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Abstract. This study introduced a novel Dynamically Normalized objective function (DYNO) for multi-variable 13 

(i.e., temperature and velocity) model calibration problems. DYNO combines the error metrics of multiple 14 

variables into a single objective function by dynamically normalizing each variable's error terms using information 15 

available during the search. DYNO is proposed to dynamically adjust the weight of the error of each variable 16 

hence balancing the calibration to each variable during optimization search. The DYNO is applied to calibrate a 17 

tropical hydrodynamic model where temperature and velocity observation data are used for model calibration 18 

simultaneously. We also investigated the efficiency of DYNO by comparing the result of using DYNO to results 19 

of calibrating to either temperature or velocity observation only. The result indicates that DYNO can balance the 20 

calibration in terms of water temperature and velocity and that calibrating to only one variable (e.g., temperature 21 

or velocity) cannot guarantee the goodness-of-fit of another variable (e.g., velocity or temperature). Our study 22 

suggested that both temperature and velocity measures should be used for hydrodynamic model calibration in real 23 

practice.  Our example problems were computed with a parallel optimization method PODS but DYNO can also 24 

be easily used in serial applications. 25 

1. Introduction 26 

Hydrodynamic models simulate the hydrodynamic and thermodynamic processes in lakes and reservoirs that are 27 

important for simulating water quality in aquatic eco-systems (Chanudet et al., 2012). These simulation models 28 

(e.g., hydrodynamic modelling) play a critical role in managing water bodies (e.g., rivers, lakes, and coastal areas), 29 

as they are built to simulate the spatial and temporal distributions of specific water quality variables, and to study 30 

the response of a water body to different future management scenarios. The parameters of these models usually 31 

need to be calibrated to measured data to adequately represent local effects and hydrodynamic processes. Model 32 

calibration is a vital step in complex hydrodynamic modelling of lakes and other aquatic systems.  33 

Model calibration of hydrodynamic models is mainly done manually (also called trial and error), where 34 

experts tune the parameters and simultaneously evaluate the goodness-of-fit between the simulation output and 35 

observations. This process is subjective, time-intensive and requires extensive expert knowledge (Afshar et al., 36 

2011; Xia et al., 2021; Solomatine et al., 1999; Fabio et al., 2010; Baracchini et al., 2020). The challenges 37 
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associated with manual calibration have encouraged the application of auto-calibration to hydrodynamic models, 38 

where the calibration is set up as an inverse problem to minimize the error between the simulation and 39 

observations. Some studies (e.g., Gaudard et al. (2017), Luo et al. (2018), Ayala et al. (2020) and Wilson et al. 40 

(2020)) have applied automatic calibration to one-dimensional hydrodynamic lake models where water 41 

temperature is the variable that is simulated and calibrated. These one-dimensional models are relatively cheap to 42 

run, allowing the use of automatic calibration methods that typically require many simulation evaluations to 43 

determine suitable parameter sets (e.g., differential evolution used in Luo et al. (2018) and Monte Carlo sampling 44 

used in Ayala et al. (2020)). However, one-dimensional models are unable to simulate the spatial distribution of 45 

some water variables, and thus may not be suitable for certain studies. Consequently, 2-dimensional or 3-46 

dimensional models are preferred for studying the spatial-temporal distribution of water variables and are 47 

increasingly used to study lakes around the world (Chanudet et al., 2012; Galelli et al., 2015; Hui et al., 2018; 48 

Soulignac et al., 2017; Wahl and Peeters, 2014; Xu et al., 2017; Baracchini et al., 2020) . The calibration of 3-49 

dimensional models, though, is considerably more challenging than calibration of one-dimensional models, since 50 

3-dimensional models are significantly more computationally expensive and also involve more complicated 51 

physical processes (such as advection of flows).  52 

The computationally expensive character of 3-dimensional models makes traditional optimization 53 

methods, such as differential evolution and Monte Carlo sampling, unsuitable for automatic calibration because 54 

these methods usually require many evaluations to get an acceptable solution. Surrogate-based optimization is 55 

highly suitable for such problems (Bartz-Beielstein and Zaefferer, 2017; Lu et al., 2018; Razavi et al., 2012) and 56 

recent studies have applied surrogate-based optimization methods to parameter estimation of hydrodynamics 57 

models. Surrogate-based optimization methods use a cheap-to-run surrogate approximation model (of the 58 

calibration objective) fitted with all known (i.e., already evaluated) values of the original expensive objective 59 

function, to guide the optimization search and reduce the number of evaluations required on the expensive 60 

simulations. For example, Xia et al. (2021) proposed a new optimization method called PODS (parallel 61 

optimization with dynamic coordinate search using surrogates) suitable for computationally expensive problems, 62 

and applied it to automatic calibration of a three-dimensional lake hydrodynamic models. More elaborate 63 

discussions on surrogate-based optimization algorithms can be found in Xia et al. (2021), Xia and Shoemaker 64 

(2021), Razavi et al. (2012), Bartz-Beielstein and Zaefferer (2017) and Haftka et al. (2016). 65 

Computational intensity is not the only critical challenge associated with parameter estimation of 3-66 

dimensional hydrodynamic models. Parameter estimation of these models is also a multi-site & multi-variable 67 

calibration problem, i.e., observation data is usually available at multiple locations and the underlying models 68 

simulate multiple variables (e.g., temperature and velocity). Moreover, simultaneous calibration of multiple 69 

variables is desired due to complex interactions between the different variables. For instance, temperature and 70 

velocity are inter-dependent variables of a lake hydrodynamic model, since water temperature affects the 71 

movement of water, and water velocity affects the distribution of water temperature. However, most prior research 72 

studies have calibrated hydrodynamic models to only temperature. This might because temperature measurements 73 

are relatively less expensive to get compared with velocity measurements and often temperature measurements 74 

are available to help predict water quality phenomenon. Wahl and Peeters (2014) use the measured water 75 

temperatures to calibrate a 3-dimensional hydrodynamic model of Lake Constance. Kaçıkoç and Beyhan (2014) 76 

calibrate the temperature of Lake Egirdir hydrodynamic model, the flow simulation of which is used for the lake 77 
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water quality modeling. Marti et al. (2011) and  Xue et al. (2015) also only used temperature data for lake 78 

hydrodynamic model calibration. Moreover, these studies use manual calibration for parameter estimation. Xia et 79 

al. (2021) use automatic calibration for parameter estimation, but only use water temperature observations in the 80 

calibration process. Reproducing water level is also a parameter estimation approach  that pseudo-considers flow 81 

dynamics in calibration; however, a calibrated model that correctly simulates observed water level does not 82 

necessarily reproduce the observed 3D flow field accurately (Wagner and Mueller, 2002; Parsapour-Moghaddam 83 

and Rennie, 2018).  84 

Hydrodynamics models predict the velocities throughout the water body. These results are important to 85 

understand the spatial distribution of water quality problems in sizeable lakes. For the purposes of model 86 

calibration it is useful to know whether efforts to measuring velocity directly are justifiable if temperature data is 87 

already available. We will examine the extent to which direct measurement of velocities justify the extra effort by 88 

giving more accurate results for hydrodynamics models and also look at the error associated with calibrating (for 89 

hydrodynamics) to temperature only, which is rarely studied in literature. 90 

There are a few studies that attempt to calibrate hydrodynamic models to both temperature and velocity. 91 

Chanudet et al. (2012) attempt to calibrate both temperature and velocity sequentially (using manual calibration), 92 

i.e., they calibrate water temperature first and then the current velocities. Baracchini et al. (2020) performed two 93 

sequential steps in the automatic calibration of temperature and velocity, and the velocity calibration is based on 94 

the results obtained from temperature calibration. However, one problem with such two-step sequential 95 

approaches, either by manual or auto-calibration is that the calibration of the second variable might significantly 96 

alter the calibration quality of the first variable. This is especially true for multi-variable calibration problems, 97 

where the multiple variables being calibrated are sensitive to the parameters being calibrated. Other examples of 98 

such multi-variable calibration problems include watershed model calibration (Franco et al., 2020) and seawater 99 

intrusion model calibration (Coulon et al., 2021) etc. These multi-variable problems desire calibration frameworks 100 

that allow simultaneous calibration of all variables rather than calibrating one and then the second. 101 

There are prior studies that simultaneously calibrate both temperature and velocity variables of 102 

hydrodynamic models. However, these use a trial and error (manual) mechanism for calibration (Råman Vinnå et 103 

al., 2017; Soulignac et al., 2017; Jin et al., 2000; Paturi et al., 2014). Manual calibration of multiple hydrodynamic 104 

variables simultaneously, is even harder than calibration of a single variable. A key challenge for automatic 105 

calibration of multi-variable calibration problems is in defining a suitable objective function to calibrate multiple 106 

variables simultaneously. Traditional approaches using automatic methods typically formulate the goodness-of-107 

fit of multiple variables into a single objective function by adding weights between the goodness-of-fit of multiple 108 

variables (Afshar et al., 2011; Pelletier et al., 2006). However, a drawback of this approach is that the relative 109 

error magnitude of each variable of the new solutions found will probably varying during the search making it 110 

difficult to determine appropriate weights since they need to be determined / defined a prior, i.e., before 111 

optimization.  112 

Another approach for calibration of multi-variables is using multi-objective optimization techniques 113 

(Afshar et al., 2013). However, multi-objective techniques are commonly used to optimize multiple sub-objectives 114 

that have a trade-off between each sub-objective (Akhtar and Shoemaker, 2016; Reed et al., 2013; Alfonso et al., 115 

2010; Giuliani et al., 2016; Herman et al., 2014). While for the multi-variable hydrodynamic calibration problems, 116 

it is not apparent that there is usually a trade-off between the fit of multiple variables. Moreover, Multi-Objective 117 
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Optimization (MOO) is considerably more computationally difficult than Single Objective Optimization (SOO) 118 

and typically requires many more objective function evaluations. Thus, MOO may not be desired for 119 

computationally expensive calibration problems, especially when a significant trade-off between the objectives 120 

may not be present. Consequently, multi-variable calibration utilizing efficient SOO algorithms, while balancing 121 

the calibration to each variable equally during calibration, is a research area of significant value. 122 

We introduce a new Dynamically Normalized Objective Function (DYNO) for automatic multi-variable 123 

calibration problem. The error of each variable (e.g., temperature and velocity of hydrodynamic models) is 124 

dynamically normalized by using the information about variable error of the evaluations found during the 125 

optimization search process. In this way, the balance between calibration of each variable is dynamically adjusted. 126 

We tested the efficiency of DYNO on a computationally expensive hydrodynamic lake model of a tropical 127 

reservoir, which takes 5 hours to run per simulation. DYNO is coupled into a recent parallel surrogate optimization 128 

algorithms PODS (Xia et al., 2021) and successfully applied for the calibration of multiple variables of the 129 

hydrodynamic model. Using DYNO, we investigate the impact of using temperature and/or velocity observations 130 

on model accuracy.  131 

2. Methodology 132 

2.1 Multi-variable Calibration Problems Description 133 

The calibration problems investigated in this study are multi-site (i.e., observations are available from multiple 134 

locations), multi-variable (e.g., temperature and velocity for hydrodynamics) problems, and are defined, 135 

mathematically, as follows (the variable and function definition are given in Table 1):  136 

min
𝑿∈#

𝐹(𝑿|𝑲) = 𝐹({𝑓$(𝑿)|𝑘 ∈ 𝑲})                                                                                                                        (1) 137 

𝑓$(𝑿) = 𝑓$({𝑔%(𝑠𝑖𝑚%
$(𝑿), 𝑜𝑏𝑠%$)|𝑗 = 1,⋯ ,𝑀})                                                                                          (2) 138 

Note that the notation {𝑧&} in Eq. (2) is simply meant to imply the function on the left depends on the finite series 139 

of quantities inside the braces {•}.  140 

Table 1. Notation and definitions of variables and functions in Eq. (1) and (2). 141 

Variable Description 

K 

The set of variables the observation data of which is used in calibration. 
For example, 𝑲 = [𝑇𝑒𝑚] means that water temperature observation is used 
for calibration, i.e., water temperature is the variable that is being 
calibrated; 𝑲 = [𝑉𝑒𝑙CCCCCC⃗ ] means velocity observation is used for calibration; 
𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙CCCCCC⃗ ] means that both temperature and velocity observations are 
used for model calibration 

𝑘 
The symbol for elements in K variable (e.g., water temperature or velocity, 
k = Tem or k = 𝑉𝑒𝑙CCCCCC⃗ ).𝑘 ∈ 𝑲 

X A d dimensional parameter vector restricted to parameter space Θ, where d 
is the number of parameters to be optimized 

𝛩 The parameter space is defined by the upper and lower limits on each 
parameter (𝑿'()and 𝑿'&*, respectively) 

𝑀 The total number of observation locations (or sites). 
𝑗 The index for observation location. 𝑗 = 1, . . . , 𝑀 

𝑆𝑖𝑚%
$(𝑿) The simulation output of variable 𝑘 at location 𝑗at times 𝑡 = 1,… ,𝑁 given 

the parameter vector X  
𝑂𝑏𝑠%$ The observation (data) of variable 𝑘 at location 𝑗 at times 𝑡 = 1,… ,𝑁  
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𝑁  The total time steps of the observation data 
𝑡  The index for time steps. 𝑡 = 1,… ,𝑁  

Function Description 

𝐹(𝑿|𝑲) The calibration objective function given the observation data of variables 
in 𝐾 for calibration. 𝐹(𝑿|𝐾) is a composite function of 𝑓$(𝑿) 

𝑓$(𝑿) 
The error function of variable 𝑘 over multiple site. 𝑓$(𝑿) is a composite 
function of 𝑔%(𝑆𝑖𝑚%

$(𝑋), 𝑂𝑏𝑠%$) for sites 𝑗 = 1, . . . , 𝑀 

𝑔%(𝑆𝑖𝑚%
$(𝑿), 𝑂𝑏𝑠%$) 

Goodness of fit between simulation output 𝑆𝑖𝑚%
$(𝑿) and observation 𝑂𝑏𝑠%$ 

of variable 𝑘 at location j. When k	= 𝑇𝑒𝑚, Normalized Root Mean Square 
Error (NRMSE) is utilized for 𝑔%(•). When k = 𝑉𝑒𝑙CCCCCC⃗ , normalized Fourier 
Norms of Root Mean Square Error (FNs) is used for 𝑔%(•). 

  142 

The set of parameters 𝑿 being calibrated in this study includes nine parameters (𝑑 = 9). Details of these 143 

parameters are provided in Table 2 in section 2.4. The two variables are calibrated in this study are velocity and 144 

temperature for which data exists for different spatial location and time points.  145 

We investigate different calibration formulations, where either one or both of these variables are 146 

calibrated. Consequently, 𝑲 =	 [𝑇𝑒𝑚] means that water temperature observation is used for calibration, i.e., water 147 

temperature is the variable that is being calibrated; 𝑲 =	 [𝑉𝑒𝑙CCCCCC⃗ ] means velocity observation is used for calibration; 148 

𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙CCCCCC⃗ ] means that both temperature and velocity observations are used for model calibration, i.e., both 149 

variables are being calibrated simultaneously. The objective function in each scenario is discussed in section 2.5. 150 

2.2 DYNO for Model Calibration with Multiple Variables 151 

One major issue for model calibration with multiple variables is how to formulate the error of multiple variables 152 

into a single objective function. In practice, different variables (e.g., temperature and velocity) usually have 153 

different physical units and magnitudes of error. Their error functions cannot be summed up directly into a single 154 

objective function if we wish to give the error of each variable an equal weight in the overall objective function. 155 

The respective error functions have to be normalized. There are goodness-of-fit metrics that can normalize the 156 

error of different variables (for example Normalized Root Mean Square Error (NRMSE) and Kling-Gupta 157 

Efficiency (KGE, (Gupta et al., 2009))). However, it is still possible that the highest attainable NRMSE (or KGE) 158 

value (and the distribution of NRMSE (or KGE) value across the parameter space) for one variable maybe be 159 

much higher than the highest attainable NRMSE (or KGE) value (and the distribution of NRMSE (or KGE) value) 160 

of another variable. Hence how to balance such differences among multiple variables is still important even when 161 

the normalized goodness-of-fit metrics are used. 162 

We propose a new general objective function, Dynamically Normalized Objective Function (DYNO), 163 

for the multi-variable calibration problem (e.g., calibrating temperature and velocity simultaneously). DYNO (as 164 

shown in Eq. (3)) normalizes the error of each variable 𝑓$(𝑿) with its upper and lower bound, 𝑓$'()and 𝑓$'&* of 165 

all evaluations found so far 𝝍. Since true values of bounds are not known, 𝑓$'()and 𝑓$'&* are dynamically updated 166 

during the optimization search after each iteration. Mathematical formulation of the multi-variable calibration 167 

problem, with the Dynamically Normalized Objective Function, is as follows: 168 

𝑚𝑖𝑛𝐹 (𝑿|𝑲) = ∑ +!(𝑿).+!
"#$(𝑿)

+!
"%&(𝑿).+!

"#$(𝑿)$∈/                                                                                                                  (3) 169 
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𝑓$'()(𝑿) = 	max	{𝑓$(𝑿)	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑿 ∈ 𝝍}                                                                                                             (4) 170 

𝑓$'&*(𝑿) = 	min	{𝑓$(𝑿)	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑿 ∈ 𝝍}                                                                                                               (5) 171 

where 𝑓$'()(𝑿) and 𝑓$'&*(𝑿) are the maximum and minimum values of 𝑓$(𝑿) for all evaluation in 𝝍, which is a 172 

set of all the evaluations evaluated so far and hence they have to be updated dynamically in each iteration during 173 

optimization. The detailed description of the implementation of Eq. (3) in the algorithm (i.e., PODS) tested in this 174 

study is given in Section 2.6 (the Algorithm Description section). 175 

2.3 Study Site and Data 176 

We use a 3-dimensional model of a tropical reservoir as an example to test the efficiency of DYNO for multi-177 

variable calibration problems and to study the impact of using temperature and/or velocity data for model 178 

calibration. The horizontal boundary of the studied reservoir is given in Fig. 1 (a) and (b). One online water quality 179 

profiler station (STN. A1) was installed in the middle of the reservoir. The water temperature data at the station 180 

are available at various depths. The measured temperature data is used for model calibration in a previous study 181 

(Xia et al., 2021). We use this calibrated model to create synthetic observation data since the real velocity 182 

measurements are not available. We first assume a set of “true” model parameters 𝑿0. The value of 𝑿0 is based 183 

on an expert’s guess and is listed in Table 2.  The spatial and temporal observation data for the hypothetical lake 184 

is synthetically generated based on the “true” model parameters 𝑿0 . The synthetic observation data for the 185 

hypothetical temperate lake is generated by running the simulation model for one year with a vector of model 186 

parameters 𝑿0. The simulation output is then saved hourly in N time steps for multiple variables, i.e., temperature 187 

and velocity (𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙CCCCCC⃗ ]) at 𝑀 locations (specified in Fig. 1). In our study case, 𝑁 = 8761 and 𝑀 = 12 188 

with different depths of five hypothetical sensor stations (STN. A1 and STN. B1-4 as shown in Fig. 1 (a) and (b)).  189 

The saved hourly simulated output time series is denoted as Γ = ^𝑆𝑖𝑚$ (𝑿0), 𝑘 ∈ 𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙CCCCCC⃗ ]_, 190 

which as defined (in Table 1) contains information for each time step, 𝑡 = 1,… ,𝑁. So Γ is used as observation 191 

data for model calibration, i.e., 𝑂𝑏𝑠$ , 𝑘 ∈ 𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙CCCCCC⃗ ]  in Eq. (1). In the test of optimization for calibration, 192 

the true value of the parameter vector 𝑿0 is not provided to the optimization. The optimization will, instead, search 193 

for a best value of 𝑿 that will minimize objective function 𝐹(𝑿|𝑲), where 𝑲 = [𝑇𝑒𝑚], [𝑉𝑒𝑙CCCCCC⃗ ], 𝑜𝑟[𝑇𝑒𝑚, 𝑉𝑒𝑙CCCCCC⃗ ]. So 194 

the goal of automatic calibration via optimization is to obtain an optimum calibration 𝑿∗ that results in simulation 195 

model output, 𝑆𝑖𝑚$(𝑿), 𝑘 ∈ 𝑲, (see Eq. (1) and Eq. (2)) that is close to the synthetical observation time series 196 

data in	𝚪. 197 

The temperature and velocity simulation results based on the “true” model parameters (shown in Table 198 

2) show temporal and spatial variation, as shown in Fig. 1 (a)-(d). Figure 1 (a) and (b) show the temperature and 199 

horizontal velocity distribution at the surface layer. Figure 1 (c) and (d) show the distribution of temperature and 200 

velocity magnitude at STN. A1. There is obvious temperature stratification in the vertical direction (as shown in 201 

Fig. 1(c)). We have the sampling locations across the reservoir where the observations can be used to calibrate 202 

the model parameters. 203 
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 204 
Figure 1. (a) Simulated (with “true” model parameters) temperature spatial distribution with sampling locations. 205 
(b) Simulated velocity spatial distribution with sampling locations. (c) Time-depth plot of simulated temperature 206 
at STN. A1. (d) Time-depth plot of velocity magnitude at STN. A1. Z-A1 is the maximum water depth at station 207 
A1. 208 

2.4 Hydrodynamic Model and Calibration Parameters 209 

The description of the hydrodynamic model is given in Xia et al., (2021). The hydrodynamic model is built with 210 

Delft3D-FLOW (Hydraulics, 2006). The Delft3D-Flow hydrodynamic model used was set up by the water 211 

utilities’ employees and consultants, including the domain construction, input data preparation, and model 212 

configuration. The grid coordinate system is based on Cartesian coordinates (Z-grid), which has horizontal co-213 

ordinate lines that are almost parallel with density interfaces to reduce artificial mixing of scalar properties such 214 

as temperature. The number of grid points in the x-direction is 65, the number of grid points in the y-direction is 215 

67, and the number of layers in vertical is 19. A single 1-year simulation takes about 5 hours to run in serial on a 216 

windows desktop with CPU Intel Core i7-4790. 217 

There are nine tunable model parameters (listed in Table 2) in the model. The first five parameters in 218 

Table 2 are related to the turbulence calculation. The k-ε closure model (Uittenbogaard et al., 1992) was chosen 219 

as the turbulence closure model to calculate the viscosity and diffusivity of the water. The calculation of the 220 

viscosity and diffusivity involves five parameters: 1) background viscosity in horizontal 𝑣23(4$ , 2) vertical 𝑣53(4$, 221 

3) the background eddy diffusivity in horizontal 𝐷23(4$ , 4)  vertical  𝐷53(4$ and 5)  the Ozmidov length 𝐿67. These 222 

parameters affect both the velocity and the temperature. The vertical exchange of horizontal momentum and mass 223 

is affected by vertical eddy viscosity and eddy diffusivity coefficient (Elhakeem et al., 2015). The horizontal 224 

velocities are affected by the horizontal eddy viscosity and diffusivity coefficients (Chanudet et al., 2012). 225 

Chanudet et al. (2012) highlighted that the most impactful parameter for temperature is the background vertical 226 

eddy viscosity and the Ozmidov length 𝐿67 also has a significant effect on the thermal stratification by affecting 227 

the vertical temperature mixing.  The bottom roughness, which has a direct impact on velocity, is computed 228 
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according to Manning formulation with Manning’s coefficient (𝑛) given, which is a parameter that also should be 229 

calibrated.  230 

The next three parameters in Table 2 are related to the simulation of surface heat flux. In the heat flux 231 

model, the evaporative heat flux and heat convection by forced convection is parameterized by the Dalton number 232 

𝑐8	and Stanton number 𝑐2 , respectively, which are also in the list of calibration parameters. The Secchi depth 233 

𝐻9844:&  (also included in Table 2) is another parameter required by the Ocean heat flux model. Secchi depth is 234 

related to the transmission of radiation in deeper water and thus affects the vertical distribution of heat in the water 235 

column (Chanudet et al., 2012). Heat fluxes through the reservoir bottom were not simulated in the current model. 236 

The last parameter is the manning coefficient, which affects the roughness of the bottom of the lake.  237 

All these nine parameters affect (either directly or indirectly) the thermal and current activity in the water 238 

body, and thus, are included in the calibration process. The calibration range for these parameters (given in Table 239 

2) is suggested by Singapore water utilities employees and consultants. 240 

Table 2. Model parameter used in calibration. 𝑿0 denotes the true solution used to generate synthetical 241 
temperature and velocity observations at multi-sites. 242 

Parameter 
vector 

X 
Parameter Description (unit) Physical 

process Range 𝑿0 

x1 𝑣23(4$ Background viscosity in 
horizontal (m2/s) 

3D turbulence 

0.1-1.0a,b,d,e 0.5 

x2 𝐷23(4$ Background eddy diffusivity in 
horizontal (m2/s) 0.1-1.0a,b,d,e 0.5 

x3 𝑣53(4$ Background viscosity in 
vertical (m2/s) 0-0.005a,b,c,e 5.00E-05 

x4 𝐷53(4$ Background eddy diffusivity in 
vertical (m2/s) 0-0.005 a,b,c,e 5.00E-05 

x5 𝐿67 Ozmidov length scale (m) 0-0.05a,b, e 0.015 
x6 𝐻9844:& Secchi depth (m) 

Heat flux 

0.1-2.0a,e,f 1 
x7 𝑐8 Dalton number (-) 0.001-0.002a,b,c,e 0.0013 

x8 𝑐2 Stanton number (-) 0.001-0.002 
a,b,c,e 0.0013 

x9 𝑛 Manning coefficient (m-1/3s) Roughness 0.02-0.03a,b,e 0.022 
aDeltares (2014); bChanudet et al. (2012); cWahl and Peeters (2014); dRåman Vinnå et al. (2017); cSoulignac et 243 
al. (2017); dPijcke (2014) 244 
 245 

2.5 Calibration Problem Formulation 246 

Three scenarios are considered to investigate the impact of model calibration against temperature and/or velocity 247 

observations: 1) calibrating to temperature data only (Cali-Tem), 2) calibrating to velocity data only (Cali-Vel), 248 

and 3) calibrating to both temperature and velocity together (Cali-Both). This corresponds to optimizing the 249 

problem 𝐹(𝑿|𝑲) in Eq. (1), where 𝑲 = [𝑇𝑒𝑚], [𝑉𝑒𝑙CCCCCC⃗ ], and [𝑇𝑒𝑚, 𝑉𝑒𝑙CCCCCC⃗ ] respectively for the three scenarios. The 250 

first two scenarios calibrate to only one variable, and the last scenario calibrates both variables simultaneously. 251 

2.5.1 Model Calibration with One Variable 252 

The objective functions for Cali-Tem and Cali-Vel scenarios are summarized in Eq. (6)-(8) and Eq. (9)-(11), 253 

respectively, where only observations of one variable are included in the calibration.   254 
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𝐹(𝑿|𝑲 = [𝑇𝑒𝑚]) = 𝑓;8'(𝑿)                                                                                                                               (6) 255 

𝑓;8'(𝑿) = ∑ 𝑁𝑅𝑀𝑆𝐸%;8'(𝑿)<
%=>                                                                                                                          (7) 256 

𝑁𝑅𝑀𝑆𝐸%;8'(𝑿) =
?'
(
∑ A9&'),+

,-"(𝑿).B3C),+
,-"D

.(
)/'

'
(∑ B3C),+

,-"(
)/'

                                                                                                      (8) 257 

𝐹(𝑿|𝑲 = [𝑉𝑒𝑙CCCCCC⃗ ]) = 𝑓58EFFFFFFF⃗ (𝑿)                                                                                                                                  (9) 258 

	𝑓58EFFFFFFF⃗ (𝑿) = ∑ 𝐹𝑁𝑠%58E
FFFFFFF⃗ (𝑿)<

%=>                                                                                                                                 (10) 259 

𝐹𝑁𝑠%58E
FFFFFFF⃗ (𝑿) =

?'(∑ H9&'),+
0-12222222⃗ (𝑿).B3C),+

0-12222222⃗ H
.

(
)/'

?'(∑ HB3C),+
0-12222222⃗ H

.
(
)/'

                                                                                                             (11) 260 

where, 𝑁𝑅𝑀𝑆𝐸%;8'(𝑿)  and 𝐹𝑁𝑠%58E
FFFFFFF⃗ (𝑿)  denote the Normalized Root Mean Square Error (NRMSE) of 261 

temperature (described in Eq. (8)), and normalized Fourier Norms (FNs) of velocity vectors (described in Eq. 262 

(11)) at locations j. 𝑆𝑖𝑚I,%
58EFFFFFFF⃗ (𝑿) and 𝑂𝑏𝑠I,%58E

FFFFFFF⃗ denote the simulated velocity given a parameter vector X and observed 263 

velocity, respectively, at time step t and location j.  𝑆𝑖𝑚I,%
58EFFFFFFF⃗ (𝑿) and 𝑂𝑏𝑠I,%58E

FFFFFFF⃗  are 3-dimensional vector. ‖−‖K in Eq. 264 

(11) is the Euclidean norm used to quantify the size of a vector.  265 

The temperature and velocity data are taken at different depths of multiple stations, and their magnitude 266 

at different locations might be different due to spatial variation. Hence, the fitness at each location should be 267 

normalized before being summed into the objective function. For water temperature, Normalized Root Mean 268 

Square Error (NRMSE, as described in Eq. (8)) is used to quantify and normalize the error between the simulated 269 

and observed data. For velocity, normalized Fourier Norms of RMSE (FNs, as described in Eq. (11)) are used to 270 

measure the error between the model-simulated and observed data (corresponding simulated and observed 271 

velocity data points are three-dimensional vectors). The calculation of the Fourier Norm follows the description 272 

in Beletsky et al. (2006), Huang et al. (2010), Paturi et al. (2014) and Råman Vinnå et al. (2017).   273 

2.5.2 DYNO for Model Calibration with Multiple Variables 274 

In the Cali-Both scenario, both temperature and velocity are calibrated simultaneously, which can be treated as a 275 

bi-objective function problem. The objective function in the Cali-Both scenario (as shown in Eq. (12)) applies the 276 

DYNO proposed in Eq. (3). The error functions for water temperature, i.e., 𝑓;8'(𝑿),  and velocity, i.e., 𝑓58EFFFFFFF⃗ (𝑿), 277 

are the objective functions of the Cali-Tem scenario (Eq. (7) and the Cali-Vel scenario (Eq. (10), respectively. 278 

The temperature and velocity errors are dynamically normalized with their upper and lower bounds during the 279 

search of the optimization algorithm before being summed them into a single objective function. The mathematical 280 

formulation of the objective function in the Cali-Both Scenario (based on Eq. (3)) is as follows: 281 

𝐹(𝑿|𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙CCCCCC⃗ ]) = +,-"(𝑿).+,-"
"#$(𝑿)

+,-"
"%&(𝑿).+,-"

"#$(𝑿)
+

+0-12222222⃗ (𝑿).+0-12222222⃗
"#$(𝑿)

+
0-12222222⃗
"%&(𝑿).+

0-12222222⃗
"#$(𝑿)

  (12) 282 

where the maximum and minimum of 𝑓;8'(𝑿) and 𝑓58EFFFFFFF⃗ (𝑿) are updated after each optimization iteration (since 283 

new parameter sets are sampled in each optimization iteration).  As the number of iterations increases, the 284 

denominators in Eq. (12) also increase since the optimization method finds better minimum objective function 285 

values. Hence the individual objective function components (for each variable) scale dynamically to maintain a 286 

roughly equal weight of the terms related to temperature and velocity.  287 
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As defined in Eq. (6) to Eq. (12), three calibration formulations are investigated in this study. Table 3 288 

gives a summary of these calibration formulations. 289 

Table 3. Summary of Objective function formulation for different calibration scenarios. 290 

Scenario  

Name 
Variables used 
for calibration Objective Function 

Objective 
Function 
Formula 

Cali-Tem Temperature 𝐹(𝑿|𝑲 = [𝑇𝑒𝑚]) Eq. (6)~(8) 
Cali-Vel Velocity 𝐹(𝑿|𝑲 = [𝑉𝑒𝑙CCCCCC⃗ ]) Eq. (9)~(11) 

Cali-Both Temperature and 
Velocity 𝐹(𝑿|𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙CCCCCC⃗ ]) Eq. (12) 

2.6 Optimization Methods 291 

2.6.1 PODS 292 

We use a new efficient parallel surrogate algorithm PODS (Xia et al., 2021), a synchronous parallel version of 293 

serial DYCORS introduced by (Regis and Shoemaker, 2013). The serial optimization algorithm, DYCORS, is 294 

designed for global (with multiple local minima) black-box optimizations problems that are high-dimensional and 295 

have computationally expensive objectives (Regis and Shoemaker, 2013). Regis and Shoemaker (2013) show that 296 

serial DYCORS is considerably more efficient than other global optimization methods in obtaining good solutions 297 

with fewer objective function evaluations, which is very important for expensive objective functions like 298 

hydrodynamics models (Regis and Shoemaker, 2013). DYCORS uses RBF (Radial Basis Function) surrogates to 299 

guide the algorithm search towards promising solutions within the solution domain to reduce the number of 300 

evaluations (Regis and Shoemaker, 2007). Furthermore, DYCORS inherits the dynamic coordinate search idea 301 

from DDS (Tolson and Shoemaker, 2007) to improve its effectiveness and efficiency for high dimensional 302 

problems. PODS parallelized the serial DYCORS algorithm by following the general framework of the 303 

Synchronous Master-Worker Parallel Stochastic RBF Method introduced by Regis and Shoemaker (2009). This 304 

parallelization strategy of the algorithm allows simultaneous function evaluations on multiple processors (cores) 305 

in batch mode and can greatly speedup the calibration of computationally expensive models by reducing the 306 

calibration time and making the calibration of some extremely expensive models computationally tractable.  307 

2.6.2 Implementation of Dynamically Normalized Objective Function in PODS. 308 

The implementation procedure for incorporating the Dynamically Normalized Objective Function into the 309 

optimization algorithm PODS is described in Fig. 2. In the PODS algorithm, after each iteration, the sampling 310 

points for the next iteration are generated around the best solution found so far, in terms of the objective function 311 

value (in Eq. (1)). The use of DYNO affects the selection of the best solution found so far and also the fit of the 312 

surrogate model. When only one variable is considered in the objective function, the best solution is the evaluation 313 

with the lowest error between the simulation output and observations of the variable considered. In cases where 314 

multiple variables are considered in calibration, the best solution should be the evaluation after considering the 315 

error of multiple variables (as shown in Eq. (3)). Since the maximum and minimum value of the error of each 316 

variable 𝑓$'()(𝑿)  and 𝑓$'&*(𝑿)  is dynamically changing after new evaluated simulations are available, the 317 

objective function value in Eq. (3) will be recalculated for all evaluated solutions after each iteration. Hence the 318 

surrogate model that is an approximation of the real objective function fitted by (F(X|K), X) is also rebuilt with 319 
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these new objective function values of all evaluated solutions. Refitting of the surrogate model is computationally 320 

inexpensive compared with the runtime of the expensive objective function. Hence it does not affect overall 321 

algorithm runtime.  322 

 323 
Figure 2. Diagram of the implementation of the Dynamic Normalized Objective Function with the parallel 324 
algorithm PODS. P is the number of processors available. The green texts (i.e., steps W3, M1-4) are changes 325 
made on PODS to incorporate DYNO. The rest part follows the original PODS method. 326 

2.7 Experiments Setup 327 

All computational experiments in this study are implemented on a single node on the National Supercomputer 328 

Center (NSCC) of Singapore, which is a Linux-based platform with dual Intel Xeon E5-2690 v3 Processors, with 329 

each node having 24 cores. Hence, we set the number of processors P to be 24. Due to the stochastic nature of the 330 

optimization algorithm (i.e., PODS) used in this study, multiple optimization runs are executed for each calibration 331 

experiment in Table 3. Considering that the calibrated hydrodynamic model in this study is extremely expensive, 332 

we perform three optimization trials for each calibration experiment (see Table 3 for a list of experiments). 333 

Furthermore, to remove any initial sampling bias, each concurrent optimization trial for the three calibration 334 

experiments is initialized with the same Latin Hypercube experimental design (so the calibration in each scenario 335 

is starting from the same initial solutions). We also investigated the performance of different forms of DYNO on 336 

the Cali-Both scenario (i.e., calibrating to both temperature and velocity data). 337 
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3. Numerical Results and Discussion 338 

3.1 Comparison of Calibrating to Temperature and/or Velocity 339 

3.1.1 Final Solutions in Goodness-of-fit Metrics 340 

We first compare the three calibration formulations in terms of goodness-of-fit metrics for both temperature and 341 

velocity. Table 4 summarizes this comparison for the three formulations, i.e., i) Cali-Tem (calibrate temperature 342 

only), ii) Cali-Vel (calibrate velocity only) and iii) Cali-Both (calibrate temperature and velocity simultaneously) 343 

(see definition in Table 3), with PODS used as the optimization algorithm and with a budget of 192 simulations.  344 

The mean as well as the standard deviation of both temperature error 𝑓;8'(𝑿∗|𝑲) (calculated as Eq. (7)) 345 

and velocity error𝑓58EFFFFFFF⃗ (𝑿∗|𝑲) (Calculated as in Eq. (10)) over three trials are reported in Table 4, for all three 346 

calibration scenarios. 𝑿∗ in Table 4 denotes the optimal calibration solution obtained by PODS in each trial for a 347 

given scenario (defined by the set of variables 𝑲).  The solution with the lowest variable error (𝑓;8'(𝑿∗) 348 

or𝑓58EFFFFFFF⃗ (𝑿∗)) is highlighted in bold in Table 4. Table 4 reports the variable errors of both temperature and velocity 349 

for all formulations to understand the impact of ignoring or including a variable in the calibration formulation. 350 

Please note that the temperature error, 𝑓;8'(𝑿|𝑲 = [𝑇𝑒𝑚]) , reported in Table 4, is exactly the calibration 351 

objective function in the Cali-Tem scenario (𝐹(𝑿|𝑲 = [𝑇𝑒𝑚]) as shown in Eq. (7)). Similarly, the velocity error 352 

𝑓58EFFFFFFF⃗ (𝑿|𝑲 = [𝑇𝑒𝑚]) is exactly the calibration objective function in the Cali-Vel scenario (i.e., 𝐹(𝑿|𝑲 = [𝑉𝑒𝑙CCCCCC⃗ ]) 353 

as shown in Eq. (10)). We use the word variable error instead of objective function value when referring to the 354 

values in Table 4 in subsequent discussions since we are in part looking at the impact of using data from one 355 

variable to predict another variable for which we don’t have data.  356 

Table 4 shows that the solution obtained when calibrating to temperature observation only (Cali-Tem) 357 

has smaller temperature errors but larger velocity errors than that if calibrating to velocity observation data only 358 

(Cali-Vel). However, it is surprising that when calibrating to both temperature and velocity (Cali-Both), the 359 

solution obtained by PODS has the lowest temperature and lowest velocity error compared with calibrating to 360 

either temperature observation or velocity observation only. This might be because calibrating to temperature will 361 

help to improve the fit of velocity and vice versa. This makes sense because water temperature and velocity are 362 

two related variables in hydrodynamic modeling, and they are affecting each other. Velocity is the fundamental 363 

variable of hydrodynamics with directional information not provided by temperature; temperature (via the heat 364 

flux model) may also affect the velocity field since it affects water density. This might explain calibrating both 365 

temperature and velocity simultaneously gives the best results. 366 

Table 4. Summary table of the solution obtained by PODS for each scenario (Cali-Both, Cali-Vel, and Cali-Tem). 367 
𝑓;8'(𝑿∗|𝑲) and 𝑓58EFFFFFFF⃗ (𝑿∗|𝑲) are the temperature error𝑓;8'(𝑿∗) and velocity error𝑓58EFFFFFFF⃗ (𝑿∗) (calculated in Eq. (7) 368 
and Eq. (10), respectively, with the optimal solution 𝑿∗obtained in each trial). The mean and standard deviation 369 
of 𝑓;8'(𝑿∗|𝑲) and𝑓58EFFFFFFF⃗ (𝑿∗|𝑲) among three trials are reported. The variable error is bolded in each scenario when 370 
the observation of the variable is included in the calibration in each scenario. (Some terms defined in Table 1) 371 

Scenarios 
The composite error of each variable (Temperature or Velocity) 

𝑓;8'(𝑋∗|𝐾) Mean (Std.) 𝑓58EFFFFFFF⃗ (𝑋∗|𝐾) Mean (Std.) 

Cali-Both 𝐾 = [𝑇𝑒𝑚, 𝑉𝑒𝑙CCCCCC⃗ ] 0.014 (0.003) 1.939 (0.165) 

Cali-Vel 𝐾 = [𝑉𝑒𝑙CCCCCC⃗ ]  0.087 (0.023) 2.809 (0.319) 

Cali-Tem 𝐾 = [𝑇𝑒𝑚] 0.024 (0.005) 5.888 (1.435) 
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3.1.2 Visual Comparison of Calibration Errors 372 

The above analysis is based on the average variable error statistics only (i.e., 𝑓;8'(𝑿∗|𝑲) and𝑓58EFFFFFFF⃗ (𝑿∗|𝑲)), of the 373 

best results obtained from PODS (over multiple trials) for all calibration scenarios. In order to further analyze the 374 

difference between calibration formulations (in terms of their effectiveness in calibrating both temperature and 375 

velocity), we visually compare the best calibration solutions (𝑿∗) obtained by PODS for each scenario, i.e., Cali-376 

Tem, Cali-Vel and Cali-Both. We select one representative optimal solution (𝑿∗) from 3 trials in each scenario 377 

for this comparison.  378 

The objective function value in terms of temperature and velocity composite error (over multiple 379 

locations) (𝑓;8'(𝑿) and 𝑓58EFFFFFFF⃗ (𝑿), as formulated in Eq. (7) and (10), respectively) and the corresponding parameter 380 

configuration (𝑿∗) of the selected solution (among three trials) are reported in Table 5. The horizontal velocity 381 

error 𝛥𝑉𝑒𝑙CCCCCC⃗  (2-dimensional) between simulated velocity 𝑆𝑖𝑚I,%
58EFFFFFFF⃗ (𝑿∗)  and observed velocity 𝑂𝑏𝑠I,%58E

FFFFFFF⃗  (in the 382 

horizontal plane) is plotted as scatter plots of time-series in Fig. 3 (for all calibration scenarios). The temperature 383 

error 𝛥𝑇𝑒𝑚 between simulation temperature 𝑆𝑖𝑚I,%
;8'(𝑿∗) and observed temperature 𝑂𝑏𝑠I,%;8'is plotted as a time 384 

series (for each calibration scenario) in Fig. 4. 385 

The error plots for the two sampling locations at multiple depths (i.e., surface layers of station STN. A1 386 

and STN. B1 as shown in Fig. 1 (a)) are visualized in Fig. 3 and 4 (for one year). Since the velocity error 𝛥𝑉𝑒𝑙CCCCCC⃗  at 387 

a particular time and location is a vector (and not a scalar like temperature) and velocity error in 3 dimensions (for 388 

a time-series) is hard to represent visually, Fig. 3 only plots the velocity error (for one year) 𝛥𝑉𝑒𝑙CCCCCC⃗  in the horizontal 389 

plane (i.e., X and Y directions only). Moreover, each dot represents the error at one point in time within the study 390 

period. 391 

Figure 3 plots the difference between the simulated velocity (for the optimized parameter values obtained 392 

from Cali-Tem (red scatter points), Cali-Vel (black scatter points), and Cali-Both (green scatter points) scenarios) 393 

and observed velocity.  Ideally, the error for each scatter point should be zero, i.e., at the intersection of the two 394 

lines  Figure 3 illustrates that calibrating to temperature data only (red scatter plot) results in the velocity error 395 

𝛥𝑉𝑒𝑙CCCCCC⃗  scatter that diverges from the zero velocity error(i.e., the intersection point of the black lines), in comparison 396 

to the corresponding velocity error scatter plots of solutions obtained from calibrating to velocity data only (Cali-397 

Vel scenario, i.e., black scatter plot) or to both velocity and temperature data (Cali-Both scenario, i.e., green scatter 398 

plot).  399 
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 400 
Figure 3. Scatter plot of velocity error 𝛥𝑉𝑒𝑙CCCCCC⃗ in horizontal (X and Y direction) between simulated velocity 401 
𝑆𝑖𝑚I,%

58EFFFFFFF⃗ (𝑿∗) and observed velocity 𝑂𝑏𝑠I,%58E
FFFFFFF⃗  at location𝑗.Each dot denotes the velocity error𝛥𝑉𝑒𝑙CCCCCC⃗  of location 𝑗 at 402 

one time step. 𝑗 = surface layer of STN. A1 for upper panel and 𝑗 = STN. B1 for lower panel. 𝑿∗is the optimal 403 
solution found by PODS in each scenario: Cali-Tem (red dots); Cali-Vel (black dots) and Cali-Both (green dots) 404 
as listed in Table 6. The “True” solution is on or near the intersection of the two perpendicular black lines. 405 

Figure 4 shows the temperature error of solutions from three different calibration scenarios: Cali-Tem 406 

(red time-series), Cali-Vel (black time-series) and Cali-Both scenarios (green time-series). The errors between 407 

simulated and observed water temperature at the surface, middle and bottom layers of two stations (STN. A1 and 408 

STN B1) are plotted. In general, the temperature error of the solution in Cali-Both scenario is generally close to 409 

zero °C for all the layers and stations shown. The solution in Cali-Tem scenario also got temperature error close 410 

to zero °C at the middle and bottom layer at STN. A1, but it has larger temperature error than solution in Cali-411 

Both at surface layer of STN. A1 and all layers of STN. B1. The solution in Cali-Vel scenario generally 412 

overestimated the water temperature in all locations (i.e., all the surface, middle and bottom layers at both 413 

stations). The temperature error of solution in Cali-Vel is much larger than solution in Cali-Tem and Cali-Both 414 

scenarios in the middle and bottom layer  of both stations. The temperature error at most times, for the Cali-Vel 415 

scenario, is greater than 0.1 °C. This might be because both the Stanton and Dalton numbers are underestimated 416 

in the Cali-Vel scenario when compared with the True solution (𝑿0) (As shown in Table 5). The Dalton number 417 

𝐶8  affects the evaporative heat flux modeling and the Stanton number 𝐶2	influences the convective heat flux 418 

modeling in the Delft3D-FLOW model (Hydraulics, 2006). For the solution in Cali-Vel, a smaller Stanton 419 

number𝐶2= (shown in Table 5) might lead to underestimated convective heat flux, which will lead to the 420 

overestimated of the water temperature. In summary, calibrating to temperature and velocity (i.e., Cali-Both) give 421 

the best solution in terms of temperature error compare with calibrating to temperature or velocity only (i.e., Cali-422 

Tem or Cali-Vel). Calibrating to velocity only (Cali-Vel) gives the worst result in terms of temperature fit.  423 
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 424 
Figure 4. Time-series plots of temperature error 𝛥𝑇 between simulated water temperature and 𝑆𝑖𝑚I,%

;8'(𝑋∗) and 425 
observed water temperature (𝑂𝑏𝑠I,%;8') at location 𝑗	where 𝑗 = surface layer of STN4 for left panel and 𝑗 = STN1 426 
for the right panel. 𝑋∗is the optimal solution found by P-DYCORS in each scenario: Cali-Tem (Red lines); Cali-427 
Vel (Black lines) and Cali-Both (green lines) as listed in Table 5. 428 

 429 

3.2 Optimization Search Dynamics under Different Calibration Scenarios 430 

We further analyze calibration progress of PODS for Cali-Tem, Cali-Vel and Cali-Both, to understand calibration 431 

convergence speeds of the three formulations. The purpose of the calibration progress analysis is to visualize the 432 

Table 5. The composite error of each variable and the corresponding parameter configuration of the selected 
optional solution obtained via PODS in three calibration scenarios (Cali-Tem, Cali-Vel and Cali-Both). True 
solution (𝑿0) defined in Table 2 is given for reference. The parameter symbols are defined in Table 2. 

 
True 

Solution 
(𝑿0) 

Cali-Tem Cali-Vel Cali-Both 

Composite error 
of each variable1 

𝑓;8'(𝑿) 0 0.0202 0.0601 0.0108 
𝑓58EFFFFFFF⃗ (𝑿) 0 5.1945 2.7390 1.8006 

Computed 
Parameter Vector 

(X*) 

𝒗𝑯𝒃𝒂𝒄𝒌  (m2/s) 0.5 0.7107 0.5084 0.4516 
𝑫𝑯
𝒃𝒂𝒄𝒌 (m2/s) 0.5 0.1930 0.8427 0.4562 

𝒗𝑽𝒃𝒂𝒄𝒌 (m2/s) 5.00E-05 3.96E-04 3.40E-05 3.00E-05 
𝑫𝑽
𝒃𝒂𝒄𝒌	(m2/s) 5.00E-05 1.12E-04 6.08E-06 2.98E-05 
𝑳𝒐𝒛	(m) 0.015 0.0110 0.0490 0.0340 

𝑯𝑺𝒆𝒄𝒄𝒉𝒊 (m) 1 0.5902 1.4147 1.1358 
𝒄𝒆 (-) 0.0013 0.0017 0.0013 0.0011 
𝒄𝑯 (-) 0.0013 0.0013 0.0012 0.0013 

𝒏	(m-1/3s) 0.022 0.0229 0.0209 0.0243 
1Smaller variable errors (𝑓;8'(𝑿) (see Eq. (7)) and 𝑓58EFFFFFFF⃗ (𝑿) (see Eq. (10))) are better, and the variable 
errors of the true solution 𝑿0	are zero (for both 𝑓;8'(𝑿) and 𝑓58EFFFFFFF⃗ (𝑿)). 
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improvement in calibration quality of both temperature and velocity variables from the initial Latin Hypercube 433 

Designs (LHD), for all three formulations.  434 

 Figure 5 plots the calibration progress of the three formulations (i.e., Cali-Tem, Cali-Vel and Cali-Both) 435 

using PODS. Each subplot within Fig. 5, corresponds to the different concurrent optimization trials (i.e., trials of 436 

the stochastic optimization method using the same initial points from LHD) for each formulation.  The best 437 

solutions are near the origin of each graph. Moreover, Fig. 5 plots the progress (quantified by visualizing both 438 

temperature and velocity errors) of the best solution found (measured in terms of the objective function value in 439 

each calibration scenario) during the search.  Figure 5 indicates that when calibrating to temperature or velocity 440 

only, the optimization search cannot guarantee the improvement of the fit of another variable. For example, in 441 

Fig. 5 (a), when calibrating to velocity only, the temperature error of the best solution found at the end of the 442 

optimization search stage is worse than the temperature error of the best solution found after initial LHD, even 443 

though there is improvement in terms of velocity fit. Similarly, when calibrating to temperature only, the 444 

improvement on velocity fit is also not significant (for instance, in Fig. 5 (a)). When calibrating to the fit of both 445 

temperature and velocity using the DYNO formulation, the fit of both temperature and velocity improves in all 446 

trials, and the improvement remains balanced during the optimization search. Figure 5 also indicates that the final 447 

solution found in Cali-Both scenarios dominates the best solution found by PODS in Cali-Tem and Cali-Vel in 448 

terms of both temperature and velocity fit.  449 

 450 
Figure 5. Calibration progress plot of the best solution found (in term of objective function value) during 451 
optimization search by PODS when calibrating to temperature only (Cali-Tem), calibrating to velocity only (Cali-452 
Vel), and calibrating to both temperature and velocity (Cali-Both). Three random trials (i.e., T1, T2, and T3) are 453 
plotted in (a), (b), and (c). Lower velocity and temperature error are better. The yellow makers are evaluation 454 
point in initial experiment design using Latin Hypercube Design (LHD). Besides solutions in LHD, only the best 455 
solution in each of the optimization iterations are plotted (i.e., makers lined with lines). The line links the best 456 
previous solution in one iteration to the best solution in next iteration. The arrow indicates the direction from the 457 
previous solution to the next solution. 458 

It is also important to understand the ‘frequency’ or likelihood with which PODS can find good 459 

temperature and velocity calibrations via the three different formulations proposed in this study. Hence, we also 460 

do a comparative frequency analysis of the errors (for velocity or temperature) of all evaluated points (𝑿& , 𝑖 =461 

1,… ,3 ∗ 𝑁'()) from all trials (3 trials) of PODS when using difference calibration formulations (see Table 3). 462 

The purpose of this frequency analysis is to understand the likelihood with which the three different formulations 463 

can obtain good velocity and temperature calibrations. The frequency analysis results are presented in Fig. 6 via 464 
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visualizations of empirical histograms of both velocity error and temperature error (from all solutions of 3 trials 465 

of PODS) for each calibration scenario.  466 

 467 
Figure 6. Distribution plot of all the evaluated points found by PODS (over 3 trials) in terms of temperature 468 
composite error 𝑓;8'(𝑿|𝑲) and velocity composite error𝑓58EFFFFFFF⃗ (𝑿|𝑲) in each scenario: Cali-Tem (𝑲 = [𝑇𝑒𝑚]), 469 
Cali-Vel (𝑲 = [𝑉𝑒𝑙CCCCCC⃗ ]), and Cali-Both (𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙CCCCCC⃗ ]). The number inside each hexagon represent the number 470 
of evaluated points located in that hexagon (e.g. with the combination temperature and velocity error associated 471 
with the corresponding values on the axes.) Darker color in hexagon means larger number of evaluated points 472 
located in that hexagon. The bar plot along the upper x axis (𝑓;8'(𝑿|𝑲)) are the distribution of the evaluation 473 
points in terms of temperature error only. The bar plot along y axis (𝑓58EFFFFFFF⃗ (𝑿|𝑲)) are the distribution of the 474 
evaluation points in terms of velocity error only. The number above the bar shows how many evaluated points 475 
located in that bin. Smaller error (𝑓;8'(𝑿|𝑲) or𝑓58EFFFFFFF⃗ (𝑿|𝑲)) is better. The true solution (𝑓;8'(𝑿0|𝑲), 𝑓58EFFFFFFF⃗ (𝑿0|𝑲)) 476 
is the origin of each subplot.  477 

Figure 6 plots the error distribution of all the evaluated points over three trials (576 evaluations) for each 478 

scenario: Cali-Tem (𝑲 = [𝑇𝑒𝑚]), Cali-Vel (𝑲 = [𝑉𝑒𝑙CCCCCC⃗ ]), and Cali-Both (𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙CCCCCC⃗ ]). The different subplots 479 

in Fig. 6 provide a visualization of the velocity (vertical axis) and temperature (horizontal axis) error distribution 480 
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via hexagonal bin (hexbin) plots (inside the square) and error histograms (outside the square) for each of the 481 

calibration scenarios. The number inside each hexbin denotes the number of evaluated points (for that combination 482 

of temperature error and velocity error) located in that hexbin. Furthermore, the hexbin with a larger number of 483 

evaluated points is highlighted with a darker color shade.  The temperature histogram columns (above the square) 484 

represents the sum of all the hexbins inside the square directly beneath the number in the column. For velocity 485 

histogram (on right side of square), the column height depends on the sum of all the hexbins in the row to the left 486 

of the number. 487 

The temperature and error velocity distribution visualizations of Fig. 6 clearly show that calibrating to 488 

both temperature and velocity data (see Fig. 6 (c), i.e., error distribution for the Cali-Both scenario), provides good 489 

temperature and velocity calibrations with a higher frequency. Figure 6 (c) shows that it is highly likely that both 490 

temperature and velocity errors are lower (indicated by darker hexbins with temperature error 𝑓;8'(𝑿|𝑲)  less 491 

than 0.05 and velocity error 𝑓58EFFFFFFF⃗ (𝑿|𝑲) less than 4).  Consequently, Fig. 6(c) also illustrates that the newly 492 

proposed DYNO (see Eq. (3)) works effectively, in this case, to calibrate multiple variables simultaneously. 493 

Figure 6 also illustrates that it is better to calibrate the hypothetical hydrodynamic model to velocity data 494 

rather than temperature data (see Fig. 6(a) and Fig. 6(b)) (if data for both variables is not available).  Figure 6(a) 495 

indicates that calibrating to temperature only (i.e., the Cali-Tem scenario) results in a high chance that velocity 496 

error would be high (see the velocity error histogram in Fig. 6(a)). However, Fig. 6(b) illustrates that the errors in 497 

temperature when calibrating to velocity only (Cali-Vel) are likely to be relatively small in magnitude (see the 498 

temperature error histogram of Fig. 6(b)). 499 

From the above discussion, we can conclude that calibrating to both temperature and velocity data with 500 

the newly proposed DYNO (implemented within the efficient surrogate algorithm PODS) is effective in obtaining 501 

a balanced calibration of both temperature and velocity variables. In real-world lake hydrodynamic applications, 502 

if available, both temperature and velocity data should be used for lake hydrodynamic model calibration. 503 

However, the very common practice of calibrating only to temperature data is shown to be unable to reproduce 504 

the flow dynamics well. This supports extra effort and expense to collect velocity data is expected to give a 505 

beneficial effect.  506 

3.3 Impact of Different Forms of Normalization on the Performance of DYNO 507 

This section investigates the impact of using different forms of normalization in the new objective function DYNO 508 

on optimization search performance. In Eq. (3), the error of each variable is normalized by the maximum and 509 

minimum values 𝑓$'()(𝑿) and 𝑓$'&*(𝑿) of 𝑓$(𝑿) among all the evaluations evaluated so far. One concern of 510 

using the maximum value 𝑓$'()(𝑿) is that the objective function can be affected by extremely bad evaluations 511 

points. Another approach is to use the median value 𝑓$'8Y&(*(𝑿) of 𝑓$(𝑿) among all the evaluations evaluated so 512 

far as a replacement of 𝑓$'()(𝑿) to normalize the error of each variable. We refer to DYNO using the median 513 

value 𝑓$'8Y&(*(𝑿)  as DYNO-N2 (as shown in Eq. (13)) to differentiate it from DYNO using the maximum value 514 

𝑓$'()(𝑿) (as shown in Eq. (3)), which we refer to as DYNO-N1 in the following text.  515 

𝐹(𝑿|𝑲) = ∑ +!(𝑿).+!
"#$(𝑿)

+!
"-4#%$(𝑿).+!

"#$(𝑿)$∈𝑲                                                                                                                       (13) 516 

𝑓$'8Y&(*(𝑿) = 	med	{𝑓$(𝑿)	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑿 ∈ 𝝍}                                                                                                       (14) 517 

 518 
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where 𝑓$'8Y&(*(𝑿)  and 𝑓$'&*(𝑿)  are the median and minimum values of 𝑓$(𝑿)  among all the evaluations 519 

evaluated so far, and hence they are updated dynamically in each iteration during optimization. 520 

 The implementation of DYNO-N2 is similar to the implementation of DYNO-N1 (Eq. (3)).  The only 521 

change is replacing the calculation related to 𝑓$'()(𝑿) with 𝑓$'8Y&(*(𝑿). We tested relative efficacies of DYNO-522 

N1 and DYNO-N2, by comparing three calibration trials, of each DYNO variant (using PODS), where each 523 

concurrent calibration trial was initialized using the same LHD. Figure 7 shows the progress of PODS with the 524 

two forms of DYNO as the objective functions. Figure 7 is similar in design to Fig. 5, and indicates that both 525 

forms of DYNO are able to balance the calibration on temperature and velocity. There are two trials where PODS 526 

with DYNO-N1 (using 𝑓$'()(𝑿) for normalization) found a better solution than PODS with DYNO-N2 (using 527 

𝑓$'8Y&(*(𝑿) for normalization).  528 

The results here indicate that DYNO-N1 seems not adversely affected by the bad solution. A reason for 529 

this may be that PODS typically do not generate extremely bad solutions (i.e., outlier solutions with extremely 530 

large errors), since algorithm search is concentrated around the best solution found so far. However, if other 531 

optimization algorithms are used for calibration especially algorithms that explore the search space more, there 532 

maybe a higher likelihood of encountering outlier /extremely bad solutions during optimization search. 533 

Consequently, the performance of such algorithm with DYNO-N2 might be better than with DYNO-N2, which 534 

might need further investigation. The outlier solutions here mean solutions (obtained during the optimization 535 

search phase) that have much larger errors than other solutions found so far. Outlier or extremely bad solutions 536 

are also like for calibration problems where the model output is very sensitive to the calibration parameters (i.e., 537 

a small change in model parameters can cause huge changes in the model output that leads to much worse 538 

solutions).   539 

 540 

 541 
 542 

Figure 7. Calibration progress plot in terms of the best solution found during optimization search when using 543 
DYNO-N1 and DYNO-N2 as the objective function. Three random trials (T1, T2, and T3) are plotted in (a), (b), 544 
and (c). Lower velocity and temperature error are better. Figure 7 uses the same format as Figure 5. 545 

3.4 Value of Velocity Measures in 3D Lake Model Calibration 546 

High quality hydrodynamic simulations (e.g., thermal structure, current velocities, flow advection and vertical 547 

mixing) are vital for accurate spatial modelling of water quality in lakes. The hydrodynamic process influences 548 

the transport & production or transformation of biological and chemical components. Hence, if the simulation of 549 
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flow dynamics is not adequately accurate, there is no way to achieve accuracy in the simulation of water quality. 550 

Previous studies use mostly temperature observations for the 3D lake hydrodynamic model calibration. Whereas, 551 

velocity data is less commonly used compared with temperature data for model calibration.  552 

Our results in section 3.1 indicate that calibrating to temperature data only cannot guarantee accuracy in  553 

velocity simulation. Not using velocity data in model calibration (i.e., using temperature data in model calibration 554 

only) thus, may lead to large velocity errors (as indicated in the Figure 3). The inclusion of velocity measurements 555 

in calibration not only reduces velocity error but also helps improving the temperature fit. For example, in Fig. 4, 556 

when calibrating to both temperature and velocity data, the temperature error is smaller than the temperature error 557 

when calibrating to temperature data only. This is most obvious in the surface layers of both STN. A1 and STN. 558 

B1, where the temperature error when calibrating to both temperature and velocity (i.e., Cali-Both) is much 559 

smaller compared to calibrating to temperature only (i.e., Cali-Vel). The better result (better fit of temperature as 560 

well as velocity) in Cali-Both demonstrates the effectiveness of using velocity measures in 3D hydrodynamic lake 561 

model calibration. The comparison of calibrated parameter values in Cali-Both and Cali-Tem scenarios (in Table 562 

5) also demonstrates the value of using velocity data besides temperature data in model calibration. In Table 5, 563 

we can see that the calibrated value of viscosity and diffusivity parameters in Cali-Both is much closer to the true 564 

value than that in Cali-Tem. This shows that the use of velocity measures helps to improve the calibrate of these 565 

viscosity and diffusivity parameters.   566 

The risk of using only temperature data without velocity data, even for accurately simulating water 567 

temperature, is that temperature simulation is affected by both the flow dynamics and the heat transfer process. 568 

The fit of temperature data is a result of the combination of these two processes. However, the fit of the 569 

temperature data cannot guarantee accurate simulation of each of the processes,  though accurate simulation of 570 

each process does guarantee the fit of temperature data. The velocity observation hence is valuable to help improve 571 

the flow dynamics simulation of the model, which is not only important for temperature simulation but also other 572 

water quality substances simulation (e.g., these biological and chemical components). Our research implication 573 

of the use of velocity observations is also in line with the study of Baracchini et al. (2020), where they also suggest 574 

have both temperature and current velocity for a complete system calibration. 575 

3.5 Possibilities for Other Applications 576 

In this study, we only demonstrate how DYNO can be incorporated into PODS parallel surrogate global 577 

optimization algorithm. (see section 2.6).  However, the new objective function DYNO could also be  easily 578 

utilized with other heuristic optimization methods (e.g., serial or parallel versions of Genetic Algorithm (Davis, 579 

1991) and Differential Evolution (Tasoulis et al., 2004)) for effectively calibrating other multi-variables 580 

calibration problems. We have not provided a precise methodology for incorporating DYNO into other 581 

optimization methods though, since incorporation of DYNO depends on the structure of an optimization method, 582 

and structures of optimization methods vary a lot. We did illustrate in section 2.6 and Figure 3 on how components 583 

of parallel PODS are modified in order to use DYNO. Other optimization methods could be modified in a similar 584 

way to incorporate DYNO for use in multi-variable calibration. 585 

 Also, there are numerous other model calibration paradigms in general hydrology and water resources 586 

(besides the hydrodynamic model calibration) where simultaneous multi-variable and multi-site calibrations are 587 

required. Some examples of such multi-variable & multi-site calibration problems include watershed model 588 
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calibration (Franco et al., 2020; Odusanya et al., 2019), seawater intrusion model calibration (Coulon et al., 2021), 589 

and water quality model calibration (Xia and Shoemaker, 2021) etc. In these problems, there are usually multiple  590 

constituents (e.g., substances) to be calibrated and the observations are usually available at multiple locations. Our 591 

new DYNO can potentially be used to calibrate them simultaneously. A popular calibration strategy for such 592 

problems in general hydrology is to use multi-objective calibration where it is assumed that a trade-off exists 593 

between multiple hydrologic responses (e.g., high flow, low flow, water balance, water quality etc.). 594 

Using multi-objective algorithms, however, for calibrating hydrologic and watershed quality models may 595 

not be the most suited strategy for some case studies because i) multi-objective calibration can be computationally 596 

intensive if underlying simulations are computationally expensive and ii) meaningful trade-offs between different 597 

objectives may not exist. Kollat et al. (2012) demonstrate that prior multi-objective calibration exercises may have 598 

over-reported the number of meaningful trade-offs in hydrologic model calibration. DYNO is a reasonable 599 

alternative to classical multi-objective calibration in calibration problems where the trade-off between multiple 600 

component calibration objectives is not significant, because i) a balance between multiple constituent objectives 601 

is maintained with DYNO and ii) a single objective algorithm can be used with DYNO, which is computationally 602 

more efficient than a multi-objective algorithm. This is especially true for multi-constituent watershed model 603 

calibration problems where the achievable objective functions ranges for different constituents (e.g., flow, 604 

sediment, phosphorus etc.) are quite different. Multiple prior studies (Moriasi et al., 2012; Moriasi et al., 2015) 605 

highlight that achievable ranges of statistical calibration measures (e.g., Nash Sutcliffe Efficiency (NSE), bias 606 

etc.) are significantly different for different constituents (e.g., streamflow, sediment, total phosphorus etc.). 607 

Moriasi et al. (2015) note that in most watershed model case studies, the achievable range of NSE for streamflow 608 

is higher than the achievable range for total phosphorus. Hence, DYNO may be extremely effective in balancing 609 

simultaneous calibration of streamflow and phosphorus for such case studies. We believe that there is immense 610 

potential in the application of DYNO for multi-constituent watershed model calibration.  611 

4 Conclusions 612 

We conclude that the Dynamically Normalized Objective Function we propose is a new effective way to balance 613 

the calibration to different variables (i.e., temperature and velocity) in optimization-based -calibration. It is 614 

possible that the magnitudes of goodness-of-fit measures for different variables are very different (which may 615 

fluctuate during the optimization search), and thus the optimization search cannot maintain balance between 616 

different variables. Hence DYNO dynamically modifies the objective function, for multi-variable calibration, so 617 

that the error for each variable is being dynamically normalized in each iteration. This is to ensure that the search 618 

is giving approximately equal weight to each variable (e.g., velocity and temperature).  619 

The proposed DYNO is tested in this study for simultaneous temperature and velocity calibration of a 620 

lake model. Moreover, DYNO is integrated with the PODS algorithm for testing on expensive lake hydrodynamic 621 

model calibration in parallel. Results indicate that using DYNO ensures a balanced calibration between 622 

temperature and velocity. We provide a detailed analysis to illustrate that DYNO balances the weight between 623 

different objectives dynamically, and thus allows for a balanced parameter search during optimization.  624 

We conclude that calibrating to the error of one variable (either temperature or velocity) cannot guarantee 625 

the goodness-of-fit of another variable. Of course, the most accurate predications can be obtained by having both 626 

temperature and velocity data. These comparisons are possible because we have, via synthetic simulation, the true 627 
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solution for the lake model.  Our analysis suggests that in real practice, both temperature and velocity data are 628 

important for model calibration. The common practice of calibrating only to temperature data is not sufficient to 629 

reproduce the flow dynamics accurately and extra effort and expense to collect velocity data is expected to give a 630 

beneficial effect. 631 

There are many possible future areas for application of this method. The Dynamically Normalized 632 

objective function (DYNO) would be effective for other multi-variable and multi-site calibration problems 633 

(especially for problems with many variables). Future research could apply the DYNO methods on other problems 634 

and using other optimization algorithms. 635 
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