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Abstract. Timely predictions of fluvial flooding are important for national and regional planning and real-time flood response.

Several new computational techniques have emerged in the past decade for making rapid fluvial flood inundation predictions

at time and space scales relevant to early warning, although their efficient use is often constrained by the trade-off between

model complexity, topographic fidelity and scale. Here we apply a simplified approach to large-area fluvial flood inundation

modelling which combines a solution to the inertial form of the shallow water equations at 1 km horizontal resolution, with two5

alternative representations of sub-grid floodplain topography. One of these uses a fitted sub-grid probability distribution, the

other a quantile-based representation of the floodplain. We evaluate the model’s performance when used to simulate the 0.01

Annual Exceedance Probability (AEP; ‘100-year’) flood and compare the results with published benchmark data for England.

The quantile-based method accurately predicts flood inundation in 86% of locations, with a domain-wide hit rate of 95% and

false alarm rate of 10%. These performance measures compare with a hit rate of 71%, and false alarm rate of 9% for the simpler,10

but faster, distribution-based method. We suggest that these approaches are suitable for rapid, wide-area flood forecasting and

climate change impact assessment.

1 Introduction

Flooding is a costly and damaging natural hazard which is projected to increase under climate change. Society benefits from

access to timely and accurate flood forecasts and risk-based hazard maps (Teng et al., 2017; Ward et al., 2015). Recent advances15

in large-scale fluvial flood risk modelling have made it possible to conduct wide-area analyses of fluvial flooding across large

geographical extents (Bradbrook, 2006; Dottori et al., 2017; Pappenberger et al., 2012; Wing et al., 2017). These advances

are attributed in part to recently-developed algorithms which solve for lateral spreading of floodwaters using the shallow water

equations, albeit with simplifying assumptions and constraints on model solution properties imposed for computational stability

(Bates and De Roo, 2000; Bates et al., 2010). Well-tested techniques have emerged which implement adaptive time-step20

control (e.g., de Almeida and Bates, 2013) and which employ solution meshes with variable spatial resolutions (e.g., Liang and
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Borthwick, 2009). Moreover, new methods to represent sub-grid variability have brought benefits in cases where fine resolution

topography can be represented statistically within a coarser resolution model grid box (e.g., Dadson et al., 2010; Neal et al.,

2012a; Yamazaki et al., 2011). Alongside these computational advances, high-resolution topographic datasets are now available

globally and regionally. Even though these datasets do not explicitly resolve some important sub-grid features including flood

defences, they have considerably improved our knowledge of the underpinning topographic boundary conditions (e.g., Döll5

and Lehner, 2002; Morris and Flavin, 1990; Yamazaki et al., 2019). These challenges have been tackled to compute static

hazard maps for a range of annual exceedance probabilities (AEPs; e.g., Lamb et al., 2009; Wing et al., 2017), and to provide

local area, real-time predictions (e.g., Xia et al., 2019; Yu et al., 2016).

Notwithstanding these innovations, the application of complex shallow water flow routing codes over large domains is still

computationally intensive. There therefore remains a need for algorithms that offer computational efficiency whilst maintaining10

predictive accuracy (Salas et al., 2018; Schumann et al., 2013). After widespread flooding in the United Kingdom in 2007, an

independent review recommended that a capability for distributed flood prediction be developed at ∼ 1 km resolution, in

order to improve understanding of flood risk across a national-scale domain (Pitt, 2008, p.53). After further extreme flooding

in 2015–2016, the National Flood Resilience Review called for “a more integrated flood risk modelling approach to allow

simulations to be run which link meteorology, hydrology and flooding across England” (Cabinet Office, 2016, p.26). To address15

these needs, simplified approaches have been applied to reduce computation time further, although their accuracy is yet to be

evaluated fully (Afshari et al., 2018; Hall et al., 2003; Johnson et al., 2019; Nobre et al., 2016).

Our purpose in this study is therefore to apply a computationally-efficient simulation model which retains the physical prin-

ciples underpinned by the shallow water equations, but which uses a sub-grid parametrisation to represent relevant information

on the sub-grid floodplain. This approach is not intended to replace traditional site-specific flood models, for which best prac-20

tice remains measurement of channel cross sections combined with detailed topographic surface models in which details of

defences and other flood management interventions can be delineated. By contrast, the method introduced here is designed for

use in circumstances where the requirement for computational efficiency precludes a more complex approach, e.g., in wide-

area flood-forecasting and prediction of climate change impacts. In practice, the model discussed in this paper is intended to be

incorporated into the JULES land-surface model (Best et al., 2011) via the Hydro-JULES interface framework (NERC, 2018).25

The goal of this study is therefore an offline evaluation of this model component against benchmark data available for Eng-

land, United Kingdom. In this paper we test the following specific hypotheses: (i) that a 1 km model with sub-grid floodplain

can perform accurately compared with benchmark data; and (ii) that the additional complexity of a quantile-based approach

improves model performance when compared with a simpler distribution-based method.

2 Data and methods30

2.1 Model description and evaluation domain

The approach taken here combines two model components. The first calculates the lateral distribution of floodplain flows

between grid cells, given storage in each cell, based on the inertial form of the shallow water equations proposed by de Almeida
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and Bates (2013). The second component accounts for the sub-grid floodplain elevation distribution. For this second, sub-grid

component we compare two approaches. The first uses a log-normal approximation to the floodplain topography based on

earlier work by Dadson et al. (2010); the second adopts a quantile-based discretisation of the floodplain, similar to that used in

CaMa-Flood (Yamazaki et al., 2011). The model’s state variables are arranged so that each model grid box contains a volume

of water in its prognostic open water store (Figure 1; and see Table A1 for notation). From this volume, the model calculates5

a corresponding depth of water, h, and area inundated, Afl, conserving mass within each grid box (see Section 2.4). For the

purposes of the current test we select our model domain to be the area encompassed by the Environment Agency’s Indicative

Floodplain map for England (Figure 2), which we represent at 1 km horizontal resolution.

Figure 1. Schematic diagram defining modelled quantities:Abf , channel cross-sectional area (at bankfull depth);wbf , grid box mean channel

width; hbf , bankfull depth; h100, depth at AEP 0.01 flood; ∆x, horizontal grid box length; Afl, inundated fraction.

2.2 Flood depth estimation

Several methods can be used to compute flood depths at the scale of this study. The first converts flows estimated statistically10

for a given recurrence interval everywhere along the channel network to depths, using a flow resistance equation such as

Manning’s. Here we adopt an alternative technique in which flood depths are estimated directly, based on measured attributes

at each location in the domain. The justification for this approach is to maintain close correspondence with the method used to

compute the benchmark dataset (Morris and Flavin, 1990). This decision does not preclude the subsequent use of flow-derived

flood depths, for example to perform event-based analyses, although clearly to do so would introduce additional uncertainty.15

Using a database of extreme river depths compiled explicitly for the purpose, we compute 0.01 AEP flood depths, h100, above

bankfull across the modelled domain (Naden and McCartney, 1991). It is acknowledged that the 0.01 AEP event is highly

unlikely to occur everywhere simultaneously, but for comparability with the widely-used Environment Agency benchmark

data we maintain this approach. A multiple linear regression was employed with log-transformed inputs to estimate h100 as

a function of three variables: (i) catchment area, Acat, computed from the 50 m UK Institute of Hydrology Digital Terrain20

Model (IHDTM; Figure 2a; Morris and Flavin, 1990), (ii) standardised annual average rainfall, (SAAR; Figure 2b; Hollis
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et al., 2018), and (iii) standardised percentage runoff, SPRHOST, computed from Hydrology of Soil Types classes (HOST;

Figure 2c; Boorman et al., 1995). This method is modified from the procedure described by Naden and McCartney (1991)

in which we use HOST instead of the Flood Studies Report Winter Rainfall Acceptance Potential (WRAP) classes, owing to

HOST’s more detailed consideration of subsurface hydrology (Figure 2c).

Figure 2. Supporting datasets a, Environment Agency Indicative Floodplain map shown over 50 m IHDTM hydrologically-corrected terrain

model. Reporting regions are NE, North East; ANG, East Anglia; THA, Thames; STH, South East; SW, South West; MID, Midland; NW,

North West; b, Standardised Annual Average Rainfall (SAAR, mm; blue shading); c, Standardised percentage runoff from Hydrology of Soil

Types dataset (SPRHOST, %; green-blue shading). Areas of the British mainland outside England are shown masked because validation data

are available only for England, for which subsequent plots are shown. The standard UK National Grid transverse Mercator projection is used

together with the Ordnance Survey of Great Britain (OSGB) datum with origin at 2◦W, 49◦N (Ordnance Survey, 2018).

These variables predicted bankfull depth with statistical significance at the 0.05 level (with the following standard regression5

diagnostics calculated: multipleR2 = 0.64, F (3,30) = 17.6; p = 8.8×10−7; see Table 1). The resulting estimator of hbf is given

in Equation 1, and plotted in Figure 3 using the fitted values: a = 1.93×10−3, b = 0.29, c = 0.47, and d = 0.64.

ĥbf = a(AREA)b(SAAR)c(SPRHOST)d (1)
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Table 1. Analysis of variance statistics for regression model fitted using Equation 1. Stars indicate significance; Df, degrees of freedom.

Df Sum Sq Mean Sq F Value Pr(>F)

ln(Acat) 1 4.50 4.50 32.92 2.91 ×10−6 ***

ln(SAAR) 1 1.43 1.43 10.45 2.97 ×10−3 **

ln(SPRHOST) 1 1.29 1.29 9.44 4.49 ×10−3 **

Residuals 30 4.10 0.14
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Figure 3. Bankfull depth relations. a, relation between bankfull depth, hbf , and drainage area, Acat; b, residuals from the regression relation

for n= 33 measurements reported by Naden and McCartney (1991). The solid line shows the 1:1 relation.

Having computed hbf (at bankfull) we convert this depth to an equivalent 0.01 AEP flood height h100 using the following

scaling relation designed for direct estimation of flood depth:

ĥ100 =mĥpbf (2)

where m = 6.75 and p = 0.2 are calculated from values given by Naden and McCartney (1991).
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2.3 Lateral spreading of floodplain flows

Our simulation of lateral distribution of floodplain flows uses the equation of de Almeida and Bates (2013). This formulation

simplifies the solution of the depth-integrated form of the Navier-Stokes equations by neglecting convective acceleration – as-

suming gradually varying, sub-critical flow – to give the following continuity and simplified momentum equations (Equations 3

and 4, respectively):5

∂h

∂t
+
∂qi
∂xi

= 0, (3)

and

∂qi
∂t

+ gh
∂qi(h+ z)

∂xi
+
gn2q2

i

R4/3h
= 0, (4)

where t is time (s), xi are coordinates in space (m), qi is the component of flow of water per unit channel width in the direction

xi (in m2 s -1), g is the gravitational acceleration (m s-2), h is water surface elevation (m), z is topographic elevation of the10

channel bed (m), n is the Gauckler-Manning roughness coefficient (s m-1/3), and R is hydraulic radius (m). An explicit form of

the discretised update equation for flow per unit channel width can be obtained from Equation (4) by assuming that for shallow

flows R can be approximated by h and by using the finite difference scheme of de Almeida and Bates (2013),

qt+∆t
i =

qti − ght∆t∂(ht+z)
∂xi

1 + g∆tn2|qti |/h
7/3
t

. (5)

The stability of this solution depends on the Courant-Friedrichs-Lewy condition:15

∆t= α
∆x√
ghmax

, (6)

where hmax is defined as the maximum depth of water within the domain of the model (m) and α is a dimensionless factor

between zero and unity. In the present study we use an adaptive time-step solver based on Equations 3–6 with α= 0.7 to

improve stability (de Almeida and Bates, 2013, p.4836).

In addition to the initial state of the model, h(xi), two other pieces of information are required: a dataset on channel width,20

wbf , which is needed to calculate flow per unit width, qi; and information on the Gauckler-Manning roughness coefficient, n.

We calculate channel width using the same dataset used in Table 1. However, in the case of channel width only upslope area
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and soils data are used because the effect of rainfall is not statistically significant. These variables predicted bankfull width

with statistical significance at the 0.05 level (Multiple R2 = 0.70, F (2,27) = 32.4; p = 6.7× 10−8; see Table 2). Note that

fewer locations in the dataset had a well-defined bankfull width than had a recorded depth, hence the slightly lower number

of observations used in this analysis. The resulting estimator of bankfull width is given by Equation 7 and plotted in Figure 4

using the fitted values: g= 0.157, j = 0.48, and k = 0.51.5

ŵbf = g(AREA)j(SPRHOST)k. (7)

Table 2. Analysis of variance statistics for regression model fitted using Equation 7. Stars indicate significance; Df, degrees of freedom.

Df Sum Sq Mean Sq F Value Pr(>F)

ln(Acat) 1 11.57 11.57 60.56 2.28 ×10−8 ***

ln(SPRHOST) 1 0.81 0.81 4.26 0.0487 *

Residuals 27 5.16 0.19

Gridded channel roughness estimates were derived from a database of river cross-section surveys (Environment Agency,

2020). For each surveyed river reach, a composite roughness estimate was obtained by weighting roughness measurements

from Fisher and Dawson (2003) according to surveyed fractional size classes of bed material. Weights were chosen to respect

the condition that the total resistance to flow across the river cross-section is equal to the sum of the resistance to flow in each of10

the substrate classes (Chow, 1959). The resulting composite roughness values were interpolated onto the river channel network

using natural neighbour interpolation. For locations not on the channel network a standard floodplain roughness value of 0.04

was used. The sensitivity of our results to roughness is evaluated in Section 4.1.

Here we consider only fluvial inundation -– not groundwater, pluvial or coastal flooding – although the model developed

here is formulated so as to be able to receive rainfall inputs, supply recharge to a groundwater model, and obey a downstream15

flux or level constraint imposed by a coastal or estuarine boundary condition in the future. It should be noted that, in common

with other models typically applied at horizontal discretisation scales greater than ∼10 m, this approach is not designed to

resolve flow shocks and is therefore unsuitable for flows with Froude number greater than unity. For the applications under

consideration here this is not a restrictive limitation (Neal et al., 2012b).

In order to compute the inundated extent associated with the AEP 0.01 flood, we track the time evolution of maximum20

inundated area in a transient simulation with a temporal integration defined by the relaxation time, τ∗, of a typical perturbation

on the solution mesh, where

τ∗ ∼ n(SA∗)1/2h1/3. (8)
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Figure 4. Bankfull width relations. a, relation between bankfull width,wbf , and drainage area,Acat; b, residuals from the regression relation;

solid line shows the 1:1 relation.

Here A∗cat is the maximum catchment area within the domain of interest and c∗ is a characteristic wave celerity obtained by

differentiating the Manning equation:

c∗ =
∂q

∂h
= 2h−1/3S−1/2/3n. (9)

In this definition, h is the typical water elevation (above bankfull) across the domain and S is the typical channel slope. For the

domain used here, A∗cat ∼ 2× 1010 m2, h∼ 1 m, S ∼ 0.001 and n∼ 0.04, gives an expected equilibration or ‘spin-up’ time,5

τ∗ ∼ 3×105 s. The typical runtime to equilibrium for the∼ 700×103 point British mainland domain shown in Figure 2, using

a single core on a standard 3 GHz Intel processor with 16 GB 1.6 GHz DDR3 RAM, is 7–12 minutes.

2.4 Sub-grid topographic parametrisation

Having computed the laterally-routed water depth, the inundated area for each grid box is computed with reference to the under-

lying topography, subject to the constraint that mass is conserved. Here we use sub-grid topography to calculate a parametrized10

relation between depth above bankfull and the fraction of the floodplain in the grid box which is inundated (Figure 6). This rela-
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Figure 5. Gauckler-Manning roughness coefficient, n, estimated from channel bed texture properties. Data: Environment Agency (2020).

tion may take many forms and has been modelled according to a log-normal distribution by Dadson et al. (2010) and piecewise

by Yamazaki et al. (2011). The former approach is less computationally demanding; the latter makes fewer assumptions about

the nature of floodplain topography but requires that more sub-grid information be retained in supporting datasets. In this study,

we compare the two approaches and evaluate their performance and sensitivity to model parameters. In each case, sub-grid

elevation data were taken from the IHDTM, which is a hydrologically-corrected digital terrain model with 50 m horizontal res-5

olution, produced from Ordnance Survey data (Morris and Flavin, 1990). In each sub-grid floodplain model, inundated extent

is computed as a function of water stored in the grid box. Therefore we make the simplifying assumption that as the grid box

drains, its inundated area recedes simultaneously (i.e., sub-grid flood retention time is negligible).

2.4.1 Log-normal sub-grid floodplain model

To construct the log-normal sub-grid floodplain model, we characterise the sub-grid elevation, z(x,y), above the minimum10

elevation in that grid box, using a log-normal distribution, such that ln(z)∼N(µ,σ
2
). Maximum-likelihood estimators are

constructed with reference to the sub-grid elevation data such that for each large (1 km) model grid box, s, containing n

sub-grid elevations, zi,j :

µ̂(s) =
Σi,j lnzi,j

n
(10)
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σ̂2(s) =
Σi,j (lnzi,j − µ̂)2

n
(11)
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Figure 6. Sub-grid topographic properties showing examples of sub-grid topographic cumulative distributions (solid lines) together with

fitted sub-grid model (dashed lines). Examples are shown for selected floodplain locations in the Derwent (black, 0.46◦W, 54.20◦N), Trent

(blue, 1.38◦W, 52.81◦N), Avon (green, 2.24◦W, 51.33 ◦N), and Cherwell catchments (yellow, 1.25◦W, 51.79◦N) in England, UK.

The validity of the sub-grid topographic approximation is evaluated by considering the root-mean squared error (RMSE)

between the approximated elevation profile and the observed one. The median value of this RMSE is 13%. Figure 6 shows

example profiles with their fitted equivalents showing close correspondence, albeit with some divergences at depths so large

that they are unlikely to be reached in any physically-plausible scenario. Once these parameters have been estimated from sub-5

grid elevation, the area of the grid box below a given elevation, A(z∗), is obtained using the cumulative distribution function

for the log-normal distribution as follows:

A(z∗) =
1
2

+
1
2

erf
[

lnz∗−µ√
2σ

]
, (12)
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in which erf(s) is the error function defined by Abramowitz and Stegun (1964) as:

erf(s) =
2√
π

s∫

0

e−ξ
2
dξ, (13)

Maps showing values of the parameters µ and σ are plotted in Figure 7 which shows small values corresponding to low, flat

terrain and large values in high, rugged terrain, respectively.

Figure 7. Sub-grid inundation model parameters fitted to 50 m IHDTM data using maximum likelihood estimators. a, µ the log-mean of

sub-grid elevation above grid box minimum and b, σ standard deviation of the natural logarithm of elevation above grid box minimum.

2.4.2 Quantile-based sub-grid floodplain model5

The quantile-based approach to discretising the sub-grid floodplain adopted here extends the CaMa-Flood approach of Ya-

mazaki et al. (2011), which has been used extensively at 0.25◦resolution globally. In this study we express the sub-grid eleva-

tion, z(x,y), above the minimum elevation in the 1 km grid box using k equally-spaced quantiles which are defined using a

cumulative distribution derived from the 50 m IHDTM (Figure 6). In the present case, k = 10 (i.e., deciles following Yamazaki

et al., 2011). Once the depth above bankfull is diagnosed from Equations 3–5, the inundated fraction is obtained as the inverse10

of the cumulative distribution in Figure 6, interpolated where necessary to ensure conservation of mass. The quantile-based
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method is more computationally demanding than the distribution-based method described in Section 2.4. Runtime for this part

of the code is 8.51 s with the quantile-based method, which is 238 times slower than the distribution-based method, which

takes 0.036 s. Whilst these times are short enough not to impact the viability of either approach here, in future applications

with higher resolution, larger domains, or large ensembles, the difference may become of practical importance. The additional

topographic complexity retained in the quantile-based approach increases the size of the supporting datasets by a factor of four,5

from 7 MB to 28 MB in the present example.

2.5 Environment Agency benchmark data

To evaluate our results, we use the latest version of the Indicative Floodplain Map for England (Figure 2a) which was compiled

from local assessments of flood risk merged with a national-scale analysis (National Audit Office, 2001). The merged product

delineates flood risk in zones based on estimated return period of inundation. In the present study we evaluate our model10

results against the indicative area of Flood Zone 3, which corresponds to the area likely to be inundated with AEP of 0.01.

We consider only the fluvial area of Flood Zone 3 (i.e., not those parts of the indicative map which are attributed to tidal or

coastal influences); nor do we consider areas that are defended against flooding, as designated in the benchmark dataset. The

benchmark data were converted from their native vector format to a flooded fraction on a regular grid with 1 km horizontal

resolution identical to our model solution mesh.15

Summary statistics for the benchmark data are given in Table 3. Regions used in the present analysis are defined according

to the hydrometric regions used in the National River Flow Archive (NRFA) reporting protocols (Marsh and Hannaford, 2008).

The Anglian region of England, UK, contains the greatest proportion of its area in Flood Zone 3 (21%), although only half of

that area is at risk solely from fluvial inundation. By contrast, only 6% of the Thames region is at risk from flooding although

being furthest from the coast the Thames and the Midlands experience the bulk of their flood hazard (by area) from fluvial20

flooding (86% and 95% respectively).

2.6 Validation metrics

To assess model performance we compute a series of categorical metrics designed to capture successful and unsuccessful

outcomes in forecast situations (Mason, 2003; Stephens et al., 2014; Wing et al., 2017). The observed and modelled inundated

fractions, fo and fm, are defined for each grid box respectively as the ratio of inundated area to total area within the grid box25

such that fo,fm ∈ [0,1]. We use Boolean metrics O and M for each grid box defined as:

O =





0 fo ≤ ε

1 fo > ε,
(14)

M =





0 mo ≤ ε

1 mo > ε,
(15)
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Table 3. Topographic properties by EA region including fraction of region occupied by fluvial and tidal flood risk zones. F&T, fluvial and

tidal.

Region Total area Floodplain area

Fluvial F&T Tidal Total Fluvial

km2 km2 km2 km2 % %

Anglian 26,824 2,892 1,489 1,226 20.9 52

Midlands 21,483 1,547 18 61 7.6 95

North East 22,929 1,307 242 342 8.2 69

North West 14,151 628 345 121 7.7 57

South West 20,937 900 343 203 6.9 62

Southern 11,054 432 468 185 9.8 40

Thames 13,023 707 99 15 6.3 86

Total 130,401 8,413 3,004 2,153 10.4 62

where ε is a threshold of detection set in the present case to the precision afforded by the horizontal resolution of the sub-grid

data, ∆xs = 50 m, such that:

ε=
(

∆xs
∆x

)2

= 0.0025. (16)

In order to replicate the benchmark calculation, locations with upstream area < 10 km2 are masked (Morris and Flavin, 1990)

in this evaluation. Equations 17 and 18 define a hit rate or probability of detection, HR, and a false alarm rate, FAR, which5

measures the probability of a false positive:

Hit Rate, HR =
ΣM ∧O

ΣO
, and (17)

False Alarm Rate, FAR =
ΣM ∧¬O

ΣM
, (18)
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wherein the standard Boolean conjunction, ∧, disjunction, ∨, and complement, ¬, operators are used and summation is over

all valid members of the sets O and M described above. HR and FAR are probabilities each defined on the real interval [0,1].

We further employ a critical success indicator, CSI, such that:

Critical success indicator, CSI =
ΣM ∧O
ΣM ∨O, (19)

also defined on the real interval [0,1], which rewards successful prediction but penalises false positives; and an error bias5

metric, EB, defined as:

Error bias, EB =
ΣM ∧¬O
ΣO∧¬M , (20)

defined on the real interval [0,∞), where values less than unity indicate systematic under-prediction and those greater than

unity indicate a tendency to over-predict (Sampson et al., 2015).

3 Results10

3.1 National-scale comparisons

When evaluated across the study region, the log-normal sub-grid floodplain model performs acceptably, but not as well as

the quantile-based method. We obtain a hit rate (probability of detection) of 71%, a false alarm rate of 9% and a critical

success score of 67% (Table 4). The error bias using this approach was 0.21 indicating that, when in error, the model was five

times more likely to have missed a legitimate flood than to have generated a false alarm. Better results were obtained with15

the quantile-based floodplain model, which accurately simulates flooding in 95% of grid boxes which experience inundation

in the benchmark dataset, with only 10% false positives (Table 5). The critical success indicator, which penalises the model

for its errors is therefore 86% for the entire modelled domain. A domain-wide error bias of 2.06 indicates that predictions err

on the side of caution. That is, the model is more likely to generate false alarms than it is to miss areas of true inundation in

the benchmark dataset. These performance metrics are comparable with those obtained in previous studies using models with20

more explicit computational complexity (Sampson et al., 2015; Sosa et al., 2020; Wing et al., 2017) or with similar sub-grid

topographic representations (Johnson et al., 2019; Yamazaki et al., 2011).

The spatial pattern of model performance is plotted in Figure 8a,b and summarised in Tables 4 and 5. Areas where the

mechanism of flooding is tidal rather than fluvial are masked out, as are areas defended using artificial structures. As is evident

from the model performance statistics, the log-normal model underestimates flood extent, although with no systematic pattern25

to the discrepancy (Figure 8a). The quantile-based model accurately captures zones of regionally-significant fluvial inundation

along major water courses in areas of known flood impact, most notably those in flat terrain of England such as the Somerset
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Levels, Fens of East Anglia, and low-lying parts of North Yorkshire (Figure 8a). The Weald, and low-lying coastal regions of

Kent underlain by impermeable lithology, and the Severn regions of Shrewsbury and Tewkesbury are accurately simulated in

the model. Key locations with important flood impacts around the Trent, and the Yorkshire Ouse, Humber region and the Vale

of Pickering are also accurately modelled Figure 8a,b.

In general, the study results take account of the important geological differences present across the study region, largely due5

to the use of information from the HOST classification in direct flood depth estimation. Igneous and metamorphic rocks found

predominantly in the north and west of the region contrast notably with highly permeable chalk in the south and east. The latter

formation, a thickly bedded Upper Cretaceous limestone found in Hampshire, the Chilterns, North and South Downs, East

Anglia and the Lincolnshire and Yorkshire Wolds is broadly accounted for in the flood depth estimation process. Nonetheless,

there remain a significant number of false alarms particularly in the headwaters of rivers in catchments underlain with chalk.10

We comment on this behaviour and possible remedies in the next section.

Figure 8. Model performance indicators: blue, hit; red, false alarm; black, miss; dark grey, defended areas; mid-grey, areas of coastal flooding

for a, log-normal distribution-based sub-grid floodplain model; b, quantile-based sub-grid floodplain model. Boxes labelled a–d correspond

to subpanels plotted in Figure 9.
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3.2 Regional evaluation

Regional performance metrics are listed in Table 4 and 5. Patterns of model performance are broadly consistent between

the quantile-based and the log-normal distribution-based models, though the latter is systematically better. For the log-normal

distribution-based model, the critical success measure ranges between 59% and 71%, with the Thames and Midlands seeing the

best probability of detection (hit rates 75% in each case; Table 4). The highest false alarm ratio (12%) for this floodplain sub-5

model is seen in the South East. For the quantile-based model, performance is best in the Midlands and East Anglia, followed

by the North East and North West. In the Thames the hit rate is highest of all locations (99%) but performance measured using

the critical success index is reduced slightly by the relatively high rate of false positives (11%) compared with other regions,

which is due to the dominance of chalk. The model performs least well in the South East and South West although in all regions

more than 80% of the inundation in the benchmark dataset is accurately simulated. In the former case this is almost certainly10

due to the influence of highly-permeable chalk in Hampshire, the Chilterns and the North and South Downs. By contrast, the

error bias is lowest (although still above unity) in the South West and North West regions because there are areas of missed

inundation on shallow, upland organic soils.

Table 4. Performance indicators for log-normal floodplain model broken down by EA reporting regions. See text for definitions of regions

and metrics.

Hit rate False alarm

ratio

Critical success

index

Error bias

North East 0.72 0.09 0.67 0.25

East Anglia 0.71 0.07 0.68 0.17

South West 0.67 0.09 0.63 0.20

South East 0.71 0.12 0.65 0.33

North West 0.62 0.07 0.59 0.13

Midlands 0.75 0.07 0.71 0.21

Thames 0.75 0.10 0.69 0.34

Detailed spatial maps showing model performance in key regions are shown in Figure 9. For brevity, only results for the

quantile-based model are plotted here. The Vale of Pickering and tributaries of the Derwent to the north-east of York in North15

Yorkshire are shown in Figure 9a. In this location, the broad patterns of large-scale flood inundation are captured well, even

north into the North York Moors, although some isolated grid boxes do not register flooding in locations where thin upland soils

do, in fact, produce inundation. By contrast, to the south and east of the area the model raises several false alarms which are

associated with a lower level of flood risk. In common with other areas underlain with permeable chalk, parts of the Yorkshire

Wolds are also troubled by some consistent false alarms.20
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Table 5. Performance indicators for quantile-based floodplain model broken down by EA reporting regions. See text for definitions of regions

and metrics.

Hit rate False alarm

ratio

Critical success

index

Error bias

North East 0.98 0.08 0.90 4.13

East Anglia 0.98 0.07 0.91 4.06

South West 0.94 0.09 0.86 1.60

South East 0.94 0.14 0.81 2.58

North West 0.96 0.07 0.90 1.49

Midlands 0.98 0.06 0.92 3.49

Thames 0.99 0.11 0.89 9.70

The Midland region plotted in Figure 9b, which is centred on the River Trent, is relatively well simulated with few false

alarms. An isolated number of grid boxes which register as ‘misses’ are located in the north of the region, in the thinner soils

of the Peak District. Figure 9c shows a region of Somerset and Wiltshire in which model performance is generally sound but

with a tendency towards false alarms, particularly in areas underlain by Jurassic clay. The part of the Thames basin shown

in Figure 9d is, in general, well simulated, notwithstanding the false alarms associated with direct flood depth estimation in5

the chalk of the Chilterns and the North Downs, which have been discussed previously. The presence of such false alarms is

unlikely to impede the interpretation of model outputs in practice because they occur in regions where hydrological behaviour

is known to be controlled strongly by geology.
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Figure 9. Regional model performance assessment centred on a, Vale of Pickering; b, Derbyshire Trent; c, Somerset-Wiltshire; d, Greater

London Thames; see Figure 8 for definition of shading. Yellow zone masks area protected by flood defences. Benchmark Flood Zone data

contain public sector information licensed under the Open Government Licence v3.0. Base maps contain Ordnance Survey data © Crown

Copyright and database rights 2019
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4 Discussion

4.1 Sensitivity analysis

The two steps in the process chain with the potential to contain the highest unconstrained uncertainties are the fitting of h100

and the specification of frictional roughness via the Gauckler-Manning coefficient, n. Below we tabulate the sensitivity of

model performance to these parameters (Tables 6 and 7).5

Table 6. Sensitivity to parameters m and n for the log-normal floodplain model.

Hit rate False alarm

ratio

Critical success

index

Error bias

Growth factor, m

-20% 0.62 0.09 0.59 0.13

Baseline 0.71 0.09 0.67 0.21

+20% 0.77 0.09 0.72 0.31

Gauckler-Manning coefficient, n

×0.5 0.74 0.09 0.67 0.24

Baseline 0.71 0.09 0.67 0.21

×2.0 0.69 0.09 0.65 0.21

Table 7. Sensitivity to parameters m and n for the quantile-based floodplain model.

Hit rate False alarm

ratio

Critical success

index

Error bias

Growth factor, m

-20% 0.90 0.10 0.82 0.93

Baseline 0.95 0.10 0.86 2.06

+20% 0.97 0.10 0.87 3.23

Gauckler-Manning coefficient, n

×0.5 0.96 0.10 0.87 2.62

Baseline 0.95 0.10 0.86 2.06

×2.0 0.94 0.10 0.85 1.52

The growth factor, m, used to estimate h100 is altered from 80% to 120% of the fitted value. This change results in only

a small change in overall model performance (Table 6). Specifically, a 20% reduction in m (and therefore in h100) leads to
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a lower hit rate together with a lower false alarm rate which together reduce the error bias accordingly. However, the critical

success index shows that the reduction in hit rate is not fully compensated for by the reduced occurrence of false alarms.

Conversely, a 20% increase in h100 appears to have little impact on model performance other than to increase the error bias

slightly. The model is largely insensitive to the choice of the Gauckler-Manning coefficient, n, with the only discernible effect

being a slightly lower error bias with higher values of n.5

4.2 Applications

The central aim of this paper has been to demonstrate that combining a 1 km inundation model based on a simplified inertial

form of the shallow water equations with a sub-grid representation of floodplain topography can produce acceptable wide-area

flood simulations. In relation to our first hypothesis, we conclude that it is possible to achieve acceptable performance against

an established benchmark at coarse resolution using a fast inundation algorithm with a sub-grid flood plain. Moreover, in10

relation to our second hypothesis, we conclude that using a quantile-based sub-grid floodplain model increases the probability

of detection by 20% whilst increasing the likelihood of a false alarm by only 1%.

The computational efficiency of our approach — achieved through sub-grid parametrisation — is intended to benefit ap-

plications where rapid assessments are required for early-look warnings prior to hydrodynamic analysis with finer precision.

The additional performance of the quantile-based model comes at the expense of a 4-fold increase in the size of the supporting15

sub-grid topographic datasets, and a 238-fold increase in computation time. In spite of this extra expense, which we note is

still small compared with the additional cost of running an inundation model at the native 50 m sub-grid scale, it is possible to

compute the steady-state AEP 0.01 flood extent for the British mainland in approximately ten minutes. Moreover, the ability

to produce many rapid simulations with only modest computational resource opens possibilities either for higher-resolution

applications or wider-ranging quantification of uncertainties (Hrachowitz and Clark, 2017). In locations where flood discharge20

or level data are unavoidably imprecise, the potential to provide fast, accurate simulations to partition uncertainties between

initial conditions, driving data and topographic boundary conditions – and to test hypotheses about model structure – may also

be beneficial (Beven et al., 2020).

4.3 Future Work

The method used here can be applied regionally or globally and extended to use other datasets at finer resolution. As indicated in25

the introduction, this study represents a first step in providing a component for integration into the Joint UK Land Environment

Simulator. Further work is underway to make this coupling, which will enable the community to simulate the wider impacts

of flood inundation on the Earth system including its links with: (i) surface energy exchange (Dadson et al., 2010; Decharme

et al., 2008), (ii) focused groundwater recharge (Taylor et al., 2013), (iii) carbon-cycle biogeochemistry of vegetation (Gedney

et al., 2004), and (iv) shelf-seas and the coastal ocean as part of a coupled system (Lewis et al., 2018). Additional work is30

planned to evaluate the model’s applicability for wide-area flood forecasting and climate impact assessments and to assess its

performance during specific, high-impact flood events. We also note the potential to impose a time-varying lower (coastal)

boundary condition either to simulate coastal flooding as a distinct process or alongside coincident fluvial flooding.
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5 Conclusions

This study has sought to introduce and evaluate an efficient approach that can deliver fast, accurate predictions of fluvial

inundation over a wide area. We have combined a solution to the inertial form of the shallow water equations with a sub-grid

representation of floodplain topography and have driven it with flood depth estimates from an established procedure used to

define the AEP 0.01 flood. When evaluated against Environment Agency benchmark data, this approach produces accurate5

estimates of flood inundation in 86% of locations with a domain-wide hit rate of 95% and a false alarm rate of 10%.

Our evaluation highlights the need for accurate initial conditions and input data, and we propose further work to validate the

model for the transient case and for cases where the downstream boundary is controlled by coastal influences. Our approach is

computationally expedient and permits both large-area real-time forecasts of flood hazard at national scale whilst also allowing

fully-coupled Earth system models to represent explicitly the links between inundated extent and processes in the overlying10

atmosphere.

Data availability. Supporting datasets and model results necessary to reproduce the figures shown in this study are available for public

download from the NERC Environmental Informatics Data Centre (https://doi.org/10.5285/tbc). All model results can be reproduced using

the equations given in the text.

Appendix A: Definitions15

Table A1: Notation used for quantities defined in this paper

Notation Quantity Dimensions Unit

Abf Channel cross-sectional area [L2] m2

wbf Bankfull channel width [L] m

h Inundated depth [L] m

hbf , h100 Bankfull depth; AEP 0.01 depth [L] m

∆x Horizontal grid box length [L] m

Afl Inundated fraction [-] [-]

V Prognostic water volume in grid box [L3] m3

Acat Catchment area [L2] km2

SAAR Standard annual average rainfall [L] mm

SPRHOST Standardised percentage runoff from HOST classification [-] %

a,b,c,d Constants in estimator for hbf See text See text

m,p Constants in growth curve to estimate in 0.01 AEP flood depth from hbf See text See text
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Continuation of Table A1

Notation Quantity Dimensions Unit

q Lateral flow per unit channel width between grid boxes [L2T-1] m2 s-1

g Gravitational acceleration [LT-2] m s-2

ht Water depth (at time t) [L] m

z Topographic elevation [L] m

t Time co-ordinate [T] s

xi Space co-ordinates [L] m

n Gauckler-Manning coefficient [TL-1/3] s m-1/3

∆t Time step [T] s

hmax Maximum water elevation across domain [L] m

R Hydraulic radius [L] m

α Numerical stability factor [-] [-]

τ∗ Time-constant for model equilibration [T] s

A∗cat Maximum inundated area [L2] km2

c∗ Characteristic wave celerity [LT-1] m s-1

h̄ Typical water elevation across domain, used in time-constant calcula-

tion

[L] m

S̄ Typical channel slope used in calculation of time constant [-] [-]

A(z∗) Function describing area fraction of grid box below a given elevation,

z∗
[-] [-]

s, ξ Argument and integration variable for definition of error function in

Equation 13, respectively

[-] [-]

k Number of quantiles used to represent sub-grid floodplain [-] [-]

fo, fm Inundated fraction, observed and modelled respectively [-] [-]

O,M Boolean indicators of inundation fraction greater than ε for observed

and modelled inundation, respectively

[-] [-]

ε Threshold of detection [-] [-]

∆xs Horizontal resolution of sub-grid data [L] m
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