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Abstract. Errors, gaps and outliers complicate and sometimes invalidate the analysis of time series. While most fields have
developed their own strategy to clean the raw data, no generic procedure has been promoted to standardize the pre-processing.
This lack of harmonization makes the inter-comparison of studies difficult, and leads to screening methods that can be arbitrary
or case-specific. This study provides a generic pre-processing procedure implemented in R (ctbi, for cyclic/trend
decomposition using bin interpolation) dedicated to univariate time series. Ctbi is based on data binning and decomposes the
time series into a long-term trend and a cyclic component (quantified by a new metric, the Stacked Cycles Index) to finally
aggregate the data. Outliers are flagged with an enhanced boxplot rule called Logbox that corrects biases due to the sample
sizeand that is adapted to non-Gaussian residuals. Three different Earth Science datasets (contaminatedwith gaps and outliers)
are successfully cleaned and aggregated with ctbi. This illustrates the robustness of this procedure that can be valuable to any
discipline.

1 Introduction

In any discipline, raw data need to be evaluated during a pre-processing procedure before performing the analysis. Errors are
removed, values that deviate from the rest of the population are flagged (outliers, see Aguinis et al., 2013), insome cases gaps
are filled. Because the raw data are altered, pre-processing is a delicate and time-consuming task that can be neglected due to
cognitive biases deflecting our understanding of reality (‘I see what I want to see’), or due to our impatience to obtain results.

The fate of extreme values is crucial as they usually challenge scientific or economic theories (Reiss et al., 2007).

Time series are particularly difficult to pre-process (Chandolaet al., 2009). A value can or cannot be considered as an outlier
just depending on its timestamp (e.g., a freezing temperature in summer), large data gaps are common, abrupt changes can
occur and a background noise covers the true signal. In Earth Science, in-situ or remote measurements routinely produce time

series that first need to be visually inspected. The expert-knowledge of the researcher, technician or engineer is essential to
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flag suspicious periods of possible instrument failure (e.g., arain gauge blocked by snowflakes), violation of the experimental
conditions (e.g., a passing car during CO2 measurements in a forest), or human error (e.g., calibration of the wrong sensor).
Once these suspicious periods have been flagged, a pre-processing algorithm is necessary to evaluate the quality of the
remaining portionof the measurements. However, there currentlyis no consensus onwhich procedure to use even in the simple
univariate case: a recent review (Ranjan etal., 2021) covered more than 37 preprocessing methods for univariate time series,
and Aguinis et al. (2013) listed 14 different outlier definitions that are mutually exclusive. Despite this (overwhelming)
abundance of methods and conventions, there are surprisingly few R packages that offer a pre-processing function. It is worth
mentioning hampel (package pracma, Borchers, 2021) that applies a Hampel filter (Pearson, 2002) to time series and flags
outliers based on the Mean Absolute Deviation (MAD), which is a robust approximation of the standard deviation defined as
MAD(x) = 1.4826 x M(|x — M(x)|) with M the median operator. However, the hampel function is not robust to missing
values and the scaling factor of 1.4826 is not adapted to non-Gaussian residuals. Another option is the function tsoutliers
(package forecast, Hyndman et al., 2008) that applies a Seasonal and Trend decomposition using Loess (STL, Cleveland et
al., 1990) to data showing a seasonal pattern, complemented by a smoothing function to estimate the trend of non-seasonal
time series (Friedman’s super smoother, Friedman, 1984). The residuals obtained can be transformedto follow a Gaussian
distribution (Cox-Box method, Box & Cox, 1964), and then outliers are flagged using the boxplot rule (Tukey, 1977). This
method will be proved in this study to work well with data associated with nearly-Gaussian residuals, but to show poor
performance otherwise.

This study offers an alternative pre-processing procedure (implemented in R) called ctbi for cyclic/trend decomposition using
bin interpolation. The time series is divided into a sequence of non-overlapping time intervals of equal period (called bins),
and outliers are flagged with an enhanced version of the boxplot rule (called Logbox) that is adapted to non-Gaussian data for
different sample sizes. Ctbi fulfils four purposes:

i) Data cleaning: bins with insufficient data are discarded, and outliers are flagged in the remaining bins. If thereis a
cyclic pattern within each bin, missing values can be imputed as well.

i) Decomposition: the time series is decomposed into along-term trend and a cyclic component.

iii) Cyclicity analysis: the mean cycle of the stacked bins is calculated, and the strength of the cyclicity is quantified by

a novel index, the Stacked Cycles Index.
iv) Aggregation: data are averaged (or summed) within each bin.

This procedure is particularly adapted to univariate time series that are messy, with outliers, data gaps or irregular timesteps.

The inputs offer a large flexibility in terms of imputation level or outlier cutoff, but also in the timestamp of the bins: a day

does not necessarily start at midnight or a year the 1st of January. The timeline is not limited to daily or monthly data but can
2
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vary frommilliseconds to millenaries. The outputs keep track of the changes brought to the data: contaminatedbins are flagged,
as well as outliers and imputed data points.

This paper is divided into two distinct parts. The first part describes the Logbox method and compares its performance with
five other outlier detection methods in the literature based on daily precipitation & temperature data extracted from century-
old weather stations. The second part describes the ctbi procedure, and then applies it to three datasets that have been
contaminated beforehand to show the efficiency of the algorithm. A comparison with tsoutliers is performed, and, finally,

limitations and good practice recommendations are discussed.

2 Part, outliers
2.1 Context

This first part is dedicated to the detection of outliers present in univariate datasets (without the time component). The boxplot
(or Tukey’s) rule is acommonly used method to flag outliers belowa lower boundary [ and above an upper boundary u (Tukey,
1977):
{l = q(0.25) — a x (q(0.75) — q(0.25))
u = q(0.75) + a x (q(0.75) — q(0.25))
With g the sample quantile (e.g., q(0.5) is the median) and a = 1.5 a constant that corresponds to 99.3% of Gaussian data
falling within [Z, u]. This method is simple and robust to the presence of amaximum of 25% of outliers in the dataset (known
as the breakdown point). When a real data point falls outside the [I, u] range, it is considered as an erroneously flagged outlier
(ortype | error). Conversely, a type 1l error occurs when a real outlier is not flagged. The type I error is more common for
three reasons:
)] For small Gaussian samples (n < 30), up to 8.6% of data (Hoaglinet al., 1986) can be cut due to the
inaccuracy of the sample quantile for small n.
(i) For large Gaussian samples (n > 103), a = 1.5 is inappropriate because the number of erroneously flagged
outliers increases linearly withn due to the 99.3% of data captured by [[, u].
(iii) For non-Gaussian populations, o = 1.5 is generally too restrictive. For example, ~4.8 % of data following an

Exponential distribution would be cut.

Studies have corrected biases in the detection of outliers in small samples (see Carling, 2000; Schwertman et al., 2004) and
large samples (Barbato et al., 2011), but these methods were adapted to Gaussian populations. For non-Gaussian populations,
Kimber (1990) and Hubert & Vandervieren (2008) have adjusted o to the skewness (relatedto the asymmetry of a distribution)
but did not consider the kurtosis (related to the tail weight) that will be proven to be a key variable in this study. Therefore,
there currently is no generic procedure that can be used when the population is non-Gaussian.

3
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To understand how to address this problem, two sets of common distributions with known skewness S, kurtosis excess k.,
and quantile function Q are used (Fig. 1). The firstsetisthe Pearsonfamily composed of light-tailed distributions that represent
any theoretically possible residuals with moderate S & k.. Pearsonoriginally worked to create distributions that cover the
entire (S,k,,) space (Pearson, 1895; 1901 & 1916), but they took their modern names later on (Gamma, Inverse-gamma, Beta
prime, Student, Pearson V). The second set is the Generalized Extreme Value family composed of the Gumbel, Weibull and

Fréchetthat are heawy-tailed distributions (highS & k,,) used in Extreme Value Theory to model the behavior of extrema
(Jenkinson, 1955). Based on this framework, this study finds that a(n) = Alog(n) + B +% reasonably addresses all

previously mentioned issues, with C fixed as a constant (C = 36). The two parameters A and B correspond to the nature of the
distribution and are estimated based on a predictor of the maximum tail weight and inspired by Moors (1988). A comparison
between this procedure (called Logbox) and five other existing models is performed on residuals obtained from 6307 weather
stations with more than 100 years of daily temperature and precipitation measurements (Fig. 2). Finally, Logbox is
implemented in part Il to clean the residuals obtained after fitting the univariate time series with a robust and nonparametric

method.
2.2 Method
2.2.1 Distributions

Residuals with moderate k., &S are represented in this study with 4999 light-tailed distributions from the Pearson family
(Pearson, 1895; 1901 & 1916) composed of the Gaussian, Gamma (196 distributions, including the Exponential), Inverse
gamma (170), Betaprime (1135), Pearson IV (3377) and Student (120) distributions (Fig. 1a). These distributions cover the
entire (k,,,S?) space without overlap, except for the Beta distribution that has been discarded due to a bounded support
(unrealistic residuals). The shape parameters of each distribution have been chosen to produce regularly-spaced points with a
mean distance of 0.05 in the (k,,,S?) space and with a range between the Gaussian and the Exponential: k., € [0,6] and S €
[0,2]. Heavy-tailed residuals are represented with 368 distributions from the Generalized Extreme Value (GEV) family (Fig.
1d) composed of the Gumbel, Weibull (244 distributions) and Fréchet (123). Their shape parameters cover a larger range:
K,, € [0,500] and S € [0,15].

2.2.2 The Logbox model

Based on the boxplot rule, a can be defined as:
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With n the sample size, Q the population quantile functionand f a function that gives the number of erroneously flagged

a(n) =

outliers. In the original boxplot rule, @ = ®~1 (with ® the cumulative distribution function of the Gaussian) and f(n) =
0.007n which leads to « = 1.5. As explained in the introduction, this choice of f is not valid for large sample sizes due to the

linear dependence on n. A flat number of erroneously flagged outliers (f (n) = b) or a logarithmic relationship (f(n) =
b log(n)) would not be appropriate either, because a(n) could take arbitrary large values as 1 — %Would approach 1 too

rapidly (Q(1) = o). This study suggests instead f(n) = 0.001vn as a compromise. For example, for a sample of sizen =
102, 10* or 10°; respectively 0.01,0.1 or 1 point would be erroneously flagged as outlier (instead of 0.7, 70 or 7000 points
with the original boxplot rule). To characterize the relationship a(n) versus n, a is derived with high accuracy (Q
implementedin R) foreach distributionof the Pearson and GEV family for 5 sample sizes (n; = 10* with i € [2,6]). It appears
that a(n) = Alog(n) + B is an accurate model for both the Pearson family (mean of r? = 0.994 + 0.005) and the GEV
family (r2 = 0.99 +0.01). Barbato et al. (2011) found the same law for the Gaussian distribution based on empirical
considerations only, with reported values of A = 0.15 and B = 1.15. For comparison, this study finds A = 0.08 and B = 2
for the Gaussian distribution (% = 0.999).

The relationship a(n) = Alog(n) + B now needs to be extended to small or non-Gaussian samples. To account for biases
emergingat small sample size, an additional termis added following Carling (2000): a(n) = Alog(n) + B + % The parameter

C = 36 has been numerically determined with a Monte-Carlo simulation on the distributions of the Pearson family to ensure
that the percentage of erroneously flagged outliers corresponds to ~0.1% for n = 9 (supplementary material). To account for
non-Gaussian populations, A and B will be estimated with a new robust predictor sensitive to the tail weight. Let (m_, m ) be
two functions defined as m_ = (E; — E;)/(E;— E,) and m, = (E, — E5)/(E; — E,) with E; = q(i/8) the sample octile.
The centered Moors m = m_+m, — 1.23 is a known robust predictor of the kurtosis excess with a breakdown point of
12.5% (Moors 1988, Kim & White 2004). Howewer, this study introduces a modified version defined as m, =
max(m_,m,) — 0.6165. The parameter m, is more appropriate than m to determine if a sample is light-tailed or heavy-
tailed. For example, a Gaussian distribution (m_ = m, = 0.6165) and a right-skewed distribution with one heavy tail (m_ =
0.1 and m, = 1.13) will share identical m but differentm,. The relationships shown in Fig. 1 are A = g,(m,) and B =
gp(m,), with g,(x) = 0.2294¢29416x-00512x*-00684x" (-2 — 0.999) and g,(x) = 1.0585 + 15.6960x — 17.3618x2 +
28.3511x3 — 11.4726x* (r? = 0.999) for x € [0,2]. Each function has been parametrized based on the Pearson and GEV
family together (Fréchethas been excluded due to a different behavior). The coefficients have been determined with a Monte-

Carlo simulation that minimizes the root-mean square error (N ~108).
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For an unknown sample of size n > 9, the Logbox procedure is finally the following: m, is computed (bounded by [0,2]) and

the boxplot rule is used with a(n) = g, (m,)log(n) + gz(m,) + 3—:.

2.2.3 Former models

Logbox is compared to five other models (Kimber, 1990; Hubert & Vandervieren, 2008; Schwertman etal., 2004; Leys et al.,
2013;Barbato etal., 2011). The first two models (Kim. and Hub.) adjust the boxplot method with respect to the skewness:
Liim. = q(0.25) — 3 % (g(0.50) — q(0.25))
{umm, =q(0.75) + 3 x (q(0.75) — q(0.50))
And
{lHub_ =q(0.25) — 1.5 x h(—MC) x (g(0.75) — q(0.25))
Upup, = q(0.75) + 1.5 x h(MC) x (q(0.75) — q(0.25))
With the function h definedas h(MC) = e*M¢ for MC < 0and h(MC) = e3M¢ for MC = 0. The MedcoupleMC € [—1,1]
is a robust estimator of S, with an algorithm complexity of O (n log n) and a breakdown point of 25% (Brys et al., 2004). The

third model (Sch.) constructs the lower and upper boundary around the median:

(14 = q(0.50) — kix 2(q(0.50) — q(0.25))

\tsen = (0.50) + k£ x 2(q(0.75) — q(0.50))

Withk,, a function of the sample size n to adjust for small samples (given as a table in Schwertman et al., 2004) and Z a
constant related to the percentage of data captured by [l , gy ], here pickedas Z = 3 (Gaussian case for the +30 window).
The fourth model (Ley.) uses the MAD around the median:
{lLey, = q(0.50) — 3 X MAD
Upey, = q(0.50) + 3 X MAD
Finally, the last model (Bar.) is similar to the Logbox procedure but parametrized on the Gaussian distribution only:

{lBar_ = q(0.25) — (0.15 x log(n) + 1.15) x (g(0.75) — q(0.25))
Upar. = q(0.75) + (0.15 x log(n) + 1.15) x (q(0.75) — q(0.25))

2.2.4 Comparison between models

The comparison between models is performed on two sets of residuals obtained from weather stations part of the Global
Historical Climatology Network (GHCN-daily) with at least 100 years of daily temperature (2693 stations, 9.4 x 107 days) or

daily precipitation (6277 stations, 5.8 x 107 wet days, dry days are excluded). Because this network is used to calibrate
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products that are remote-sensing based and because suspicious values are routinely flagged (Menne et al., 2012), the risk of
errors inthese century-old stations can be considered small. The residuals are extracted with the robust method described in
part 11 based on non-overlapping bins (bins with less than 80% of data are discarded). To reduce the impact of the extraction
method on the analysis, three binintervals (5, 10 and 20 days) are used to obtain three replicas for each station. The sensitivity
of each outlier detection method to the sample size has also been estimated. For each station and for each sample size [; = 10i

(i varying from1to 10), N; = 1%0 samples are randomly selected and the number of flagged outliers is summed over all the

N; samples (the total number of points is constant, N; x [; = 1000).

For the five models (Ley., Hub., Kim., Sch., Bar.), the percentage of flagged outliers is computed for each station, and then

the mean (+1 SD) is calculated over all stations. For the Logbox model, this method is not appropriate because the expected
number of erroneously flagged outlier per station is less than one (0.001v/~10%~ 0.1). Instead, the percentage of flagged
outliers is calculated over the total number of points: p = (Zn/'*99°%) x 100/(Sn;) with j a station. The variability is
estimated by subsampling the total number of stations N: /N, sets of ./ N, random stations are selected without replacement.

The parameter p is computed for each set, and the associated variability is calculated on all p values (+1 SD in Fig. 2f and
quantiles in Fig. 2c).
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Fig. 1. Location of the 4999 light-tailed distributions of the Pearson family (panel a) and the 368 heavy-tailed distributions of the GEV
family (panel d) in the (k.,,S%) space (kurtosis excess, squared skewness). The coefficients A and B correspond to a(n) = A x log(n) +

B+ % used to replace & = 1.5 in the boxplot rule. For the Pearson family, they are shown in the (k.., S?) space (panels b and c). For the

GEV family (panels e and f), they are shown against a predictor of the maximum tail weight defined for right-skewed distributions asm, =
(E7—Eg5)/(Ee¢— E;)— 0.6165 with E; = q(i/8) the sample octile.

2.3 Results and discussion

The parameter @ = 1.5 used in the boxplot rule is sensitive to the sample size n, and the relationshipa (n) = Alog(n) + B +
% corrects for this effect forbothlight-tailed distributions (Pearsonfamily, Fig. 1a) and heavy-tailed distributions (GEV family,
Fig. 1d). The value of 4,B and C depends on the outlier threshold level and the nature of the distribution. The convention in
this study is to setthe expected number of erroneously flaggedoutliersto £ (n) = 0.001y/n, which corresponds to a percentage

of type | error of 0.1/v/n %. This leads to homogeneous A and B values among the Pearson family (A = 0.8+ 0.3, B = 3 +
1, Fig. 1b,c) used to numerically determine C = 36 (supplementary material). Because the value of A and B rapidly diverges

8
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for heavy-tailed distributions, amodel adapted to the shape of the residuals is required (Fig. 1e,f). To keep this model simple,
the asymmetry of a distribution (i.e., the skewness) is ignored in this study in order to only focus on the weight of the heavier
tail. Possible outliers might not be flagged on the light tail of an asymmetric distribution (risk of type Il error), but residuals
with strongasymmetryare usually producedwhen the range of possible values is semi-bounded (e.g., precipitationin [0, +oo]),

which makes the detection of errors trivial (negative precipitation). For this purpose, the parameter m, is a robust predictor of
the maximum tail weight with a breakdown point of 12.5%. Finally, a(n) = g,(m,)log(n) + gz(m,) +§forn > 9and

m, € [0,2], with the functions g, and g parametrized on both families (Fig. 1e,f). The Fréchetdistribution has been excluded
because its tails are decaying too rapidly (the A and B coefficients are bounded despite an extreme kurtosis).

(@) Tresiduals (°C), 2693 stations  (b) P residuals (mm), 6277 stations  (C) Logbox
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Fig. 2. Comparison between six outlier detection methods performed on two sets of residuals (temperature and precipitation) obtained from
weather stations with daily measurements over at least 100 years. The two histograms (panels a and b) represent aggregated residuals from
all stations (for visualization purpose only) and show counts with at least 100 daily occurrences, with the median of the lower/upper threshold
displayed for each method. For the methods Ley. (Leys et al., 2013), Kim. (Kimber, 1990), Sch. (Schwertman et al., 2004), Hub. (Hubert &
Vandervieren, 2008) and Bar. (Barbato et al., 2011), the mean percentage (+1 SD) of flagged data is shown for sample sizes varying from
10 to 100, and for all available points per station (n~4 x 10* for the temperature and n~10* for the precipitation, panels d and e). For

Logbox (panels ¢ and f), this percentage is calculated by pooling all points, and the variability is estimated with a random resampling of
100 0.

stations (see method). The theoretical threshold is the expected percentage of erroneously flagged outliers (ppeo = f(n) % = \/_r:%)'
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The Logbox procedure is tested and compared with five other models on daily precipitationand temperature residuals from
century-old weather stations (Fig. 2). It is firstly visually striking that the outlier threshold from the five traditional methods
cut too many data points not only for the precipitation but also for the temperature residuals (Fig. 2a,b). The percentage of
flagged data points per station varies around 1.7 + 1% for the temperature (Fig. 2d, median of 36634 ~ 4 x 10* days per
station), and from 4.1% (Bar.) to 10.5% (Ley.) for the precipitation (Fig. 2e, median of 8352 ~ 10* wet days per station).

The reason for the large discrepancy between observed and expected percentage of flagged outliers (~0.7% based on the
boxplot rule) is that these methods have been designed for nearly-Gaussian residuals. Even daily temperatures are diverging
from normality because the fitting model used to extract residuals from the time series minimizes the root-mean-square-error.
The anomalies are therefore more concentrated around 0 than those produced by a Gaussian, but with larger extremes (Fig. 2a,
leptokurtic distribution). Only the Bar. model correctly captures outliers present in the temperature residuals (0.17% data
points flagged) as it accounts for large sample size effects (logarithmic law in « similar to Logbox). Howewer, Bar. fails at
capturing outliers in the precipitation residuals because this method has been parametrized on the Gaussian only. For small
samples, the type | error iseven higher in all traditional methods due to the inaccuracy of the quantiles: from 1.4% (Bar.) to
4.2% (Hub.) of temperature residuals are cut for n = 100 (Fig. 2d). This analysis proves that none of the former methods is

suitable to detect outliers in non-Gaussian residuals.

In comparison, the Logbox procedure shows a percentage of flagged outliers close to the expected values for large sample
sizes (Fig. 2c), with 0.0006 £+ 0.0003 % for the temperature (expected value of 0.0005%) and 0.0017 + 0.0009% for the
precipitation (expected value of 0.001%). These results are surprisingly accurate knowing that 12.5% of the extreme values
are disregarded for robustness reasons (m,), and also knowing that Logbox has only been parametrized on theoretical
distributions (Pearson & GEV family). For smaller sample sizes (n < 30 in Fig. 2f), the precipitation residuals are cut too
frequently (~0.25%) compared to the expected threshold (~0.03%), but the temperature residuals are not cut enough. The
constant parameter used to correct forasample size effect (C = 36) is only adapted to nearly-Gaussian residuals, and it cannot
be better estimated because any predictor (suchas m,) becomes inaccurate at smaller sample sizes. However, the percentage
of flagged outliers remains within one order of magnitude of the expected threshold, which is a reasonable compromise
between type | errors (precipitation) and type Il errors (temperature).

To summarize, Logbox enhances the boxplot rule by considering the sample size effect and by adapting the cutting thresholds

to the data. This method has been implemented in the function ctbi.outlier (inthe R package ctbi) that will be used to flag

potential outliers inthe residuals obtained by the aggregation procedure described in part II.

10
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3 Part Il, the ctbi procedure
3.1 Context

This second part is dedicated to the pre-processing, partial imputation and aggregation of univariate time series. In order to
flag outliers, one first needs to produce residuals that represent the variability around the signal. Inits simplest form, the time
series y, is represented with the following additive decomposition (Hyndman & Athanasopoulos, 2021): y, = T, + S; + €,
with T; a long-termtrend, S, a cyclic component (originally, seasonal component but the term cyclic is preferred here as it is
more generic) withperiod 7 (V t, S, = S,,,) and &, the residuals that are considered to be stationary. A popular algorithm that
performs this decomposition is the Seasonal and Trend decompositionusing Loess (or STL, Cleweland et al., 1990), that is
robust to the presence of outliers. The enhanced version of the algorithm, STLplus (Hafen,2016), isalso robustto the presence
of missing values and data gaps. Unfortunately, there are three major drawbacks to using STLplus in the general case: (i) This
algorithm has specifically been designed for signals showing seasonal patterns, which makes it less relevant for other types of
data; (ii) The long-term trend based on loess needs several input parameters (s.window, s.degree,..) and the decomposition is
therefore not unique; (iii) The algorithm has a complexity of O(n?) due to the loess, which is resource intensive and not
adapted to long time series (n > 107). In particular, the first point explains why the function tsoutliers needs to use a
smoothing function (Friedman, 1984) to complement the STL procedure.

A new robust and nonparametric procedure (cthbi) is proposed instead to calculate T, and S; using non-overlapping bins.
Outliers are flagged in the residuals e, with the Logbox method describedin part I, and imputation is performed using T; + S,
if the cyclic patternis strong enough, which is quantified by a new index introduced in this study (the Stacked Cycles Index
or SCI). Bins with sufficient data can finally be aggregated, while other bins are discarded. The procedure is simple (entirely
describedinFig. 3), the long-term trend T, is unique and non-parametrized (based on linear interpolations crossing each bin),
the cyclic component S, is simply the mean stack of bins using detrended data (equivalent to STL for periodic time series).
The algorithm complexity is of the order of O(n log(n)) because the loess is not necessary anymore. In the following, the
procedure is first described more in details and then applied to three case studies (a temperature, precipitation and methane
dataset) that have been contaminated with outliers, missing values and data gaps. Comparison with the raw data demonstrates

the reliability of the ctbi procedure, whose performance is compared to tsoutliers.

3.2 Method
3.2.1 Definitions

Bin: abinis a time window characterized by a left side (inclusive), a right side (exclusive), acenter and a period (e.g., 1 year

in Fig. 3a). Any univariate time series can be decomposed in a sequence of non-overlapping bins, with the firstand last data

11
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point contained in the firstand last bin, respectively (Fig. 3a). The bin size n,;, is the rounded median of the number of points
(including NA values) present in each non-empty bin. A bin is accepted when its number of non-NA data points is above
Npin (1 — fya) With fy4 € [0,1] the maximum fraction of NA values per bin (input left to the user). Otherwise, the bin is

rejected and all its data points are set to NA (Fig. 3a, bin 4).

Long-term trend: the long-term trend (median based) is a linear interpolation of the median values associated with each side
(calculated betweentwo consecutive centers, see Fig. 3a). A side value is set as missing if the number of non-NA data points
(betweenthe two nearestconsecutive centers) is below n,,;, (1 — fy4)- To solve for boundaries issues and missingsides values,
the interpolation is extended using the median value associated with each center (bin 1, 3 & 5 in Fig. 3a). Once the outliers
have been guarantined, the long-termtrend (mean based) will be calculated following the same method but using the mean
instead of the median (Fig. 3c).

Cycle: the cycle (median based)is composedof n,;, pointsthat are the medians of the stack of all accepted bins with the long-
termtrend (median based) removed (Fig. 3b1). Once the outliers have been quarantined, the cycle (mean based) will be the
mean stack of accepted bins with the long-term trend (mean based) remowved (bin 2, 3 & 5 in Fig. 4a). The cyclic component

S, is the sequence of consecutive cycles.
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Fig. 3. Example of the aggregation procedure with the following inputs: bin side = 2020-06-01, bin period = 1 year, fy4 = 0.2 (minimum
of 10 months of data for a bin to be accepted) and SCI,,;, = 0.6 (cyclic imputation level). The bin 4 has been rejected because it contains
only 6 months of data (panel a). Two outliers have been flagged in the residuals (detrended and deseasonalized data, panel b.2). After the
outliers have been replaced with NA values, the bin 1 has been rejected (9 months of data), and the long-term trend and cycle have been
updated using the mean instead of the median (panel c). A point in bin 3 has been imputed based on the cyclicity (SCI,;, < SCI = 0.61).

Stacked Cycles Index: SCI <1 is an adimensional parameter quantifying the strength of a cycle based on the variability

around the mean stack (Fig. 4). Its structure is similar to another index developed in a former study (Wang et al., 2006),
howewer a factor of N;;} has been added to correct for a bias emerging at a small number of bins (N,,, is the number of
accepted bins). This correcting factor has been calculated based on stationary time series of Gaussian noise (with therefore a

null cyclicity per definition, see supplementary material).
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Fig. 4. The Stacked Cycles Index (SCI < 1) quantifies the strength of the cyclicity associated with the period of a bin. The long-term trend
(mean based) is first removed to compute the total sum of squares (panel a). Then the cyclic component (mean based) is also removed to
compute the sum of squared residuals (panel b). SCI is the coefficient of determination minus N} to correct for a bias emerging ata small
number of bins, with Nj;,, the number of accepted bins (here Ny;, = 3, panel c).

3.2.2 Cthi procedure

Inputs.
The univariate time series (1tand 2" column: time and raw data, respectively).

One bin center or one bin side (e.g., 2020-06-01).

The period of the bin (e.g., 1 year).

The aggregation operator (mean, median or sum).

The range of possible values (default value y;,,, € ] — oo, +0]).

The maximum fraction of NA values per bin (default value f,, = 0.2).

The A4, B, C coefficients used inthe Logbox method (automatically calculated by default, coef f. outlier = 'auto’).

© N o g bk~ 0w DdPE

The minimum SCI for imputation (default value SCI,,,;,, = 0.6).

Outputs.
1. The original dataset, with 9 columns: (i) time; (ii) outlier-free and imputed data; (iii) index of the bins associated
with each data points (the index is negative if the bin is rejected); (iv) long-term trend; (V) cyclic component; (vi)

residuals (including the outliers); (vii) quarantined outliers; (viii) value of the imputed data points; (ix) relative
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position of the data points in their bins, between 0 (the point falls onthe left side) and 1 (the point falls on the right
side).

2. The aggregated dataset, with 10 columns: (i) aggregated time (center of the bins); (ii) aggregated data; (iii) index of
the bin (negative value if the bin is rejected); (iv) start of the bin; (v) end of the bin; (vi) number of points per bin
(including NA values); (vii) number of NA values per bin, originally; (viii) number of outliers per bin; (ix) number
of imputed points per bin; (x) variability associated with the aggregation (standard deviation for the mean, MAD for
the median and nothing for the sum).

3. The mean cycle, with 3 columns: (i) time boundary of the first binwith n,;, points equally spaced; (ii) the mean
value associated with each point; (iii) the standard deviation associated with the mean value.

4. A summary of the bins: the Stacked Cycle index (SCI), the representative number of data points per bin (n,;,) and
the minimum number of data points for a bin to be accepted (1, min)-

5.  Asummary of the Logbox output: the coefficients 4, B and C, m,, the number of points used, the lower/upper
outlier threshold.

Step 1, data screening. The bin size n,;, is calculated; values above or below y,;,,, are setto NA; the number of accepted bins

Ny, is assessed; all data points within rejected bins are set to NA; the long-termtrend and cycle (both median based) are
calculated (Fig. 3a,b1).

Step 2, outliers. Outliersare flagged in the residuals (detrended and deseasonalized data) using Logbox (Fig. 3b2); outliers are
quarantined and their values are setto NA; the number of accepted bins N,;,, is updated; all data points within newly rejected
bins are setto NA (bin 1 in Fig. 3c).

Step 3, long-term trend and cycle (mean based): The long-termtrend and the cycle are calculated using the mean instead of
the median (Fig. 3c); SCI is calculated (Fig. 4).

Step 4, imputation: If SCI > SCI,,,;,,, all NA values in accepted bins are imputed with the long-term trend + the mean cycle

(imputation bounded by y,;,,,). Repeat Step 3 and Step 4 three times to reach convergence.

Step 5, aggregation: Accepted bins are aggregated around their center.

3.2.3 Case studies

Three univariate datasets are chosen to illustrate the potential of the aggregation procedure (Fig. 5, first column). The first
dataset is an in-situ temperature (in °C) measured during summer in the canopy of an Oak woodland of California (month of
August, temporal resolution of 5 min), and provided by the National Ecological Observatory Network (NEON 2021, site
SJER). The second dataset is an in-situ daily precipitationrecord (in mm) measured at the station of Cape-Leeuwin (South
westerly coast of Australia) from 1990 to 2020 and available on the Global Historical Climatology Network (Menne et al.,
2012). The last dataset is a Methane proxy record (in ppbv) published in Loulergue et al. (2008) that covers 800000 years with
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irregular timesteps (varying from 1 to 3461 years, with a median of 311 years). None of the datasets contain obvious outliers

or large data gap.
3.2.4 Contamination of the datasets

To testforthe robustness of the aggregation procedure, the three raw datasets are contaminated by 30% (Fig 5, second column)
with the use of three data gap (20% of the dataset), random NA values (9.5% of the dataset) and outliers (0.5% of the dataset).

The three data gaps are picked with random length and position. The position of the outliers and the NA values follows a
Poisson law. The value of the outliers is picked equal to y,,;, — %(,u — Vmin) O Vimax + % Vmax — 1) With v Vi and p

respectively the minimum, maximum and mean of the dataset (temperature and methane datasets). The precipitation is
supposed to follow a heawy-tail distribution (extremes are more frequent), and negative values are impossible, which is why

outlier values are setto 1.6 X y,,,, instead (supplementary material).
3.2.5 Aggregation of the datasets

Each dataset (raw and contaminated version) is consecutively aggregated twice (Fig. 6). The temperature dataset is aggregated
(using the mean) every hour (n,,;, = 12) and then every day (n,;, = 24). The precipitation dataset is aggregated (using the
sum) every month (n,;, = 31) and then every year (n,;, = 12). The methane dataset is aggregated (using the mean) every
2000 years (ny;, = 4) and then every 20000 years (n,;,, = 10). For each dataset, the mean cycle of the second level of
aggregation is shown in Fig. 6 (second column). The aggregation inputs are chosen as default values. The only exceptions are
coeff.outlier = NA and SCI,,,;,, = NA for the raw data (outliers are not checked, data are not imputed), f,,, = 1 for the
Methane dataset (bins with at least 1 non-NA data point are accepted due to the high irregularity in the sampling frequency)
and y;;,, = [0, +oo[ forthe precipitationdataset (negative precipitationare impossible). The number of false positive (real data
points flagged as outliers) and false negative (outliers that have not been flagged) are counted during the first level of
aggregation (Table 1), and compared with the tsoutliers functionwith A = “auto”, which means that the residuals have been
transformedto followa Gaussian with the Cox-Box method (Box & Cox, 1964), or A = NULL, which means the original
residuals are not transformed. The boxplot rule in tsoutliers uses @ = 3, and the long-term trend or cyclic component are not

available for comparison.
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Fig. 5. Raw and contaminated versions of the three datasets used as case studies: temperature (panel a), precipitation (panel b) and methane
(panel c). The sampling frequency is given in parenthesis. The contaminated versions contain three large data gaps (20% of the datasets),
random missing values (9.5%) and random outliers (0.5%) setas a constant level.

3.3 Results and discussion

The three univariate time series have been chosen as case studies due to their various statistical characteristics that are
commonly seen in the scientific or economic field (Fig. 5, 1% column). The long-term trend follows smooth or moderate
variations in the temperature and precipitation datasets, but shows a much higher volatility in the methane dataset. The cyclic
pattern varies from strong diurnal cycles (temperature) and moderate seasonal cycles (precipitation) to no apparent cyclicity
over a period of 20000 years (methane). The detrended and deseasonalized residuals follow distributions from Gaussian
(temperature) or seemingly Exponential (methane) to heawy-tailed (precipitation). Finally, the sampling frequency goes from
sub-hourly (temperature) or daily (precipitation) to highly variable (1 to 3461 years, methane). To test the limits of the
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aggregation procedure, these three datasets are severely contaminated by data gaps, outliers and missing values (Fig. 5, 2™

column).
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Fig. 6. Aggregation of the temperature (panel a), precipitation (panel b) and methane (panel c) in two consecutive levels: 1 (thin lines) and
2 (bold lines). Only the first level of aggregated precipitation is shown for clarity. Black and red colors are associated with the raw and

410 contaminated datasets, respectively. The mean cycles of the second level of aggregation are shown in the second column, with their SCI
displayed (the raw and contaminated versions share similar values).

The firstlevel of aggregation recovers most of the destroyedsignal with ~80% of the bins being acceptedfor all three datasets

(Fig. 6). In these accepted bins, all outliers have been correctly flagged (Table 1). The mean percentage of difference between
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the contaminated and raw aggregates (level 1) is virtually zero for the temperature (0 + 0.1%), the methane (—0.1 + 2%) and
the precipitation (0 + 17%). For the methane dataset, the only false positive (Table 1) is located at the beginning of the time
series (moderntime), because the anthropogenic change in CH, is unprecedented when compared to the geological history
(the long-term fit does not capture the abrupt increase due to climate change). In comparison, the function tsoutliers
successfully flags the outliers in the contaminated temperature and methane datasets (with the Cox-Box method), however it
fails with the contaminated daily precipitation dataset (Table 1). This comes from the inability of tsoutliersto handle heavy
tailed distributions, creating 55 false negatives (all outliers have been missed) with the Cox-Box method and 1125 false

positives without it, due to the limitation of the boxplot rule using a constant & = 3 (see part I).

Procedure ctbi tsoutliers (with/without Cox-Box)
Datasets T P CH4 T P CH4
Number of false 0 0 1 0/0 0/1125 0/3
positives

Number of false 0 0 0 3/0 55/0 0/2
negatives

Table 1. Number of false positives (real data points flagged as outliers, type | error) and false negatives (outliers that have not been flagged,
type 1l error) for the contaminated Temperature (n=8952), Precipitation (n=10949) and Methane (n=2103) datasets shown in Fig. 5 with the
ctbi procedure and the tsoutliers function (with/without the Cox-Box method).

The second level of aggregation has been performed to test for the cyclicity in the signal (Fig. 6, 2" column) using the mean
cycles and their associated Stacked Cycles Index (Fig. 4). The raw and contaminated mean cycles share similar magnitude
within 1 standard deviation on the mean, and their SCI are the same: —0.02 for the methane (no apparent cycles of 20000
years period), 0.65 for the precipitation (moderate seasonality) and 0.88 for the temperature (strong diurnal cycles). The SCI
reveals itselfbeinguseful when comparing signals of different nature or periodicities, whichis not possible for seasonal indices
that only focuses on one field (e.g., hydrology) or data format. (e.g., monthly) such as the seasonality index of Feng et al.
(2013). The cyclicityseeninthe temperature and precipitationis strong enough to impute the missing datain all acce ptedbins,
which further improves the reconstructionof the signal. Because SCI has asimilar structure thana coefficient of determination,
imputations based on high SCI (> 0.6) are respecting the original signal, which is sometimes not the case with a linear
interpolation. These three case studies demonstrate that ctbi is capable of aggregating signals of poor quality that have a

stationary variance in the residuals. The next section explains how to handle more complex time series.

3.4 Limits & recommendations
The ctbi procedure complements the expert-knowledge related to a dataset, but it does not replace it. In particular, this

procedure is not capable of detecting longperiods of instrument failure or human error,and it is essential to flag them manually
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and/or visually before running ctbi. This procedure also presents difficulties to pre-process signals with a complex seasonality
associated with residuals of non-stationary variance. A typical example is a daily precipitation record with a pronounced
monsoon: several months of droughts (low variability in the signal) are followed by few weeks of sewvere floods (high
variability). These two periods do not have the same statistical characteristics, and need to be treated separately. In this
situation, two pools of bins can be created using the MAD as a robust indicator of variability within each bin. The procedure
is the following: (i) apply ctbi with the median operator (do not flag outliers or impute data, coef f.outlier = NA and
SCl,,in = NA) so that each bin will be associated with a specific MAD; (ii) Flag bins with a low MAD (‘dry’ season) and a
high MAD (‘wet’ season); (iii) split the raw data into two datasets of bins with a low and high MAD, respectively; (iv) apply
ctbi separately to each dataset to flag outliers and/or impute data; (v) merge the two datasets. This procedure is successfully

applied to a soil respiration dataset (supplementary material).

Other issues can usually be addressed by varying the inputs: period of the bin, maximum ratio of missing values per bin (fy 1),
and cyclic imputation level (SCI,,,;,,)- It is recommended to pick the period of a bin so that it contains on average between 4
and ~50 data points. Below4 would decrease the breakdown point to unsafe levels (1 outlier would be enough to contaminate
the bin), and above 50 would produce a long-term trend that might not properly capture the variability in the signal. A
maximum of 20% of the bin can be missing by default (fy, = 0.2), but when data are sparse and irregularly distributed, a
value of fy, = 1is possible (example with the Methane dataset: bins with only 1 data point were accepted). Finally, the
imputation level (default of SCI,,,;,, = 0.6) can vary between 0 (forced imputation even without cyclic pattern) and 1 (no

imputation).

4 Conclusion (Part1 & 1)

Although univariate time series are the simplest type of temporal data, this study reveals a lack of consensus in the literature
on how to objectively flag outliers especially in raw data of poor quality. In part I, a comparison between outlier detection
methods is performed on daily residuals from century-old weather stations (precipitation & temperature data). All traditional
outlier detection methods flag extreme events as outliers too frequently (type | error). The alternative procedure developedin

this study (Logbox) improves the boxplot rule by replacing the original @ = 1.5 with @ = Alog(n) + B + % with A and B
determinedwith a predictor of the maximum tail weight (m,). Logbox is parametrizedon two families of distributions (Pearson
& Generalized Extreme Value), and the theoretical percentage of type | error decreases with the sample size (p;je, = %%).

Logbox therefore produces cutting thresholds that are tailored to the shape and size of the data, with a good match between

observed and expected type I errors inthe precipitation and temperature residuals.
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In part I, apre-processingprocedure (ctbi for cyclic/trend decompositionusing bin interpolation) cleans, decomposes, imputes
and aggregates time series based on data binning. The strength of the cyclic pattern within each bin is assessed with a nowel
and adimensional index (the Stacked Cycles Index) inspired by the coefficient of determination. The ctbi procedure is able to
filter contaminated data by selecting bins with sufficient data points (input: fy4) which are then cleaned from outliers (input:
coef f.outlier). The cyclic pattern within each bin is evaluated (SCI) and missing data are imputed in accepted bins if the
cyclicity is strong enough (input: SCI,,,;;,). Most of the signal can be retrieved from univariate time series with diverse
statistical characteristics, illustrated in this study with a temperature, precipitation and methane datasets that have been
contaminated with gaps and outliers. Limits inthe use of ctbi are acknowledged for signals with a long-period of instrument
failure, but also for signals presenting a complex seasonality. The last situation can be handled by splitting the raw data into
two (or more) datasets containing bins with similar variability quantified by the Mean Absolute Deviation (MAD). The pre-
processing procedure is then separately applied to each dataset to correctly identify outliers. It is strongly recommended to
examine the data before and after using ctbi to ensure that rejected bins and flagged outliers seem reasonable, and to be

transparent about the inputs used in your future study.

Author contribution

F.R.: Design, writing, coding.

Competing interests
The author declares no competing interests.

Acknowledgement
The author would like to warmly thank Dr. Rob Hyndman for his advice, as well as the reviewers of this study. Dr. Jens
Schumacher has particularly stimulated the improvement of the Logbox method.

Data availability
The GHCN dataset is available on https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/. The Methane dataset is available on
https://doi.org/10.1038/nature06950. The temperature dataset is available on https://doi.org/10.48443/2nt3-wj42.

Code availability
The ctbi package is available on the comprehensive R Archive Network (CRAN). The code and data used in the study & the
supplementary material are available on https://qgithub.com/fritte2/ctbi_article.

21


https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/
https://doi.org/10.1038/nature06950
https://doi.org/10.48443/2nt3-wj42
https://github.com/fritte2/ctbi_article

510

515

520

525

530

535

540

545

550

555

References

Aguinis, H., Gottfredson,R.K., and Joo, H.: Best-Practice Recommendations for Defining, Identifying, and Handling Oultliers,
Organizational Research Methods 16, https://doi.org/10.1177/1094428112470848,2013.

Barbato, G., Barini, E. M., Genta, G., and Levi, R.: Features and Performance of Some Outlier Detection Methods, Journal of
Applied Statistics, https://doi.org/10.1080/02664763.2010.545119, 2011.

Borchers, H.: Package ‘Pracma’, R Package Version 2.4.2,2021.

Box, G. E. P., and Cox, D. R.: An Analysis of Transformations, Journal of the Royal Statistical Society: Series B
(Methodological) 26, https://doi.org/10.1111/].2517-6161.1964.tb00553.x, 1964.

Brys, G., Hubert, M., and Struyf, A.: A Robust Measure of Skewness, Journal of Computational and Graphical Statistics 13,
https://doi.org/10.1198/106186004X12632, 2004.

Carling, K.: Resistant Outlier Rules and the Non-Gaussian Case, Computational Statistics and Data Analysis 33,
https://doi.org/10.1016/S0167-9473(99)00057-2, 2000.

Chandola, V. Banerjee, A, and Kumar, V.. Anomaly Detection. A Survey, ACM Computing Surveys,
https://doi.org/10.1145/1541880.1541882, 2009.

Clewveland, R. B., Cleveland W. S., McRae, J. E., and Terpenning, I.: STL: A Seasonal-Trend DecompositionProcedure Based
on Loess (with Discussion), Journal of Official Statistics 6, http://bit.ly/st11990, 1990.

Feng, X., Porporato, A., and Rodriguez-Iturbe, I.: Changes in Rainfall Seasonality in the Tropics, Nature Climate Change 3:
811-15, https://doi.org/10.1038/nclimate1907,2013.

Friedman, J. H.: A Variable Span Smoother, October. Vol. 1984, https://doi.org/10.2172/1447470, 1984.

Hafen, R.: Package ‘Stlplus’, R Package Version0.5.1, 2016.

Hoaglin, D. C., Iglewicz, B., and Tukey, J. W.: Performance of Some Resistant Rules for Outlier Labeling, Journal of the
American Statistical Association 81, https://doi.org/10.1080/01621459.1986.10478363, 1986.

Hubert, M., and Vandervieren, E.: An Adjusted Boxplot for Skewed Distributions, Computational Statistics and Data Analysis
52, https://doi.org/10.1016/j.csda.2007.11.008, 2008.

Hyndman, R. J., and Athanasopoulos, G. (OTexts): Forecasting: principles and practice, 3rd edition, Melbourne, Australia,
OTexts.com/fpp3, 2021, last access: 21 December 2022.

Hyndman, R. J., and Khandakar, Y.: Automatic Time Series Forecasting: The Forecast Package for R, Journal of Statistical
Software 27, https://doi.org/10.18637/jss.v027.i03, 2008.

Jenkinson, A. F.; The Frequency Distribution of the Annual Maximum (or Minimum) Values of Meteorological Elements,
Quarterly Journal of the Royal Meteorological Society 81, https://doi.org/10.1002/9j.49708134804, 1955.

Kim, T. H., and White, H.: On More Robust Estimation of Skewness and Kurtosis, Finance Research Letters 1,
https://doi.org/10.1016/S1544-6123(03)00003-5, 2004.

Kimber, A. C.: Exploratory Data Analysis for Possibly Censored Data from Skewed Distributions, Applied Statistics 39,
https://doi.org/10.2307/2347808, 1990.

Leys, C., Ley, C., Klein, O., Bernard, P., and Licata, L.: DetectingOutliers: Do Not Use Standard Deviation Around the Mean,
Use Absolute Deviation Around the Median, Journal of Experimental Social Psychology 49,
https://doi.org/10.1016/j.jesp.2013.03.013, 2013.

Loulergue, L., Schilt, A, Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J. M., Raynaud, D., Stocker,
T. F., and Chappellaz, J.: Orbital and Millennial-Scale Features of Atmospheric CH4 over the Past 800,000 Years, Nature 453,
https://doi.org/10.1038/nature06950, 2008.

Menne, M. J., Durre, ., Vose, R. S., Gleason, B. E., and Houston, T. G.: An Owerview of the Global Historical Climatology
Network-Daily Database, Journal of Atmospheric and Oceanic Technology 29: 897-910, https://doi.org/10.1175/JTECH-D-
11-00103.1,2012.

Moors, J. J. A.: A Quantile Alternative for Kurtosis, The Statistician 37, https://doi.org/10.2307/2348376, 1988.

NEON (National Ecological Observatory Network). Single aspirated air temperature, RELEASE-2021 (DP1.00002.001).
https://doi.org/10.48443/2nt3-wj42, 2021, last access: 13 October 2021.

Pearson, K.: X. Contributions to the Mathematical Theory of Ewvolution. - 1l. Skew Variation in Homogeneous Material,
Philosophical Transactions of the Royal Society of London, Series A, 186, https://doi.org/10.1098/rsta.1895.0010, 1895.

22


https://doi.org/10.1177/1094428112470848
https://doi.org/10.1080/02664763.2010.545119
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.1198/106186004X12632
https://doi.org/10.1016/S0167-9473(99)00057-2
https://doi.org/10.1145/1541880.1541882
http://bit.ly/stl1990
https://doi.org/10.1038/nclimate1907
https://doi.org/10.2172/1447470
https://doi.org/10.1080/01621459.1986.10478363
https://doi.org/10.1016/j.csda.2007.11.008
https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.1002/qj.49708134804
https://doi.org/10.1016/S1544-6123(03)00003-5
https://doi.org/10.2307/2347808
https://doi.org/10.1016/j.jesp.2013.03.013
https://doi.org/10.1038/nature06950
https://doi.org/10.1175/JTECH-D-11-00103.1
https://doi.org/10.1175/JTECH-D-11-00103.1
https://doi.org/10.2307/2348376
https://doi.org/10.48443/2nt3-wj42
https://doi.org/10.1098/rsta.1895.0010

560

565

570

Pearson, K.: XI. Mathematical Contributions to the Theory of Evolution. - X. Supplement to a Memoir on Skew Variation,
Philosophical Transactions of the Royal Society of London, Series A, 197, https://doi.org/10.1098/rsta.1901.0023, 1901.
Pearson, K.: IX. Mathematical Contributions to the Theory of Evolution. - XIX. Second Supplement to a Memoir on Skew
Variation, Philosophical Transactions of the Royal Society of London, Series A, 216, https://doi.org/10.1098/rsta.1916.0009,
1916.

Pearson, R. K.: Outliers in Process Modeling and Identification, IEEE Transactions on Control Systems Technology 10,
https://doi.org/10.1109/87.974338, 2002.

Ranjan, K. G., Rajanarayan, B. P., and Jena, D.: Review of Preprocessing Methods for Univariate Volatile Time-Seriesin
Power System Applications, Electric Power Systems Research, https://doi.org/10.1016/j.epsr.2020.106885, 2021.

Reiss, R. D., and Thomas, M. (Birkhduser Basel): Statistical Analysis of Extreme Values: With Applications to Insurance,
Finance, Hydrology and Other Fields, 3rd Edition, https://doi.org/10.1007/978-3-7643-7399-3, 2007.

Schwertman, N. C., Owens, M. A, and Adnan, R.: A Simple More General Boxplot Method for Identifying Outliers,
Computational Statistics and Data Analysis 47, https://doi.org/10.1016/j.csda.2003.10.012, 2004.

Tukey, J. W. (Pearson): Exploratory Data Analysis, 1% edition, 1977.

Wang, X., Smith, K., and Hyndman, R. J.: Characteristic-Based Clustering for Time Series Data, Data Mining and Knowledge
Discovery 13, https://doi.org/10.1007/s10618-005-0039-x, 2006.

23


https://doi.org/10.1098/rsta.1901.0023
https://doi.org/10.1098/rsta.1916.0009
https://doi.org/10.1109/87.974338
https://doi.org/10.1016/j.epsr.2020.106885
https://doi.org/10.1007/978-3-7643-7399-3
https://doi.org/10.1016/j.csda.2003.10.012
https://doi.org/10.1007/s10618-005-0039-x

