Dear Anke Hildebrandt and dear Jens Schumacher,

I managed to update the Loghox method so that the outlier cutting threshold is adapted to the shape and size of
the data. For the past two years, | have thought that this was not feasible due to a large risk of overfitting at
small/moderate samples sizes. However, the results are surprisingly good (I used data from 6307 century-old
weather stations to gain confidence in the method) and | have to thank Dr. Schumacher for encouraging me in
this attempt. Part | has been entirely reshaped, and part 1l has been positively impacted by these changes. Table 1
disappeared, all figures have been updated, the supplementary material as well. The manuscript is clearer and
better.

I explain the major steps that led to this update in the following:

1) The family of distributions required to parametrize the model. The Pearson family represents light-tailed
samples (Beta has been excluded due to a bounded support). For heavy-tailed samples (ignored in the original
manuscript), | chose the Generalized Extreme Value family (Weibull, Fréchet & Gumbel) usually used to model
the behavior of extrema. | have access to the quantile function Q of each distribution with high accuracy.

2) The framework. In the original manuscript, | picked +3/4/50 cutting thresholds and associated them a
sample size of 102/10*/10° to fit a line and find @ = klog(n) + 1 (the intercept was forced to be 1 to simplify
o(1-£2)—q(0.75)

0(0.75)-Q(0.25) '’
with f a continuous function that gives the number of erroneously flagged outliers: f(n) = 0.001v/n. For
example, for a sample size of 10° I am expecting to cut £(10%) = 1 point. For each distribution, | computed
a(n) versus n for five samples (n = 102,102, 10%,10%, 10°) and found that a(n) = Alog(n) + B is an accurate
model for both the Pearson & GEV family (r? = 0.994 + 0.005 & 2 = 0.99 + 0.01). Now there are two
known parameters (A,B) for each distribution, and you can notice that f (n) is not a flat number, otherwise alpha
would become arbitrary large.

the model). As Jens Schumacher suggested, I replaced this discrete framework with a(n) =

3) Case of small sample sizes. The original manuscript ignored biases emerging in small samples. This has been
fixed by adding %to a in a similar manner than Carling et al. (2000): a(n) = Alog(n) + B + % The constant
value of C = 36 had been determined with small random samples (n = 9) to limit type | errors to 0.1%.

4) Model to determine A and B on an unknown sample. The centered Moorsm = m_ + m, — 1.23isa
predictor of the kurtosis excess (Moors 1988, Kim & White 2004) using m_ = (E3 — E;)/(Es — E;) and m, =
(E; — Es)/(Eg — E,) with E; = q(i/8) the sample octile. This study introduces a modified version defined as
m, = max(m_,m,) — 0.6165 because m, is more appropriate than m to determine if a sample is light-tailed or
heavy-tailed. For example, a Gaussian distribution (m_ = m, = 0.6165 ; m = m, = 0) and a right-skewed
distribution with one heavy tail (m_ = 0.1 and m, = 1.13) will share identical m but different m,. This
difference between m and m, explains why my attempts to construct a model adapted to the shape of the
residuals failed in the past. Figure 1e,f shows the relationship A versus m, and B versus m, for all distributions,
with their best fit, g,(m,) = 0.2294¢29416m.~0.0512m.2~0.0684m.% (2 — 0 999) and g, (m,) = 1.0585 +
15.6960m, — 17.3618m,2 + 28.3511m,> — 11.4726m,* (r? = 0.999).

5) Logbox model. The Logbox model is finally a(n) = g,(m,) log(n) + gg(m,) + 3n—6 forn=9.For3<n<
8, the cutting thresholds are computed using the MAD (safer breakdown point, see method).

6) Testing Logbox and comparing it with other methods in the literature. In the original manuscript, the
model was tested on the same theoretical distributions used to parametrize it, without connection with real
residuals obtained in Earth Science (this was a critic of the reviewer #1). | changed this and downloaded all the
data available for the oldest weather stations on Earth (6307 stations with more than 100 years of daily
precipitation and temperature). The residuals have been extracted and the suspicious values flagged by the

NOAA have been discarded. The observed percentage of flagged outliers is shown in Fig. 2, and | can compare
it with the theoretical percentage: pipe, = f(n) X % = %%. Results went beyond my most optimistic

expectation for both small and moderate samples.

7) Changes in part I1. There only is one change in the outlier level used in the precipitation. Now that the
behavior of heavy-tailed distributions has been explored in Part I, it appears that the outlier level formerly



chosen for the precipitation dataset (30 years of daily data) was too 1oW: Y utiier = Vimax + % Vmax — 1) With

Vmax aNd p respectively the maximum and mean of the dataset. These y,,+ier Values are in fact statistically
plausible, and coincidently correspond to the cutting threshold computed by the new Logbox procedure (it has
been proved in part | that the cutting threshold was correctly produced by Logbox). In order to choose a less
arbitrary outlier level, I applied the following procedure: For each station with daily precipitation over 100 years,
I considered that a precipitation event 20% above the century maximum is “impossible” : Yo, ciier =

1.2 X (Vmax)100 years- Then I randomly selected 30 years within each station i to compute 4; = Youtlter
(Ymax)30 years

The mean value for all stations is A = 1.6 & 0.4, leading t0 yyytiier = 1.6 X Ymq, that is less arbitrary than
YVouttier = Ymax + % (Vmax — 1)- This change only affects 1 false negative for the Logbox procedure, but does
not affect the tsoutlier function which fails at capturing outliers anyway.

Point-by-point answer

I have entirely updated the manuscript to follow these suggestions (see above).

This has been updated in the introduction of Part I.

The Generalized Gamma Distribution has been removed from the supplementary material and discussion. | also
removed the Beta distribution from the Pearson family due to the same problems emerging with the bounded
support.

Data transformations such as the Box-Cox method have been used for comparison in part 11.



I unfortunately need to stick to the ctbi name as it has already been created on the CRAN.

Important details

- All the code has been updated in https://github.com/fritte2/ctbi_article

- The 6307 stations can be downloaded and the residuals can be extracted with this code, however this
will take ~40 hours of computing. Instead, | can share the data with Jens Schumacher on a google drive
link (~8 Gb).

- The new ctbi version has not been updated on the CRAN yet, but all the changes are available on
https://github.com/fritte2/ctbi. I will upload the new ctbi version once I receive feedbacks on the
manuscript.

- My affiliation has changed (for the last time!) : « Laboratoire des Sciences du Climat et de
I'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette 91191,
France »

- The high quality figures are available in .PDF. The figures shown in the manuscript are only poor
quality snapshots (Microsoft Word has problem to incorporate PDF). Will the editorial staff be able to
include the original PDF figures in the article? Thank you!
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