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Abstract. Distributed hydrological modelling moves into the realm of hyper-resolution modelling. This results in a plethora of

scaling related challenges that remain unsolved. In light of model result interpretation, finer resolution output might implicate

to the user an increase in understanding of the complex interplay of heterogeneity within the hydrological system. Here we

investigate spatial scaling in the realm of hyper-resolution by evaluating the streamflow estimates of the distributed wflow_sbm

hydrological model based on 454 basins from the large-sample CAMELS data set. Model instances were derived at 3 spatial5

resolutions, namely 3 km, 1km, and 200m. The results show that a finer spatial resolution does not necessarily lead to better

streamflow estimates at the basin outlet. Statistical testing of the objective function distributions (KGE score) of the 3 model

instances show only a statistical difference between the 3km and 200m streamflow estimates. However, results indicate strong

locality in scaling behaviour between model instances expressed by differences in KGE scores of on average 0.22. This demon-

strates the presence of scaling behavior throughout the domain and indicates where locality in results is strong. The results of10

this study open up research paths that can investigate the changes in flux and state partitioning due to spatial scaling. This will

help further understand the challenges that need to be resolved for hyper resolution hydrological modelling.

1 Introduction

In recent years, the hydrologic modelling community is making an effort to move towards so called hyper-resolution modelling.

The discussion following this move revealed that in addition to the many benefits, e.g. applicability for stakeholders, there are15

multiple challenges (Wood et al., 2011; Beven and Cloke, 2012; Bierkens et al., 2015). These challenges include scaling
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issues such as; (1) need to explicitly model processes that are parameterized at coarser resolutions, (2) lateral connections

between compartments of the hydrological system that are averaged out or ignored at coarser resolutions, and (3) an increase

in uncertainty due to lacking process and parameter knowledge due to insufficient data quality at finer resolutions (Bierkens

et al., 2015).20

The scaling issues arise when the (often unconscious) assumption is made that a hydrological model used at various spatial

resolutions should estimate similar states and fluxes independent of scale. An Utopian model has scale-invariant model pa-

rameterization and hydrological process descriptions. The development of scale-invariant hydrological models is challenging

as most hydrological processes do not scale in a linear manner (e.g. Bras, 2015; Rouholahnejad Freund et al., 2020). Instead

processes at one length scale influence those at other scales (Horritt and Bates, 2001). Further complicating the issues are25

processes that might change in level of complexity at aggregated (time and spatial) scales due to self-organizing principles of

the ecosystem (e.g. Bak, 1996; Zehe et al., 2013; Savenije and Hrachowitz, 2017).

Because of the complex nature of scaling issues and a shifting distributed modelling climate towards hyper-resolution mod-

elling it is important to continuously assess the effects of scaling. Without investigating what this move entails the hydrological

modelling community risks communication problems with the users of model results. The increase in level of detail in model30

output might implicate to the user an increase in understanding of the complex interplay of heterogeneity within the hydro-

logical system. We can only determine this by continuously assessing how models behave under different spatial and temporal

resolutions.

Multiple studies have tested scaling effects by varying spatial model resolution. Booij (2005) found that increasing the spatial

resolution of a semi-lumped HBV hydrological model only marginally increased model performance based on streamflow35

estimates. Sutanudjaja et al. (2018) introduced the transition from 30 arc minutes to 5 arc minutes grid cell size simulations

of the distributed PCR-GLOBWB model. Results showed a general increase in model performance compared to streamflow

observations. However, regional scaling issues were present. In some of the basins model performance was lower at a finer

spatial resolution. This study made it apparent that a large sample of hydrological diverse basins should be considered when

investigating spatial scaling effects. To our knowledge there are no studies that have looked into scaling effects within the40

hyper-resolution realm on a large-sample of basins. This will be the focus of this research.

Studies have looked in to the scaling of parameters. A study by Benedict et al. (2017) solely increased the spatial resolution

of vegetation and orography parameters from 0.5 to 0.05 degrees in a distributed model. Their findings showed no significant

improvements in streamflow estimates. They attributed this to hydrological processes depending heavily on other parameters

at a coarser resolution. The multi-scale parameter regionalization technique (MPR) introduced by Samaniego et al. (2010) uses45

transfer functions (e.g. arithmetic mean, harmonic mean) to scale model parameters from the finest available data scale to the

hydrological model resolution. A study by Mizukami et al. (2017) demonstrated how the MPR technique can create seamless

parameter maps over a large-domain without loss of skill compared to patchwork parameter maps. The method was revisited

to estimate parameters of the PCR-GLOBWB model (Samaniego et al., 2017). Results showed the benefits of flux-matching

conditions across scales with an increase in model efficiency and better consistency of evapotranspiration fields. Imhoff et al.50

(2020) applied a flux-matching method to upscale parameters derived at the native data resolution to the model resolution of
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the wflow_sbm hydrological for the Rhine basin. Similar to Samaniego et al. (2017), this resulted in better consistency of

evapotranspiration fields across scales. Simulated streamflow estimates in headwaters were found to be inconsistent across

scales. The simulations of the main river Rhine were scale invariant.

The distributed conceptual wflow simple bucket model (wflow_sbm) (Schellekens et al., 2020) utilizes high resolution55

datasets to derive model instances globally at varying spatial resolution. Parameter estimates are based on the work of Imhoff

et al. (2020) to ensure consistency across scale. Remotely sensed soil and land cover data sets are sources for estimating

parameters through pedo-transfer functions (PTF) (e.g. Brakensiek et al., 1984; Cosby et al., 1984). PTFs are a collection of

predictive functions, so called super parameters (Tonkin and Doherty, 2005), derived at point-scale that estimate soil parameters

where underlying data is scarce. For most wflow_sbm model parameters a priori parameters are available. No PTF for the60

horizontal conductivity fraction (KsatHorFrac) is yet available, making it a logical parameter for calibration as it is also one of

the more sensitive parameters in the model (Imhoff et al., 2020). The flexible setup of wflow_sbm can be used to assess scaling

issues due to quasi-scale invariant parameters whilst maintaining similar hydrological process descriptions across scales. This

setup includes the recent improvements by Eilander et al. (2021) who developed a scale-invariant method for upscaling river

networks (one of suggested causes of the inconsistent streamflow across scales as shown by Imhoff et al. (2020)).65

In this study we quantify the effects of spatial scaling on the wflow_sbm streamflow estimates for a large-sample of hydro-

logical diverse basins in the CAMELS dataset (Newman et al., 2015; Addor et al., 2017). By conducting this research on a

large-sample of basins we can assess the results on consistency and locality. The assessment is conducted by creating 3 model

instances at varying spatial resolutions for each basin: a 3km, 1km, and 200m spatial grid resolution. These instances cover

a broad range of large and small scale dynamics. For example: snow accumulation at the mountain range (> 1km) and the70

mountain ridge scale (< 1km) (e.g. Houze Jr., 2012; Mott et al., 2018; Vionnet et al., 2021), or closing in on the hillslope

scale (< 100m) (e.g. Tromp-van Meerveld and McDonnell, 2006; Fan et al., 2019). The parameters for the wflow_sbm model

instances are estimated at the highest available data resolution and aggregated to the modelling grid using the upscale rules as

defined in Imhoff et al. (2020).

Our hypothesis is that the differences in streamflow estimates at various spatial resolutions will be small due to the parameters75

being quasi-scale invariant and hydrological process descriptions in the model remaining the same across spatial scales. We

will reject this hypothesis when the results show significantly different streamflow estimates across the studied resolutions.

In addition with this study, we showcase how the eWaterCycle platform (Hut et al., 2021) can be utilized for computational

intensive large-sample modelling studies.
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2 Methodology80

2.1 Data

2.1.1 The CAMELS data set

The CAMELS data set is a collection of hydrologically relevant data on 671 basins located in the Contiguous United States

(CONUS) (Newman et al., 2015). The basins were selected based on a minimum amount of human influence on the hydrolog-

ical system, e.g. the absence of large reservoirs. The data set includes 20 years of continuous streamflow records from 199085

to 2009 from the United States Geological Survey (USGS). The CAMELS data set covers a hydrological and climatologi-

cal diverse selection of basins. The sample-size, hydrological diversity of basins, and common use of this data set in other

hydrological modelling studies (e.g. Knoben et al., 2020; Gauch et al., 2021) are the reasons for selecting this case study area.

Of the 671 basins we ran each of the 3 model instances (i.e. 3km, 1 km and 200m resolution) successfully for 567 basins.

Failed runs were either caused by errors during parameter derivation, errors during run time, or missing streamflow obser-90

vations. If a single model instance failed the basin was excluded from further analysis. Figure 1 shows the locations of the

successful and failed model runs.

2.1.2 Streamflow Observations

United States Geological Survey (USGS) streamflow observation records were downloaded to match our model simulation

period from 1996 to 2016. The data is resampled to daily data and the units were converted to m3/s. We ensured consistency in95

time zones between the observation and the model simulations by matching the USGS streamflow data with the UTC time zone.

The tooling used for downloading, resampling, unit conversion, and shifting of time zones might be of interest to others in the

hydrological community and is available in the GitHub repository (https://github.com/jeromaerts/eWaterCycle_example_notebooks).

2.1.3 Meteorological input and pre-processing

The meteorological input requirements of the wflow_ sbm model are precipitation, temperature and potential evapotranspira-100

tion. Precipitation data was obtained from the Multi-Source Weighted-Ensemble Precipitation Version 2.1 (MSWEP) (Beck

et al., 2019). The data set was constructed using bias corrected gauge, satellite and reanalyses data. The data is available at 0.1

degrees spatial (1̃1km) and 3-hourly temporal resolution for the period 1979 to 2017. The temperature variable was obtained

from the ERA5 reanalyses data set (Hersbach et al., 2020). The data is available at 0.25 degrees (3̃1km) spatial and a 1-hourly

temporal resolution. In addition to temperature, we used ERA5 variables to calculate potential evapotranspiration using the De105

Bruin method (Bruin et al., 2016). We conducted a preliminary analysis that indicated that the precipitation variable of ERA5

did not produce desirable streamflow estimates. Results of this analysis are included in the data repository. Switching to the

MSWEP precipitation product improved streamflow estimates throughout the case study area.

The meteorological input is pre-processed within the eWaterCycle platform using the Earth System Model Evaluation Tool

(ESMValTool) V2.0 (Righi et al., 2020; Weigel et al., 2021). Before further processing the data is aggregated to daily val-110
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Figure 1. Basin locations of the CAMELS data set with in green the successful model runs. In blue failed runs due to parameter or run time

errors and in red due to missing streamflow observations. Basemap made with Natural Earth.

ues. The precipitation variable is disaggregated to the modelling grid using the second-order conservative method to ensure

consistency of the total volume of precipitation across spatial scales. The temperature variable is disaggregated with the envi-

ronmental lapse rate and the Digital Elevation Model (DEM) used by the hydrological model. The variables required by the

De Bruin method are disaggregated using the (bi)linear method and subsequently used to calculate potential evapotranspira-

tion. The code for all these pre-processing steps is included in the Jupyter Notebooks made available with this manuscript115

(DOI:10.5281/zenodo.5724512).

2.2 Model Experiment Setup

2.2.1 The wflow_sbm model (v.2020.1.2)

Wflow_sbm is available as part of the wflow open source modeling framework (Schellekens et al., 2020), which is based

on PCRaster (Karssenberg et al., 2010) and Python. Figure 2 shows the different processes and fluxes that are part of the120
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wflow_sbm hydrological concept. The soil part of wflow_sbm model is largely based on the Topog_SBM model (Vertessy and

Elsenbeer, 1999), that considers the soil as a "bucket" with a saturated and unsaturated store. For channel, overland and lateral

subsurface flow a kinematic wave approach is used, similar to TOPKAPI (Benning, 1995; Ciarapica and Todini, 2002), G2G

(Bell et al., 2007), 1K-DHM (Tanaka and Tachikawa, 2015) and Topog_SBM (Vertessy and Elsenbeer, 1999). Wflow_sbm has

a simplified physical basis with parameters that represent physical characteristics, leading to (theoretically) an easy linkage of125

the parameters to actual physical properties. Topog_SBM is mainly used to simulate fast runoff processes during discrete storm

events in small catchments (< 10 km2) (evapotranspiration losses are ignored). Since evapotranspiration losses and capillary

rise were added to wflow_sbm, the derived wflow_sbm approach can be applied to a wider variety of catchments. The main

differences of wflow_sbm with Topog_SBM are:

– The addition of evapotranspiration and interception losses (Gash model (Gash (1979)) on daily time steps or a modified130

Rutter model on subdaily time steps (Rutter et al., 1971, 1975)).

– The addition of a root water uptake reduction function (Feddes et al., 1978).

– The addition of capillary rise.

– The addition of glacier and snow build-up and melting processes.

– Wflow_sbm routes water over an eight direction (D8) network, instead of the element network based on contour lines135

and trajectories, used by Topog_SBM.

– The option to divide the soil column into any number of different layers.

– Vertical transfer of water is controlled by the saturated hydraulic conductivity at the water table or bottom of a layer, the

relative saturation of the layer, and a power coefficient depending on the soil texture (Brooks and Corey, 1964).

2.2.2 Model Instances and Parameter Estimation140

We derived 3 model instances at varying spatial model resolution that cover a 3km, 1km, and 200m grid. The parameter sets

were derived using the hydroMT software package (Eilander and Boisgontier, 2021). The data sources for deriving parameter

sets are open-source global data sets. These include topography, surface water, landcover & landuse, soil, meteo, and river

gauge data. The PTF to estimate soil properties is based on Brakensiek et al. (1984). An overview of the data and references

are provided in Table 1.145

2.2.3 Model Runs & Calibration

While for most parameters of the wflow_sbm model a priori estimates can be derived from external sources as explained above,

a single non-distributed parameter needs to be calibrated for each basin: the saturated horizontal conductivity often expressed

as a fraction (KsatHorFrac) of the vertical conductivity. To do this calibration the model simulations (3km, 1km, and 200m)

6

https://doi.org/10.5194/hess-2021-605
Preprint. Discussion started: 1 December 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 2. Overview of the different processes and fluxes in the wflow_sbm model (Schellekens et al., 2020).

Table 1. Overview of data sources for parameter estimation with categories, references, and version.

Data set Category Reference Version

Merit Hydro topography Yamazaki et al. (2019) 1.0

GRAND (hydro_reservoirs) surface water Lehner et al. (2011) 1.0

hydroLAKES (hydro_lakes) surface water Messager et al. (2016) 1.0

Randolph Glacier Inverntory surface water Pfeffer et al. (2014) 6.0

CHELSA meteo Karger et al. (2017) 1.2

Köppen-Geiger meteo Kottek et al. (2006) 2017

VITO landuse & landcover Buchhorn et al. (2020) v2.0.2

Modis LAI landuse & landcover Myneni et al. (2015) MCD15A3H V006

SoilGrids soil Hengl et al. (2017) 2017

are divided into 2 periods; a calibration period from 1997 to 2006 and an evaluation period from 2008 to 2016. The years 1996150

and 2007 are regarded as spin-up years and not included in the analysis of the results. We assessed the streamflow estimates of

both periods using the Kling-Gupta Efficiency score (KGE) (Gupta et al., 2009).

The calibration procedure finds an optimal parameter value based on the KGE objective function of streamflow estimates

at the basin outlet. A single non-distributed parameter was calibrated, the saturated horizontal conductivity fraction (KsatHor-

Frac). This parameter cannot be derived from external data sources because it compensates for anisotropy, unrepresentative155

point measurements of the saturated vertical conductivity, and model resolution (Schellekens et al., 2020). Increasing this pa-
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rameter leads to an increased base flow component and reduces peak flow and flashiness. We calibrated the models to match

model setups of those used by the users of the hydrological model.

2.2.4 eWaterCycle platform

This research was conducted within the eWaterCycle platform (Hut et al., 2021). eWaterCycle follows by design the FAIR160

principles of data science (Wilkinson et al., 2018) and allows high level communication with models regardless of programming

language through the Basic Modelling Interface (Hutton et al., 2020). This study showcases how eWaterCycle handles the

setup of extensive modelling studies. A Jupyter Notebook with the model experiments of this study is provided in the GitHub

repository. As notebooks are not ideal for long-running experiments on high performance computing (HPC) machines, we

exported the notebooks to regular python code which we ran directly on a HPC. The calibration and evaluation procedures165

totalled 41.025 model runs on the Dutch national super-computer Cartesius hosted by Surf.

2.3 Analyses of results

2.3.1 Benchmark Selection

To select basins where model performance is at least reasonably well, we applied a statistical benchmark to beat. The use of a

benchmark allows for better interpretation of objective function based results (Garrick et al., 1978; Pappenberger et al., 2015;170

Schaefli and Gupta, 2007; Seibert, 2001; Seibert et al., 2018; Knoben et al., 2020). We adopt, in part, the same methodology

for statistical benchmark creation as Knoben et al. (2020). The benchmark is created by calculating the mean and median

of streamflow observations per calendar day of the 10 year evaluation period and the results are compared to streamflow

predictions from the model. KGEs are calculated for the observed streamflow versus these mean and median values. The mean

is expected to better represent larger basins with more stable flow regimes whilst the median better covers the flashiness of175

smaller headwater basins. This benchmark serves as a lower boundary for the model predictions: if the model, for any of the

three resolutions, has a lower KGE than either the median or mean flow, it is considered not suited for this study and removed

from the list of basins.

2.3.2 Comparison of Streamflow Estimates

To provide more context to the results in terms of general model performance, we compared the streamflow estimates from180

wflow_sbm to those of the study by Knoben et al. (2020). The study by Knoben et al. (2020) ran 36 conceptual models using

the Modular Assessment of Rainfall-Runoff Models Toolbox V1.0 (MARRMoT) (Knoben et al., 2019a, b) on the CAMELS

data set. First, we calculated the mean of the 36 models for each basin. Next, we ensured a match between the basins under

investigation by both studies.

The inter-model (instance) comparison of the streamflow estimates in this study is assessed using a cumulative distribution185

function (CDF). We applied the Kolmogarov-Smirnoff test (Kolmogorov, 1933; Smirnov, N.V., 1933) to test if the differences
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between the KGE score distributions of the model instances are statistically relevant. Allowing the acceptance or rejection of

the hypothesis stating that the differences in streamflow estimates at various spatial resolutions will be small.

3 Results

The results in this section are based on the KGE objective function at the basin outlet for the evaluation period. Results based on190

the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) are available in the repository (DOI:10.5281/zenodo.5724576).The

first part describes the effect of spatial scaling on model calibration, model evaluation and terrain characteristics. The second

part describes the streamflow analyses results for the CAMELS data set.

3.1 The effect of calibration on streamflow estimates

To illustrate how model calibration effects each model instance, we first show the calibration curves of a single basin (ID:14301000).195

To avoid presentation bias we selected a basin with moderate performance and only show the last year of calibration. Figures

3abc show the calibration curves (yellow to red) for each of the instances that were generated by tuning the horizontal conduc-

tivity (i.e. KsatHorFrac) parameter. The parameter values range from 1 to 1000 and are a single value for each basin. Not all

calibration interval values are shown in the figure. The results depict the effect that increasing the KsatHorFrac values has on

the hydrograph: base flow increases whilst peak flow reduces. In addition, large KsatHorFrac values reduce the flashiness of200

the streamflow estimates as is visible in Figures 3b and 3c in the second week of November 2005. Of note is that the selection

of best calibration parameter values is strongly dependent on the chosen objective function as for example the NSE score

would be more favourable towards flashiness and less towards base flow. As shown in 3d the streamflow estimates of the model

instance are similar (KGE score 0.58-0.66) while the parameter values deviate (KsatHorFrac 125-1000). No apparent trends

for KsatHorFrac values in relation to model resolution or geographic location were found after calibration.205

3.2 The effect of spatial scale on terrain characteristics

We illustrate the effect of spatial scaling on the parameter set of the 3 model instances by showing the difference in topography

and drainage density for 3 basin. To avoid presentation bias, the basins were sampled based on poor streamflow performance

(ID:06878000), moderate performance (ID:02231342), and good performance (ID:06043500). Figure 4a shows the probability

density function (PDF) of the height distributions of the model instances for each of the 3 basins, Figure 4b shows the slope210

distribution, and Figure 4c the profile curvature distributions.

The height distribution of the DEM in Figure 4a shows, most clearly for basin ID 02231342, how the representation of the

highest altitudes is underestimated by the 3km model instance (orange) compared to the 200m instance (green) and to a lesser

extent the 1km instance (red). Essentially, at coarser spatial resolution the terrain is flattened at high altitudes. An opposite

effect is shown in this basin for the lower altitudes where the finer resolution instances better capture gentle slopes that are215

flattened at coarse resolution. This effect is also detectable in the slope and profile curvature PDFs shown in Figures 4bc. As

can be expected from the height distributions, the slope of the 200m instance has more gentle and steep sloping topography
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Figure 3. The calibration interval of the KsatHorFrac parameter (KHF) for the 3 model instances at the basin outlet (ID:14301000). (a)

3km model instance. (b) 1km model instance. (c) 200m model instance. Values range from 1 to 1000 (yellow to red), only a sub-selection

is shown. Best performing calibration values are indicated with a dotted red line and streamflow observations in blue. (d) Best streamflow

estimates of the 3km (orange), 1km (green), and 200m (red) model instances.

than the 1km and 3km instances. This is shown by the narrower slope distribution for the coarse spatial resolution that broadens

with finer resolution. The differences in the mean slope of the basins between model instances is marginal, e.g. 0.00019 m*m-1

for basin ID 02231342. The profile curvature in Figure 4c indicates whether a slope is linear (values close to 0), concave (values220

smaller than 0), and convex (values larger than 0). The 3km and 1km instances show similar slope geometries. With the 3km

instance having slightly more linear slopes. At the finest resolution (200m) the slopes geometry shifts from linear slopes to

either convex or concave curvature profiles.

In addition to topography we calculated the drainage density for each of the model instances defined as total river length

divided by basin area. The results in Table 2 show small differences between the model instances for each of the 3 basins.225
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Figure 4. 3 example basins that represent poor streamflow performance (ID:06878000), moderate performance (ID:02231342), and good

performance (ID:06043500). (a) PDF of height distribution for the 3km (orange), 1km (red) and 3km (green) model instances. (b) PDF of

the slope distributions of the model instances per basin. (c) PDF of profile curvature distributions of the model instances per basin. Values

that equal 0 indicate linear slope geometry, smaller than 0 concave slope geometry, and larger than 0 convex slope geometry.

3.3 The effect of spatial scale on streamflow estimates

The same 3 example basins are used to illustrate the differences in streamflow estimates between model instances for the

evaluation period. Only the last year of the evaluation period is shown in Figure 5.
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Table 2. The drainage density defined as stream length divided basin area for the 3 example basins.

Basin ID 3 km Drainage Density [m*m-2] 1 km Drainage Density [m*m-2] 200 m Drainage Density [m*m-2]

06878000 0.0133 0.0141 0.0143

02231342 0.0056 0.0059 0.0063

06043500 0.0112 0.0123 0.0126

In the case of poor performance, Figure 5a, it may occur that the model instances are overestimating streamflow during peak

flow. The best performing model instance has the smallest peak flow estimates which in many cases is the coarsest spatial230

resolution instance (3km). Of the 454 basins, 3km instance has the lowest peakflow estimates in 279 occurrences of which the

model is best performing 148 times. The example in Figure 5b shows that when the 1km model instance is best performing this

often occurs in conjunction to relatively similar performance of the 200m model instance. In 78.7% of the cases where the 1km

instance is best performing the difference in KGE score with the 200m instance is smaller than 0.1. The final example in Figure

5c illustrates when the finest spatial model resolution (200m) is best performing and the coarsest (3km) least performing. The235

200m model instance best captures peak flow and the receding limbs of the hydrograph.

3.4 Benchmark selection

We calculate a statistical benchmark to determine basins where the streamflow estimates of the model instances are deemed

adequate for further analyses. The best performing type of climatology of calendar day benchmark, either mean or median,

is depicted in Figure 7a. Figure 7b shows which basins are accepted and which basins are rejected based on the 10 year240

climatological benchmark. Of the 567 simulated basins the results of 454 basins exceed the benchmark for each model instance.

This is the case for all basins in the Midwest of the United States. Poor performance in comparison to the benchmark is present

in the Southwest. Based on the KGE scores, 83 % of the benchmark is favourable towards using the climatological mean and

27 % towards the median. An overview is provided in Figure 7c and the distribution of the benchmark KGE scores is shown in

Figure 7d. The distribution ranges from -0.62 to 0.71 KGE score and is skewed towards values lower than 0.0 with a mean of245

0.02 and median of -0.02. A KGE score of -0.41 is comparable to taking the mean flow during the evaluation period (Knoben

et al., 2019).

3.5 Streamflow estimates of model instances

The KGE score results for the evaluation period are shown in Figure 5 in the form of an Cumulative Distribution Function

(CDF). The KGE score distribution of the mean of 36 hydrological models from Knoben et al. (2020) is included and is250

referred to as "MARRMoT mean results". Of note is that comparison between studies is not one-on-one due to differences

in model run periods, forcing, and numerical solvers. We can, however, obtain information about general model performance

between both studies.
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Figure 5. 3 example hydrographs showing the last year of the evaluation period. The 3km (orange), 1km (green), and 200m (red) model

instance streamflow estimates at the basin outlet are shown. In blue the streamflow observations and in dotted cyan the 10 year calendar day

climatology of the statistical benchmark. (a) Basin ID: 06878000. (b) Basin ID: 02231342. (c) Basin ID: 06043500.
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Figure 6. (a) The best performing type of 10 year calendar day climatology, either mean (purple) or median (yellow). (b) The spatial

distribution of accepted (green) and rejected (red) basins based on the benchmark. (c) Overview of the amount of basins that are accepted or

rejected and the best performing benchmark type. (d) The KGE score distribution of the best performing benchmark type. Basemaps made

with Natural Earth.

The mean KGE score distribution of the MARRMoT models (Figure 7, blue) of Knoben et al. (2020) is close to the mean of

the distributions of the 3 model instances. Differences between study results are mainly present in the tails of the distributions.255

Below 0.17 of the CDF (worst 17 % of the results) the MARRMoT mean results KGE score distribution is higher than the

1km model instance. The MARRMoT mean results for the lower 5 % of the CDF performs better than the 3 model instance

distributions. Here, the range of KGE scores is smaller for the MARRMoT mean (-1.55 to 0.09) than for the 3 model instances

(-13.56 to 0.00). Above 0.17 of the CDF (83 % of the results) the distributions of the 3 model instances are higher in KGE

scores than those of the MARRMoT mean.260

When we consider only the wflow_sbm instances, approximately 64 % of the results of the model instances are higher than

0.50 KGE score and of those 18 % are higher than 0.75 KGE score. The distributions cross at multiple points, for example

at the bottom 10 % of the distribution the 3km instance has the highest and the 1km the lowest KGE score. At 40 % of the

distribution and lower the 200m instance is followed by the 1km and 3km instances in terms of highest KGE score.

Next, we apply the Kolmogorov-Smirnov (KS) statistic to test whether the CDF of the model instances statistically differ265

from each other, for a given p-value of 0.05. The KS-test results in Table 3 show that the difference between 3km and 200m

model instances is statistical relevant at a p-value of 0.01. On a large-sample, this means that increasing the spatial model
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Figure 7. The CDF based on KGE scores for the 454 selected basins. In blue the MARRMoT mean results, in yellow the 3km, in red the

1km, and in green the 200m model instances.

Table 3. The Kolmogorov-Smirnov statistic results and the corresponding p-value. The results are based on the difference between CDFs of

the 3 model instances, 3km, 1km, and 200m.

CDFs Kolmogorov-Smirnov Statistic p-value

3 km - 1 km 0.07 0.21

1 km - 200 m 0.06 0.31

3 km - 200 m 0.10 0.01

resolution from 3km to 1km or 1km to 200m does not lead to significant differences in streamflow performance. However,

when changing resolution from 3km to 200m, the distribution of KGE scores is significantly different (p<0.05).

The CDF does not provide information at a basin level. To gain insight into the spatial distribution of the KGE scores of270

the model instances, Figure 8 shows the KGEs of the streamflow estimates plotted on a map of the CONUS domain. The

minimum KGE scores of 0.50 to 0.89, shown in Figure 8a, are found in the Pacific Northwest, Atlantic South, Appalachia,

and Northeast of the CONUS. KGE scores lower than -0.41 are found throughout the CONUS. The highest KGE scores in

Figure 8b are located in the Northwest, Rocky Mountains, and Appalachia. These regions are characterised as steep sloping

headwater basins. Figure 8c shows that there are large local streamflow discrepancies of more than 1.00 KGE score. These275

are mainly found in the Pacific Southwest, the South, and the Midwest. These regions span a wide range of hydro-climatic

diverse basins. The average KGE score difference is 0.78. Figure 8d shows the best performing model instance for each of the

454 selected basins. Although regions show clusters in best performing model instance there is no overall geographical trend
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Figure 8. (a) Minimum KGE score of the model instances. (b) Maximum KGE score of the model instances. (c) The difference between

minimum and maximum KGE scores. (d) Best performing model instance based on KGE score for the evaluation period with 3km in orange,

1km in red, and 200m in green.

in results. Best performances for the 1km model instance are generally close to basins where the 200m model instance is best

performing. The 3km model instance shows some clusters in the South and Pacific Northwest. The Rocky Mountains contains280

the best performing 200m model instances and the Appalachia a mixture between 1km and 200m model instances.

4 Discussion

We applied an initial benchmark based on streamflow observations for basin selection to identify basins where streamflow

estimates are deemed adequate for further analyses. This does not imply that excluded basins are less relevant. Instead it

implies that an in-depth model assessment is required to understand why the model is not able to simulate adequate streamflow285

estimates in these basins. In addition to the benchmark, we added a layer of context by including results from the study by
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Knoben et al. (2020). This is an imperfect comparison due to differences in inputs, numerical solvers, and simulation period.

However, the results do provide information on general model performance. The results show that the wflow_sbm streamflow

estimates are inline with estimates of the mean of the 36 MARRMoT models. The spread of results is smaller for the 36

MARRMoT models which is due to averaging and likely the more extensive calibration routine of the conceptual models.290

To improve future comparative work, we advocate for the creation of model output storage guidelines that use the CAMELS

data set as case study area. These guidelines should encompass the differences between hydrological models, such as dis-

tributed and non-distributed modelling grids. A first step is the inclusion of distributed data sources in the CAMELS data set,

e.g. meteorological data. We further propose the use of a model experiment environment, such as eWaterCycle (Hut et al.,

2021), to generate model results. This allows for similar pre-processing of inputs, standardization of outputs, and reproducible295

modelling studies. An example of how to apply these steps using the eWaterCycle platform is provided in Jupyter Notebooks

that supplement this publication (DOI:10.5281/zenodo.5724512). The ease of setting up a model experiment and storing output

is an incentive for users to store model results while conducting extensive modelling studies even when results are deemed not

suitable for publication.

At the start of the study we hypothesized that differences between model instances would be small due to quasi-scale300

invariant parameter sets and constant hydrological process descriptions within the model. The results plotted as an CDF (Figure

7) show that this is the case for the KGE score distributions based on streamflow estimates at the basin outlet. The crossing of

the distribution lines is a strong indication that their is disagreement on KGE scores between model instances and that there is

no single instance outperforming the rest consistently. For some basins the coarser 3km instance outperformed the finer 200m

instance, showing that finer resolution does not automatically lead to improved streamflow estimates.305

Next, we applied the KS-statistic to test if there is a significant difference between the distributions of model instances. This

is only the case for the model instance combination 3km and 200m. When we consider the increase in streamflow based model

performance as opposed to computational cost, we find that this does not scale linearly with the amount of grid cells in the basin

due to lateral connections in the hydrological model. The average non-parallel run time of the 3km instance is 157 seconds

and that of the 200m instance 12120 seconds with an average number of grid cell difference of 28872 cells. These results point310

toward the importance of conducting an initial spatial model resolution assessment at the start of large-sample assessments as

it avoids subpar or computationally expensive model runs. Note that this kind of information can stimulate scientific and/or

computational developments, e.g. in the meantime the wflow code was rewritten in Julia (van Verseveld et al., 2021) roughly

increasing performance by a factor of 3 while other improvement (threading, mpi) are being implemented.

We recognize that large-sample assessments obscure variations in simulations between instances due to the sample size. On315

a basin level we find that local scaling issues are in effect throughout the spatial domain. This is depicted by the differences

between the KGE scores of the model instances (Figure 8c). On average these is a 0.22 KGE score difference with extremes

of more than 0.5 KGE score difference at multiple basins. We find that the 1km instance is best performing in basins where

the difference between minimum and maximum KGE score of the 3 instances is small (Figure 8c). We attribute this partly to

the calibration routine finding a better optimal parameter value (KsatHorFrac) as results are often close to those of the 200m320
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instance. For the best performing 3km or 200m model instances (Figure 8d) there are only small geographical trends of best

model performance in the South and Appalachia.

We conducted a terrain analyses (Figure 4) to identify changes in terrain characteristics due to spatial resolution that might

explain the differences between model instance streamflow estimates. Minor effects are depicted by the profile curvatures

present at 200m resolution. Slopes are less linear at fine resolution than at coarse resolution. The effect on the hydrological325

response is, however, expected to be small as stated by Bogaart and Troch (2006). Similarly small changes are found for

the differences in drainage density between model instances. This confirms that the drainage network up-scaling method of

Eilander et al. (2021) is (almost) consistent across spatial scale.

Larger differences between model instances are found for the height distribution of the DEM, which is flattened at course

resolution compared to finer resolution. At high altitudes this introduces changes in snow dynamics due to the use of the330

temperature degree-day method by the hydrological model. The resulting effect on streamflow estimates depend on the relative

contribution of snow melt. Although marginal at a basin level, the difference in slope between instances is expected to effect

the partitioning of the lateral fluxes of the wflow_sbm model as the lateral connectivity between grid cells is slope driven. An

increase in slope would lead to larger lateral fluxes and vice versa. Increasing spatial resolution results in a broader distribution

of slopes that effects the volume and timing of streamflow estimates. An in-depth assessment of the states and fluxes of the335

model instances is required to determine whether these components are the main cause for the differences in streamflow

estimates.

We applied the same meteorological forcing products and downscaling routine for each model instance. This ensured that

for example the total volume of precipitation remained consistent across scales. A coarse grid cell contains a volume of

precipitation that is equally redistributed over the equivalent amount in size of finer grid cells. In reality this redistribution340

of water might not be equal across the finer grid cells and therefore scaling behaviour is introduced due to the locality of

precipitation. This has an effect on the streamflow estimates as the locality of precipitation directly influences hydrological

processes that are dominant at different locations (e.g. hill slope). It is of interest to investigate this effect on streamflow

estimates and to determine the role of native spatial meteorological forcing resolution.

The results from this study help model developers with model refinement by providing them with understanding where and345

under what circumstances difference due to spatial scaling occur. Based on the aggregated domain and basin level results we

can conclude that increasing spatial resolution does not necessarily lead to better streamflow estimates at the basin outlet. The

implications of the results for the user are that caution is advised when interpreting high resolution model output as this does

not directly translate into better model performance. Moreover, the computational cost of increasing model resolution is not

always warranted compared to increase in streamflow estimate based model performance.350

This study applies a single objective function, modified KGE (KGE 2012) (Kling et al., 2012), to determine simulated

streamflow adequacy for the model calibration and evaluation time periods. The single objective function for a whole period

approach is limited and can be improved by first determining the objective function for individual years and then averaging for

the whole period (Fowler et al., 2018). In addition, as stated in Clark et al. (2021) it is important to determine the uncertainty

of objective functions. The effect of uncertainty is kept at a minimum in this study as only a single parameter is calibrated.355
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We selected the KGE 2012 objective function as it is less influenced by extreme combinations of simulated and observed

streamflow and less influenced by structural error in the meteorological input. To provide the reader with more context we have

included the KGE 2009 (Gupta et al., 2009), KGE 2012 , KGE non-parametric (Pool et al., 2018), and NSE objective function

results in the data repository and supplementary. The conclusions based hypothesis testing were not affected by the type of

KGE objective function.360

In this study we did not investigate individual basins to avoid biased selection of case study areas. However, we suggest

that future work investigates the basins that show large differences in lateral fluxes and poor model performance. By including

multiple evaluation data products (e.g, soil moisture, evaporation, gravitational anomaly) conclusions can be made on whether

increasing spatial resolution leads to increased model fidelity. With the inclusion of multiple timescales as discussed in Melsen

et al. (2016) more information can be obtained about the linearity of hydrological process descriptions in the model. Future365

research would also benefit from including basin and climate characteristics of the CAMELS data set in order to find statistical

relationships explaining locality in results.

5 Conclusions

The aim of this study was to analyse the effects of spatial scaling on the streamflow estimates of the distributed wflow_sbm

hydrological model. Distributions of model instance KGE score results were tested for significant differences. A spatial distri-370

bution assessment was conducted to derive spatial trends from the results. The main findings of the study are the following:

– The difference in the distributions of streamflow estimates of the wflow_sbm model derived at multiple spatial grid

resolutions (3km, 1km, 200m) is only statistically significantly different between the 3 km and 200 m model instances

(P<0.05). This confirms at an aggregated level the hypothesis that differences between model instances are small due to

quasi-scale invariant parameter set and process descriptions that remain constant across scale in the hydrological model.375

– Results show large differences in maximum and minimum KGE scores with an average of 0.22 between model instances

throughout the CONUS.

– There is no single best performing model resolution across the domain.

– Changes in terrain characteristics due to varying spatial resolution influence the lateral flux partitioning of the wflow_sbm

model and might be an important cause for differences in streamflow estimates between model instances.380

This study answered where locality in results are strong due to spatial scaling effects. Future research should conduct an

in-depth assessment of basins where differences in streamflow estimates and lateral fluxes are large due to spatial scale. This

will lead to a better understanding of why and under what conditions locality in spatial scaling related issues occur.

Code and data availability. The software that supplements this study is available at: https://github.com/jeromaerts/eWaterCycle_example_notebooks.

The data that supplements this publications is avaialble at DOI:10.5281/zenodo.5724576385
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Figure A1. ERA5 and MSWEP forcing comparison for 6 basin in the CAMELS Dataset. Monthly precipitation values for the evaluation

period are shown with in blue ERA5 and in orange MSWEP.

Table A1. Comparison of evalution period objective function results of the 3km wflow_sbm instance based on the ERA5 and MSWEP

forcing data sets.

BASIN ID Resolution ERA5 - KGE 2012 MSWEP - KGE 2012 ERA5 - NSE MSWEP - NSE

01532000 3km 0.20 0.19 0.67 0.65

02297155 3km 0.23 0.04 0.34 0.06

05408000 3km 0.35 -0.03 0.60 0.39

06406000 3km -1.69 -6.19 0.21 0.15

07057500 3km 0.68 0.53 0.56 0.35

08079600 3km -5.65 -8.13 -.023 -0.49
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Figure A2. CDFS of multiple objective functions for the 3 model instances. With in blue KGE 2009, in orange KGE 2012, in red KGE NP,

and in green NSE.

Appendix A

A1 ERA5 and MSWEP precipitation forcing comparison

A2 CDFs of multiple objective functions
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