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Abstract. This study introduced a novel Dynamically Normalized Objective Function (DYNO) for multi-variable 11 

(i.e., temperature and velocity) model calibration problems. DYNO combines the error metrics of multiple 12 

variables into a single objective function by dynamically normalizing each variable's error terms using information 13 

available during the search. DYNO is proposed to dynamically adjust the weight of the error of each variable 14 

hence balancing the calibration to each variable during optimization search. The DYNO is applied to calibrate a 15 

tropical hydrodynamic model where temperature and velocity observation data are used for model calibration 16 

simultaneously. We also investigated the efficiency of DYNO by comparing the calibration result obtained with 17 

DYNO to the result obtained through calibrating to only temperature and to the result obtained through calibrating 18 

to only velocity. The result indicates that DYNO can balance the calibration in terms of water temperature and 19 

velocity and that calibrating to only one variable (e.g., temperature or velocity) cannot guarantee the goodness-20 

of-fit of another variable (e.g., velocity or temperature) in our case. Our study implies that in practical application, 21 

for an accurate spatially distributed hydrodynamic quantification, including direct velocity measurements are 22 

likely to be more effective than using only temperature measurements for calibrating a 3D hydrodynamic model.  23 

Our example problems were computed with a parallel optimization method PODS but DYNO can also be easily 24 

used in serial applications. 25 

1. Introduction 26 

Lake hydrodynamic models simulate the hydrodynamic or thermodynamic processes in lakes and reservoirs that 27 

are important for simulating water quality in aquatic eco-systems (Chanudet et al., 2012). These simulation models 28 

(e.g., hydrodynamic modelling) play a critical role in managing water bodies, as they are built to support the 29 

simulation of the spatial and temporal distributions of specific water quality variables (e.g., nutrients, chlorophyll-30 

a), and to study the response of a water body to different future management scenarios. The parameters of these 31 

models usually need to be calibrated to measured data to adequately represent local effects and hydrodynamic 32 

processes. Model calibration is a vital step in complex hydrodynamic modelling of lakes and other aquatic 33 

systems.  34 

Model calibration of lake hydrodynamic models is mainly done manually (also called trial and error), 35 

where experts tune the parameters and simultaneously evaluate the goodness-of-fit between the simulation output 36 

and observations. This process is subjective, time-intensive and requires extensive expert knowledge (Afshar et 37 
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al., 2011; Xia et al., 2021; Solomatine et al., 1999; Fabio et al., 2010; Baracchini et al., 2020). The challenges 38 

associated with manual calibration have encouraged the application of auto-calibration to lake hydrodynamic 39 

models, where the calibration is set up as an inverse problem to minimize the error between the simulation and 40 

observations. Some studies (e.g., Gaudard et al. (2017), Luo et al. (2018), Ayala et al. (2020) and Wilson et al. 41 

(2020)) have applied automatic calibration to one-dimensional hydrodynamic lake models where water 42 

temperature is the variable that is simulated and calibrated. These one-dimensional models are relatively cheap to 43 

run, allowing the use of automatic calibration methods that typically require many simulation evaluations to 44 

determine suitable parameter sets (e.g., differential evolution used in Luo et al. (2018) and Monte Carlo sampling 45 

used in Ayala et al. (2020)). However, one-dimensional models are unable to simulate the horizontal spatial 46 

distribution and cannot capture the 3D processes, and thus may not be suitable for certain studies. Consequently, 47 

2-dimensional or 3-dimensional models are preferred for studying the spatial-temporal distribution of water 48 

variables and are increasingly used to study lakes around the world (Chanudet et al., 2012; Galelli et al., 2015; 49 

Hui et al., 2018; Soulignac et al., 2017; Wahl and Peeters, 2014; Xu et al., 2017; Baracchini et al., 2020) . The 50 

calibration of 3-dimensional models, though, is considerably more challenging than calibration of one-51 

dimensional models, since 3-dimensional models are significantly more computationally expensive and also 52 

involve more complicated physical processes (such as advection of flows).  53 

The computationally expensive character of 3-dimensional lake models makes traditional optimization 54 

methods, such as differential evolution and Monte Carlo sampling, unsuitable for automatic calibration because 55 

these methods usually require many evaluations to get an acceptable solution. Surrogate-based optimization is 56 

highly suitable for such problems (Bartz-Beielstein and Zaefferer, 2017; Lu et al., 2018; Razavi et al., 2012) and 57 

recent studies have applied surrogate-based optimization methods to parameter estimation of hydrodynamics 58 

models. Surrogate-based optimization methods use a cheap-to-run surrogate approximation model (of the 59 

calibration objective) fitted with all known (i.e., already evaluated) values of the original expensive objective 60 

function, to guide the optimization search and reduce the number of evaluations required on the expensive 61 

simulations. For example, Xia et al. (2021) proposed a new optimization method called PODS (parallel 62 

optimization with dynamic coordinate search using surrogates) suitable for computationally expensive problems, 63 

and applied it to automatic calibration of a three-dimensional lake hydrodynamic models. More elaborate 64 

discussions on surrogate-based optimization algorithms can be found in Xia et al. (2021), Xia and Shoemaker 65 

(2021), Razavi et al. (2012), Bartz-Beielstein and Zaefferer (2017) and Haftka et al. (2016). 66 

Computational intensity is not the only critical challenge associated with parameter estimation of 3-67 

dimensional lake hydrodynamic models. Parameter estimation of these models is also a multi-site & multi-variable 68 

calibration problem, i.e., observation data is usually available at multiple locations and the underlying models 69 

simulate multiple variables (e.g., temperature and velocity). Moreover, simultaneous calibration of multiple 70 

variables is desired due to complex interactions between the different variables. For instance, temperature and 71 

velocity are inter-dependent variables of a lake hydrodynamic model, since water temperature affects the 72 

movement of water, and water velocity affects the distribution of water temperature. However, most prior research 73 

studies have calibrated hydrodynamic models to only temperature. This might be because temperature 74 

measurements are relatively less expensive to get compared with velocity measurements and often temperature 75 

measurements are available to help predict water quality phenomena. Wahl and Peeters (2014) use the measured 76 

water temperatures to calibrate a 3-dimensional hydrodynamic model of Lake Constance. Kaçıkoç and Beyhan 77 
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(2014) calibrate the temperature of Lake Egirdir hydrodynamic model, the flow simulation of which is used for 78 

the lake water quality modeling. Marti et al. (2011) and  Xue et al. (2015) also only used temperature data for lake 79 

hydrodynamic model calibration. Moreover, these studies use manual calibration for parameter estimation. Xia et 80 

al. (2021) use automatic calibration for parameter estimation, but only use water temperature observations in the 81 

calibration process. Reproducing water level is also a parameter estimation approach that pseudo-considers flow 82 

dynamics in calibration; however, a calibrated model that correctly simulates observed water level does not 83 

necessarily reproduce the observed 3D flow field accurately (Wagner and Mueller, 2002; Parsapour-Moghaddam 84 

and Rennie, 2018). Amadori et al. (2021) investigated the use of different sources of temperature data (from in-85 

suite observations, multi-site high-resolution profiles and remote sensing data) to compensate for the scarcity of 86 

velocity measurements. This is a practicable approach when there is no velocity data available and there are such 87 

different sources of temperature data available. However, when there is no high-quality remote sensing data (for 88 

example, because of cloud) or a large amount of high-resolution profiles of temperature measurement it is still 89 

challenging to verify the spatial simulation of hydrodynamic quantities. 90 

Lake hydrodynamic models predict the velocities throughout a water body. Accurate velocity simulations 91 

are thus important to understand the spatial distribution of water quality problems (e.g., algal blooms) in sizeable 92 

lakes. Hence, during the calibration of these models, it is useful to know whether efforts to measure velocity 93 

directly are justifiable even if temperature data is already available. We will examine the extent to which direct 94 

measurement of velocities justifies the extra effort by giving more accurate results for hydrodynamics models. 95 

We will also look at the error of the spatial distribution of hydrodynamics associated with calibrating to 96 

temperature only, which is rarely studied in the literature. 97 

There are a few studies that attempt to calibrate lake hydrodynamic models to both temperature and 98 

velocity. Chanudet et al. (2012) attempt to calibrate both temperature and velocity sequentially (using manual 99 

calibration), i.e., they calibrate water temperature first and then the current velocities. Baracchini et al. (2020) 100 

performed two sequential steps in the automatic calibration of temperature and velocity, and the velocity 101 

calibration is based on the results obtained from temperature calibration. However, one problem with such two-102 

step sequential approaches, either by manual or auto-calibration, is that the calibration of the second variable 103 

might significantly alter the calibration quality of the first variable. This is especially true for multi-variable 104 

calibration problems, where the multiple variables being calibrated are sensitive to the parameters being 105 

calibrated. Other examples of such multi-variable calibration problems include watershed model calibration 106 

(Franco et al., 2020) and seawater intrusion model calibration (Coulon et al., 2021), among others. These multi-107 

variable problems require calibration frameworks that allow simultaneous calibration of all variables rather than 108 

calibrating one and then the second. 109 

There are prior studies that simultaneously calibrate both temperature and velocity variables of 110 

hydrodynamic models. However, these use a trial and error (manual) mechanism for calibration (Råman Vinnå et 111 

al., 2017; Soulignac et al., 2017; Jin et al., 2000; Paturi et al., 2014). Manual calibration of multiple hydrodynamic 112 

variables simultaneously, is even harder than calibration of a single variable. A key challenge for automatic 113 

calibration of multi-variable calibration problems is in defining a suitable objective function. Traditional 114 

approaches typically formulate the goodness-of-fit of multiple variables into a single objective function by adding 115 

weights between the goodness-of-fit of multiple variables and solve the problem with single objective 116 

optimization (SOO) techniques (Afshar et al., 2011; Pelletier et al., 2006). However, a drawback of this approach 117 



4 

 

is that the relative error magnitude of each variable of the new solutions found will probably vary during the 118 

search making it difficult to determine appropriate weights since they need to be determined / defined a prior, i.e., 119 

before optimization.  120 

Another approach for calibration of multi-variables is using multi-objective optimization (MOO) 121 

techniques (Afshar et al., 2013). However, multi-objective techniques are commonly used to optimize multiple 122 

sub-objectives that have a trade-off between each sub-objective (Akhtar and Shoemaker, 2016; Reed et al., 2013; 123 

Alfonso et al., 2010; Giuliani et al., 2016; Herman et al., 2014). While for the multi-variable hydrodynamic 124 

calibration problems, it is not apparent that there is usually a trade-off between the fit of multiple variables. 125 

Moreover, MOO is considerably more computationally difficult than SOO and typically requires many more 126 

objective function evaluations. Thus, MOO may not be desired for computationally expensive calibration 127 

problems, especially when a significant trade-off between the objectives may not be present. Consequently, multi-128 

variable calibration utilizing efficient SOO algorithms, while balancing the calibration to each variable equally 129 

during calibration, is a research area of significant value. 130 

We introduce a new Dynamically Normalized Objective Function (DYNO) for automatic multi-variable 131 

calibration. The error of each variable (e.g., temperature and velocity of hydrodynamic models) is dynamically 132 

normalized by using the information about variable error of the evaluations found during the optimization search 133 

process. In this way, the balance between the calibration of each variable is dynamically adjusted. We tested the 134 

efficiency of DYNO on a computationally expensive hydrodynamic lake model of a tropical reservoir, which 135 

takes 5 hours to run per simulation. DYNO is coupled into a recent parallel surrogate optimization algorithm, 136 

PODS (Xia et al., 2021), and successfully applied for the calibration of multiple variables of the hydrodynamic 137 

model. Using DYNO, we investigate the impact of using temperature and/or velocity observations on model 138 

accuracy. Since velocity measurements are usually not included in standard lake monitoring systems (whereas 139 

temperature measurements are included), real velocity observations are seldom available (Amadori, et al, 2021). 140 

Real observations for velocity are not available in our case as well. Hence, we conducted our investigation based 141 

on synthetic observations generated from a calibrated model. It is worthwhile to revisit and validate this analysis 142 

with real velocity measurements if they are available in the future.   143 

2. Methodology 144 

2.1 Multi-variable Calibration Problems Description 145 

The calibration problems investigated in this study are multi-site (i.e., observations are available from multiple 146 

locations), multi-variable (e.g., temperature and velocity for hydrodynamics) problems, and are defined 147 

mathematically as follows (the variable and function definition are given in Table 1):  148 

min
𝑿∈Θ

𝐹(𝑿|𝑲) = 𝐹({𝑓𝑘(𝑿)|𝑘 ∈ 𝑲})                                                                                                                        (1) 149 

𝑓𝑘(𝑿) = 𝑓𝑘({𝑔𝑗(𝑺𝒊𝒎𝑗
𝑘(𝑿), 𝑶𝒃𝒔𝑗

𝑘)|𝑗 = 1,⋯ ,𝑀})                                                                                          (2) 150 

Note that the notation {𝑧𝑖} in Eq. (2) is simply meant to imply the function on the left depends on the finite series 151 

of quantities inside the braces {•}.  152 

Table 1. Notation and definitions of variables and functions in Eq. (1) and (2). 153 

Variable Description 
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K 

The set of variables whose observation data is used in calibration. For 

example, 𝑲 = [𝑇𝑒𝑚] means that water temperature observation is used for 

calibration, i.e., water temperature is the variable that is being calibrated; 

𝑲 = [𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ] means velocity observation is used for calibration; 𝑲 =

[𝑇𝑒𝑚, 𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ] means that both temperature and velocity observations are used 

for model calibration 

𝑘 
The symbol for elements in K variable (e.g., water temperature or velocity, 

k = Tem or k = 𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ). 𝑘 ∈ 𝑲 

X 
A d dimensional parameter vector restricted to parameter space Θ, where d 

is the number of parameters to be optimized. X = (x1, x2, …, xd). 

𝛩 
The parameter space is defined by the upper and lower limits on each 

parameter (𝑿𝑚𝑎𝑥and 𝑿𝑚𝑖𝑛, respectively) 

𝑀 The total number of observation locations (or sites). 

𝑗 The index for observation location. 𝑗 = 1, . . . , 𝑀 

𝑆𝑖𝑚𝑡,𝑗
𝑘 (𝑿) 

The simulation output of variable 𝑘 at location 𝑗at time step t given the 

parameter vector X  

𝑂𝑏𝑠𝑡,𝑗
𝑘  The observation (data) of variable 𝑘 at location 𝑗 at time step t. 

𝑺𝒊𝒎𝑗
𝑘(𝑿) 

The simulation time series output of variable 𝑘 at location 𝑗at times 𝑡 =
1,… , 𝑁 given the parameter vector X.  𝑺𝒊𝒎𝑗

𝑘(𝑿) =

(𝑆𝑖𝑚1,𝑗
𝑘 (𝑿), … , 𝑆𝑖𝑚𝑁,𝑗

𝑘 (𝑿)).  

𝑶𝒃𝒔𝑗
𝑘 

The observation (data) time series of variable 𝑘 at location 𝑗 at times 𝑡 =
1,… , 𝑁. 𝑶𝒃𝒔𝑗

𝑘 = (𝑂𝑏𝑠1,𝑗
𝑘 , … , 𝑂𝑏𝑠𝑁,𝑗

𝑘 ). 

𝑁  The total time steps of the observation data 

𝑡  The index for time steps. 𝑡 = 1,… , 𝑁  

Function Description 

𝐹(𝑿|𝑲) 
The calibration objective function given the observation data of variables 

in 𝐾 for calibration. 𝐹(𝑿|𝐾) is a composite function of 𝑓𝑘(𝑿) 

𝑓𝑘(𝑿) 
The error function of variable 𝑘 over multiple site. 𝑓𝑘(𝑿) is a composite 

function of 𝑔𝑗(𝑺𝒊𝒎𝑗
𝑘(𝑿), 𝑶𝒃𝒔𝑗

𝑘) for sites 𝑗 = 1, . . . , 𝑀 

𝑔𝑗(𝑺𝒊𝒎𝑗
𝑘(𝑿), 𝑶𝒃𝒔𝑗

𝑘) 

Goodness of fit between time series simulation output 𝑺𝒊𝒎𝑗
𝑘(𝑿) and 

observation 𝑶𝒃𝒔𝑗
𝑘 of variable 𝑘 at location j. When k = 𝑇𝑒𝑚, Normalized 

Root Mean Square Error (NRMSE) is utilized for 𝑔𝑗(•). When k = 𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ , 

normalized Fourier Norms of Root Mean Square Error (FNs) is used for 

𝑔𝑗(•). 

  154 

The set of parameters 𝑿 being calibrated in this study includes nine parameters (𝑑 = 9). Details of these 155 

parameters are provided in Table 2 in section 2.4. The two variables calibrated in this study are velocity and 156 

temperature, for which data exists for different spatial locations and time points.  157 

We investigate different calibration formulations, where either one or both of these variables are 158 

calibrated. Consequently, 𝑲 = [𝑇𝑒𝑚] means that water temperature observation is used for calibration, i.e., water 159 

temperature is the variable that is being calibrated; 𝑲 = [𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗  ] means velocity observation is used for calibration; 160 

𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ] means that both temperature and velocity observations are used for model calibration, i.e., both 161 

variables are being calibrated simultaneously. The objective function in each scenario is discussed in section 2.5. 162 

2.2 DYNO for Model Calibration with Multiple Variables 163 

One major issue for model calibration with multiple variables is how to formulate the error of multiple variables 164 

with a single objective function. In practice, different variables (e.g., temperature and velocity) usually have 165 

different physical units and magnitudes of error. Their error functions cannot be summed up directly into a single 166 

objective function if we wish to give the error of each variable an equal weight in the overall objective function. 167 
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The respective error functions have to be normalized. There are goodness-of-fit metrics that can normalize the 168 

error of different variables (for example, Normalized Root Mean Square Error (NRMSE) and Kling-Gupta 169 

Efficiency (KGE, (Gupta et al., 2009))). However, it is still possible that the highest attainable value (or 170 

distribution) of NRMSE (or KGE) across the parameter space for one variable maybe be much higher than the 171 

highest attainable value (or distribution) of NRMSE (or KGE) of another variable. Hence, how to balance such 172 

differences among multiple variables is still important even when the normalized goodness-of-fit metrics are used. 173 

We propose a new general objective function, DYNO, for the multi-variable calibration problem. Let 𝝍 174 

be the set of evaluations found so far by the optimization, DYNO (as shown in Eq. (3)) normalizes the error of 175 

each variable 𝑓𝑘(𝑿) with its upper and lower bound, 𝑓𝑘
𝑚𝑎𝑥and 𝑓𝑘

𝑚𝑖𝑛 of all evaluations in 𝝍. Since true values of 176 

bounds are not known, 𝑓𝑘
𝑚𝑎𝑥and 𝑓𝑘

𝑚𝑖𝑛 are dynamically updated during the optimization search after each iteration. 177 

The Mathematical formulation of the multi-variable calibration problem, with DYNO, is as follows: 178 

𝑚𝑖𝑛 𝐹 (𝑿|𝑲) = ∑
𝑓𝑘(𝑿)−𝑓𝑘

𝑚𝑖𝑛(𝑿)

𝑓𝑘
𝑚𝑎𝑥(𝑿)−𝑓𝑘

𝑚𝑖𝑛(𝑿)𝑘∈𝐾                                                                                                                  (3) 179 

𝑓𝑘
𝑚𝑎𝑥(𝑿) =  max {𝑓𝑘(𝑿) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑿 ∈ 𝝍}                                                                                                             (4) 180 

𝑓𝑘
𝑚𝑖𝑛(𝑿) =  min {𝑓𝑘(𝑿) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑿 ∈ 𝝍}                                                                                                               (5) 181 

where 𝑓𝑘
𝑚𝑎𝑥(𝑿) and 𝑓𝑘

𝑚𝑖𝑛(𝑿) are the maximum and minimum values of 𝑓𝑘(𝑿) for all evaluations in 𝝍 .  𝑓𝑘
𝑚𝑎𝑥(𝑿) 182 

and 𝑓𝑘
𝑚𝑖𝑛(𝑿) have to be updated dynamically in each iteration during optimization. The detailed description of 183 

the implementation of Eq. (3) in the algorithm (i.e., PODS) tested in this study is given in Section 2.6 (the 184 

Algorithm Description section). 185 

2.3 Study Site and Data 186 

We use a 3-dimensional model of a tropical reservoir as an example to test the efficiency of DYNO for multi-187 

variable calibration problems and to study the impact of using temperature and/or velocity data for model 188 

calibration. The horizontal boundary of the studied reservoir is given in Fig. 1 (a) and (b). The reservoir has over 189 

250 ha of water surface with a maximum depth of about 22 meters. One online water quality profiler station (STN. 190 

A1) was installed in the middle of the reservoir. The water temperature data at the station are available at various 191 

depths. The model is built for the simulation of the year 2013. One-year measured temperature data was used for 192 

model calibration in a previous study (Xia et al., 2021). We use this calibrated model to create synthetic 193 

observation data since the real velocity measurements are not available. We first assume a set of “true” model 194 

parameters 𝑿𝑅. The value of 𝑿𝑅 is based on manual calibration by experts and is listed in Table 2.  The spatial 195 

and temporal observation data for the hypothetical lake is synthetically generated based on the “true” model 196 

parameters 𝑿𝑅. The synthetic observation data for the hypothetical temperate lake is generated by running the 197 

simulation model for one year with the vector of model parameters 𝑿𝑅. The simulation output is then saved hourly 198 

in N time steps for multiple variables, i.e., temperature and velocity (𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ]) at 𝑀 locations (specified 199 

in Fig. 1). In our study case, 𝑁 = 8761 and 𝑀 = 12 with different depths of five hypothetical sensor stations 200 

(STN. A1 and STN. B1-4 as shown in Fig. 1 (a) and (b)).  201 

The saved hourly simulated output time series is denoted as Γ = {𝑺𝒊𝒎𝑗
𝑘(𝑿𝑅), 𝑘 ∈ 𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ], 𝑗 =202 

1,… ,𝑀}, which as defined (in Table 1) contains information for each time step, 𝑡 = 1,… , 𝑁. So Γ is used as 203 
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observation data for model calibration, i.e., 𝑂𝑏𝑠𝑘 , 𝑘 ∈ 𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ]  in Eq. (1). In the test of optimization for 204 

calibration, the true values of the parameter vector 𝑿𝑅 are not provided to the optimization. The optimization will, 205 

instead, search for the best set of 𝑿  that will minimize the objective function 𝐹(𝑿|𝑲) , where 𝑲 =206 

[𝑇𝑒𝑚], [𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ], 𝑜𝑟[𝑇𝑒𝑚, 𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ] . So the goal of automatic calibration via optimization is to obtain an optimum 207 

calibration 𝑿∗ that results in simulation model output, 𝑺𝒊𝒎𝑗
𝑘(𝑿), 𝑘 ∈ 𝑲, 𝑗 = 1,… ,𝑀, (see Eq. (1) and Eq. (2)) that 208 

is close to the synthetic observation time series data in 𝚪. 209 

The temperature and velocity simulation results at the year 2013 based on the “true” model parameters 210 

(shown in Table 2) show temporal and spatial variation, as shown in Fig. 1 (a)-(d). Figure 1 (a) and (b) show the 211 

temperature and horizontal velocity distribution at the surface layer. Figure 1 (c) and (d) show the distribution of 212 

temperature and velocity magnitude at STN. A1. There is obvious temperature stratification in the vertical 213 

direction (as shown in Fig. 1(c)). We have five sampling locations across the reservoir.  The observation data at 214 

these five locations are used to calibrate the model parameters. 215 

 216 

Figure 1. Hydrodyanmic model simulation result (with “true” model parameters) at the year 2013. (a) Simulated 217 

temperature spatial distribution with sampling locations. (b) Simulated velocity spatial distribution with sampling 218 

locations. (c) Time-depth plot of simulated temperature at STN. A1. (d) Time-depth plot of velocity magnitude at 219 

STN. A1. Z-A1 is the maximum water depth at station A1. 220 

2.4 Hydrodynamic Model and Calibration Parameters 221 

The description of the hydrodynamic model is given in (Xia et al., 2021). The hydrodynamic model is built with 222 

Delft3D-FLOW (Hydraulics, 2006). The Delft3D-Flow hydrodynamic model used was set up by the water 223 

utilities’ employees and consultants, including the domain construction, input data preparation, and model 224 

configuration. The grid coordinate system is based on Cartesian coordinates (Z-grid), which havs horizontal 225 

coordinate lines that are almost parallel with density interfaces to reduce the artificial mixing of scalar properties 226 

such as temperature. The number of grid points in the x-direction is 65, the number of grid points in the y-direction 227 
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is 67, and the number of layers in vertical is 19. A single 1-year simulation takes about 5 hours to run in serial on 228 

a windows desktop with CPU Intel Core i7-4790. 229 

There are nine tunable model parameters (listed in Table 2) in the model. The first five parameters in 230 

Table 2 are related to the turbulence calculation. The k-ε closure model (Uittenbogaard et al., 1992) was chosen 231 

as the turbulence closure model to calculate the viscosity and diffusivity of the water. The calculation of the 232 

viscosity and diffusivity involves five parameters: 1) background viscosity in horizontal 𝑣𝐻
𝑏𝑎𝑐𝑘  , 2) vertical 𝑣𝑉

𝑏𝑎𝑐𝑘, 233 

3) the background eddy diffusivity in horizontal 𝐷𝐻
𝑏𝑎𝑐𝑘 , 4)  vertical  𝐷𝑉

𝑏𝑎𝑐𝑘 and 5)  the Ozmidov length 𝐿𝑜𝑧. These 234 

parameters affect both the velocity and the temperature. The vertical exchange of horizontal momentum and mass 235 

is affected by vertical eddy viscosity and eddy diffusivity coefficients (Elhakeem et al., 2015). The horizontal 236 

velocities are affected by the horizontal eddy viscosity and diffusivity coefficients (Chanudet et al., 2012). 237 

Chanudet et al. (2012) highlighted that the most impactful parameter for temperature is the background vertical 238 

eddy viscosity and the Ozmidov length 𝐿𝑜𝑧 also has a significant effect on the thermal stratification by affecting 239 

the vertical temperature mixing.   240 

The next three parameters in Table 2 are related to the simulation of surface heat flux. In the heat flux 241 

model, the evaporative heat flux and heat convection by forced convection are parameterized by the Dalton 242 

number 𝑐𝑒  and Stanton number 𝑐𝐻 , respectively, which are also in the list of calibration parameters. The Secchi 243 

depth 𝐻𝑆𝑒𝑐𝑐ℎ𝑖  (also included in Table 2) is another parameter required by the Ocean heat flux model. Secchi depth 244 

is related to the transmission of radiation in deeper water and thus affects the vertical distribution of heat in the 245 

water column (Chanudet et al., 2012). Heat fluxes through the reservoir bottom were not simulated in the current 246 

model. The last parameter is the Manning coefficient, which affects the roughness of the bottom of the lake and 247 

has a direct impact on velocity.  248 

All these nine parameters affect (either directly or indirectly) the thermal and current activity in the water 249 

body. These are also the parameters included in the routine model calibration by local experts and thus, are 250 

included in the calibration process in our study. The calibration range for these parameters (given in Table 2) is 251 

suggested by Singapore water utilities employees and consultants. Some of these parameters might be 252 

spatiotemporally variant (such as Secchi depth, Ozmidov length scale, Dalton number, and Stanton number). 253 

Considering these parameters as time or space-varying parameters will substantially increase the number of 254 

decision variables in optimization. Considering that the reservoir in our study is relatively small and is located in 255 

a tropical region where there is no significant seasonal variation, we consider these parameters to be constant 256 

across space and time. 257 

Table 2. Model parameters used in calibration. 𝑿𝑅 denotes the true solution used to generate synthetical 258 

temperature and velocity observations at multi-sites. 259 

Parameter 

vector 

X 

Parameter Description (unit) 
Physical 

process 
Range 𝑿𝑅 

x1 𝑣𝐻
𝑏𝑎𝑐𝑘 

Background viscosity in 

horizontal (m2/s) 

3D turbulence 

0.1-1.0a,b,d,e 0.5 

x2 𝐷𝐻
𝑏𝑎𝑐𝑘 

Background eddy diffusivity in 

horizontal (m2/s) 
0.1-1.0a,b,d,e 0.5 

x3 𝑣𝑉
𝑏𝑎𝑐𝑘 

Background viscosity in 

vertical (m2/s) 
0-0.005a,b,c,e 5.00E-05 
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x4 𝐷𝑉
𝑏𝑎𝑐𝑘 

Background eddy diffusivity in 

vertical (m2/s) 
0-0.005 a,b,c,e 5.00E-05 

x5 𝐿𝑜𝑧 Ozmidov length scale (m) 0-0.05a,b, e 0.015 

x6 𝐻𝑆𝑒𝑐𝑐ℎ𝑖  Secchi depth (m) 

Heat flux 

0.1-2.0a,e,f 1 

x7 𝑐𝑒 Dalton number (-) 0.001-0.002a,b,c,e 0.0013 

x8 𝑐𝐻 Stanton number (-) 
0.001-0.002 

a,b,c,e 
0.0013 

x9 𝑛 Manning coefficient (m-1/3s) Roughness 0.02-0.03a,b,e 0.022 
aDeltares (2014); bChanudet et al. (2012); cWahl and Peeters (2014); dRåman Vinnå et al. (2017); cSoulignac et 260 

al. (2017); dPijcke (2014) 261 

 262 

2.5 Calibration Problem Formulation 263 

Three scenarios are considered to investigate the impact of model calibration against temperature and/or velocity 264 

observations (as discussed in section 2.1). The first two scenarios calibrate to only one variable, and the last 265 

scenario calibrates both variables simultaneously. This section gives the detailed calibration formulations of these 266 

three scenarios. 267 

2.5.1 Model Calibration with One Variable 268 

The objective functions for Cali-Tem and Cali-Vel scenarios are summarized in Eq. (6)-(8) and Eq. (9)-(11), 269 

respectively, where only observations of one variable are included in the calibration.   270 

𝐹(𝑿|𝑲 = [𝑇𝑒𝑚]) = 𝑓𝑇𝑒𝑚(𝑿)                                                                                                                               (6) 271 

𝑓𝑇𝑒𝑚(𝑿) = ∑ 𝑁𝑅𝑀𝑆𝐸𝑗
𝑇𝑒𝑚(𝑿)𝑀

𝑗=1                                                                                                                          (7) 272 

𝑁𝑅𝑀𝑆𝐸𝑗
𝑇𝑒𝑚(𝑿) =

√1

𝑁
∑ [𝑆𝑖𝑚𝑡,𝑗

𝑇𝑒𝑚(𝑿)−𝑂𝑏𝑠𝑡,𝑗
𝑇𝑒𝑚]

2
𝑁
𝑡=1

1

𝑁
∑ 𝑂𝑏𝑠𝑡,𝑗

𝑇𝑒𝑚𝑁
𝑡=1

                                                                                                      (8) 273 

𝐹(𝑿|𝑲 = [𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ]) = 𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿)                                                                                                                                  (9) 274 

 𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿) = ∑ 𝐹𝑁𝑠𝑗
𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗

(𝑿)𝑀
𝑗=1                                                                                                                                 (10) 275 

𝐹𝑁𝑠𝑗
𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗

(𝑿) =

√1

𝑁
∑ ‖𝑆𝑖𝑚𝑡,𝑗

𝑉𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗  ⃗
(𝑿)−𝑂𝑏𝑠𝑡,𝑗

𝑉𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗  ⃗
‖

2

2
𝑁
𝑡=1

√1

𝑁
∑ ‖𝑂𝑏𝑠𝑡,𝑗

𝑉𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗  ⃗
‖

2

2
𝑁
𝑡=1

                                                                                                             (11) 276 

where, 𝑁𝑅𝑀𝑆𝐸𝑗
𝑇𝑒𝑚(𝑿)  and 𝐹𝑁𝑠𝑗

𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗
(𝑿)  denote the Normalized Root Mean Square Error (NRMSE) of 277 

temperature (described in Eq. (8)), and normalized Fourier Norms (FNs) of velocity vectors (described in Eq. 278 

(11)) at locations j. 𝑆𝑖𝑚𝑡,𝑗
𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗

(𝑿) and 𝑂𝑏𝑠𝑡,𝑗
𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗

denote the simulated velocity given a parameter vector X and observed 279 

velocity, respectively, at time step t and location j.  𝑆𝑖𝑚𝑡,𝑗
𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗

(𝑿) and 𝑂𝑏𝑠𝑡,𝑗
𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗

 are 3-dimensional vector. ‖−‖2 in Eq. 280 

(11) is the Euclidean norm used to quantify the size of a vector.  281 

The temperature and velocity data are taken at different depths of multiple stations, and their magnitude 282 

at different locations might be different due to spatial variation. Hence, the fitness at each location should be 283 

normalized before being summed into the objective function. For water temperature, Normalized Root Mean 284 

Square Error (NRMSE, as described in Eq. (8)) is used to quantify and normalize the error between the simulated 285 

and observed data. For velocity, normalized Fourier Norms of RMSE (FNs, as described in Eq. (11)) are used to 286 
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measure the error between the model-simulated and observed data (corresponding simulated and observed 287 

velocity data points are three-dimensional vectors). The calculation of the Fourier Norm follows the description 288 

in Beletsky et al. (2006), Huang et al. (2010), Paturi et al. (2014), and Råman Vinnå et al. (2017).   289 

2.5.2 DYNO for Model Calibration with Multiple Variables 290 

In the Cali-Both scenario, both temperature and velocity are calibrated simultaneously, which can be treated as a 291 

bi-objective function problem. The objective function in the Cali-Both scenario (as shown in Eq. (12)) applies the 292 

DYNO proposed in Eq. (3). The error functions for water temperature, i.e., 𝑓𝑇𝑒𝑚(𝑿),  and velocity, i.e., 𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿), 293 

are the objective functions of the Cali-Tem scenario (Eq. (7) and the Cali-Vel scenario (Eq. (10), respectively. 294 

The temperature and velocity errors are dynamically normalized with their upper and lower bounds during the 295 

search of the optimization algorithm before being summed into a single objective function. The mathematical 296 

formulation of the objective function in the Cali-Both Scenario (based on Eq. (3)) is as follows: 297 

𝐹(𝑿|𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ]) =
𝑓𝑇𝑒𝑚(𝑿)−𝑓𝑇𝑒𝑚

𝑚𝑖𝑛(𝑿)

𝑓𝑇𝑒𝑚
𝑚𝑎𝑥(𝑿)−𝑓𝑇𝑒𝑚

𝑚𝑖𝑛(𝑿)
+

𝑓
𝑉𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑿)−𝑓

𝑉𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑚𝑖𝑛(𝑿)

𝑓
𝑉𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑚𝑎𝑥(𝑿)−𝑓

𝑉𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑚𝑖𝑛(𝑿)

  (12) 298 

where the maximum and minimum of 𝑓𝑇𝑒𝑚(𝑿) and 𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿) are updated after each optimization iteration (since 299 

new parameter sets are sampled in each optimization iteration).  As the number of iterations increases, the 300 

denominators in Eq. (12) also increase since the optimization method finds better minimum objective function 301 

values. Hence the individual objective function components (for each variable) scale dynamically to maintain an 302 

approximately equal weight of the terms related to temperature and velocity.  303 

As defined in Eq. (6) to Eq. (12), three calibration formulations are investigated in this study. Table 3 304 

gives a summary of these calibration formulations. 305 

Table 3. Summary of Objective function formulations for different calibration scenarios. 306 

Scenario  

Name 

Variables used 

for calibration 
Objective Function 

Objective 

Function 

Formula 

Cali-Tem Temperature 𝐹(𝑿|𝑲 = [𝑇𝑒𝑚]) Eq. (6)~(8) 

Cali-Vel Velocity 𝐹(𝑿|𝑲 = [𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ]) Eq. (9)~(11) 

Cali-Both 
Temperature and 

Velocity 
𝐹(𝑿|𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ]) Eq. (12) 

2.6 Implementation of DYNO with PODS 307 

In this section, we describe the implementation details for incorporating DYNO into a new efficient parallel 308 

surrogate optimization algorithm, PODS (described in Fig. 2). PODS (Xia et al., 2021) is a parallel version of the 309 

serial DYCORS (DYnamic COordinate search using Response Surface models) algorithm introduced by (Regis 310 

and Shoemaker, 2013). DYCORS is an iterative surrogate method (such methods are sometimes also called 311 

Response Surface Optimization methods, where cheap surrogates of the expensive objective are built to improve 312 

optimization efficiency), designed for optimization of computationally expensive black-box functions within a 313 

limited number of evaluations. DYCORS uses RBF (Radial Basis Function) as surrogates to efficiently explore 314 

the parameter space and propose promising new solutions for expensive evaluation in each algorithm iteration. 315 

The RBF-guided search methodology of DYCORS is designed for high-dimensional black-box optimization 316 
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within a limited number of evaluations of computationally expensive real objective functions.  PODS, like 317 

DYCORS, is designed for black-box optimization problems that are high-dimensional and computationally 318 

expensive and have multiple local minima. Xia et al. (2021) show that PODS is considerably more efficient than 319 

other parallel global optimization methods in obtaining good solutions with fewer objective function evaluations, 320 

which is very important for expensive objective functions like hydrodynamics models. PODS parallelized the 321 

serial DYCORS algorithm by following the Mater-worker framework (as shown in Fig. 2). This parallelization 322 

strategy of the algorithm allows simultaneous function evaluations on multiple processors (cores) in batch mode, 323 

which reduces the wall-clock time of the optimization process. This can greatly speedup the calibration of 324 

computationally expensive models and make the calibration of some extremely expensive models computationally 325 

tractable.  326 

The PODS algorithm begins the optimization from an initial experiment design where a random initial 327 

set of evaluation points are generated with the Latin Hypercube Design (LHD). These evaluation points are 328 

distributed randomly to P workers for simulation evaluations. Each worker will calculate the error/ objective 329 

function of each variable {𝑓𝑘(𝑿𝒊)|𝑘 ∈ 𝑲} based on Eq. (2) and return them back to the master. This step (W3 in 330 

Fig. 2) for DYNO-based PODS is different from the original PODS. In the original PODS, only the final objective 331 

function value (instead of the error of each variable) is returned to the master.   332 

After the master collects the result of all the P evaluations, it will add these new results into the history 333 

list 𝝍 that saves all evaluation results found in previous iterations. The history list of 𝝍 is not in the original 334 

PODS and it is necessary for the calculation of the DYNO objective function (F(X|K), X) (as shown in Eq. (3)). 335 

For instance, the maximum and minimum value of the error of each variable 𝑓𝑘
𝑚𝑎𝑥(𝑿)  and 𝑓𝑘

𝑚𝑖𝑛(𝑿)  are 336 

dynamically changing with the increase of the history list 𝝍 .  The objective function value F(X|K) for all 337 

evaluations found in current and previous iterations need to be recalculated because of the update of 𝑓𝑘
𝑚𝑎𝑥(𝑿) and 338 

𝑓𝑘
𝑚𝑖𝑛(𝑿). And the best solution found so far is identified based on the newly calculated F(X|K).  When only one 339 

variable (e.g., temperature or velocity) is considered in the objective function, the best solution is the evaluation 340 

with the lowest error between the simulation output and observations of the variable considered. In cases where 341 

multiple variables are considered in calibration, the best solution should be the evaluation with the smallest value 342 

of F(X|K) after considering the error of multiple variables (as shown in Eq. (3)).  Because the objective function 343 

value for all evaluations in 𝝍 changed after each iteration, the RBF is also rebuilt with these new objective 344 

function values of all evaluated solutions (F(X|K), X). The rebuilt RBF surrogate is used for the generation of the 345 

evaluation points for the next iteration.  346 

PODS with DYNO implementation uses the RBF surrogate in the same way as the original PODS does. 347 

PODS first generates a large number of candidate points around the best solution found so far (refer to Section 348 

2.2 in Xia et al (2021)). The algorithm then selects P evaluation points from these candidate points based on their 349 

estimated objective function 𝐹̂(𝑿|𝑲) based on the RBF surrogate and the minimum distance from all previous 350 

evaluation solutions in 𝝍. A lower estimated objective function 𝐹̂(𝑿|𝑲) is better since it is more likely to lead to 351 

solutions with lower objective function value. Meanwhile, candidate points that are far from previous solutions 352 

are also preferred since they help the algorithm to explore regions of the solution domain that were not explored 353 

in previous iterations. These unexplored regions could possibly be regions where better solutions are located. The 354 

consideration of estimated objective function 𝐹̂(𝑿|𝑲)  and distance information are both considered when 355 
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selecting the candidate points through a weighted score based on these two aspects. For detailed information on 356 

the implementation of evaluation point selection criteria, one can refer to Section 2.3 in Xia et al (2021). The 357 

selected P evaluation points are then distributed to P workers for evaluations, and the iteration loop continues 358 

until the stopping criteria are met (e.g., the computing budget is finished.) 359 

In summary, the implementation of DYNO affects the selection of the best solution found so far and also 360 

the surrogate model (These steps are W3 and M1-5, as highlighted in green color in Fig. 2). We should highlight 361 

that the fitting of the surrogate model is computationally inexpensive compared with the runtime of the expensive 362 

objective function. Hence it does not affect the overall algorithm runtime.  363 

 364 

 365 
Figure 2. Diagram of the implementation of DYNO with the parallel algorithm PODS. P is the number of 366 

processors available. The green texts (i.e., steps W3, M1-5) are changes made on PODS to incorporate DYNO. 367 

The rest part follows the original PODS method. 368 

2.7 Experiments Setup 369 

All computational experiments in this study are implemented on a single node on the National Supercomputer 370 

Center (NSCC) of Singapore, which is a Linux-based platform with dual Intel Xeon E5-2690 v3 Processors, with 371 

each node having 24 cores. Hence, we set the number of processors P to be 24. Due to the stochastic nature of the 372 
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optimization algorithm (i.e., PODS) used in this study, multiple optimization runs are executed for each calibration 373 

experiment in Table 3. Considering that the calibrated hydrodynamic model in this study is extremely expensive, 374 

we perform three optimization trials for each calibration experiment (see Table 3 for a list of experiments). 375 

Furthermore, to remove any initial sampling bias, each concurrent optimization trial for the three calibration 376 

experiments is initialized with the same Latin Hypercube experimental design (so the calibration in each scenario 377 

starts from the same initial solutions). We also investigated the performance of different forms of DYNO on the 378 

Cali-Both scenario. 379 

We set the same evaluation budget (i.e., the maximum number of hydrodynamic model runs) for each 380 

trial and calibration scenario (i.e., Cali-Tem, Cali-Vel, and Cali-Both). The maximum number of hydrodynamic 381 

model runs in each trial is 192, which is 8 iterations with 24 evaluations in each iteration. Our result indicates that 382 

8 iterations are a sufficient calibration budget, as the calibration progress plot in Figure S1 shows that the 383 

optimization experiments almost converged in the last few iterations.  384 

The computational time of one simulation is approximately 5 hours on a windows desktop with a CPU 385 

Intel Core i7-4790 processing unit. However, when running 24 simulations simultaneously on the multi-core 386 

platform, the computational time gets longer because of the limited cache memory resources (as discussed in Xia 387 

and Shoemaker (2022a)). Cache memory is a small amount of much faster memory than main memory. The wall-388 

clock time for one iteration with 24 cores simultaneously running is about 12 hours if using the default process 389 

scheduling of the nonuniform memory access (NUMA) multi-core system. We used the mixed affinity scheduling 390 

proposed by Xia and Shoemaker (2022a), and the wall-clock time is reduced to about 8 hours per iteration. The 391 

mixed affinity scheduling changed the default affinity setting by setting a hard affinity on the simulation of each 392 

PDE model (i.e., fixing the process of each PDE simulation to one core). This approach proved to be efficient for 393 

memory usage and reduced the simulation time. More details about the mixed affinity scheduling and the NUMA 394 

system can be found in the study of Xia and Shoemaker (2022a). Hence, the wall-clock time of each trial takes 395 

about 64 hours (8 iteration×8 hours/iteration).  396 

3. Numerical Results and Discussion 397 

3.1 Comparison of Calibrating to Temperature and/or Velocity 398 

3.1.1 Final Solutions in Goodness-of-fit Metrics 399 

We first compare the three calibration formulations in terms of goodness-of-fit metrics for both temperature and 400 

velocity. Table 4 summarizes this comparison for the three formulations, i.e., i) Cali-Tem, ii) Cali-Vel  and iii) 401 

Cali-Both (see definition in Table 3), with PODS used as the optimization algorithm and with a budget of 192 402 

simulations.  403 

The mean as well as the standard deviation of both temperature error 𝑓𝑇𝑒𝑚(𝑿∗|𝑲) (calculated as Eq. (7)) 404 

and velocity error𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿
∗|𝑲) (Calculated as in Eq. (10)) over three trials are reported in Table 4, for all three 405 

calibration scenarios. 𝑿∗ in Table 4 denotes the optimal calibration solution obtained by PODS in each trial for a 406 

given scenario (defined by the set of variables 𝑲 ). The solution with the lowest variable error (𝑓𝑇𝑒𝑚(𝑿∗) 407 

or𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿
∗)) is highlighted in bold in Table 4. Table 4 reports the variable errors of both temperature and velocity 408 

for all formulations to understand the impact of ignoring or including a variable in the calibration formulation. 409 
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Please note that the temperature error, 𝑓𝑇𝑒𝑚(𝑿|𝑲 = [𝑇𝑒𝑚]) , reported in Table 4, is exactly the calibration 410 

objective function in the Cali-Tem scenario (𝐹(𝑿|𝑲 = [𝑇𝑒𝑚]) as shown in Eq. (7)). Similarly, the velocity error 411 

𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿|𝑲 = [𝑇𝑒𝑚]) is exactly the calibration objective function in the Cali-Vel scenario (i.e., 𝐹(𝑿|𝑲 = [𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ]) 412 

as shown in Eq. (10)). We use the word variable error instead of objective function value when referring to the 413 

values in Table 4 in subsequent discussions since we are in part looking at the impact of using data from one 414 

variable to predict another variable for which we don’t have data. It is also worth mentioning that the value in 415 

Table 4 is a sum of temperature or velocity error at multiple (in total 12) locations. Hence the error at each location 416 

is smaller than the value in the table. 417 

Table 4 shows that the solution obtained when calibrating to temperature observation only (Cali-Tem) 418 

has smaller temperature errors but larger velocity errors than that if calibrating to velocity observation data only 419 

(Cali-Vel). However, it is surprising that when calibrating to both temperature and velocity (Cali-Both), the 420 

solution obtained by PODS has the lowest temperature and lowest velocity error compared with calibrating to 421 

either temperature observation or velocity observation only. This might be because calibrating to temperature will 422 

help to improve the fit of velocity and vice versa. This makes sense because water temperature and velocity are 423 

two related variables in hydrodynamic modeling, and they affect each other. Velocity is the fundamental variable 424 

of hydrodynamics with directional information not provided by temperature; temperature (via the heat flux model) 425 

may also affect the velocity field since it affects water density. Our analyses here are based on physical models, 426 

which are built based on physics laws and knowledge human have learned over hundreds of years. Our findings 427 

here are in line with the study of Baracchini et al (2020), where they also suggested have both temperature and 428 

velocity for a complete system calibration. 429 

Table 4. Summary table of the solution obtained by PODS for each scenario (Cali-Both, Cali-Vel, and Cali-Tem). 430 

𝑓𝑇𝑒𝑚(𝑿∗|𝑲) and 𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿
∗|𝑲) are the temperature error𝑓𝑇𝑒𝑚(𝑿∗) and velocity error𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿

∗) (calculated in Eq. (7) 431 

and Eq. (10), respectively, with the optimal solution 𝑿∗obtained in each trial). The mean and standard deviation 432 

of 𝑓𝑇𝑒𝑚(𝑿∗|𝑲) and𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿
∗|𝑲) among three trials are reported. The variable error is bolded in each scenario when 433 

the observation of the variable is included in the calibration in each scenario. (Some terms defined in Table 1) 434 

Scenarios 
The composite error of each variable (Temperature or Velocity) 

𝑓𝑇𝑒𝑚(𝑿∗|𝑲) Mean (Std.) 𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿
∗|𝑲) Mean (Std.) 

Cali-Both 𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ] 0.014 (0.003) 1.939 (0.165) 

Cali-Vel 𝑲 = [𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ]  0.087 (0.023) 2.809 (0.319) 

Cali-Tem 𝑲 = [𝑇𝑒𝑚] 0.024 (0.005) 5.888 (1.435) 

3.1.2 Visual Comparison of Calibration Errors 435 

The above analysis is based on the average variable error statistics only (i.e., 𝑓𝑇𝑒𝑚(𝑿∗|𝑲) and𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿
∗|𝑲)), of the 436 

best results obtained from PODS (over multiple trials) for all calibration scenarios. In order to further analyze the 437 

difference between calibration formulations (in terms of their effectiveness in calibrating both temperature and 438 

velocity), we visually compare the best calibration solutions (𝑿∗) obtained by PODS for each scenario, i.e., Cali-439 

Tem, Cali-Vel and Cali-Both. We select one representative optimal solution (𝑿∗) from 3 trials in each scenario 440 

for this comparison. An initial uncalibrated solution is included in the comparison. The parameter value of the 441 

uncalibrated solution (in Table S1) uses the mean of the calibration range in Table 2.   442 

The objective function value in terms of temperature and velocity composite error (over multiple 443 

locations) (𝑓𝑇𝑒𝑚(𝑿) and 𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿), as formulated in Eq. (7) and (10), respectively) and the corresponding parameter 444 
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configuration (𝑿∗) of the selected solution (among three trials) are plotted in Fig. 5 and reported in Table S1. In 445 

general, the solution in the Cali-Both scenario is closer to the True solution than solutions in the other two 446 

scenarios in terms of parameter values. Calibrated values proposed by the Cali-Both scenario are closest (relative 447 

to other scenarios) to the True values for four parameters (i.e., 𝑫𝑯
𝒃𝒂𝒄𝒌 , 𝑫𝑽

𝒃𝒂𝒄𝒌, 𝑯𝑺𝒆𝒄𝒄𝒉𝒊, 𝒄𝑯). Moreover, besides the 448 

Manning coefficients, the calibrated values proposed by the Cali-Both scenario are not the worst (relative to the 449 

other two scenarios) for any other parameter. In contrast, calibrated values proposed by the Cali-Tem scenario are 450 

worst (i.e., the parameter values are farthest from the true solution, relative to other scenarios) for five parameters 451 

(i.e., 𝒗𝑯
𝒃𝒂𝒄𝒌 , 𝑫𝑯

𝒃𝒂𝒄𝒌  𝒗𝑽
𝒃𝒂𝒄𝒌,  𝑫𝑽

𝒃𝒂𝒄𝒌, 𝒄𝒆) and calibrated parameter values for the Cali-Vel scenarios are worst for 452 

𝑳𝒐𝒛 , 𝑯𝑺𝒆𝒄𝒄𝒉𝒊 , 𝒄𝑯. This indicates that calibrating to both temperature and velocity can help to prevent the value of 453 

the 9 calibration parameters from being very far from the corresponding value for the True solution.    454 

The horizontal velocity error 𝛥𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗  (2-dimensional) between simulated velocity 𝑆𝑖𝑚𝑡,𝑗
𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗

(𝑿∗)  and 455 

observed velocity 𝑂𝑏𝑠𝑡,𝑗
𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗

 (in the horizontal plane) is plotted as scatter plots of time-series in Fig. 3 (for all 456 

calibration scenarios). The temperature error 𝛥𝑇𝑒𝑚 between simulation temperature 𝑆𝑖𝑚𝑡,𝑗
𝑇𝑒𝑚(𝑿∗) and observed 457 

temperature 𝑂𝑏𝑠𝑡,𝑗
𝑇𝑒𝑚is plotted as a time series (for each calibration scenario) in Fig. 4. 458 

The error plots for the two sampling locations at multiple depths (i.e., surface layers of station STN. A1 459 

and STN. B1 as shown in Fig. 1 (a)) are visualized in Fig. 3 and 4 (for one year). Since the velocity error 𝛥𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗  at 460 

a particular time and location is a vector (and not a scalar like temperature) and velocity error in 3 dimensions (for 461 

a time-series) is hard to represent visually, Fig. 3 only plots the velocity error (for one year) 𝛥𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗  in the horizontal 462 

plane (i.e., X and Y directions only). Moreover, each dot represents the error at one point in time within the study 463 

period. 464 

Figure 3 plots the difference between the simulated velocity (for the optimized parameter values obtained 465 

from Cali-Tem (red scatter points), Cali-Vel (black scatter points), and Cali-Both (blue scatter points) scenarios) 466 

and observed velocity.  Ideally, the error for each scatter point should be zero, i.e., at the intersection of the two 467 

lines.  Figure 3 illustrates that calibrating to temperature data only (red scatter plot) results in a larger velocity 468 

error 𝛥𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗  , relative to velocity error when calibrating to velocity data only (Cali-Vel scenario, i.e., black scatter 469 

plot) or to both velocity and temperature data (Cali-Both scenario, i.e., blue scatter plot). Figure 3 also shows that 470 

solutions of all the three scenarios improved the temperature fit compared with the initial solution, which 471 

demonstrates the effectiveness of the optimization calibration. 472 

 473 
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 474 
 475 

Figure 3. Scatter plot of velocity error 𝛥𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ in horizontal (X and Y direction) between simulated velocity 476 

𝑆𝑖𝑚𝑡,𝑗
𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗

(𝑿∗) and observed velocity 𝑂𝑏𝑠𝑡,𝑗
𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗

 at location𝑗.Each dot denotes the velocity error𝛥𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗  of location 𝑗 at 477 

one time step. 𝑗 = surface layer of STN. A1 for upper panel and 𝑗 = STN. B1 for lower panel. 𝑿∗is the optimal 478 

solution found by PODS in each scenario: Cali-Tem (red dots); Cali-Vel (black dots) and Cali-Both (blue dots) 479 

as listed in Table S1. The “True” solution is on or near the intersection of the two perpendicular black lines. An 480 

initial uncalibrated solution (cyan dots) is plotted for reference. 481 

Figure 4 shows the temperature error of solutions from three different calibration scenarios: Cali-Tem 482 

(red time-series), Cali-Vel (black time-series) and Cali-Both scenarios (blue time-series). The errors between 483 

simulated and observed water temperature at the surface, middle and bottom layers of two stations (STN. A1 and 484 

STN B1) are plotted. In general, the temperature error of the solution in Cali-Both scenario is generally close to 485 

zero °C for all the layers and stations shown. The solution in Cali-Tem scenario also got temperature errors close 486 

to zero °C at the middle and bottom layer at STN. A1, but it has larger temperature errors than the solution in the 487 

Cali-Both at the surface layer of STN. A1 and all layers of STN. B1. The solution in the Cali-Vel scenario 488 

generally overestimated the water temperature in all locations (i.e., all the surface, middle and bottom layers at 489 

both stations). The temperature error of the solution in the Cali-Vel scenario is much larger than that of the solution 490 

in Cali-Tem and Cali-Both scenarios in the middle and bottom layers of both stations. The temperature error at 491 

most times, for the Cali-Vel scenario, is greater than 0.1 °C. This might be because both the Stanton and Dalton 492 

numbers are underestimated in the Cali-Vel scenario when compared with the True solution (𝑿𝑅) (As shown in 493 

Fig. 5). The Dalton number 𝐶𝑒 affects the evaporative heat flux modeling and the Stanton number 𝐶𝐻 influences 494 

the convective heat flux modeling in the Delft3D-FLOW model (Hydraulics, 2006). For the solution in Cali-Vel, 495 

a smaller Stanton number 𝐶𝐻(shown in Fig. 5) might lead to underestimated convective heat flux, which will lead 496 

to the overestimation of the water temperature. In summary, calibrating to temperature and velocity (i.e., Cali-497 

Both) give the best solution in terms of temperature error compared with calibrating to temperature or velocity 498 

only (i.e., Cali-Tem or Cali-Vel). Calibrating to velocity only (Cali-Vel) gives the worst result in terms of 499 
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temperature fit. Simulation of vertical temperature, vertical velocity, vertical eddy diffusivity, and vertical eddy 500 

viscosity (Fig. S2-S5) also shows that the solution in the Cali-Both scenario is much better than solutions in the 501 

Cali-Tem and Cali-Vel scenario. For example, the solution in the Cali-Both scenario can almost capture the 502 

vertical time-varying temperature profiles of the true solution. In contrast, calibrating to one variable did not fully 503 

capture the vertical time-varying temperature profiles (e.g., April-May for the Cali-Tem scenario; Mar-May and 504 

Aug-Sep for the Cali-Both scenario in Fig. S2.) The solution in the Cali-Both scenario also gives much smaller 505 

vertical velocity, eddy diffusivity, and eddy viscosity error than solutions in the other two scenarios (in Fig. S3-506 

S5). The result indicates that using both temperature and velocity data in model calibration also helps to improve 507 

the complex time-varying vertical mixing behavior. 508 

 509 

 510 
Figure 4. Time-series plots of temperature error 𝛥𝑇 between simulated water temperature and 𝑆𝑖𝑚𝑡,𝑗

𝑇𝑒𝑚(𝑿∗) and 511 

observed water temperature (𝑂𝑏𝑠𝑡,𝑗
𝑇𝑒𝑚) at location 𝑗 where 𝑗 = surface layer of STN4 for left panel and 𝑗 = STN1 512 

for the right panel. 𝑿∗is the optimal solution found by P-DYCORS in each scenario: Cali-Tem (Red lines); Cali-513 

Vel (Black lines) and Cali-Both (blue lines) as listed in Table S1. An initial uncalibrated solution (cyan lines) is 514 

plotted for reference. 515 
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 516 

Figure 5. The parallel axis plot for the parameter value and the composite error of temperature and velocity of 517 

calibration solutions under different scenarios (Cali-Tem, Cali-Vel, and Cali-Both). True solution defined in Table 518 

2 is given for reference. Smaller variable errors (𝑓𝑇𝑒𝑚(𝑿) (see Eq. (7)) and 𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿) (see Eq. (10))) are better, and 519 

the variable errors of the true solution (𝑿𝑅) are zero (for both 𝑓𝑇𝑒𝑚(𝑿) and 𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿)). The parameter symbols are 520 

defined in Table 2. 521 

3.2 Optimization Search Dynamics under Different Calibration Scenarios 522 

We further analyze the calibration progress of PODS for Cali-Tem, Cali-Vel and Cali-Both, to understand the 523 

calibration convergence speeds of the three formulations. The purpose of the calibration progress analysis is to 524 

visualize the improvement in calibration quality of both temperature and velocity variables from the LHD, for all 525 

three formulations. As discussed in the experiment setup section, we conducted 8 iterations of the optimization 526 

search. This is a reasonable number of iterations for our case, given that 1) the problem is computationally 527 

expensive (one experiment takes about 64 hours to run and there are 9 experiments) and 2) the calibration progress 528 

plot in iterations (Figure S1) indicates that the optimization search almost converged in 8 iterations. 529 

 Figure 6 plots the calibration progress of the three formulations (i.e., Cali-Tem, Cali-Vel and Cali-Both) 530 

using PODS. Each subplot within Fig. 6, corresponds to the different concurrent optimization trials (i.e., trials of 531 

the stochastic optimization method using the same initial points from LHD) for each formulation.  The best 532 

solutions are near the origin of each graph. Moreover, Fig. 6 plots the progress (quantified by visualizing both 533 

temperature and velocity errors) of the best solution found (measured in terms of the objective function value in 534 

each calibration scenario) during the search.  Figure 6 indicates that when calibrating to temperature or velocity 535 

only, the optimization search cannot guarantee the improvement of the fit of another variable. For example, in 536 

Fig. 6 (a), when calibrating to velocity only, the temperature error of the best solution found at the end of the 537 

optimization search stage is worse than the temperature error of the best solution found after the initial LHD, even 538 

though there is improvement in terms of velocity fit. Similarly, when calibrating to temperature only, the 539 

improvement in velocity fit is also not significant (for instance, in Fig. 6 (a)). When calibrating to the fit of both 540 
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temperature and velocity using the DYNO formulation, the fit of both temperature and velocity improves in all 541 

trials, and the improvement remains balanced during the optimization search. Figure 6 also indicates that the final 542 

solution found in Cali-Both scenarios dominates the best solution found by PODS in Cali-Tem and Cali-Vel in 543 

terms of both temperature and velocity fit.  544 

Figure 6 also shows that when calibrating to one variable, the optimization search is easily convergent 545 

(i.e., the best solution does not continue improving after a few iterations even in terms of the fit of the variable 546 

considered in calibration). For example, in Fig. 6(a), when calibrating to temperature only, the best solution in 547 

terms of temperature error does not improve much (in the last few iterations). The reason might be that when the 548 

velocity error is large, it is less likely that the temperature fit would be improved further. In contrast, when 549 

calibrating to both temperature and velocity, the optimization search continues improving in both the temperature 550 

and velocity fit. Hence only considering one variable in the calibration, it is difficult to get a solution that has 551 

small (or close to zero) errors of the variable considered. We should also highlight that even though the 552 

optimization gets a solution that has zero error in one variable, it does not mean that the error of another variable 553 

would be zero. The reason is that only the observation in part of the simulation space is used for calibration (not 554 

the observation data at each grid and each time step of the simulation space are used to calculate the temperature 555 

error). So the temperature error may be 0 at these observation locations, while the temperature error is not 0 at 556 

other locations where observation is not used in calibration. In this case, getting a temperature error 0 at 557 

observation locations cannot guarantee the velocity error is 0.  558 

 559 

Figure 6. Calibration progress plot of the best solution found (in terms of objective function value) during 560 

optimization search by PODS when calibrating to temperature only (Cali-Tem), calibrating to velocity only (Cali-561 

Vel), and calibrating to both temperature and velocity (Cali-Both). Three random trials (i.e., T1, T2, and T3) are 562 

plotted in (a), (b), and (c). Lower velocity and temperature error are better. The yellow makers are evaluation 563 

point in initial experiment design using LHD. Besides solutions in LHD, only the best solution in each of the 564 

optimization iterations is plotted (i.e., makers lined with lines). The line links the best previous solution in one 565 

iteration to the best solution in next iteration. The arrow indicates the direction from the previous solution to the 566 

next solution. 567 

It is also important to understand the ‘frequency’ or likelihood with which PODS can find good 568 

temperature and velocity calibrations via the three different formulations proposed in this study. Hence, we also 569 

do a comparative frequency analysis of the errors (for velocity or temperature) of all evaluated points (𝑿𝑖 , 𝑖 =570 

1,… ,3 × 𝑁𝑚𝑎𝑥) from all trials (3 trials) of PODS when using different calibration formulations (see Table 3). The 571 

purpose of this frequency analysis is to understand the likelihood with which the three different formulations can 572 

obtain good velocity and temperature calibrations. The frequency analysis results are presented in Fig. 7 via 573 
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visualizations of empirical histograms of both velocity error and temperature error (from all solutions of 3 trials 574 

of PODS) for each calibration scenario.  575 

 576 
Figure 7. Distribution plot of all the evaluated points found by PODS (over 3 trials) in terms of temperature 577 

composite error 𝑓𝑇𝑒𝑚(𝑿|𝑲) and velocity composite error𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿|𝑲) in each scenario: Cali-Tem (𝑲 = [𝑇𝑒𝑚]), 578 

Cali-Vel (𝑲 = [𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ]), and Cali-Both (𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ]). The number inside each hexagon represent the number 579 

of evaluated points located in that hexagon (e.g. with the combination temperature and velocity error associated 580 

with the corresponding values on the axes.) Darker color in hexagon means larger number of evaluated points is 581 

located in that hexagon. The bar plot along the upper x axis (𝑓𝑇𝑒𝑚(𝑿|𝑲)) are the distribution of the evaluation 582 

points in terms of temperature error only. The bar plot along y axis (𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿|𝑲)) are the distribution of the 583 

evaluation points in terms of velocity error only. The number above the bar shows how many evaluated points 584 

located in that bin. Smaller error (𝑓𝑇𝑒𝑚(𝑿|𝑲) or𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿|𝑲)) is better. The true solution (𝑓𝑇𝑒𝑚(𝑿𝑅|𝑲), 𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿
𝑅|𝑲)) 585 

is the origin of each subplot.  586 

Figure 7 plots the error distribution of all the evaluated points over three trials (576 evaluations) for each 587 

scenario: Cali-Tem (𝑲 = [𝑇𝑒𝑚]), Cali-Vel (𝑲 = [𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ]), and Cali-Both (𝑲 = [𝑇𝑒𝑚, 𝑉𝑒𝑙⃗⃗⃗⃗ ⃗⃗ ]). The different subplots 588 

in Fig. 7 provide a visualization of the velocity (vertical axis) and temperature (horizontal axis) error distribution 589 
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via hexagonal bin (hexbin) plots (inside the square) and error histograms (outside the square) for each of the 590 

calibration scenarios. The number inside each hexbin denotes the number of evaluated points (for that combination 591 

of temperature error and velocity error) located in that hexbin. Furthermore, the hexbin with a larger number of 592 

evaluated points is highlighted with a darker color shade.  The temperature histogram columns (above the square) 593 

represent the sum of all the hexbins inside the square directly beneath the number in the column. For the velocity 594 

histogram (on the right side of square), the column height depends on the sum of all the hexbins in the row to the 595 

left of the number. 596 

The temperature and error velocity distribution visualizations of Fig. 7 clearly show that calibrating to 597 

both temperature and velocity data (see Fig. 7 (c), i.e., error distribution for the Cali-Both scenario), provides good 598 

temperature and velocity calibrations with a higher frequency. Figure 7 (c) shows that it is highly likely that both 599 

temperature and velocity errors are lower (indicated by darker hexbins with temperature error 𝑓𝑇𝑒𝑚(𝑿|𝑲)  less 600 

than 0.05 and velocity error 𝑓𝑉𝑒𝑙⃗⃗⃗⃗⃗⃗  ⃗(𝑿|𝑲) less than 4).  Consequently, Fig. 7(c) also illustrates that the newly 601 

proposed DYNO (see Eq. (3)) works effectively, in this case, to calibrate multiple variables simultaneously. 602 

Figure 7 also illustrates that it is better to calibrate the hypothetical hydrodynamic model to velocity data 603 

rather than temperature data (see Fig. 7(a) and Fig. 7(b)) (if data for both variables is not available).  Figure 7(a) 604 

indicates that calibrating to temperature only (i.e., the Cali-Tem scenario) results in a high chance that velocity 605 

error would be high (see the velocity error histogram in Fig. 7(a)). However, Fig. 7(b) illustrates that the errors in 606 

temperature when calibrating to velocity only (Cali-Vel) are likely to be relatively small in magnitude (see the 607 

temperature error histogram of Fig. 7(b)). 608 

From the above discussion, we can conclude that calibrating to both temperature and velocity data with 609 

the newly proposed DYNO (implemented within the efficient surrogate algorithm PODS) is effective in obtaining 610 

a balanced calibration of both temperature and velocity variables. In real-world lake hydrodynamic applications, 611 

if available, both temperature and velocity data should be used for lake hydrodynamic model calibration. 612 

However, the very common practice of calibrating only to temperature data is shown to be unable to reproduce 613 

the flow dynamics well. This supports the extra effort and expense to collect velocity data is expected to give a 614 

beneficial effect.  615 

3.3 Impact of Different Forms of Normalization on the Performance of DYNO 616 

This section investigates the impact of using different forms of normalization in the new objective function DYNO 617 

on optimization search performance. In Eq. (3), the error of each variable is normalized by the maximum and 618 

minimum values 𝑓𝑘
𝑚𝑎𝑥(𝑿) and 𝑓𝑘

𝑚𝑖𝑛(𝑿) of 𝑓𝑘(𝑿) among all the evaluations evaluated so far. One concern of 619 

using the maximum value 𝑓𝑘
𝑚𝑎𝑥(𝑿) is that the objective function can be affected by extremely bad evaluation 620 

points. Another approach is to use the median value 𝑓𝑘
𝑚𝑒𝑑𝑖𝑎𝑛(𝑿) of 𝑓𝑘(𝑿) among all the evaluations evaluated so 621 

far as a replacement of 𝑓𝑘
𝑚𝑎𝑥(𝑿) to normalize the error of each variable. We refer to DYNO using the median 622 

value 𝑓𝑘
𝑚𝑒𝑑𝑖𝑎𝑛(𝑿)  as DYNO-N2 (as shown in Eq. (13)) to differentiate it from DYNO using the maximum value 623 

𝑓𝑘
𝑚𝑎𝑥(𝑿) (as shown in Eq. (3)), which we refer to as DYNO-N1 in the following text.  624 

𝐹(𝑿|𝑲) = ∑
𝑓𝑘(𝑿)−𝑓𝑘

𝑚𝑖𝑛(𝑿)

𝑓𝑘
𝑚𝑒𝑑𝑖𝑎𝑛(𝑿)−𝑓𝑘

𝑚𝑖𝑛(𝑿)𝑘∈𝑲                                                                                                                       (13) 625 

𝑓𝑘
𝑚𝑒𝑑𝑖𝑎𝑛(𝑿) =  med {𝑓𝑘(𝑿) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑿 ∈ 𝝍}                                                                                                       (14) 626 

 627 
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where 𝑓𝑘
𝑚𝑒𝑑𝑖𝑎𝑛(𝑿)  and 𝑓𝑘

𝑚𝑖𝑛(𝑿)  are the median and minimum values of 𝑓𝑘(𝑿)  among all the evaluations 628 

evaluated so far, and hence they are updated dynamically in each iteration during optimization. 629 

 The implementation of DYNO-N2 is similar to the implementation of DYNO-N1 (Eq. (3)).  The only 630 

change is replacing the calculation related to 𝑓𝑘
𝑚𝑎𝑥(𝑿) with 𝑓𝑘

𝑚𝑒𝑑𝑖𝑎𝑛(𝑿). We tested the relative efficacies of 631 

DYNO-N1 and DYNO-N2, by comparing three calibration trials, of each DYNO variant (using PODS), where 632 

each concurrent calibration trial was initialized using the same LHD. Figure 8 shows the progress of PODS with 633 

the two forms of DYNO as the objective functions. Figure 8 is similar in design to Fig. 6, and indicates that both 634 

forms of DYNO are able to balance the calibration on temperature and velocity. There are two trials where PODS 635 

with DYNO-N1 (using 𝑓𝑘
𝑚𝑎𝑥(𝑿) for normalization) found a better solution than PODS with DYNO-N2 (using 636 

𝑓𝑘
𝑚𝑒𝑑𝑖𝑎𝑛(𝑿) for normalization).  637 

The results here indicate that DYNO-N1 seems not adversely affected by the bad solution. A reason for 638 

this may be that PODS typically do not generate extremely bad solutions (i.e., outlier solutions with extremely 639 

large errors), since algorithm search is concentrated around the best solution found so far. However, if other 640 

optimization algorithms are used for calibration, especially algorithms that explore the search space more, there 641 

might be a higher likelihood of encountering outlier /extremely bad solutions during optimization search. 642 

Consequently, the performance of such an algorithm with DYNO-N2 might be better than with DYNO-N1, which 643 

might need further investigation. The outlier solutions here mean solutions (obtained during the optimization 644 

search phrase) that have much larger errors than other solutions found so far. Outlier or extremely bad solutions 645 

are also likely to happen for calibration problems where the model output is very sensitive to the calibration 646 

parameters (i.e., a small change in model parameters can cause huge changes in the model output that leads to 647 

much worse solutions).   648 

 649 

Figure 8. Calibration progress plot in terms of the best solution found during optimization search when using 650 

DYNO-N1 and DYNO-N2 as the objective function. Three random trials (T1, T2, and T3) are plotted in (a), (b), 651 

and (c). Lower velocity and temperature error are better. Figure 8 uses the same format as Figure 6. 652 

3.4 Value of Velocity Measures in 3D Lake Model Calibration 653 

High quality hydrodynamic simulations (e.g., thermal structure, current velocities, flow advection and vertical 654 

mixing) are vital for accurate spatial modelling of water quality in lakes. The hydrodynamic process influences 655 

the transport & production or transformation of biological and chemical components. Hence, if the simulation of 656 

flow dynamics is not adequately accurate, there is no way to achieve accuracy in the simulation of water quality. 657 
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Previous studies use mostly temperature observations for the 3D lake hydrodynamic model calibration. Whereas, 658 

velocity data is less commonly used compared with temperature data for model calibration.  659 

Our results in section 3.1 indicate that calibrating to temperature data only cannot guarantee accuracy in  660 

velocity simulation in our case. Not using velocity data in model calibration (i.e., using temperature data in model 661 

calibration only) thus, may lead to large velocity errors (as indicated in the Fig. 3). The inclusion of velocity 662 

measurements in calibration not only reduces velocity error but also helps improve the temperature fit. For 663 

example, in Fig. 4, when calibrating to both temperature and velocity data, the temperature error is smaller than 664 

the temperature error when calibrating to temperature data only. This is most obvious in the surface layers of both 665 

STN. A1 and STN. B1, where the temperature error when calibrating to both temperature and velocity (i.e., Cali-666 

Both) is much smaller compared to calibrating to temperature only (i.e., Cali-Vel). The better result (better fit of 667 

temperature as well as velocity) in Cali-Both demonstrates the effectiveness of using velocity measures in 3D 668 

hydrodynamic lake model calibration. The comparison of calibrated parameter values in Cali-Both and Cali-Tem 669 

scenarios (in Fig. 5) also demonstrates the value of using velocity data besides temperature data in model 670 

calibration. In Fig. 5, we can see that the calibrated value of viscosity and diffusivity parameters in Cali-Both is 671 

much closer to the true value than that in Cali-Tem. This shows that the use of velocity measures helps to improve 672 

the calibration of these viscosity and diffusivity parameters.  Our analysis is based on synthetic observation data 673 

from the physical model since we do not have real velocity measurements. These physical models are based on 674 

physics laws. The analysis from modelling can provide some implications for the real-world situation. Hence, it 675 

is worthwhile to repeat the analysis based on real data if there are real velocity measurements available in the 676 

future.   677 

The risk of using only temperature data without velocity data, even for accurately simulating water 678 

temperature, is that temperature simulation is affected by both the flow dynamics and the heat transfer process. 679 

The fit of temperature data is a result of the combination of these two processes. However, the fit of the 680 

temperature data cannot guarantee accurate simulation of each of the processes, though accurate simulation of 681 

each process does guarantee the fit of temperature data. The velocity observation hence is valuable to help improve 682 

the flow dynamics simulation of the model, which is not only important for temperature simulation but also for 683 

other water quality substances simulation (e.g., biological and chemical components). Our research implication 684 

of the use of velocity observations is also in line with the study of Baracchini et al. (2020), where they also suggest 685 

having both temperature and current velocity for complete system calibration. 686 

3.5 Possibilities for Other Applications 687 

In this study, we only demonstrate how DYNO can be incorporated into PODS parallel surrogate global 688 

optimization algorithm. (see section 2.6).  However, the new objective function DYNO could also be  easily 689 

utilized with other heuristic optimization methods (e.g., serial or parallel versions of Genetic Algorithm (Davis, 690 

1991) and Differential Evolution (Tasoulis et al., 2004)) for effectively calibrating other multi-variable calibration 691 

problems. We have not provided a precise methodology for incorporating DYNO into other optimization methods 692 

though, since the incorporation of DYNO depends on the structure of an optimization method, and structures of 693 

optimization methods vary a lot. We did illustrate in section 2.6 and Figure 3 on how components of parallel 694 

PODS are modified in order to use DYNO. Other optimization methods could be modified in a similar way to 695 

incorporate DYNO for use in multi-variable calibration. 696 
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 Also, there are numerous other model calibration paradigms in general hydrology and water resources 697 

(besides the hydrodynamic model calibration) where simultaneous multi-variable and multi-site calibrations are 698 

required. Some examples of such multi-variable & multi-site calibration problems include watershed model 699 

calibration (Franco et al., 2020; Odusanya et al., 2019), and seawater intrusion model calibration (Coulon et al., 700 

2021), and water quality model calibration (Xia and Shoemaker, 2021; Xia and Shoemaker, 2022b) etc. In these 701 

problems, there are usually multiple constituents (e.g., substances) to be calibrated and the observations are 702 

usually available at multiple locations. Our new DYNO can potentially be used to calibrate them simultaneously. 703 

A popular calibration strategy for such problems in general hydrology is to use multi-objective calibration where 704 

it is assumed that a trade-off exists between multiple hydrologic responses (e.g., high flow, low flow, water 705 

balance, water quality etc.) 706 

Using multi-objective algorithms, however, for calibrating hydrologic and watershed quality models may 707 

not be the most suited strategy for some case studies because i) multi-objective calibration can be computationally 708 

intensive if underlying simulations are computationally expensive and ii) meaningful trade-offs between different 709 

objectives may not exist. Kollat et al. (2012) demonstrate that prior multi-objective calibration exercises may have 710 

over-reported the number of meaningful trade-offs in hydrologic model calibration. DYNO is a reasonable 711 

alternative to classical multi-objective calibration in calibration problems where the trade-off between multiple 712 

component calibration objectives is not significant, because i) a balance between multiple constituent objectives 713 

is maintained with DYNO and ii) a single objective algorithm can be used with DYNO, which is computationally 714 

more efficient than a multi-objective algorithm. This is especially true for multi-constituent watershed model 715 

calibration problems where the achievable objective functions ranges for different constituents (e.g., flow, 716 

sediment, phosphorus etc.) are quite different. Multiple prior studies (Moriasi et al., 2012; Moriasi et al., 2015) 717 

highlight that achievable ranges of statistical calibration measures (e.g., Nash Sutcliffe Efficiency (NSE), bias 718 

etc.) are significantly different for different constituents (e.g., streamflow, sediment, total phosphorus etc.). 719 

Moriasi et al. (2015) note that in most watershed model case studies, the achievable range of NSE for streamflow 720 

is higher than the achievable range for total phosphorus. Hence, DYNO may be extremely effective in balancing 721 

simultaneous calibration of streamflow and phosphorus for such case studies. We believe that there is immense 722 

potential in the application of DYNO for multi-constituent watershed model calibration.  723 

DYNO is also applicable to multi-constituent calibration problems where sampling locations and 724 

temporal frequencies for the different constituents are different.  For instance, in real world hydrodynamic settings, 725 

it is very likely that sampling locations and frequencies of temperature and velocity observations are different. 726 

This is also true for watershed sampling settings, where sampling locations and frequencies for water quality (e.g., 727 

phosphorus) constituents are, typically, less than sampling distributions of streamflow. While the synthetic 728 

experiments of this study assume identical sampling locations & frequencies for temperature and velocity, DYNO 729 

requires the observations of multiple constituents (e.g., temperature and velocity in our case). It is worth 730 

mentioning that DYNO does not require the same number of locations or same time frequency for different 731 

observation constituents. This is because DYNO first calculates the composite error of each constituent separately 732 

and then normalizes the composite error of each constituent dynamically, to balance the calibration of each 733 

constituent. This feature of DYNO allows it to be used in cases where different constituents are measured in 734 

different locations or time frequencies.  735 
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3.6 Future Work  736 

Our analysis of the role of temperature and velocity measurements in 3D hydrodynamic model calibration is based 737 

on synthetic observation data generated from models. We do think it is worthwhile to further investigate the role 738 

of temperature and velocity measurements in hydrodynamic model calibration if there are velocity measurements 739 

available in the future. Moreover, the synthetic observation data used in our analysis did not account for the 740 

measurement uncertainty of observation data. Further investigations related to the impact of measurement errors 741 

on the calibration setup proposed here will also be beneficial. It is important to note that the measurement 742 

uncertainty and distribution of different variables could be different (and thus, our new objective function 743 

formulation DYNO could be very useful in balancing the calibration process in such a scenario). For example, 744 

Baracchini et al. (2020) reported that the measured and computed velocity value (in the magnitude of 1 cm s-1 for 745 

velocity in hypolimnion layer) is close to velocity measurement uncertainty 0.8cm s-1 (the velocity measurement 746 

instrument precision) while the computed and measured temperature value is an order of magnitudes larger 747 

relative to temperature measurement uncertainty in their study. The difference in terms of measurement accuracy 748 

and measurement value could lead to a different magnitude of error function value for each variable (temperature 749 

or velocity). (In their study, the error function is the square of temperature (or velocity) difference between 750 

computed and measured value divided by the observational uncertainty). Baracchini et al. (2020) pointed out that 751 

such discrepancy hinders the use of different kinds of data (e.g., temperature and velocity) simultaneously because 752 

the impact of velocity on the cost function is almost negligible compared with temperature observations. Hence, 753 

they carried out a separate discussion for both types of observation data. Their argument is true if the calibration 754 

objective function is a sum of temperature or velocity’s error function with a fixed weight. In this case, the 755 

difference of the error function value’s magnitude might lead to a biased calibration to the variable that has a 756 

larger impact on the error function.  757 

However, our proposed new objective function DYNO dynamically normalizes the error function value 758 

of each variable using the maximum and minimum value of each variable’s error function value obtained during 759 

the calibration and hence balances the impact of each variable on the objection function. Hence DYNO is designed 760 

to work well in scenarios where the error function values of each variable are significantly different due to 761 

differences in measurement uncertainty and the distribution of each variable’s observations. 762 

Another possible future work is the consideration of the spatial-temporal variability of calibration 763 

parameters (such as Secchi depth, Ozmidov length scale, Dalton number, and Stanton number). We considered 764 

them as constant parameters in our study to simplify the problem. This is reasonable since our study area is 765 

relatively small and there is not much seasonal variation. In cases where the study areas are large and there is 766 

significant seasonal variation, there might be a need to consider these parameters as space and time-varying 767 

calibration parameters. The consideration of space and time variability will, of course, increase the number of 768 

decision variables for the optimization problems, which will bring more challenges. In that case, new methods on 769 

how to reduce the parameter dimensions might be needed (e.g., designing some low dimensional controlling 770 

parameters, like curve number in hydrology (Bartlett et al., 2016), to represent the high dimensional space-time 771 

variability of these parameters).   772 
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4 Conclusions 773 

We conclude that the DYNO objective function that we propose is a new effective way to balance the calibration 774 

to different variables (i.e., temperature and velocity) in optimization-based -calibration. It is possible that the 775 

magnitudes of goodness-of-fit measures for different variables are very different (which may fluctuate during the 776 

optimization search), and thus the optimization search cannot maintain the balance between different variables. 777 

Hence DYNO dynamically modifies the objective function, for multi-variable calibration, so that the error for 778 

each variable is dynamically normalized in each iteration. This is to ensure that the search is giving approximately 779 

equal weight to each variable (e.g., velocity and temperature).  780 

The proposed DYNO is tested in this study for simultaneous temperature and velocity calibration of a 781 

lake model. Moreover, DYNO is integrated with the PODS algorithm for testing on expensive lake hydrodynamic 782 

model calibration in parallel. Results indicate that using DYNO ensures a balanced calibration between 783 

temperature and velocity. We provide a detailed analysis to illustrate that DYNO balances the weight between 784 

different objectives dynamically, and thus allows for a balanced parameter search during optimization.  785 

We conclude that calibrating to the error of one variable (either temperature or velocity) cannot guarantee 786 

the goodness-of-fit of another variable in our case. Of course, the most accurate predictions can be obtained by 787 

having both temperature and velocity data. These comparisons are possible because we have, via synthetic 788 

simulation, the true solution for the lake model.  Our analysis suggests that for practical applications, both 789 

temperature and velocity data might need to be considered for model calibration. The common practice of 790 

calibrating only to temperature data might not be sufficient to reproduce the flow dynamics accurately and extra 791 

effort and expense to collect velocity data is expected to give a beneficial effect. However, our analysis is based 792 

on synthetical data from models, hence it is worthwhile to further investigate the role of temperature and velocity 793 

in model calibration with real temperature and velocity measurements. 794 

There are many possible future areas for the application of this method. DYNO would be effective for 795 

other multi-variable and multi-site calibration problems (especially for problems with many variables). Future 796 

research could apply the DYNO methods to other problems and use other optimization algorithms. 797 
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