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Abstract. Errors, gaps and outliers complicate and sometimes invalidate the analysis of time series. While most fields have 

developed their own strategy to clean the raw data, no generic procedure has been promoted to standardize the pre-processing. 

This lack of harmonization makes the inter-comparison of studies difficult, and leads to screening methods that are usually 10 

ambiguouscan be arbitrary or case-specific. This study provides a generic pre-processing procedure implemented in R (ctbi, 

for cyclic/trend decomposition using bin interpolation) dedicated to univariate time series. Ctbi is based on data binning and 

decomposes the time series into a long-term trend and a cyclic component (quantified by a new metric, the Stacked Cycles 

Index) to finally aggregate the data. Outliers are flagged with an enhanced Boxplot rule called LogBox.boxplot rule called 

Logbox that corrects biases due to the sample size and that is adapted to non-Gaussian residuals. Three different Earth Science 15 

datasets (contaminated with gaps and outliers) are successfully cleaned and aggregated with ctbi. This illustrates the robustness 

of this procedure that can be valuable to any discipline. 

1 Introduction 

In any discipline, raw data need to be evaluated during a pre-processing procedure before performing the analysis. Errors are 

removed, values that deviate from the rest of the population are flagged (outliers, see Aguinis et al., 2013), in some cases gaps 20 

are filled. Because the raw data are altered, pre-processing is a delicate and time-consuming task that can be neglected due to 

cognitive biases deflecting our understanding of reality (‘I see what I want to see’), or due to our impatience to obtain results. 

The fate of extreme values is crucial as they usually challenge scientific or economic theories (Reiss et al., 1997). 

Time series are particularly difficult to pre-process (Chandola et al., 2009). A value can or cannot be considered as an outlier 

just depending on its timestamp (e.g., a freezing temperature in summer), large data gaps are common, abrupt changes can 25 

occur and a background noise covers the true signal. In Earth Science, in-situ or remote measurements routinely produce time 
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series that first need to be visually inspected. The expert-knowledge of the researcher, technician or engineer is essential to 

flag suspicious periods of possible instrument failure (e.g., a rain gauge blocked by snowflakes), violation of the experimental 

conditions (e.g., a passing car during CO2 measurements in a forest), or human error (e.g., calibration of the wrong sensor). 

Once these suspicious periods have been flagged, a pre-processing algorithm is necessary to evaluate the quality of the 30 

remaining portion of the measurements. However, there currently is no consensus on which procedure to use even in the simple 

univariate case: a recent review (Ranjan et al., 2021) covered more than 37 preprocessing methods for univariate time series, 

and Aguinis et al. (2013) listed 14 different outlier definitions that are mutually exclusive. Despite this (overwhelming) 

abundance of methods and conventions, there are surprisingly few R packages that offer a pre-processing function. It is worth 

mentioning hampel (package pracma, Borchers, 2021) that applies a Hampel filter (Pearson, 2002) to time series and flags 35 

outliers based on the Mean Absolute Deviation (MAD), which is a robust approximation of the standard deviation defined as 

𝑀𝐴𝐷(𝑥) = 1.4826 × M(|𝑥 − M(𝑥)|) with M the median operator. However, the hampel function is not robust to missing 

values and the scaling factor of 1.4826 is not adapted to non-Gaussian residuals. Another option is the function tsoutliers 

(package forecast, Hyndman et al., 2020) that applies a Seasonal and Trend decomposition using Loess (STL, Cleveland et 

al., 1990) to data showing a seasonal pattern, complemented by a smoothing function to estimate the trend of non-seasonal 40 

time series (Friedman’s super smoother, Friedman, 1984). The residuals obtained can be transformed to follow a Gaussian 

distribution (Cox-Box method, Box & Cox, 1964), and then outliers are flagged using the Boxplotboxplot rule (Tukey, 1977). 

This method will be proved in this study to work well with data associated with nearly-Gaussian residuals, but to show poor 

performance otherwise.  

This study offers an alternative pre-processing procedure (implemented in R) called ctbi for cyclic/trend decomposition using 45 

bin interpolation. The time series is divided into a sequence of non-overlapping time intervals of equal period (called bins), 

and outliers are flagged with an enhanced version of the Boxplotboxplot rule (called LogBoxLogbox) that is adapted to non-

Gaussian data and insensitive to thefor different sample sizesizes. Ctbi fulfils four purposes:  

i) Data cleaning: bins with insufficient data are discarded, and outliers are flagged in the remaining bins. If there is a 

cyclic pattern within each bin, missing values can be imputed as well. 50 

ii) Decomposition: the time series is decomposed into a long-term trend and a cyclic component. 

iii) Cyclicity analysis: the mean cycle of the stacked bins is calculated, and the strength of the cyclicity is quantified by 

a novel index, the Stacked Cycles Index. 

iv) Aggregation: data are averaged (or summed) within each bin. 

This procedure is particularly adapted to univariate time series that are messy, with outliers, data gaps or irregular timesteps. 55 

The inputs offer a large flexibility in terms of imputation level or outlier cutoff, but also in the timestamp of the bins: a  day 
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does not necessarily start at midnight or a year the 1st of January. The timeline is not limited to daily or monthly data but can 

vary from milliseconds to millenaries. The outputs keep track of the changes brought to the data: contaminated bins are flagged, 

as well as outliers and imputed data points. 

This paper is divided into two distinct parts. The first part describes the LogBoxLogbox method and compares its performance 60 

with four other outlier detection methods in the literature, including the MAD based on daily precipitation & temperature data 

extracted from 6307 century-old weather stations. The second part describes the ctbi procedure, and then applies it to three 

datasets that have been contaminated beforehand to show the efficiency of the algorithm. A comparison with tsoutliers is 

performed, and, finally, limitations and good practice recommendations are discussed. 

2 Part I, outliers 65 

2.1 Context 

This first part is dedicated to the detection of outliers present in univariate datasets (without the time component). The boxplot 

(or Tukey’s) rule is a commonly used method to flag outliers below a lower boundary 𝑙 and above an upper boundary 𝑢 (Tukey, 

1977): 

{
𝑙 = 𝑞(0.25) − α × (𝑞(0.75) − 𝑞(0.25))

𝑢 = 𝑞(0.75) + α × (𝑞(0.75) − 𝑞(0.25))
 70 

With 𝑞 the sample quantile (e.g., 𝑞(0.5) is the median) and α = 1.5 a constant that corresponds to 99.3% of Gaussian data 

falling within [𝑙, 𝑢]. This method is simple and robust to the presence of a maximum of 25% of outliers in the dataset (known 

as the breakdown point). However, two issues emerge from this ruleWhen a real data point falls outside the [𝑙, 𝑢] range, it is 

considered as an erroneously flagged outlier (or type I error). Conversely, a type II error occurs when a real outlier is not 

flagged.  The type I error is more common for three reasons: 75 

(i) For asmall Gaussian population, samples (𝑛 < 30), up to 8.6% of data (Hoaglin et al., 1986) can be cut due to 

the inaccuracy of the sample quantile for small 𝑛. 

(i)(ii) For large Gaussian samples (𝑛 > 103), α = 1.5 is inappropriate for large sample sizes (𝑛 ≥ 103), because the 

number of points erroneously flagged as outliers increases linearly with 𝑛 (due to the 99.3% of data captured 

by [𝑙, 𝑢]).. 80 

(ii)(iii) For a non-Gaussian populationpopulations, α = 1.5 is generally too restrictive. For example, ~4.8 % of data 

following an Exponential distribution would be erroneously flagged as outliers.cut.  

TwoWhile studies have attempted to addresscorrected biases in the second detection of outliers in small samples (see Carling, 

2000; Schwertman et al., 2004), they have ignored those emerging in large samples. Concerning the last issue (, Kimber,  

(1990;) and Hubert & Vandervieren, (2008) by adjustinghave adjusted α to the skewness 𝑆 (third standardized moment (related 85 
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to the asymmetry of a distribution) while ignoring thebut did not consider the kurtosis (related to the tail weight) that will be 

proven to be a key variable in this study. Therefore, there currently is no generic procedure that can be used when the population 

is non-Gaussian and/or the sample size is large. 

 

To understand how to address this problem, two sets of common distributions with known skewness 𝑆, kurtosis excess kurtosis 90 

𝜅𝑒𝑥 (fourth standardized moment related to the tail weight). Other studies have corrected biases emerging at small sample sizes 

(Carling, 2000; Schwertman et al., 2004); however, none have designed a method based on the boxplot rule that can handle 

outliers present in large sample sizes. 

 

A more generic method (called LogBox) has been developed in this study to assignand quantile function 𝑄 are used (Fig. 1). 95 

The first set is the Pearson family composed of light-tailed distributions that represent any theoretically possible residuals with 

moderate 𝑆 & 𝜅𝑒𝑥. Pearson originally worked to create distributions that cover the entire (𝑆,𝜅𝑒𝑥) space (Pearson, 1895; 1901 

& 1916), but they took their modern names later on (Gamma, Inverse-gamma, Beta prime, Student, Pearson IV). The second 

set is the Generalized Extreme Value family composed of the Gumbel, Weibull and Fréchet that are heavy-tailed distributions 

(high 𝑆 & 𝜅𝑒𝑥) used in Extreme Value Theory to model the behavior of extrema (Jenkinson, 1955). Based on this framework, 100 

this study finds that 𝛼 = 𝑘(𝑛) = 𝐴 log(𝑛) + 1  with 𝑛  the sample size and 𝑘𝐵 +
𝐶

𝑛
 reasonably addresses all previously 

mentioned issues, with 𝐶  fixed as a positive number that correspondsconstant (𝐶 = 36 ). The two parameters 𝐴  and 𝐵 

correspond to the nature of the distribution (e.g., 𝑘 = 0.16 for Gaussian data; 𝑘 = 0.8 for Exponential data). A default value 

of 𝑘 = 0.6 has been determined with an ensemble of non-Gaussian distributions (the Pearson family) that represent univariate 

datasets with moderate 𝑆 and 𝜅𝑒𝑥 (Fig. 1).and are estimated based on a predictor of the kurtosis modified from Moors (1988). 105 

A comparison with between this procedure (called Logbox) and four other existing models is performed to test the resistance 

of each method to different types of distributions and different sample sizeson residuals obtained from 6307 weather stations 

with more than 100 years of daily temperature and precipitation measurements (Fig. 2). Finally, LogBoxLogbox is 

implemented (with the value of 𝑘 left to the user) in the aggregation procedure described in part II to clean the residuals 

obtained after fitting the univariate time series with a robust and nonparametric method.   110 

2.2 Method 

2.2.1 Definition of 𝛂− and 𝛂+Distributions 

Residuals with the 3σ, 4σ and 5σ convention 

Let 𝐷𝑋 be a probability distribution of a single random variable 𝑋 associated with the population quantile function 𝑄.  Two 

strictly positive functions 𝛼− and 𝛼+ attached to 𝐷𝑋 are defined for 0.75 < 𝑝 < 1:  115 
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𝛼−(𝑝) =  
𝑄(0.25) − 𝑄(1 − 𝑝)

𝑄(0.75) − 𝑄(0.25)
 

𝛼+(𝑝) =  
𝑄(𝑝) − 𝑄(0.75)

𝑄(0.75) − 𝑄(0.25)
 

The boxplot rule can now be expressed with 𝛼− and 𝛼+: 140 

{
𝑙 = 𝑞(0.25) − 𝛼−(𝑝𝑙𝑖𝑚) × (𝑞(0.75) − 𝑞(0.25))

𝑢 = 𝑞(0.75) + 𝛼+(𝑝𝑙𝑖𝑚) × (𝑞(0.75) − 𝑞(0.25))
 

With 𝑞 the sample quantile and 𝑝𝑙𝑖𝑚  related to the percentage of data falling within [𝑄(1 − 𝑝𝑙𝑖𝑚), 𝑄(𝑝𝑙𝑖𝑚)], independent from 

the nature of the distribution. In order to set a framework consistent with the Gaussian case, we derive three 𝑝𝑙𝑖𝑚  values 

(𝑝3𝜎 , 𝑝4𝜎 and 𝑝5𝜎) expressed as 𝑝𝑗𝜎  = Φ(𝑗) with Φ the cumulative distribution function of the standard Normal distribution 

𝒩(0,1) and 𝑗 = {3,4,5} implicit throughout the study.  These 𝑝𝑙𝑖𝑚 values are associated with the percentage of Gaussian data 145 

captured by ±𝑗𝜎  (known as the “sigma-Rule”), with 𝜎  the standard deviation of the Gaussian. The corresponding 𝛼𝑗𝜎
𝒩 =

𝛼+(𝑝𝑗𝜎) values are computed in the Gaussian case with 𝑄 = Φ−1 (Table 1), and 𝛼−(𝑝𝑗𝜎) is discarded in this study because 

only symmetrical or right-skewed distributions are considered (supplementary material). 

 

 150 

j-sigma 

rule 
𝑝𝑗𝜎 = Φ(𝑗) 

 2𝑝𝑗𝜎 − 1 

(% of data 

captured) 

𝛼+(𝑝𝑗𝜎) 

 

(Gaussian) 

M(𝛼+(𝑝𝑗𝜎))  

 

(Pearson family) 

Suggested 

Sample 

size 

“±3σ” 0.99865 99.73% 𝛼3𝜎
𝒩 = 1.7 𝛼3𝜎

𝒫 = 3.8 𝑛3𝜎 ~ 10
2 

“±4σ” 0.9999683 99.994% 𝛼4𝜎
𝒩 = 2.5 𝛼4𝜎

𝒫 = 6.7 𝑛4𝜎 ~ 10
4 

“±5σ” 0.9999997 99.99994% 𝛼5𝜎
𝒩 = 3.2 𝛼5𝜎

𝒫 = 9.4 𝑛5𝜎 ~ 10
6 

Table 1. Values of 𝛼+(𝑝𝑗𝜎) for 𝑗 = {3,4,5} associated with the Gaussian distribution (4th column, 𝛼𝑗𝜎
𝒩) and the distributions 

from the Pearson Family (5th column, median 𝛼𝑗𝜎
𝒫 ). Φ is the cumulative distribution of the Standard Normal distribution 

𝒩(0,1) and M is the median. The sample sizes 𝑛𝑗𝜎  correspond to less than 1 erroneously flagged outlier (based on the 

percentage of data captured). 

 155 

2.2.2 The Pearson family 

Univariate datasetsmoderate 𝜅𝑒𝑥  & 𝑆 are represented in this study with 97024999 light-tailed distributions from the Pearson 

family (Pearson, 1895; 1901 & 1916) composed of the Gaussian, Gamma (196 distributions, including the Exponential), 

Inverse gamma (170), Beta (4703), Beta prime (1135), Pearson IV (3377) and Student (120) distributions (Fig. 1a). These Mis en forme : Police par défaut
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distributions cover the entire (𝜅𝑒𝑥 , 𝑆
2) space without overlap. Their quantile functions are already implemented in R to compute 

with high precision 𝛼+(𝑝𝑗𝜎), and their shape parameters , except for the Beta distribution that has been discarded due to a 

bounded support (unrealistic residuals). The shape parameters of each distribution have been chosen to produce regularly-190 

spaced points in the (𝜅𝑒𝑥 , 𝑆
2) space without overlap and with a mean distance of 0.05 in the (𝜅𝑒𝑥 , 𝑆

2) space and with a range 

between them (Fig. the Gaussian and the Exponential: 𝜅𝑒𝑥 ∈ [0,6] and 𝑆 ∈ [0,2]. Heavy-tailed residuals are represented with 

368 distributions from the Generalized Extreme Value (GEV) family (Fig. 1d) composed of the Gumbel, Weibull (2441a). 

The range of excess kurtosis and squared skewness for all distributions has been picked as) and Fréchet (123). Their shape 

parameters cover a larger range: 𝜅𝑒𝑥 ∈ [0,6500] and 𝑆2 ∈ [𝑆 ∈ [0 ,
4

5
(𝜅𝑒𝑥 + 2)] (supplementary material). , 15]. 195 

 

2.2.3 Models 

2 The general procedure developed in this study (LogBox) is based on the Logbox model 

Based on the boxplot rule and replaces the original constant 𝛼 = 1.5 with , 𝛼 can be defined as: 

𝛼 = 𝑘 log(𝑛) + 1, with (𝑛) =  
𝑄(1−

𝑓(𝑛)

2𝑛
)−𝑄(0.75)

𝑄(0.75)−𝑄(0.25)
 200 

With 𝑛 the sample size and 𝑘 = 0.6 the default value. This relationship is established based on the median values 𝛼𝑗𝜎
𝒫 =

{3.8, 6.7, 9.4} from the Pearson family, and the three sample sizes 𝑛𝑗𝜎 = {102, 104, 106}, 𝑄 the population quantile function 

and 𝑓 a function that correspond on average to less than one gives the number of erroneously flagged outliers. In the original 

boxplot rule, 𝑄 = Φ−1 (with Φ the cumulative distribution function of the Gaussian) and 𝑓(𝑛) = 0.007 × 𝑛 which leads to 

𝛼 = 1.5. As explained in the introduction, this choice of 𝑓 is not valid for large sample sizes due to the linear dependence on 205 

𝑛. A flat number of erroneously flagged outliers (𝑓(𝑛) = 𝑏) or a logarithmic relationship (𝑓(𝑛) = 𝑏 log (𝑛)) would not be 

appropriate either, because 𝛼(𝑛) could take arbitrary large values as 1 −
𝑓(𝑛)

2𝑛
 would approach 1 too rapidly (𝑄(1) = ∞). This 

study suggests instead 𝑓(𝑛) = 0.001√𝑛  as a compromise. For example, for a sample of size 𝑛 = 102 , 104  or 106 ; 

respectively 0.01, 0.1 or 1 point would be erroneously flagged as outlier (instead of 0.7, 70 or 7000 points with the original 

boxplot rule). To characterize the relationship 𝛼(𝑛) versus 𝑛, 𝛼(𝑛) is derived with high accuracy (𝑄 implemented in 𝑅) for 210 

each distribution of the Pearson and GEV family for 5 sample sizes (𝑛𝑖 = 10
𝑖  with 𝑖 ∈ [2,6]). It appears that 𝛼(𝑛) =

𝐴 log(𝑛) + 𝐵 is an accurate model for both the Pearson family (mean of 𝑟2 =  0.994 ± 0.005) and the GEV family (𝑟2 =

 0.99 ± 0.01). To account for biases emerging at small sample size, an additional constant term is added following Carling 

(2000): 𝛼(𝑛) = 𝐴 log(𝑛) + 𝐵 +
𝐶

𝑛
. The parameter 𝐶 = 36 has been numerically determined with a Monte-Carlo simulation on 

the distributions of the Pearson family to ensure that the percentage of erroneously flagged outliers corresponds to ~0.1% for 215 
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𝑛 = 9 (supplementary material). For the particular case of the Gaussian (ubiquitous in nature), 𝐴 = 0.08 and 𝐵 = 2 (𝑟2 =

0.999). 

 

2.2.3 The Logbox procedure 

Let (𝑚−, 𝑚+) be two positive functions defined as 𝑚− = (𝐸3 − 𝐸1)/(𝐸6 − 𝐸2) and 𝑚+ = (𝐸7 − 𝐸5)/(𝐸6 − 𝐸2) with 𝐸𝑖 =220 

𝑞(𝑖/8) the sample octile. The centered Moors 𝑚 = 𝑚− +𝑚+ − 1.23 is a robust predictor of the kurtosis excess with a 

breakdown point of 12.5% (Moors 1988, Kim & White 2004). This study introduces a modified version defined as 𝑚∗ =

 max (𝑚−, 𝑚+) − 0.6165. The parameter 𝑚∗ is more appropriate than 𝑚 to determine if a sample is light-tailed or heavy-

tailed. For example, a Gaussian distribution (𝑚− = 𝑚+ ≈ 0.6165 ; 𝑚 = 𝑚∗ ≈ 0) and a right-skewed distribution with one 

heavy tail (𝑚− = 0.1 and 𝑚+ = 1.13) will share identical 𝑚 but different 𝑚∗. The Logbox procedure is the following for an 225 

unknown sample of size 𝑛: 

(i) If 𝑛 ∈ [3,8] , the outlier threshold [𝑙, 𝑢]  is 𝑙 = 𝑞(0.50) − 𝛽 ×𝑀𝐴𝐷  and 𝑢 = 𝑞(0.50) + 𝛽 × 𝑀𝐴𝐷  with 𝛽 =

12.5. 

(ii) If 𝑛 ≥ 9, 𝑚∗  is computed (bounded by [0,2]) and the boxplot rule is used with 𝛼(𝑛) = 𝑔𝐴(𝑚∗) log(𝑛) +

𝑔𝐵(𝑚∗) +
36

𝑛
.  230 

For very small sample sizes (case i), the median and MAD are preferred (Leys et al., 2013) over the boxplot rule because a 

single outlier would break the estimator 𝑚∗. The value of  𝛽 = 12.5 has been numerically determined with a Monte-Carlo 

simulation and corresponds to ~0.1%  of erroneously flagged outliers in the Pearson family for 𝑛 = 9  (supplementary 

material). For larger sample sizes (case ii), 𝑔𝐴(𝑥) = 0.2294𝑒
2.9416𝑥−0.0512𝑥2−0.0684𝑥3  (𝑟2 = 0.999) and 𝑔𝐵(𝑥) = 1.0585 +

15.6960𝑥 − 17.3618𝑥2 + 28.3511𝑥3 − 11.4726𝑥4  ( 𝑟2 = 0.999) . Each function has been parametrized based on the 235 

Pearson and GEV family together (Fréchet has been excluded due to a different behavior, see Table 1 & Fig. 1d). LogBox1e,f). 

The coefficients have been determined with a Monte-Carlo simulation that minimizes the root-mean square error (𝑁~108). 

 

2.2.4 Former models 

Logbox is compared with four other models (Kimber, 1990; Hubert & Vandervieren, 2008; Schwertman et al., 2004; Leys et 240 

al., 2013). The first two models (Kim. and Hub.) adjust the boxplot method with respect to the skewness: 

{
𝑙𝐾𝑖𝑚. = 𝑞(0.25) −  3 × (𝑞(0.50) − 𝑞(0.25))

𝑢𝐾𝑖𝑚. = 𝑞(0.75) +  3 × (𝑞(0.75) − 𝑞(0.50))
 

And  
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{
𝑙𝐻𝑢𝑏. = 𝑞(0.25) −  1.5 × 𝑓(−𝑀𝐶) × (𝑞(0.75) − 𝑞(0.25))

𝑢𝐻𝑢𝑏. = 𝑞(0.75) +  1.5 × 𝑓(𝑀𝐶) × (𝑞(0.75) − 𝑞(0.25))
 

{
𝑙𝐻𝑢𝑏. = 𝑞(0.25) −  1.5 × ℎ(−𝑀𝐶) × (𝑞(0.75) − 𝑞(0.25))

𝑢𝐻𝑢𝑏. = 𝑞(0.75) +  1.5 × ℎ(𝑀𝐶) × (𝑞(0.75) − 𝑞(0.25))
 245 

With the function fh defined as 𝑓ℎ(𝑀𝐶) =  𝑒4𝑀𝐶  for 𝑀𝐶 <  0 and 𝑓ℎ(𝑀𝐶) =  𝑒3𝑀𝐶  for 𝑀𝐶 ≥  0. The Medcouple 𝑀𝐶MC ∈

[−1,1] is a robust estimator of 𝑆S, with an algorithm complexity of 𝛰(𝑛 log 𝑛) and a breakdown point of 25% (Brys et al., 

2004). The third model (Sch.) constructs the lower and upper boundary around the median: 

{
 

 𝑙𝑆𝑐ℎ. = 𝑞(0.50) − 
𝑍

𝑘𝑛
× 2(𝑞(0.50) − 𝑞(0.25))

𝑢𝑆𝑐ℎ. = 𝑞(0.50) + 
𝑍

𝑘𝑛
× 2(𝑞(0.75) − 𝑞(0.50))

 

With 𝑘𝑛kn a function of the sample size 𝑛n to adjust for small samples (given as a table in Schwertman et al., 2004) and 𝑍Z a 250 

constant related to the percentage of data captured by [𝑙𝑆𝑐ℎ., 𝑢𝑆𝑐ℎ.], here picked as 𝑍 = 3 (Gaussian case for the ±3𝜎 window). 

Finally, the last model (Ley.) uses the MAD around the median:  

{
𝑙𝐿𝑒𝑦. = 𝑞(0.50) −  3 × 𝑀𝐴𝐷

𝑢𝐿𝑒𝑦. = 𝑞(0.50) +  3 × 𝑀𝐴𝐷
 

 

2.2.45 Comparison between models 255 

The comparison between models is performed on two sets of residuals obtained from weather stations part of the Global 

Historical Climatology Network (GHCN-daily) with at least 100 years of daily temperature (2693 stations, 9.4 × 107 days) or 

daily precipitation (6277 stations, 5.8 × 107  wet days, dry days are excluded). Because this network is used to calibrate 

products that are remote-sensing based and because suspicious values are routinely flagged (Menne et al., 2012; Xungang et 

al. 2012), the risk of errors in these century-old stations can be considered small. The residuals are extracted with the robust 260 

method described in part II based on non-overlapping bins (bins with less than 80% of data are discarded). To reduce the 

impact of the extraction method on the analysis, three bin intervals (5, 10 and 20 days) are used to obtain three replicas for 

each station. The sensitivity of each outlier detection method to the sample size has also been estimated. For each station and 

for each sample size 𝑙𝑖 = 10𝑖 (𝑖 varying from 1 to 10), 𝑁𝑖 = 
100

𝑖
 samples are randomly selected and the number of flagged 

outliers is summed over all the 𝑁𝑖 samples (the total number of points is constant, 𝑁𝑖 × 𝑙𝑖 = 1000). 265 

 

For the four models (Ley., Hub., Kim., Sch.), the percentage of flagged outliers is computed for each station, and then the 

mean (±1 SD) is calculated over all stations. For the Logbox model, this method is not appropriate because the expected 

number of erroneously flagged outlier per station is less than one (0.001√~104~ 0.1). Instead, the percentage of flagged 
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outliers is calculated over the total number of points: 𝜌 = (Σ𝑛𝑗
𝑓𝑙𝑎𝑔𝑔𝑒𝑑

) × 100/(Σ𝑛𝑗)  with 𝑗  a station. The variability is 

estimated by subsampling the total number of stations 𝑁𝑠: √𝑁𝑠 sets of √𝑁𝑠 random stations are selected without replacement. 285 

The parameter 𝜌 is computed for each set, and the associated variability is calculated on all 𝜌 values (±1 𝑆𝐷 in Fig. 2f and 

quantiles in Fig. 2c).  

 

 

 290 

 

Fig.The comparison between models is performed on a subset of the Pearson Family (600 random distributions, with 100 

random distributions per type, see supplementary material). For a given model, a given distribution and a given sample size 𝑛, 

the following procedure is performed to calculate the percentage of data captured by the model (with 𝑚 = 0 initially):  

Step 1: generate random deviates (of sample size 𝑛) 295 

Step 2: calculate 𝑙 and 𝑢 

Step 3: Let 𝑚𝑤𝑖𝑡ℎ𝑖𝑛  be the number of points falling within [𝑙, 𝑢] 
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 𝑚 ← 𝑚 +𝑚𝑤𝑖𝑡ℎ𝑖𝑛  

Step 4: Repeat 𝑁 times Step 1 to Step 3, with 𝑁 =  𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
106

𝑛
) 

Finally, the percentage of data captured by the model for the given distribution and given sample size is 
𝑚

(𝑁+1)𝑛
. This percentage 300 

is computed for all of the distributions, and the median value of the population of 600 percentages is defined as M𝑖, associated 

with a sample size 𝑛𝑖 = 2
𝑖 varying from 𝑛4 = 16 to 𝑛14 = 16384 (Fig. 2). 

 

 

Fig 1. Location of the 97024999 light-tailed distributions of the Pearson family (panel a) and the 368 heavy-tailed distributions of the GEV 305 

family (panel d) in the (𝜿𝒆𝒙, 𝑺
𝟐)(𝜿𝒆𝒙, 𝑺

𝟐) space (panel a). Values of 𝜶+(𝒑𝒋𝝈)kurtosis excess, squared skewness). The coefficients 𝑨 and 

𝑩 correspond to 𝜶(𝒏) = 𝑨 × 𝐥𝐨𝐠(𝒏) + 𝑩 +
𝟑𝟔

𝒏
 used to replace 𝜶 = 𝟏. 𝟓 in the boxplot rule. For the Pearson family, they are shown for 𝒋 =

𝟑 (𝟗𝟗. 𝟕𝟑% of data captured, panelin the (𝜿𝒆𝒙, 𝑺
𝟐) space (panels b) and 𝒋 = 𝟓 (𝟗𝟗. 𝟗𝟗𝟗𝟗𝟒%, panel c). The five numbers indicated 

in the legendFor the GEV family (panels e and f), they are the minimum, the three quartiles and the maximum. Relationships (𝑹𝟐 =
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𝟎. 𝟗𝟗) between 𝜶+(𝒑𝒋𝝈) and shown against a predictor of 𝜿𝒆𝒙  defined as 𝒎∗ = (𝑬𝟕 − 𝑬𝟓)/(𝑬𝟔 − 𝑬𝟐) − 𝟎. 𝟔𝟏𝟔𝟓 for right-skewed 310 

distributions (𝑬𝒊 = 𝒒(𝒊/𝟖) the sample size 𝒏𝒋𝝈 for the Gaussian, Exponential and Pearson family (panel d, see also Table 1octile). 

 

2.3 Results and discussion 

The parameter 𝛼 = 1.5 used in the boxplot rule is sensitive to the sample size 𝑛, and the relationship 𝛼(𝑛) = 𝐴 log(𝑛) + 𝐵 +

𝐶

𝑛
 corrects for this effect for both light-tailed distributions (Pearson family, Fig. 1a) and heavy-tailed distributions (GEV family, 315 

Fig. 1d). The value of 𝐴, 𝐵 and 𝐶 depends on the outlier threshold level and the nature of the distribution. The convention in 

this study is to set the expected number of erroneously flagged outliers to 𝑓(𝑛) = 0.001√𝑛, which leads to homogeneous 𝐴 

and 𝐵  values among the Pearson family (𝐴 = 0.8 ± 0.3 , 𝐵 = 3 ± 1 , Fig. 1b,c) used to numerically determine 𝐶 = 36 

(supplementary material). Because the value of 𝐴 and 𝐵 rapidly diverges for heavy-tailed distributions, a model adapted to the 

shape of the residuals is required (Fig. 1e,f). To keep this model simple, the asymmetry of a distribution (i.e., the skewness) is 320 

ignored in this study in order to only focus on the weight of the heavier tail. Possible outliers might not be flagged on the light 

tail of an asymmetric distribution (risk of type II error), but residuals with strong asymmetry are usually produced when the 

range of possible values is semi-bounded (e.g., precipitation in [0, +∞[), which makes the detection of errors trivial (negative 

precipitation). For this purpose, the parameter 𝑚∗ is a robust predictor of the kurtosis excess (breakdown point of 12.5%) that 

has been slightly modified from Kim & White (2004). Finally, 𝛼(𝑛) = 𝑔𝐴(𝑚∗) log(𝑛) + 𝑔𝐵(𝑚∗) +
36

𝑛
 for 𝑛 ≥ 9 and 𝑚∗ ∈325 

[0,2] with the functions 𝑔𝐴  and 𝑔𝐵  parametrized on both families (Fig. 1e,f). The Fréchet distribution has been excluded 

because its tails are decaying too rapidly (the 𝐴 and 𝐵 coefficients are bounded despite an extreme kurtosis). 
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Fig. The original boxplot rule captures 99.3% of a Gaussian population using the constant α = 1.5. In Table 1, this constant 330 

is shown to take larger values when considering wider windows (above 99.3%) and non-Gaussian distributions (Pearson 

family, Fig.1a). In the Gaussian case, α ranges from 𝛼3𝜎
𝒩 = 1.7 to 𝛼5𝜎

𝒩 = 3.2. Both values are similar to the α = 1.5 and α =

3 originally used by Tukey (1977) to describe “outside” and “far out” outliers. These criterions are nonetheless too restrictive 

for non-Gaussian data: the median of the 𝛼+(𝑝𝑗𝜎) values from the Pearson family ranges from 𝛼3𝜎
𝒫 = 3.8 (therefore above 

𝛼5𝜎
𝒩  !) to 𝛼5𝜎

𝒫 = 9.4. 335 

 

The difference in α  values among the distributions of the Pearson family is interesting to visualize in the (𝜅𝑒𝑥 , 𝑆
2 ) space (2. 

Comparison between five outlier detection methods performed on two sets of residuals (temperature and precipitation) obtained from weather 

stations with daily measurements over at least 100 years. The two histograms (panels a and b) represent aggregated residuals from all stations 

(for visualization purpose only) and show counts with at least 100 daily occurrences, with the median of the lower/upper threshold displayed 340 
for each method. For the methods Kim. (Kimber, 1990), Sch. (Schwertman et al., 2004), Hub. (Hubert & Vandervieren, 2008) and Ley. 

(Leys et al., 2013), the mean percentage (±𝟏 𝑺𝑫) of flagged data is shown for sample sizes varying from 10 to 100, and for all available 

points per station (𝒏~𝟒 × 𝟏𝟎𝟒 for the temperature and 𝒏~𝟏𝟎𝟒 for the precipitation, panels d and e). For Logbox (panels c and f), this 

percentage is calculated by pooling all points, and the variability is estimated with a random resampling of stations (see method). The 

theoretical threshold is the expected percentage of erroneously flagged outliers (𝒑𝒕𝒉𝒆𝒐 = 𝒇(𝒏) ×
𝟏𝟎𝟎

𝒏
=

𝟎.𝟏

√𝒏
%). 345 

 

 

The Logbox procedure is tested and compared with four other models on daily precipitation and temperature residuals from 

century-old weather stations (Fig. 2). It is firstly visually striking that the outlier threshold from the four traditional methods 
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cut too many data points not only for the precipitation but also for the temperature residuals (Fig. 2a,b). The percentage of 380 

flagged data points per station varies around 2 ± 0.5% for the temperature (Fig. 2d, median of  36634 ≈ 4 × 104 days per 

station), and from 5.5% (Sch.) to 10.5% (Ley.) for the precipitation (Fig. 2e, median of 8352 ≈ 104 wet days per station). 

The reason for the large discrepancy between observed and expected percentage of flagged outliers (~0.7% based on the 

boxplot rule) is that these four methods have been designed for nearly-Gaussian residuals. Even daily temperatures are 

diverging from normality because the fitting model used to extract residuals from the time series minimizes the root-mean-385 

square-error. The anomalies are therefore more concentrated around 0 than those produced by a Gaussian, but with larger 

extremes (Fig. 2a, leptokurtic distribution). For small samples of temperature residuals, the type I error is even higher due to 

the inaccuracy of the quantiles: from 2.5% (Sch.) to 7% (Hub.) of points are cut for 𝑛 = 20 (Fig. 2d). The precipitation is less 

affected by the sample size effect because the type I error was already high in large samples. This analysis proves that none of 

the traditional methods is suitable to the outlier detection in non-Gaussian residuals. 390 

 

In comparison, the Logbox procedure shows a percentage of flagged outliers close to the expected values for large sample 

sizes (Fig. 2c), with 0.0006 ± 0.0003 % for the temperature (expected value of 0.0005%) and 0.0017 ± 0.0009% for the 

precipitation (expected value of 0.001%). These results are surprisingly accurate knowing that 12.5% of the extreme values 

are disregarded for robustness reasons (𝑚∗ ), and also knowing that Logbox has only been parametrized on theoretical 395 

distributions (Pearson & GEV family). For smaller sample sizes (𝑛 < 30 in Fig. 2f), the precipitation residuals are cut too 

frequently (0.2 − 0.3%) compared to the expected threshold (~0.03%), but the temperature residuals are not cut enough. The 

constant parameter used to correct for a sample size effect (𝐶 = 36) is only adapted to nearly-Gaussian residuals, and it cannot 

be better estimated because any predictor (such as 𝑚∗) becomes inaccurate at smaller sample sizes. However, the percentage 

of flagged outliers remains within one order of magnitude of the expected threshold, which is a reasonable compromise 400 

between type I errors (precipitation) and type II errors (temperature). 

 

Fig. 1b,c). A non-linear relationship is observed between α and (𝜅𝑒𝑥 , 𝑆
2), and the direction of this relationship depends on the 

outlier threshold. For the ±3𝜎 convention (Fig 1b), α increases with both 𝜅𝑒𝑥  and 𝑆2. For the ±5𝜎 convention (Fig 1c), α 

increases with 𝜅𝑒𝑥 but decreases with 𝑆2, which shows that a higher skewness does not necessary lead to more extreme events. 405 

Different families of distributions were also investigated (Jones, 2015), such as the Generalized Lambda Distribution (GLD) 

system (Carling, 2000). However, all distributions from this family have a bounded support and they therefore produce 

unrealistic datasets (𝛼3𝜎 = 𝛼4𝜎 = 𝛼5𝜎, see supplementary material). 

 

Mis en forme : Police :+Corps (Times New Roman)



 

14 

 

 410 

Fig. 2. Comparison between the five models performed on a subset of 600 distributions from the Pearson family (100 random 

distributions from the Gamma, Inverse gamma, Beta, Betaprime, Pearson IV and Student). Percentage of data captured by 

each model for a large sample size (𝒏𝟏𝟒 = 𝟐𝟏𝟒 = 𝟏𝟔𝟑𝟖𝟒, panel a). Deviation of the median value 𝑴𝒊 (associated with a 

sample size 𝒏𝒊 = 𝟐𝒊) from 𝑴𝟏𝟒 (panel b). The boxplots show 95% of the 600 distributions (the whiskers are the 2.5% and 

97.5% quantiles). 415 

 

 

The comparison between models is described in the following. For a purely Gaussian distribution, Kim. and Hub. theoretically 

capture 99.3%  of the data (boxplot rule) while Sch. and Ley. capture 99.73%  (±3𝜎  convention). For non-Gaussian 

distributions with a large sample size, these values are found to be lower: 97.5%, 98.9%, 98.3%, and 97.6%, respectively 420 

(Fig. 2a). These four models therefore produce a high number of erroneously flagged outliers (false positives), which is not 

the case of LogBox that captures 99.997% of data (less than one outlier flagged on average in the sample size of 214). A 

concern could be that the cutting threshold of LogBox is too high, and, therefore, a large number of outliers would not be 

flagged in real datasets (false negatives). The comparison with tsoutliers in part II will demonstrate that this is not the case 

(Table 2).  425 

 

Models also show different sensitivity to the type of distribution encountered (error bars in Fig. 2a). The most stable model is 

LogBox (95% of the distributions fall between 99.98% and 100% of data captured) while 𝐿𝑒𝑦. is the most sensitive with a 

percentage of data captured varying from 69.3% to 99.2%. This poor performance can be explained by the use of MAD, which 

contains a scaling factor parametrized on the standard deviation of the Gaussian (Leys et al., 2013). 430 

 

Finally, the sensitivity of the models to the sample size is tested (Fig. 2b). All models show a negative bias in the percentage 

of data captured compared to the large sample size. This bias is minimal with LogBox (−1.2%) but important with Hub. 
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(−5.4% for 𝑛 = 16). This comes from the complexity of their model: the Medcouple is a remarkable estimator of the skewness 

but it requires a large sample size to reach convergence.  435 

 

To summarize, Logbox is a simple method inspired by the Boxplotenhances the boxplot rule to flag outliers by considering 

the sample size effect and by adapting the cutting thresholds to the data. This method has been implemented in univariate 

datasets. It has been adapted to non-Gaussian data with a large sample size and shows good performances when compared to 

other methods the function ctbi.outlier (in the literature. This justifies its implementationR package ctbi) that will be used to 440 

flag potential outliers in the residuals obtained by the aggregation procedure described in part II.  

 

3 Part II, the ctbi procedure 

3.1 Context 

This second part is dedicated to the pre-processing, partial imputation and aggregation of univariate time series. In order to 445 

flag outliers, one first needs to produce residuals that represent the variability around the signal. In its simplest form, the time 

series 𝑦𝑡  is represented with the following additive decomposition (Hyndman & Athanasopoulos, 2018): 𝑦𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝜖𝑡, 

with 𝑇𝑡 a long-term trend, 𝑆𝑡 a cyclic component (originally, seasonal component but the term cyclic is preferred here as it is 

more generic) with period 𝜏 (∀ 𝑡, 𝑆𝑡 = 𝑆𝑡+𝜏) and 𝜀𝑡 the residuals. that are considered to be stationary. A popular algorithm that 

performs this decomposition is the Seasonal and Trend decomposition using Loess (or STL, Cleveland et al., 1990), that is 450 

robust to the presence of outliers. The enhanced version of the algorithm, STLplus (Hafen, 2016), is also robust to the presence 

of missing values and data gaps. Unfortunately, there are three major drawbacks to using STLplus in the general case: (i) This 

algorithm has specifically been designed for signals showing seasonal patterns, which makes it less relevant for other types of 

data; (ii) The long-term trend based on loess needs several input parameters (s.window, s.degree,..) and the decomposition is 

therefore not unique; (iii) The algorithm has a complexity of Ο(𝑛2) due to the loess, which is resource intensive and not 455 

adapted to long time series (𝑛 >  107 ). In particular, the first point explains why the function tsoutliers needs to use a 

smoothing function (Friedman, 1984) to complement the STL procedure. 

A new robust and nonparametric procedure (ctbi) is proposed instead to calculate 𝑇𝑡  and 𝑆𝑡  using non-overlapping bins. 

Outliers are flagged in the residuals 𝜖𝑡 with the LogBoxLogbox method described in part I, and imputation is performed using 

𝑇𝑡 + 𝑆𝑡 if the cyclic pattern is strong enough, which is quantified by a new index introduced in this study (the Stacked Cycles 460 

Index or SCI). Bins with sufficient data can finally be aggregated, while other bins are discarded. The procedure is simple 

(entirely described in Fig. 3), the long-term trend 𝑇𝑡 is unique and non-parametrized (based on linear interpolations crossing 

each bin), the cyclic component 𝑆𝑡 is simply the mean stack of bins using detrended data (equivalent to STL for periodic time 

series). The algorithm complexity is of the order of Ο(𝑛 𝑙𝑜𝑔(𝑛)) because the loess is not necessary anymore. In the following, 
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the procedure is first described more in details and then applied to three case studies (a temperature, precipitation and methane 465 

dataset) that have been contaminated with outliers, missing values and data gaps. Comparison with the raw data demonstrates 

the reliability of the ctbi procedure, whose performance is compared to tsoutliers. 

 

3.2 Method 

3.2.1 Definitions 470 

Bin: a bin is a time window characterized by a left side (inclusive), a right side (exclusive), a center and a period (e.g., 1 year 

in Fig. 3a). Any univariate time series can be decomposed in a sequence of non-overlapping bins, with the first and last data 

point contained in the first and last bin, respectively (Fig. 3a). The bin size 𝑛𝑏𝑖𝑛 is the rounded median of the number of data 

points (including NA values) present in each non-empty bin of the sequence. A bin is accepted when its number of non-NA 

data points is above 𝑛𝑏𝑖𝑛(1 − 𝑓𝑁𝐴) with 𝑓𝑁𝐴 ∈ [0,1] the maximum fraction of NA values per bin (input left to the user). 475 

Otherwise, the bin is rejected and all its data points are set to NA (Fig. 3a, bin 4). 

 

Long-term trend: the long-term trend (median based) is a linear interpolation of the median values associated with each side 

(calculated between two consecutive centers, see Fig. 3a). A side value is set as missing if the number of non-NA data points 

(between the two nearest consecutive centers) is below 𝑛𝑏𝑖𝑛(1 − 𝑓𝑁𝐴). To solve for boundaries issues and missing sides values, 480 

the interpolation is extended using the median value associated with each center (bin 1, 3 & 5 in Fig. 3a). Once the outliers 

have been quarantined, the long-term trend (mean based) will be calculated following the same method but using the mean 

instead of the median (Fig. 3c). 

 

Cycle: the cycle (median based) is composed of 𝑛𝑏𝑖𝑛 points that are the medians of the stack of all accepted bins with the long-485 

term trend (median based) removed (Fig. 3.b.13b1). Once the outliers have been quarantined, the cycle (mean based) will be 

the mean stack of accepted bins with the long-term trend (mean based) removed (Fig. 4a; bin 2, 3 & 5 in Fig. 4a). The cyclic 

component 𝑆𝑡 is the sequence of consecutive cycles.  

 

 490 
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Fig. 3. Example of the aggregation procedure with the following inputs: bin side = 2020-06-01, bin period = 1 year, 𝑓𝑁𝐴 = 0.2 (minimum 

of 10 months of data for a bin to be accepted), 𝑘 = 0.6 (outlier level) and 𝑆𝐶𝐼𝑚𝑖𝑛 = 0.6 (cyclic imputation level). The bin 4 has been 

rejected because it contains only 6 months of data (panel a). Two outliers have been flagged in the residuals (detrended and deseasonalized 495 
data, panel b.2). After the outliers have been replaced with NA values, the bin 1 has been rejected (9 months of data), and the long-term 

trend and cycle have been updated using the mean instead of the median (panel c). A point in bin 3 has been imputed based on the cyclicity 

(𝑆𝐶𝐼𝑚𝑖𝑛 ≤ 𝑆𝐶𝐼 = 0.61 ). 

 

Stacked Cycles Index:  SCI ≤ 1 is an adimensional parameter quantifying the strength of a cycle based on the variability 500 

around the mean stack (Fig. 4). Its structure is similar to another index developed in a former study (Wang et al., 2006), 

however a factor of 𝑁𝑏𝑖𝑛
−1  has been added to correct for a bias emerging at a small number of bins (𝑁𝑏𝑖𝑛 is the number of 

accepted bins). This correcting factor has been calculated based on stationary time series of Gaussian noise (with therefore a 

null cyclicity per definition, see supplementary material). 

 505 
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Fig. 4. The Stacked Cycles Index (𝑆𝐶𝐼 ≤ 1) quantifies the strength of the cyclicity associated with the period of a bin (data from Fig. 3c).. 
The long-term trend (mean based) is first removed to compute the total sum of squares (panel a). Then the cyclic component (mean based) 
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is also removed to compute the sum of squared residuals (panel b). SCI is the coefficient of determination minus 𝑁𝑏𝑖𝑛
−1  to correct for a bias 510 

emerging at a small number of bins, with 𝑁𝑏𝑖𝑛 the number of accepted bins (here 𝑁𝑏𝑖𝑛 = 3, panel c). 

 

3.2.2 Ctbi procedure 

Inputs. 

1. The univariate time series (1st and 2nd column: time and raw data, respectively)). 515 

2. One bin center or one bin side (e.g., 2020-06-01)). 

3. The period of the bin (e.g., 1 year)). 

4. The aggregation operator (mean, median or sum)). 

5. The range of possible values (default value 𝑦𝑙𝑖𝑚 ∈ ] − ∞,+∞[)] − ∞,+∞[). 

6. The maximum fraction of NA values per bin (default value 𝑓𝑁𝐴 = 0.2)). 520 

7. The 𝑘 outlier level𝐴, 𝐵, 𝐶 coefficients used in LogBox (the Logbox method (automatically calculated by default 

value 𝑘 = 0.6), 𝑐𝑜𝑒𝑓𝑓. 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = ′𝑎𝑢𝑡𝑜′). 

8. The minimum SCI for imputation (default value 𝑆𝐶𝐼𝑚𝑖𝑛 = 0.6)). 

Outputs. 

1. The original dataset, with 89 columns: (i) time; (ii) outlier-free and imputed data; (iii) index of the bins associated 525 

with each data points (the index is negative if the bin is rejected); (iv) long-term trend; (v) cyclic component; (vi) 

residuals (including the outliers); (vii) quarantined outliers; (viiviii) value of the imputed data points; (viiiix) 

relative position of the data points in their bins, between 0 (the point falls on the left side) and 1 (the point falls on 

the right side)). 

2. The aggregated dataset, with 10 columns: (i) aggregated time (center of the bins); (ii) aggregated data; (iii) index of 530 

the bin (negative value if the bin is rejected); (iv) start of the bin; (v) end of the bin; (vi) number of points per bin 

(including NA values); (vii) number of NA values per bin, originally; (viii) number of outliers per bin; (ix) number 

of imputed points per bin; (x) variability associated with the aggregation (standard deviation for the mean, MAD for 

the median and nothing for the sum)). 

3. The mean cycle, with 3 columns: (i) time boundary of the first bin with 𝑛𝑏𝑖𝑛 points equally spaced; (ii) the mean 535 

value associated with each point; (iii) the standard deviation associated with the mean value. 

4. TheA summary of the bins: the Stacked Cycles Index 

5. TheCycle index (SCI), the representative number of data points per bin, 𝑛𝑏𝑖𝑛 

6.4. The (𝑛𝑏𝑖𝑛) and the minimum number of data points with available data for a bin to be accepted, 𝑛𝑏𝑖𝑛 𝑚𝑖𝑛 (𝑛𝑏𝑖𝑛 𝑚𝑖𝑛). 

5. A summary of the Logbox output: the coefficients 𝐴, 𝐵 and 𝐶, 𝑚∗, the number of points used, the lower/upper 540 

outlier threshold. 
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Step 1, data screening. The bin size 𝑛𝑏𝑖𝑛 is calculated; values above or below 𝑦𝑙𝑖𝑚 are set to NA; the number of accepted bins 

𝑁𝑏𝑖𝑛 is assessed; all data points within rejected bins are set to NA; the long-term trend and cycle (both median based) are 

calculated (Fig. 3a,b.1b1). 

Step 2, outliers. Outliers are flagged in the residuals (detrended and deseasonalized data) using the LogBox procedureLogbox 545 

(Fig. 3b.23b2); outliers are quarantined and their values are set to NA; the number of accepted bins 𝑁𝑏𝑖𝑛 is updated; all data 

points within newly rejected bins are set to NA (bin 1 in Fig. 3c, bin 1). 

Step 3, long-term trend and cycle (mean based): The long-term trend and the cycle are calculated using the mean instead of 

the median (Fig. 3c); SCI is calculated (Fig. 4). 

Step 4, imputation: If 𝑆𝐶𝐼 >  𝑆𝐶𝐼𝑚𝑖𝑛 , all NA values in accepted bins are imputed with the long-term trend + the mean cycle 550 

(imputation bounded by 𝑦𝑙𝑖𝑚). Repeat Step 3 and Step 4 three times to reach convergence. 

Step 5, aggregation: Accepted bins are aggregated around their center. 

 

3.2.3 Case studies 

Three univariate datasets are chosen to illustrate the potential of the aggregation procedure (Fig. 5, first column). The first 555 

dataset is an in-situ temperature (in °C) measured during summer in the canopy of an Oak woodland of California (month of 

August, temporal resolution of 5 min), and provided by the National Ecological Observatory Network (NEON 2021, site 

SJER). The second dataset is an in-situ daily precipitation record (in mm) measured at the station of Cape-Leeuwin (South 

westerly coast of Australia) from 1990 to 2020 and available on the Global Historical Climatology Network (Menne et al., 

2012; Xungang et al. 2012). The last dataset is a Methane proxy record (in ppbv) published in Loulergue et al. (2008) that 560 

covers 800000 years with irregular timesteps (varying from 1 to 3461 years, with a median of 311 years). None of the datasets 

contain obvious outliers or large data gap. 

3.2.4 Contamination of the datasets 

To test for the robustness of the aggregation procedure, the three raw datasets are contaminated by 30% (Fig 5, second column) 

with the use of three data gap (20% of the dataset), random NA values (9.5% of the dataset) and outliers (0.5% of the dataset). 565 

The three data gaps are picked with random length and position. The position of the outliers and the NA values follows a 

Poisson law. The value of the outliers is picked equal to 𝑦𝑚𝑖𝑛 −
1

2
(𝜇 − 𝑦𝑚𝑖𝑛) or 𝑦𝑚𝑎𝑥 +

1

2
(𝑦𝑚𝑎𝑥 − 𝜇) with 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥  and 𝜇  

respectively the minimum, maximum and mean of the dataset. No negative outliers are set for the precipitation because these 

values are impossible. (temperature and methane datasets). The precipitation is supposed to follow a heavy-tail distribution 

(extremes are more frequent), and negative values are impossible, which is why outlier values are set to 1.6 × 𝑦𝑚𝑎𝑥 instead 570 

(supplementary material). 
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3.2.5 Aggregation of the datasets 

Each dataset (raw and contaminated version) is consecutively aggregated twice (Fig. 6). The temperature dataset is aggregated 

(using the mean) every hour (𝑛𝑏𝑖𝑛 = 12) and then every day (𝑛𝑏𝑖𝑛 = 24). The precipitation dataset is aggregated (using the 

sum) every month (𝑛𝑏𝑖𝑛 = 31) and then every year (𝑛𝑏𝑖𝑛 = 12). The methane dataset is aggregated (using the mean) every 575 

2000 years (𝑛𝑏𝑖𝑛 = 4) and then every 20000 years (𝑛𝑏𝑖𝑛 = 10).  For each dataset, the mean cycle of the second level of 

aggregation is shown in Fig. 56 (second column). 

 The aggregation inputs are chosen as default values. The only exceptions are 𝑘 = ∞𝑐𝑜𝑒𝑓𝑓. 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = 𝑁𝐴 and 𝑆𝐶𝐼𝑚𝑖𝑛 = 1𝑁𝐴 

for the raw data (outliers are not checked, data are not imputed), 𝑓𝑁𝐴 = 1 for the Methane dataset (bins with at least 1 non-NA 

data point are accepted due to the high irregularity in the sampling frequency) and 𝑦𝑙𝑖𝑚 = [0,+∞[ for the precipitation dataset 580 

(negative precipitation are impossible). 

 The number of false positive (real data points flagged as outliers) and false negative (outliers that have not been flagged) are 

counted during the first level of aggregation (Table 21), and compared with the tsoutliers function with λ = “auto”, which 

means that the residuals have been transformed to follow a Gaussian with the Cox-Box method (Box & Cox, 1964), or λ = 

NULL, which means the original residuals are not transformed. The Boxplotboxplot rule in tsoutliers uses 𝛼 = 3, and the 585 

long-term trend or cyclic component are not available for comparison. 
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Fig. 5. Raw and contaminated versions of the three datasets used as case studies: temperature (panel a), precipitation (panel b) and methane 590 
(panel c). The sampling frequency is given in parenthesis. The contaminated versions contain three large data gaps (20% of the datasets), 

random missing values (9.5%) and random outliers (0.5%) set as a constant level below the minimum value and above the maximum 

value. 

 

3.3 Results and discussion 595 

The three univariate time series have been chosen as case studies due to their various statistical characteristics that are 

commonly seen in the scientific or economic field (Fig. 5, 1st column). The long-term trend follows smooth or moderate 

variations in the temperature and precipitation datasets, but shows a much higher volatility in the methane dataset. The cyclic 

pattern varies from strong diurnal cycles (temperature) and moderate seasonal cycles (precipitation) to no apparent cyclicity 

over a period of 20000 years period (methane). The detrended and deseasonalized residuals follow distributions from 600 

gaussianGaussian (temperature) or seemingly exponentialExponential (methane) to heavy-tailed (precipitation). Finally, the 

sampling frequency goes from sub-hourly (temperature) or daily (precipitation) to highly variable (1 to 3461 years, methane). 
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To test the limits of the aggregation procedure, these three datasets are severely contaminated by data gaps, outliers and missing 

values (Fig. 5, 2nd column). 

 605 
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Fig. 6. Aggregation of the temperature (panel a), precipitation (panel b) and methane (panel c) in two consecutive levels: 1 (thin lines) and 

2 (bold lines). Only the first level of aggregated precipitation is shown for clarity. Black and red colors are associated with the raw and 610 
contaminated datasets, respectively. The mean cycles of the second level of aggregation are shown in the second column, with their SCI 

displayed (the raw and contaminated versions share similar values).  

 

The first level of aggregation recovers most of the destroyed signal with ~80% of the bins being accepted for all three datasets 

(Fig. 6). In these accepted bins, all outliers have been correctly flagged (Table 2, zero false negatives).1). The mean percentage 615 

of difference between the contaminated and raw aggregates (level 1) is virtually zero for the temperature (0 ± 0.1%, 1 standard 

deviation), small for%), the methane (−0.1 ± 2%) but large for and the precipitation (−9 ± 24%). This comes from the 

significant number of extreme precipitations events (67 days) that have been erroneously flagged as outliers (Table 2, false 

positives). Daily precipitation events are known to follow heavy tailed distributions (Wilks & Wilby, 1999), which is why the 
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default outlier level of 𝑘 = 0.6 is insufficient here. A value of 𝑘 ~ 5 is optimum in this case as it preserves the extreme events 

while cutting the outliers (the mean percentage of difference becomes (0 ± 17%). For the Methane dataset, the 5 false positives 

(Table 2) come from the difficulty for only false positive (Table 1) is located at the beginning of the time series (modern time), 

because the anthropogenic change in 𝐶𝐻4 is unprecedented when compared to the geological history (the long-term trend to 655 

properlyfit does not capture the abrupt changes in 𝐶𝐻4 over few centuries. Again, this problem can be solved by increasing 

𝑘 = 0.6 to 𝑘 ~ 1 without affecting the false negatives. Theincrease due to climate change). In comparison, the function 

tsoutliers successfully flags the outliers in the contaminated Temperaturetemperature and Methanemethane datasets (with the 

Cox-Box method), however it fails with the contaminated daily precipitation dataset (Table 21). This comes from the inability 

of the proceduretsoutliers to handle heavy tailed distributions, creating 55 false negatives (all outliers have been missed) with 660 

the Cox-Box method and 11871125 false positives (real data points seen as outliers) without it, due to the limitation of the 

Boxplotboxplot rule withusing a constant 𝛼.= 3 (see part I). 

 

 

 665 

Procedure ctbi tsoutliers (with/without Cox-Box) 

Datasets T P CH4 T P CH4 

Number of false 

positives 

0 670 51 0 / 0 0 / 11871125 0 / 3 

Number of false 

negatives 

0 0 0 13 / 0 55 / 0 0 / 2 

Table 21. Number of false positives (real data points flagged as outliers, type I error) and false negatives (outliers that have not been flagged, 

type II error) for the contaminated Temperature (n=8952), Precipitation (n=10949) and Methane (n=2103) datasets shown in Fig. 5 with the 

ctbi procedure (using 𝑘 = 0.6 in the LogBox method) and the tsoutliers function (with/without the Cox-Box method). For the 

precipitation (respectively Methane) dataset, 𝑘 = 5 (resp. 𝑘 = 1) will minimize both the false positives and false negatives 

with ctbi. 670 

 

 

 

The second level of aggregation has been performed to test for the cyclicity in the signal (Fig. 6, 2nd column) using the mean 

cycles and their associated Stacked Cycles Index (Fig. 4). The raw and contaminated mean cycles share similar magnitude 675 

within 1 standard deviation on the mean, and their SCI are the same: −0.02 for the methane (no apparent cycles of 20000 

years period), 0.6965 for the precipitation (moderate seasonality) and 0.88 for the temperature (strong diurnal cycles). The 

SCI reveals itself being useful when comparing signals of different nature or periodicities, which is not possible for seasonal 

indices that only focuses on one field (e.g., hydrology) or data format. (e.g., monthly) such as the seasonality index of Feng et 

al. (2013). Interestingly, the ctbi procedure manages to recover the seasonality of the precipitation dataset despite cutting most 680 

of the extreme events (Fig. 6, b2). This result illustrates the fact that climatic models are able to capture the mean trend while 

having difficulties to simulate exceptional events (Asadieh & Krakauer, 2015).  
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Mis en forme : Police :9 pt
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The cyclicity seen in the temperature and precipitation is strong enough to impute the missing data in all accepted bins, which 

further improves the reconstruction of the signal. For example, 11 months have been imputed in 9 different years for the 685 

precipitation dataset. Using 𝑘 = 0.6, the mean percentage of difference with the raw data went for these years from −24 ±

10%  (without imputation) to −20 ± 5% (with imputation). Because 𝑆𝐶𝐼  has a similar structure than a coefficient of 

determination, imputations based on high 𝑆𝐶𝐼 (> 0.6) are respecting the original signal, which is sometimes not the case with 

a linear interpolation. Again, the choice of performing or ignoring the imputation is left to the user with the input parameter 

𝑆𝐶𝐼𝑚𝑖𝑛 that will be compared to 𝑆𝐶𝐼 (see method). These three case studies demonstrate that ctbi is capable of aggregating 690 

signals of poor quality that have a stationary variance in the residuals. The next section explains how to handle more complex 

time series. 

 

 

3.4 Limits & recommendations 695 

 

The ctbi procedure should be used as a complement of ancomplements the expert-knowledge related to a dataset, but it does 

not as a replacement.replace it. In particular, this procedure is not capable of flaggingdetecting long periods of instrument 

failure or human error, and it is essential to flag them manually and/or visually before running ctbi. This procedure also 

presents difficulties to pre-process signals with a complex seasonality associated with residuals of non-stationary variance. A 700 

typical example is a daily precipitation record with a pronounced monsoon: several months of droughts (low variability in the 

signal) are followed by few weeks of severe floods (high variability). These two periods do not have the same statistical 

characteristics, and need to be treated separately. In this situation, two pools of bins can be created using the MAD as a robust 

indicator of variability within each bin. The procedure is the following: (i) apply ctbi with the median operator (do not flag 

outliers or impute data, 𝑘 = ∞ 𝑐𝑜𝑒𝑓𝑓. 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = 𝑁𝐴 and 𝑆𝐶𝐼𝑚𝑖𝑛 = 1𝑁𝐴) so that each bin will be associated with a specific 705 

MAD; (ii) Flag bins with a low MAD (‘dry’ season) and a high MAD (‘wet’ season); (iii) split the raw data into two datasets 

of bins with a low and high MAD, respectively; (iv) apply ctbi separately to each dataset to flag outliers and/or impute data; 

(v) merge the two datasets. This procedure is successfully applied to a soil respiration dataset (supplementary material). 

 

Other issues can usually be addressed by varying the inputs: period of the bin, maximum ratio of missing values per bin (𝑓𝑁𝐴), 710 

outlier level (𝑘) and cyclic imputation level (𝑆𝐶𝐼𝑚𝑖𝑛). It is recommended to pick the period of a bin so that it contains on 

average between 4 and ~50 data points. Below 4 would decrease the breakdown point to unsafe levels (1 outlier would be 

enough to contaminate the bin), and above 50 would produce a long-term trend that might not properly capture the variability 

in the signal. A maximum of 20% of the bin can be missing by default (𝑓𝑁𝐴 = 0.2), but when data are sparse and irregularly 

distributed, a value of 𝑓𝑁𝐴 = 1 is possible (example ofwith the Methane dataset: bins with only 1 data point were accepted). 715 

An outlier level of 𝑘 = 0.6 will work in most cases, but can vary up to 𝑘~10  for time series with exceptional spikes. Finally, 
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the imputation level (default of 𝑆𝐶𝐼𝑚𝑖𝑛 = 0.6) can vary between 0 (forced imputation even without cyclic pattern) and 1 (no 

imputation).  

4 Conclusion (Part I & II) 

Although univariate time series are the simplest type of temporal data, this study reveals a lack of consensus in the literature 720 

on how to objectively isolateflag outliers from the signal especially in raw data of poor quality. In part I, a comparison between 

outlier detection methods for univariate datasets has shown that is performed on daily residuals from century-old weather 

stations (precipitation & temperature data). All traditional outlier detection methods flag extreme events are too often flagged 

as outliers, especially too frequently (type I error). The alternative procedure developed in non-Gaussian populations with a 

large sample size. This led to a new method (LogBox) thatthis study (Logbox) improves the boxplot rule by replacing the 725 

original 𝛼 = 1.5 with 𝛼 = 𝑘𝐴 log(𝑛) + 1,𝐵 +
36

𝑛
, with 𝑛 the sample size𝐴 and 𝑘 left to the user (default value𝐵 determined 

with a predictor of 0.6). the kurtosis excess (𝑚∗). Logbox is parametrized on two families of distributions (Pearson & 

Generalized Extreme Value), and the theoretical percentage of type I error decreases with the sample size (𝑝𝑡ℎ𝑒𝑜 =
0.1

√𝑛
%). 

Logbox therefore produces cutting thresholds that are tailored to the shape and size of the data, with a good match between 

observed and expected type I errors in the precipitation and temperature residuals.  730 

 

In part II, a pre-processing procedure (ctbi for cyclic/trend decomposition using bin interpolation, implemented in R)) cleans, 

decomposes, imputes and aggregates time series based on data binning has been proposed to clean, decompose, impute and 

aggregate signals. The strength of the cyclic pattern within each bin is assessed with a novel and adimensional index (SCI 

forthe Stacked Cycles Index) inspired by the coefficient of determination.  735 

The ctbi procedure is able to filter contaminated data by selecting bins with sufficient data points (input: 𝑓𝑁𝐴) which are then 

cleaned from outliers (input: 𝑘).𝑐𝑜𝑒𝑓𝑓. 𝑜𝑢𝑡𝑙𝑖𝑒𝑟). The cyclic pattern within each bin is evaluated (𝑆𝐶𝐼) and missing data are 

imputed in accepted bins if the cyclicity is strong enough (input: 𝑆𝐶𝐼𝑚𝑖𝑛). Most of the signal can be retrieved from univariate 

time series with diverse statistical characteristics, illustrated in this study with a temperature, precipitation and methane datasets 

that have been contaminated with gaps and outliers. Limits in the use of ctbi have been acknowledged for signals with a long-740 

period of instrument failure, but also for signals presenting a complex seasonality. However, ctbi is capable to handle theThe 

last situation can be handled by splitting the raw data into two (or more) datasets containing bins with similar variability 

quantified by the Mean Absolute Deviation (MAD). The pre-processing procedure is then separately applied to each dataset 

to correctly identify outliers. In any case, a prior knowledge of the data is essential to correctly choose 𝑓𝑁𝐴, 𝑘 and 𝑆𝐶𝐼𝑚𝑖𝑛 , and 

itIt is strongly recommended to examine the data before and after using the procedurectbi to ensure that rejected bins and 745 

flagged outliers seem reasonable, and to be transparent about the inputs used in your future study.   
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Data availability 

The GHCN dataset is available on https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/. The Methane dataset is available on 

https://doi.org/10.1038/nature06950. The temperature dataset is available on https://doi.org/10.48443/2nt3-wj42. 

 

 765 

Code availability 

If theThe ctbi package is not available yet on the comprehensive R Archive Network (CRAN), please use the version on 

https://github.com/fritte2/ctbi.). The code and data used in the study & the supplementary material isare available on 

https://github.com/fritte2/ctbi_article.  
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