the number of accepted bins (here 𝑁𝑏𝑖𝑛 = 3, panel c). 

 

3.2.2 Ctbi procedure 

Inputs. 320 

1. The univariate time series (1st and 2nd column: time and raw data, respectively). 

2. One bin center or one bin side (e.g., 2020-06-01). 

3. The period of the bin (e.g., 1 year). 

4. The aggregation operator (mean, median or sum). 

5. The range of possible values (default value 𝑦𝑙𝑖𝑚 ∈ ]−∞, +∞[). 325 

6. The maximum fraction of NA values per bin (default value 𝑓𝑁𝐴 = 0.2). 

7. The 𝐴,𝐵, 𝐶 coefficients used in the Logbox method (automatically calculated by default, 𝑐𝑜𝑒𝑓𝑓. 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = ′𝑎𝑢𝑡𝑜′). 

8. The minimum SCI for imputation (default value 𝑆𝐶𝐼𝑚𝑖𝑛 = 0.6). 

Outputs. 

1. The original dataset, with 9 columns: (i) time; (ii) outlier-free and imputed data; (iii) index of the bins associated 330 

with each data points (the index is negative if the bin is rejected); (iv) long-term trend; (v) cyclic component; (vi) 

residuals (including the outliers); (vii) quarantined outliers; (viii) value of the imputed data points; (ix) relative 
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position of the data points in their bins, between 0 (the point falls on the left side) and 1 (the point falls on the right 

side). 

2. The aggregated dataset, with 10 columns: (i) aggregated time (center of the bins); (ii) aggregated data; (iii) index of 335 

the bin (negative value if the bin is rejected); (iv) start of the bin; (v) end of the bin; (vi) number of points per bin 

(including NA values); (vii) number of NA values per bin, originally; (viii) number of outliers per bin; (ix) number 

of imputed points per bin; (x) variability associated with the aggregation (standard deviation for the mean, MAD for 

the median and nothing for the sum). 

3. The mean cycle, with 3 columns: (i) time boundary of the first bin with 𝑛𝑏𝑖𝑛 points equally spaced; (ii) the mean 340 

value associated with each point; (iii) the standard deviation associated with the mean value . 

4. A summary of the bins: the Stacked Cycle index (SCI), the representative number of data points per bin (𝑛𝑏𝑖𝑛) and 

the minimum number of data points for a bin to be accepted (𝑛𝑏𝑖𝑛 𝑚𝑖𝑛). 

5. A summary of the Logbox output: the coefficients 𝐴, 𝐵 and 𝐶, 𝑚∗, the number of points used, the lower/upper 

outlier threshold. 345 

Step 1, data screening. The bin size 𝑛𝑏𝑖𝑛 is calculated; values above or below 𝑦𝑙𝑖𝑚 are set to NA; the number of accepted bins 

𝑁𝑏𝑖𝑛 is assessed; all data points within rejected bins are set to NA; the long-term trend and cycle (both median based) are 

calculated (Fig. 3a,b1). 

Step 2, outliers. Outliers are flagged in the residuals (detrended and deseasonalized data) using Logbox (Fig. 3b2); outliers are 

quarantined and their values are set to NA; the number of accepted bins 𝑁𝑏𝑖𝑛 is updated; all data points within newly rejected 350 

bins are set to NA (bin 1 in Fig. 3c). 

Step 3, long-term trend and cycle (mean based): The long-term trend and the cycle are calculated using the mean instead of 

the median (Fig. 3c); SCI is calculated (Fig. 4). 

Step 4, imputation: If 𝑆𝐶𝐼 >  𝑆𝐶𝐼𝑚𝑖𝑛, all NA values in accepted bins are imputed with the long-term trend + the mean cycle 

(imputation bounded by 𝑦𝑙𝑖𝑚). Repeat Step 3 and Step 4 three times to reach convergence. 355 

Step 5, aggregation: Accepted bins are aggregated around their center. 

 

3.2.3 Case studies 

Three univariate datasets are chosen to illustrate the potential of the aggregation procedure (Fig. 5, first column). The first 

dataset is an in-situ temperature (in °C) measured during summer in the canopy of an Oak woodland of California (month of 360 

August, temporal resolution of 5 min), and provided by the National Ecological Observatory Network (NEON 2021, site 

SJER). The second dataset is an in-situ daily precipitation record (in mm) measured at the station of Cape-Leeuwin (South 

westerly coast of Australia) from 1990 to 2020 and available on the Global Historical Climatology Network (Menne et al., 

2012). The last dataset is a Methane proxy record (in ppbv) published in Loulergue et al. (2008) that covers 800000 years with 
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irregular timesteps (varying from 1 to 3461 years, with a median of 311 years). None of the datasets contain obvious outliers 365 

or large data gap. 

3.2.4 Contamination of the datasets 

To test for the robustness of the aggregation procedure, the three raw datasets are contaminated by 30% (Fig 5, second column) 

with the use of three data gap (20% of the dataset), random NA values (9.5% of the dataset) and outliers (0.5% of the dataset). 

The three data gaps are picked with random length and position. The position of the outliers and the NA values follows a 370 

Poisson law. The value of the outliers is picked equal to 𝑦𝑚𝑖𝑛 −
1

2
(𝜇 − 𝑦𝑚𝑖𝑛) or 𝑦𝑚𝑎𝑥 +

1

2
(𝑦𝑚𝑎𝑥−𝜇) with 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 and 𝜇  

respectively the minimum, maximum and mean of the dataset (temperature and methane datasets). The precipitation is 

supposed to follow a heavy-tail distribution (extremes are more frequent), and negative values are impossible, which is why 

outlier values are set to 1.6 × 𝑦𝑚𝑎𝑥 instead (supplementary material). 

3.2.5 Aggregation of the datasets 375 

Each dataset (raw and contaminated version) is consecutively aggregated twice (Fig. 6). The temperature dataset is aggregated 

(using the mean) every hour (𝑛𝑏𝑖𝑛 = 12) and then every day (𝑛𝑏𝑖𝑛 = 24). The precipitation dataset is aggregated (using the 

sum) every month (𝑛𝑏𝑖𝑛 = 31) and then every year (𝑛𝑏𝑖𝑛 = 12). The methane dataset is aggregated (using the mean) every 

2000 years (𝑛𝑏𝑖𝑛 = 4) and then every 20000 years (𝑛𝑏𝑖𝑛 = 10).  For each dataset, the mean cycle of the second level of 

aggregation is shown in Fig. 6 (second column). The aggregation inputs are chosen as default values. The only exceptions are 380 

𝑐𝑜𝑒𝑓𝑓. 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = 𝑁𝐴 and 𝑆𝐶𝐼𝑚𝑖𝑛 = 𝑁𝐴 for the raw data (outliers are not checked, data are not imputed), 𝑓𝑁𝐴 = 1 for the 

Methane dataset (bins with at least 1 non-NA data point are accepted due to the high irregularity in the sampling frequency) 

and 𝑦𝑙𝑖𝑚 = [0,+∞[ for the precipitation dataset (negative precipitation are impossible). The number of false positive (real data 

points flagged as outliers) and false negative (outliers that have not been flagged) are counted during the first level of 

aggregation (Table 1), and compared with the tsoutliers function with λ = “auto”, which means that the residuals have been 385 

transformed to follow a Gaussian with the Cox-Box method (Box & Cox, 1964), or λ = NULL, which means the original 

residuals are not transformed. The boxplot rule in tsoutliers uses 𝛼 = 3, and the long-term trend or cyclic component are not 

available for comparison. 
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 390 

Fig. 5. Raw and contaminated versions of the three datasets used as case studies: temperature (panel a), precipitation (panel b) and methane 

(panel c). The sampling frequency is given in parenthesis. The contaminated versions contain three large data gaps (20% of the datasets), 
random missing values (9.5%) and random outliers (0.5%) set as a constant level. 

 

3.3 Results and discussion 395 

The three univariate time series have been chosen as case studies due to their various statistical characteristics that are 

commonly seen in the scientific or economic field (Fig. 5, 1 st column). The long-term trend follows smooth or moderate 

variations in the temperature and precipitation datasets, but shows a much higher volatility in the methane dataset. The cyclic 

pattern varies from strong diurnal cycles (temperature) and moderate seasonal cycles (precipitation) to  no apparent cyclicity 

over a period of 20000 years (methane). The detrended and deseasonalized residuals follow distributions from Gaussian 400 

(temperature) or seemingly Exponential (methane) to heavy-tailed (precipitation). Finally, the sampling frequency goes from 

sub-hourly (temperature) or daily (precipitation) to highly variable (1 to 3461 years, methane). To test the limits of the 
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aggregation procedure, these three datasets are severely contaminated by data gaps, outliers and missing values (Fig. 5, 2nd 

column). 

 405 

 

 

Fig. 6. Aggregation of the temperature (panel a), precipitation (panel b) and methane (panel c) in two consecutive levels: 1 (thin lines) and 
2 (bold lines). Only the first level of aggregated precipitation is shown for clarity. Black and red colors are associated with the raw and 

contaminated datasets, respectively. The mean cycles of the second level of aggregation are shown in the second column, with their SCI 410 
displayed (the raw and contaminated versions share similar values).  

 

The first level of aggregation recovers most of the destroyed signal with ~80% of the bins being accepted for all three datasets 

(Fig. 6). In these accepted bins, all outliers have been correctly flagged (Table 1). The mean percentage of difference between 
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the contaminated and raw aggregates (level 1) is virtually zero for the temperature (0 ± 0.1%), the methane (−0.1 ± 2%) and 415 

the precipitation (0 ± 17%). For the methane dataset, the only false positive (Table 1) is located at the beginning of the time 

series (modern time), because the anthropogenic change in 𝐶𝐻4 is unprecedented when compared to the geological history 

(the long-term fit does not capture the abrupt increase due to climate change). In comparison, the function tsoutliers 

successfully flags the outliers in the contaminated temperature and methane datasets (with the Cox-Box method), however it 

fails with the contaminated daily precipitation dataset (Table 1). This comes from the inability of tsoutliers to handle heavy 420 

tailed distributions, creating 55 false negatives (all outliers have been missed) with the Cox-Box method and 1125 false 

positives without it, due to the limitation of the boxplot rule using a constant 𝛼 = 3 (see part I). 

 

 

 425 

Procedure ctbi tsoutliers (with/without Cox-Box) 

Datasets T P CH4 T P CH4 

Number of false 
positives 

0 0 1 0 / 0 0 / 1125 0 / 3 

Number of false 
negatives 

0 0 0 3 / 0 55 / 0 0 / 2 

Table 1. Number of false positives (real data points flagged as outliers, type I error) and false negatives (outliers that have not been flagged, 

type II error) for the contaminated Temperature (n=8952), Precipitation (n=10949) and Methane (n=2103) datasets shown in Fig. 5 with the 
ctbi procedure and the tsoutliers function (with/without the Cox-Box method). 

 
 430 

 

The second level of aggregation has been performed to test for the cyclicity in the signal (Fig. 6, 2 nd column) using the mean 

cycles and their associated Stacked Cycles Index (Fig. 4). The raw and contaminated mean cycles share similar magnitude 

within 1 standard deviation on the mean, and their SCI are the same: −0.02 for the methane (no apparent cycles of 20000 

years period), 0.65 for the precipitation (moderate seasonality) and 0.88 for the temperature (strong diurnal cycles). The SCI 435 

reveals itself being useful when comparing signals of different nature or periodicities, which is not possible for seasonal indices 

that only focuses on one field (e.g., hydrology) or data format. (e.g., monthly) such as the seasonality index of Feng et al. 

(2013). The cyclicity seen in the temperature and precipitation is strong enough to impute the missing data in all accepted bins, 

which further improves the reconstruction of the signal. Because 𝑆𝐶𝐼 has a similar structure than a coefficient of determination, 

imputations based on high 𝑆𝐶𝐼 (> 0.6) are respecting the original signal, which is sometimes not the case with a linear 440 

interpolation. These three case studies demonstrate that ctbi  is capable of aggregating signals of poor quality that have a 

stationary variance in the residuals. The next section explains how to handle more complex time series. 

 

3.4 Limits & recommendations 

The ctbi  procedure complements the expert-knowledge related to a dataset, but it does not replace it. In particular, this 445 

procedure is not capable of detecting long periods of instrument failure or human error, and it is essential to flag them manually 
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and/or visually before running ctbi . This procedure also presents difficulties to pre-process signals with a complex seasonality 

associated with residuals of non-stationary variance. A typical example is a daily precipitation record with a pronounced 

monsoon: several months of droughts (low variability in the signal) are followed by few weeks of severe floods (high 

variability). These two periods do not have the same statistical characteristics, and need to be treated separately. In this 450 

situation, two pools of bins can be created using the MAD as a robust indicator of variability within each bin. The procedure 

is the following: (i) apply ctbi  with the median operator (do not flag outliers or impute data, 𝑐𝑜𝑒𝑓𝑓. 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = 𝑁𝐴 and 

𝑆𝐶𝐼𝑚𝑖𝑛 = 𝑁𝐴) so that each bin will be associated with a specific MAD; (ii) Flag bins with a low MAD (‘dry’ season) and a 

high MAD (‘wet’ season); (iii) split the raw data into two datasets of bins with a low and high MAD, respectively; (iv) apply 

ctbi  separately to each dataset to flag outliers and/or impute data; (v) merge the two datasets. This procedure is successfully 455 

applied to a soil respiration dataset (supplementary material). 

 

Other issues can usually be addressed by varying the inputs: period of the bin, maximum ratio of missing values per bin (𝑓𝑁𝐴), 

and cyclic imputation level (𝑆𝐶𝐼𝑚𝑖𝑛). It is recommended to pick the period of a bin so that it contains on average between 4 

and ~50 data points. Below 4 would decrease the breakdown point to unsafe levels (1 outlier would be enough to contaminate 460 

the bin), and above 50 would produce a long-term trend that might not properly capture the variability in the signal. A 

maximum of 20% of the bin can be missing by default (𝑓𝑁𝐴 = 0.2), but when data are sparse and irregularly distributed, a 

value of 𝑓𝑁𝐴 = 1 is possible (example with the Methane dataset: bins with only 1 data point were accepted). Finally, the 

imputation level (default of 𝑆𝐶𝐼𝑚𝑖𝑛 = 0.6) can vary between 0 (forced imputation even without cyclic pattern) and 1 (no 

imputation).  465 

4 Conclusion (Part I & II) 

Although univariate time series are the simplest type of temporal data, this study reveals a lack of consensus in the literature 

on how to objectively flag outliers especially in raw data of poor quality. In part I, a comparison between outlier detection 

methods is performed on daily residuals from century-old weather stations (precipitation & temperature data). All traditional 

outlier detection methods flag extreme events as outliers too frequently (type I error). The alternative procedure developed in 470 

this study (Logbox) improves the boxplot rule by replacing the original 𝛼 = 1.5 with 𝛼 = 𝐴 log(𝑛) + 𝐵 +
36

𝑛
, with 𝐴 and 𝐵 

determined with a predictor of the maximum tail weight (𝑚∗). Logbox is parametrized on two families of distributions (Pearson 

& Generalized Extreme Value), and the theoretical percentage of type I error decreases with the sample size (𝑝𝑡ℎ𝑒𝑜 =
0.1

√𝑛
%). 

Logbox therefore produces cutting thresholds that are tailored to the shape and size of the data, with a good match between 

observed and expected type I errors in the precipitation and temperature residuals.  475 
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In part II, a pre-processing procedure (ctbi for cyclic/trend decomposition using bin interpolation) cleans, decomposes, imputes 

and aggregates time series based on data binning. The strength of the cyclic pattern within each bin is assessed with a novel 

and adimensional index (the Stacked Cycles Index) inspired by the coefficient of determination. The ctbi  procedure is able to 

filter contaminated data by selecting bins with sufficient data points (input: 𝑓𝑁𝐴) which are then cleaned from outliers (input: 480 

𝑐𝑜𝑒𝑓𝑓. 𝑜𝑢𝑡𝑙𝑖𝑒𝑟). The cyclic pattern within each bin is evaluated (𝑆𝐶𝐼) and missing data are imputed in accepted bins if the 

cyclicity is strong enough (input: 𝑆𝐶𝐼𝑚𝑖𝑛). Most of the signal can be retrieved from univariate time series with diverse 

statistical characteristics, illustrated in this study with a temperature, precipitation and methane datasets that have been 

contaminated with gaps and outliers. Limits in the use of ctbi  are acknowledged for signals with a long-period of instrument 

failure, but also for signals presenting a complex seasonality. The last situation can be handled by splitting the raw data into 485 

two (or more) datasets containing bins with similar variability quantified by the Mean Absolute Deviation (MAD). The pre-

processing procedure is then separately applied to each dataset to correctly identify outliers. It is strongly recommended to 

examine the data before and after using ctbi  to ensure that rejected bins and flagged outliers seem reasonable, and to be 

transparent about the inputs used in your future study.   
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Code availability 505 

The ctbi  package is available on the comprehensive R Archive Network (CRAN). The code and data used in the study & the 

supplementary material are available on https://github.com/fritte2/ctbi_article.  

https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/
https://doi.org/10.1038/nature06950
https://doi.org/10.48443/2nt3-wj42
https://github.com/fritte2/ctbi_article
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