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Abstract  21 

Agricultural drought is mainly caused by reduced soil moisture and precipitation and shows 22 

adverse impacts on the growth of crops and vegetation, thus affecting agricultural production and 23 

food security. For developing measures for drought mitigation, reliable agricultural drought 24 

forecasting is essential. In this study, we developed an agricultural drought forecasting model based 25 

on canonical vine copulas under three-dimensions (3C-vine model), in which the antecedent 26 

meteorological drought and agricultural drought persistence were utilized as predictors. Besides, the 27 

meta-Gaussian (MG) model was selected as a reference model to evaluate the forecast skill. The 28 

agricultural drought in August of 2018 was selected as a typical case study, and the spatial patterns 29 

of 1–3-month lead forecasts of agricultural drought utilizing the 3C-vine model resembled the 30 

corresponding observations, indicating the good predictive ability of the model. The performance 31 

metrics (NSE, R2, and RMSE) showed that the 3C-vine model outperformed the MG model for 32 

forecasting agricultural drought in August under diverse lead times. Also, the 3C-vine model 33 

exhibited excellent forecast skills in capturing the extreme agricultural drought over different 34 

selected typical regions. This study may help to guide drought early warning, drought mitigation, 35 

and water resources scheduling.  36 

Keywords: drought forecasting, model comparison, vine copulas, meta-Gaussian  37 

1. Introduction 38 

Agriculture is the source of livelihoods of over 2.5 billion people worldwide, and the 39 

agricultural sector also sustains 82% of all drought impacts (FAO, 2021). A cascade of impacts of 40 

droughts, such as crop reduction and failure, increased human and tree mortality, and ecological 41 

disturbance, have attracted considerable attention (FAO, 2021; Lu et al., 2012; Modanesi et al., 2020; 42 
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Su et al., 2018; Zhang et al., 2018; Zhang et al., 2019; Zscheischler et al., 2020). Droughts have 43 

reduced global crop production by about 9–10% for the period 1964–2007 (Lesk et al., 2016). 44 

Additionally, droughts have caused overall crop and livestock production loss of $37 billion over 45 

the least developed and lower-middle-income countries (FAO, 2021). Agricultural drought 46 

forecasting, therefore, lies at the core of overall drought risk management and is critical for food 47 

security, early warning, as well as drought preparedness and mitigation.  48 

Agricultural drought is generally referred to as soil moisture shortage, which adversely affects 49 

crop yield and vegetation health (Modanesi et al., 2020; Zhang et al., 2016; Zhang et al., 2021). 50 

Under natural conditions, atmospheric precipitation is a paramount source for replenishment of soil 51 

moisture (Wu et al., 2021a). Therefore, reduced soil moisture (agricultural drought) mainly 52 

arisearises from precipitation deficit (meteorological drought) (Modanesi et al., 2020; Orth and 53 

Destouni, 2018). Moreover, soil moisture has a good memory to drought because of the time-54 

integration effects (Long et al., 2019), i.e., agricultural drought persistence. Previous meteorological 55 

drought and antecedent agricultural drought can be taken into consideration as predictors of 56 

subsequent agricultural drought. 57 

In hydrology, some physically-based hydrological models (e.g., Distributed Time-Variant Gain 58 

Hydrological Model (DTVGM; Ma et al, 2021) and Soil and Water Assessment Tool (SWAT; Wu et 59 

al., 2019)) are widely used in hydrological simulation and prediction, the droughts included as well. 60 

However, the physically-based hydrological models typically apply to a catchment or sub-regional 61 

scale, and generally require numerous hydrometeorological variables to achieve more accurate real-62 

time predictions (Liu et al., 2021a; Xu et al., 2021a). Traditional methods, such as regression models, 63 

machine learning models, and hybrid models (by considering both statistical and dynamical 64 
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predictions) (Hao et al., 2016), have been extensively employed to forecast drought. Yet, these 65 

models tend to be limited in considering the complex nonlinear (e.g., regression models), explicit 66 

physical mechanisms and over-fitting (e.g., machine learning models), as well as the demand of 67 

massive hydroclimatic data input (e.g., hybrid models). The copula functions, first introduced by 68 

Sklar (1959), overcome the limitations of the abovementioned aforementioned conventional 69 

statistical methods.; and the applications of copulas in hydrology and geosciences go back to the 70 

2000s (e.g., De Michele and Salvadori, 2003; Favre et al., 2004; Salvadori and De Michele, 2004). 71 

Since copulas are flexible joining arbitrary marginal distributions of variables, they have been 72 

widely employed in hydrological research community, such as frequency analysis and risk 73 

assessment (De Michele et al., 2013; Hao et al., 2017; Liu et al., 2021b; Sarhadi et al., 2016; Xu et 74 

al., 2021b; Zhang et al., 2021; Zhou et al., 2019), flood and runoff forecasting (Bevacqua et al., 75 

2017b; Hemri et al., 2015; Liu et al., 2018; Zhang and Singh, 2019), and drought forecasting 76 

(Ganguli and Reddy, 2014; Wu et al., 2021a). However, when bivariate copulas are extended to 77 

higher-dimensional (≥ three-dimensions) cases, they are restricted due to nonexistence of analytical 78 

expressions (Liu et al., 2021a). Symmetric Archimedean copulas and nested Archimedean copulas 79 

partially have addressed the issues of dimensionality, but single parameter and Archimedean class 80 

are difficult to characterize the various dependence structures (Aas and Berg, 2009; Hao et al., 2016; 81 

Wu et al., 2021a). Fortunately, the vine copulas, which have been developed by Joe (1996) as well 82 

as Bedford and Cooke (2002), can be adopted to addressed these limitations (Aas et al., 2009; 83 

Bedford and Cooke, 2002; Joe, 1996).  84 

Vine copulas are flexible in decomposing any multi-dimensional joint distribution into a 85 

hierarchy of bivariate copulas or pair copula constructions (Aas et al., 2009; Bedford and Cooke, 86 
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2002; Liu et al., 2021a; Vernieuwe et al., 2015; Xiong et al., 2014). These copulas have been 87 

extensively applied in the hydrological field (Bevacqua et al., 2017b; Liu et al., 2021b; Vernieuwe 88 

et al., 2015; Wu et al., 2021a). For instance, Xiong et al. (2014) derived the annual runoff 89 

distributions using canonical vine copulas. Liu et al. (2018) developed a framework to investigate 90 

compound floods based on canonical vine copulas. Wang et al. (2019) utilized regular vine copulas 91 

with historical streamflow and climate drivers to simulate monthly streamflow for the headwater 92 

catchment of the Yellow River basin. Liu et al. (2021a) developed a hybrid ensemble forecast model, 93 

using the Bayesian model averaging combined canonical vine copulas, to forecast water level. Wu 94 

et al. (2021a) proposed an agricultural drought forecast model based on vine copulas under four-95 

dimensional scenarios.  96 

The meta-Gaussian (MG) model, a popular statistical model in the hydrometeorological 97 

community, has explicit conditional distributions, which is apt for forecasting and risk assessment 98 

purposes (Hao et al., 2016; Hao et al., 2019a; Wu et al., 2021b; Zhang et al., 2021). The forecast 99 

skills of the MG model for drought or compound dry-hot events, for example, outperformed the 100 

persistence-based or random forecast models (Hao et al., 2016; Hao et al., 2019a; Wu et al., 2021b). 101 

However, the MG model only depicts the linear relationship among explanatory variables (predictors) 102 

and forecasted variable via covariate matrix, it cannot characterize the nonlinear or tail dependence 103 

existing in the variables (Hao et al., 2016). Fortunately, Vine copulas can flexibly combine multiple 104 

variables via bivariate copula to characterize numerous or complex dependencies. There has been a 105 

rather limited investigation, to our knowledge, that conducting model comparisons between vine 106 

copulas and MG for agricultural drought forecasting under the same conditions. Therefore, 107 

investigations on drought forecasting skills between vine copulas and the MG model are needed to 108 
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obtain more reliable drought forecasts. 109 

The objective of this study therefore was to compare the forecast ability of agricultural drought 110 

in August of every year in the period 1961–2018 between canonical vine copulas (i.e., 3C-vine 111 

model) and MG model under three-dimensional scenario. In the following, we briefly describe the 112 

study area and data used in Section 2. The MG and 3C-vine models and performance metrics utilized 113 

are presented in Section 3. Results of the 3C-vine model application and assessment are displayed 114 

in Section 4. Finally, the discussion and conclusions are presented in Section 5.  115 

2. Study area and data used 116 

China stretches across a vast area covering diverse climate regimes and is a major agricultural-117 

producing country (Wu et al., 2021a; Zhang et al., 2015). For the convenience of analyzing spatial 118 

patterns of agricultural drought, the climate of China was divided into seven sub-climate regions on 119 

the basis of Zhao (1983) and Yao et al. (2018), as shown in Figure 1. For each sub-climate region, 120 

the temperature and moisture conditions when combined are roughly similar, and the type of soil 121 

and vegetation have a certain common characteristic (Zhao, 1983).  122 

---------------------------------------------------Figure 1. -------------------------------------------------- 123 

In this study, the gridded monthly precipitation with a 0.25°×0.25° spatial resolution was 124 

obtained from the CN05.1 dataset for the 1961–2018 period over the mainland of China (excluding 125 

the Taiwan province), which was provided by the Climate Change Research Center, Chinese 126 

Academy of Sciences (available at http://ccrc.iap.ac.cn/resource/detail?id=228)China National 127 

Climate Center. The Copernicus Climate Change Service (C3S) at European Center for Medium-128 

Range Weather Forecast (ECMWF) has begun the release of the ERA5 back extension data covering 129 
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the period 1950–1978 on the Climate Data Store (CDS). Therefore, the gridded monthly soil 130 

moisture with a 0.25°×0.25° spatial resolution corresponding to three soil depths (0–7 cm, 7–28 cm, 131 

and 28–100 cm) are available from the ECMWF ERA5 reanalysis datasets for 1961–1978: 132 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means-133 

preliminary-back-extension?tab=overview and 1979–2018: 134 

https://cds.climate.copernicus.eu./cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-135 

means?tab=overview. The CN05.1 and ERA5 reanalysis datasets have been extensively utilized 136 

numerous studies, e.g., drought monitoring and forecasting (Wu et al., 2021a; Zhang et al., 2021), 137 

long-term climatic analysis (He et al., 2021; Wu et al., 2017), and flash drought attribution analysis 138 

(Wang and Yuan, 2021). 139 

3. Methodology 140 

The Standardized Precipitation Index (SPI, based on monthly precipitation) and Standardized 141 

Soil moisture Index (SSI, based on monthly cumulative soil moisture at top-three soil depths) is 142 

leveraged to characterize meteorological drought and agricultural drought at a 6-month timescale, 143 

respectively. The empirical Gringorten plotting position formula (Gringorten, 1963) was used to 144 

obtain the empirical cumulative probabilities of these two indexes, which were then transformed 145 

into standardized variables via the normal quantile transformation. Since meteorological drought is 146 

a source of other drought types (e.g., agricultural drought), the antecedent precipitation deficiency 147 

(i.e., meteorological drought) has a stronger effect on the subsequent soil moisture deficiency (i.e., 148 

agricultural drought). Moreover, soil moisture has a good memory for prior drought, i.e., agricultural 149 

drought persistence, which is attributed to the soil porosity characteristics and time-integration 150 

effects (Long et al., 2019; Wu et al., 2021a).  151 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means-preliminary-back-extension?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means-preliminary-back-extension?tab=overview
https://cds.climate.copernicus.eu./cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://cds.climate.copernicus.eu./cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
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We attempted to use the prior meteorological drought (SPIt–i; t denotes the target month (e.g., 152 

August), and i indicates lead time (month)) and agricultural drought persistence (SSIt–i) to forecast 153 

the subsequent agricultural drought (SSIt) based on the canonical vine copulas under three-154 

dimensional scenarios (3C-vine model). We selected the meta-Gaussian (MG) model as a reference 155 

model to assess the agricultural drought forecast performance of the 3C-vine model. Here, the 6-156 

month timescale SPI (SSI) in August, which is calculated by the cumulative precipitation (soil 157 

moisture) from March to August, can indirectly reflect the surplus or deficit situations of water in 158 

spring (March-April-May) and summer (June-July-August) seasons. Furthermore, August is a key 159 

growth period for crops (e.g., anthesis, fruiting, and seed filling) and vegetation and is also a period 160 

with frequent droughts (Wu et al., 2021a). Undoubtedly, agricultural drought forecast can be 161 

implemented in any month of interest, based on 3C-vine model and MG model. More detailed 162 

information is given below.  163 

3.1. Meta-Gaussian model under three-dimensional scenarios 164 

Meta-Gaussian (MG) model can effectively combine multiple hydrometeorological variables, 165 

which have gained attention for drought forecasting and risk assessment (Hao et al., 2019a; Hao et 166 

al., 2019b; Wu et al., 2021b; Zhang et al., 2021). Suppose the series of SPIt–i, SSIt–i, and SSIt 167 

correspond to random variables Y1, Y2, and Y3, respectively, the predictand y3 under the given 168 

conditions of y1 and y2 based on the MG model can be expressed as (Wilks, 2014): 169 

3 1 2 3 1 23 1 2 |( , ) |( , )
| ( , ) ~ ( , )

y y y y y y
y y y N          (1) 170 

where N signifies the Gaussian distribution function; 
3 1 2|( , )y y y

  denotes the conditional mean; and 171 

3 1 2|( , )y y y
  represents the conditional covariate matrix.  172 
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Furthermore, we removed the forecast values in a specific year of y1, y2, and y3, which denote 173 

y1
–yr, y2

–yr, and y3
–yr, respectively. Under this circumstance, the covariate matrix Σ regarding y1

–yr, 174 

y2
–yr, and y3

–yr can be written as:  175 

1 3 131 1 1 2 11 12

11 12
2 3 232 1 2 2 21 22

21

31 32 333 1 3 2 3 3

( , )( , ) ( , )

( , )( , ) ( , )

( , ) ( , ) ( , )

yr yryr yr yr yr

yr yryr yr yr yr

yr yr yr yr yr yr

y y Covy y y y Cov Cov

y y Covy y y y Cov CovCov

Cov Cov Covy y y y y y

− −− − − −

− −− − − −

− − − − − −

   
   

= = =   
   
    

Σ Σ
Σ

Σ
22

 
 
 Σ

 (2) 176 

where Covmn = Cov(ym
–yr, yn

–yr) denotes the covariance between ym
–yr and yn

–yr (m = 1, 2, 3; n = 1, 177 

2, 3). The forecast of specific years, i.e., y3
yr, can be derived as (Wilks, 2014): 178 

1

3

2

1
1

3 21 11

2

yr

yr

yr

yr

yyr

yry

y

y
y

y






−

−

−

−
 −
 = +

− 
 

Σ Σ        (3) 179 

where 
1

yr
y

 − , 
2

yr
y

 − , and 
3

yr
y

 −  represent the mean of y1
–yr, y2

–yr, and y3
–yr, respectively; y1

yr and 180 

y2
yr denote that y1 and y2 provided the forecast information at time t–i in a specific year. More details 181 

about forecasting agricultural drought based on the MG model can be found in Figure 3. 182 

3.2. Canonical vine copulas model under three-dimensional scenarios 183 

Copulas can effectively combine multiple variables without the restriction of marginal 184 

distributions (Nelsen, 2013; Sarhadi et al., 2016; Wang et al., 2019; Xiong et al., 2014). They were 185 

initially utilized for deriving joint distributions of two-dimensional variables, since parameters are 186 

easy to assess and the analytical solution is apt to obtain (Liu et al., 2021a; Sadegh et al., 2017). 187 

However, under higher-dimensional (e.g., d ≥ 3) scenarios, owing to the limitations of a great deal 188 

of parameters and complexity, the copulas (mainly referred to bivariate copulas) are difficult to 189 

promote and apply (Joe, 2014; Liu et al., 2018; Liu et al., 2021a; Sadegh et al., 2017). To overcome 190 

these limitations, Joe (1996) and Aas et al. (2009) developed vine copulas, a hierarchy of pair copula 191 
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constructions, for multi-dimensional cases. Vine copulas possess two sub-classes: canonical vine 192 

copulas (C-vine copulas) and drawable vine copulas (D-vine copulas). Here, we mainly employed 193 

the C-vine copulas to establish the forecast model of agricultural drought under three-dimensional 194 

conditions. Undoubtedly, a similar scheme is capable of applying to D-vine copulas.  195 

C-vine copulas may have numerous tree structures, especially for the case of higher dimensions, 196 

which are associated with the quantity and ordering of variables (Aas et al., 2009; Liu et al., 2018; 197 

Liu et al., 2021a; Wu et al., 2021a). Also, different ordering of variables affects the estimation of the 198 

parameters of C-vine copulas (Liu et al., 2021a; Wang et al., 2019). Given the ordering of variables 199 

Y1, Y2, and Y3 for three-dimensional C-vine copula model (termed as 3C-vine model hereinafter; 200 

Figure 2a), the joint probability density function (PDF), g123, can be expressed as (Aas et al., 2009):  201 

123 1 2 3 12 13 23|1
g g g g c c c=        (4) 202 

where g1, g2, and g3 correspond to the margin density functions of g1(y1), g2(y2), and g3(y3), 203 

respectively; c is the bivariate copula density; c12, c13, and c23|1 signify the abbreviation of c1,2[G1(y1), 204 

G2(y2)], c1,3[G1(y1), G3(y3)], and c2,3|1[G(y2|y1), G(y3|y1)], respectively. The Gm(ym) corresponds to 205 

cumulative density function (CDF) of the ym; G(y2|y1) denotes the conditional probability 206 

distribution of y2 under known conditions of y1, that is similar for G(y3|y1). The Gaussian (or Normal), 207 

Student-t, Clayton, and Frank copulas, as well as their rotated (survival) forms (Dißmann et al., 2013; 208 

Liu et al., 2021b) are utilized to obtain the optimal internal bivariate copulas for distinct trees in 3C-vine 209 

models based on the Akaike information criterion (AIC). With the help of CDVineCondFit R function 210 

in “CDVineCopulaConditional” R package (Bevacqua, 2017a), based on the AIC, we selected the 211 

optimal tree structures (i.e., detected the suitable variable ordering; seen in Figure 2).  212 

---------------------------------------------------Figure 2. -------------------------------------------------- 213 
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A conditional copula density needs to be addressed in Equation 4, i.e., G(y|w), where w is a d-214 

dimensional vector w = (w1, …, wd). Here, regarding the conditional distribution of y given the 215 

conditions w, we introduced the h-function, h(y, w; θ), to indicate the G(y|w) as follows (Aas et al., 216 

2009; Joe, 1996): 217 

, |
( | ), ( | )

( , ; ) : ( | )
( | )

j jy w j j j

j j

C G y G w
h y G y

G w


− − −

−

   
= =



w
w w

w w
w

    (5) 218 

where θ denotes the parameter(s) of bivariate copula function |j jyw
C

−w ; wj represents an arbitrary 219 

component of w; and w–j indicates the excluding element wj from the vector w.  220 

Let the ordering variables be y1, y2, and y3, the conditional variables be y1 and y2, and the 221 

predictand be y3. Accordingly, the expression of G(y3|y1, y2), based on Equation 5, can be written as: 222 

 
 3 1 2

3 1 2 1,

3 1 2 3 1 12 2 1 11 21

2 1

( | ), ( | )
( | , = ( ; ) ( ; );

( | )

y y y
C G y y G y y

G y y y h h u u h u u
G y y

  


=


）   (6) 223 

where θij (i denotes a tree and j is an edge) represents the parameters of different conditional copulas 224 

in the 3C-vine model (Figure 2a); and uk (k = 1, …2, 3) is the marginal cumulative distribution 225 

function (CDF) of yk. The CDF for each variable is substituted by the corresponding empirical 226 

Gringorten cumulative probability (Bevacqua et al., 2017b; Genest et al., 2009; Wu et al., 2021a).  227 

Here, we introduced the τ-th copula–quantile curve (Chen et al., 2009; Liu et al., 2018) to 228 

simulate u3 based on Equation 6 and derived its inverse distribution function as follows: 229 

   1 1 1

1 2 2 1 11 21 1 1

1 1

3 3 2
| , ) ( ( ; );( ) )( ;y hy y N h h u u uN G N u    − − −−−  == =

 
   (7) 230 

where N–1 and h–1 signify the inverse form of Gaussian distribution and h-function, respectively; y3 231 

is the forecasted agricultural drought at time t (i.e., SSIt); y1 and y2 are the predictors corresponding 232 

to the antecedent meteorological drought and agricultural drought persistence at time t–i (i.e., SPIt–i 233 



12 

 

and SSIt–i). The R functions of BiCopHfunc and BiCopHinv in the R package “VineCopula” (Nagler 234 

et al., 2021) were utilized to model the h-function and its inverse form for Equation 7, respectively. 235 

The tree structure is related to the ordering variables, so when the ordering variables are y2, y1, 236 

and y3 (conditional variables are y1 and y2; Figure 2b), Equations 6 and 7 can be changed analogously 237 

as: 238 

 3 2 1 3 2 12 1 2 11 21
( , = ( ; ) ( ; );G y y y h h u u h u u  ）      (8) 239 

 1 1 1

1 2 11 21 1

1

3 3 2 2
( ( ; ); ) ;( )y uN h h h u uN u    − −− − =


=


    (9) 240 

With agricultural drought forecast via 3C-vine model, as the details presented in Figure 3, we 241 

first selected the best 3C-vine model (i.e., selected the best model from Equations 7 and 9 according 242 

to minimum AIC). Then, a sample size of 1,000 uniformly distributed random values was generated 243 

over the interval [0, 1] by Monte Carlo simulation. Last, the best 3C-vine model was utilized to 244 

obtain 1,000 simulations (or estimations) for y3
yr. The best forecast of y3

yr was finally calculated by 245 

the mean value of these simulations. Note that the leave-one-out cross validation (LOOCV) (Wilks, 246 

2014) is applied to forecast agricultural drought for each grid cell in August of every year during 247 

1961–2018 based on the 3C-vine model or MG models, namely, each time one sample (or 248 

observation) was left for validation, and the rest were used to establish 3C-vine model or MG model 249 

and obtain the corresponding parameters of these models. In other words, this process was repeated 250 

58 times (the length of years used in this study) for a specific grid cell.  251 

---------------------------------------------------Figure 3. -------------------------------------------------- 252 

3.3. Performance metrics 253 

Three evaluation metrics: Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2), 254 
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and root mean square error (RMSE), were utilized to assess the forecast performance of 3C-vine 255 

model and MG model. These metrics can be expressed as: 256 

2

1

2

1

( )

1 ( ,1]

( )

n

i i

i

n

i

i

AP AO

NSE NSE

AO AO

=

=

−

= −  −

−




    (10) 257 

2

12 2

2 2

1 1

( )( )

[0,1]

( ) ( )

n

i i

i

n n

i i

i i

AO AO AP AP

R R

AO AO AP AP

=

= =

 
− − 

 
= 

− • −



 
   (11) 258 

2

1

1
( ) [0, )

n

i i

i

RMSE AP AO RMSE
n =

= −  +     (12) 259 

where n is the number of forecast periods; AOi and APi are the i-th observed and forecasted 260 

agricultural droughts (i.e., SSI), respectively; AO   and AP   denote the mean of the SSI 261 

observations and forecasts in the target month (e.g., August), respectively. Moreover, a most positive 262 

NSE and R2 value and a lower RMSE value indicate a good forecast performance for the 3C-vine 263 

model or MG model.  264 

4. Results 265 

4.1. Correlation patterns of agricultural drought with potential predictors 266 

The dependence between variables can be measured by the correlation coefficient, indirectly 267 

characterizing the quantity of common information between two variables. We employed Kendall’s 268 

correlation coefficient (τk) to measure the dependence of agricultural drought at current time t (SSIt, 269 

herein t is August) with the previous meteorological drought (SPIt–i, i indicates the lag or lead times 270 

with 1–3-month herein) and agricultural drought persistence (SSIt–i). It should be mentioned that the 271 
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significant correlation prevalent used may overestimate or overinterpret the dependence between 272 

variables (Wilks, 2016). Therefore, we adopted the maximum false discovery rate (FDR) of 0.1 to 273 

correct τk at the 0.05 significance level (Benjamini and Hochberg, 1995; Röthlisberger and Martius, 274 

2019; Wilks, 2016).  275 

---------------------------------------------------Figure 4. -------------------------------------------------- 276 

Figure 4 summarizes 1–3-month lag τk between antecedent SPI (SSI) and succedent SSI for 277 

August during 1961–2018 over China. For most regions of China under 1–3-month lag times, the 278 

previous meteorological drought or agricultural drought persistence (memory) showed significant 279 

positive correlations (i.e., the stippling in Figure 4) with the target agricultural drought. Also, we 280 

found perfect agricultural drought memory over many regions of China (excluding D4, a humid 281 

climate region) (Figures 4e and 4f), as the overlapping information existed in SSIt and SSIt–i. 282 

Additionally, the dependency pattern varied temporally and spatially, and this phenomenon 283 

evidently occurred with the lag (or lead) time extended, especially between SPIt–i and SSIt (Figures 284 

4a–4c). Overall, the prior meteorological drought and agricultural drought memory provided reliable 285 

and useful forecast information for the subsequent agricultural drought for most areas of China.  286 

4.2. Forecast performance comparison between 3C-vine model and MG Model 287 

We leveraged the MG model as a reference model to measure the performance of 3C-vine 288 

model in forecasting agricultural drought for the period 1961–2018 over China. Figures 5a–5i show 289 

the difference in NSE, R2, and RMSE between 3C-vine and MG models, i.e., ΔNSE = NSE3C–NSEMG, 290 

ΔR2 = R2
3C–R2

MG, and ΔRMSE = RMSE3C–RMSEMG under 1–3-month lead times for August, 291 

respectively. In terms of the spatial extent of ΔNSE > 0, ΔR2 > 0, and ΔRMSE < 0, the agricultural 292 

drought forecast ability of 3C-vine model superior MG model was occupied 65%, 68%, and 58% of 293 
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land areas in China, respectively, under the 1-month lead SSI forecast (Figures 5a, 5d, and 5g). The 294 

relationship between predictors and the forecasted variable was simple under 1–month lead time, so 295 

the MG model better showed their connection. However, with the lead time prolonged, the forecast 296 

skills of 3C-vine model outperformed the MG model for most regions of China (e.g., Figures 5e and 297 

5f, accounting 72% and 74% of land areas in China for ΔR2 > 0 under 2–3-month lead times, 298 

respectively). This indicates the 3C-vine model sufficiently utilized the forecasted information 299 

contained by previous meteorological drought and agricultural drought persistence in comparison 300 

with the MG model under the same conditions.  301 

The forecast ability of 3C-vine model, compared with the MG model, is limited over climate 302 

region D5 (e.g., Figures 5b and 5c). This may be related to the fact that D5 is a crucial grain-303 

producing region in China (Lu et al., 2012; Xiao et al., 2019; Zhang et al., 2016), the intensive 304 

anthropogenic activities (e.g., irrigation and urbanization) may alter the linkage between 305 

meteorological drought and agricultural drought, as well as the strength of agricultural drought 306 

memory (AghaKouchak et al., 2021). To ensure food security, if D5 experiences a drought event at 307 

the previous stage, agricultural managers and policymakers would mitigate the drought through 308 

irrigation in a variety of ways, such as groundwater exploitation and reservoir operation (Zhang et 309 

al., 2016). However, under this circumstance, the soil water obtaining the supplement from the 310 

irrigation water would affect the performance of agricultural drought forecast.   311 

---------------------------------------------------Figure 5. -------------------------------------------------- 312 

In contrast with the MG model, the 3C-vine model yielded a better forecast performance for 313 

August under 1–3-month leads agricultural drought across most areas of China, except for the 314 

climate region D5.  315 
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4.3. Case study and sub-climate region assessment 316 

The severe drought hit most regions of China in summer 2018, especially in southern and 317 

northern China, as the western North Pacific subtropical high abnormally impacted (Liu and Zhu, 318 

2019; Zhang et al., 2020; Zhang et al., 2018). We chose the agricultural drought that occurred in 319 

August of 2018 as a case study to investigate the forecast ability of 3C-vine model. Similarly, the 320 

MG model was selected as a benchmark model. Figure 6 presents the SSI observations and 1–3-321 

month lead SSI forecasts for this agricultural drought using the 3C-vine model and MG model. 322 

Obviously, the 1–3-month lead SSI forecasts via 3C-vine model resembled the observations (Figures 323 

6a–6d), which captured the droughts that emerged in southern China, northern China, and 324 

northeastern China, i.e., climate regions D1–D2 and D4–D6. Comparing the 3C-vine model with 325 

the MG model under 2–3-month leads (Figures 6c–6d versus Figures 6f–6g), we observed the 326 

deteriorating forecast skill of MG model in climate region D5, which tended to non-drought state 327 

(i.e., SSI > 0), but the 3C-vine model better forecasted the agricultural drought for these regions 328 

under the same conditions, although the severity of agricultural drought had some decrement. The 329 

above analyses indicated that the 3C-vine model, using previous meteorological drought and 330 

agricultural drought persistence as two predictors, had the ability for reliable drought forecast over 331 

many regions of China.   332 

---------------------------------------------------Figure 6. -------------------------------------------------- 333 

---------------------------------------------------Figure 7. -------------------------------------------------- 334 

Furthermore, to explore the skill of 3C-vine model in capturing the extremum of agricultural 335 

drought (i.e., minimum and maximum SSIs), we randomly selected a typical region (black rectangle 336 

boxes in Figure 6b) in each climate region. Note that these extreme SSI values were calculated using 337 
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the spatial average in each typical region. Figures 7a and 7b shows the probability density function 338 

(PDF) curve of minimum and maximum SSIs for these selected typical regions (D1S–D7S) via the 339 

3C-vine model and MG model for 1–3-month leads of August. Here, the vertical black dash line 340 

denotes the SSI observation in each subplot. The x-axis value of peak point (i.e., high probability) 341 

for each PDF curve is regarded as the best estimation of SSI under diverse lead times. With the 3C-342 

vine model as an example (analogously for the MG model), for minimum SSI with 1–2-month lead 343 

times, the difference between forecasted SSI and observed SSI was slight (except for D3S), which 344 

all reflected the drought state for these typical regions (Figure 7a). The deteriorated skills of 3C-vine 345 

and MG models in a typical region D3S may be attributed to the lengthy response time existing 346 

between precipitation deficiency and soil moisture shortage, which is caused by the limited 347 

precipitation that cannot effectively replenish the soil moisture depletion due to the incrassation of 348 

vadose zone. For the 3-month lead time, the poor forecasts were produced in a typical region D5S 349 

for the minimum SSI. This phenomenon may result in the agricultural manager utilizing irrigation 350 

to mitigate the effect of drought on crop growth, thus, the response relationship between 351 

meteorological drought and agricultural drought accordingly would change (Xu et al., 2021b).  352 

For the forecasted maximum SSI utilizing 3C-vine model (analogously for the MG model) over 353 

diverse regions, the excellence forecast ability is displayed for the 1–3-month leads (Figure 7b), 354 

excluding the typical regions D5S and D6S (PDF curve shifted left). For the abundant precipitation 355 

and higher soil moisture content in D6S, the shortened response time between precipitation and soil 356 

moisture (Xu et al., 2021b) may cause inferior forecasts of 3C-vine model for the target month. 357 

To display the robustness of 3C-vine model for forecasting agricultural drought in any month 358 

of interest, we further forecasted extreme agricultural drought in July for D1S–D7S (Figures 7c and 359 
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7d). The difference between forecasted and observed extreme SSIs for the MG model is larger than 360 

that of 3C-vine model in distinct typical regions, e.g., the forecasted maximum SSI in July on D4S 361 

(Figure 7d). The width of PDF curve qualitatively provides an estimation of forecast uncertainty of 362 

3C-vine model and MG model. As shown in Figure 7, in comparison with the 3C-vine model, we 363 

found that the width of PDF curves in the MG model are broadened, indicating that the MG model 364 

produced more pronounced uncertainty for agricultural drought forecast. Furthermore, the skills of 365 

MG model tended to deteriorate over many selected typical regions, especially for 2–3-month lead 366 

times of July and August. Generally, compared with the MG model under different lead times, 367 

agricultural drought forecasts made by the 3C-vine model are more accurate across different typical 368 

regions, in terms of predictive uncertainty (i.e., the width of PDF curve) as well as the difference 369 

between observed and forecasted extreme SSIs (Figures 7).  370 

Moreover, to assess the forecast performance (according to NSE, R2, and RMSE) of the 3C-vine 371 

model over each climate region, we counted the pixel contained in each climate region and 372 

constructed the boxplots for these performance metrics (Figures 5j–5l). We still selected the MG 373 

model as the reference model, and obtained the difference between these two models, i.e., ΔNSE, 374 

ΔR2, and ΔRMSE. The forecast performances of 3C-vine model and MG model were generally 375 

consistent for 1-month lead of August over climate regions D1–D7 (Figures 5j–5l, the median 376 

percentile of ΔNSE, ΔR2, and ΔRMSE were all around the 0 line), indicating the improved skills of 377 

3C-vine model was limited under the same condition. Obviously, the median percentile of ΔNSE 378 

and ΔR2 were greater than 0 as well as ΔRMSE was lower than 0, respectively, for 2–3-month leads 379 

SSI forecast of August in different climate regions D1–D7 (except for D5), indicating that the 3C-380 

vine model shows a better performance than the MG model in forecasting agricultural drought over 381 
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diverse climate regions of China.  382 

In conclusion, based the ability of typical agricultural drought forecasted (Figure 6) and 383 

extremum agricultural drought captured in selected typical regions (Figure 7) and the comprehensive 384 

forecast performance showed in diverse climate regions (Figures 5j–5l), the 3C-vine model had a 385 

good forecast skill for 1–3-month leads agricultural drought of August over most areas of China.  386 

5. Discussion and Conclusions 387 

This study developed a C-vine copula model for forecasting agricultural drought over China 388 

under three dimensions, in which antecedent meteorological drought and agricultural drought 389 

persistence were employed as two predictors. We selected the MG model as a competition model, 390 

in terms of the difference in NSE, R2, and RMSE between 3C-vine and MG models, to evaluate the 391 

forecast performance of 3C-vine model. These performance metrics all displayed that the 3C-vine 392 

model, especially for 2–3-month lead times, outperformed the MG model in many climate regions 393 

over China (except for D5, which lies in humid and subhumid regions of northern China) (Figure 5). 394 

Compared with the MG model, the 3C-vine model yielded a good forecast skill for the selected 395 

typical agricultural droughts (Figure 5). Besides, the nearly perfect forecast of extremum agricultural 396 

drought in typical regions (Figure 7) further certified the excellent ability of 3C-vine model.  397 

Heterogeneous topography and anthropogenic activities (e.g., irrigation and urbanization) have 398 

certainly impacted precipitation interpolation and soil moisture simulation, which may depart from 399 

the actual precipitation or soil moisture conditions, notwithstanding the precipitation of CN05.1 and 400 

soil moisture of ERA5 show good performances with respect to drought monitoring and forecasting 401 

over China (Wang and Yuan, 2021; Wu et al., 2021a; Xu et al., 2009; Zhang et al., 2021; Zhang et 402 

al., 2019). It can also influence the response (propagation) time from meteorological drought to 403 
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agricultural drought as well as agricultural drought memory and can thus lead to the 3C-vine model 404 

falling short in some climate regions. To address this issue, we can comprehensively utilize multiple 405 

reanalysis data sets, e.g., the precipitation and soil moisture data in Global Land Data Assimilation 406 

System (GLDAS) and ERA5, to reduce the uncertainty resulting from a single data source (Wang 407 

and Yuan, 2021; Wu et al., 2021a). Currently, it is a challenge to consider irrigation activities into 408 

agricultural drought forecasting, especially at large spatial scales. In addition to antecedent 409 

precipitation deficit, air temperature, relative humidity, and evapotranspiration may influence soil 410 

moisture budget. Moreover, from the perspective of driving mechanisms, the effect of certain 411 

atmospheric circulation anomalies (e.g., El Niño-Southern Oscillation (ENSO), Pacific Decadal 412 

Oscillation (PDO), and North Arctic Oscillation (NAO)) on agricultural drought at regional and 413 

global scales can also be considered as predictors (Zhang et al., 2021). Therefore, a more efficient 414 

space can be established by leveraging these predictors for forecasting agricultural drought.  415 

In recent years, a myriad of extreme events, such as heatwaves and flash droughts, have swept 416 

many regions around the globe. These extreme events have a rapid onset with a few days or weeks 417 

and lead to devastating impacts on agricultural production, water resource security, and human well-418 

being (Wang and Yuan, 2021; Yuan et al., 2019; Zscheischler et al., 2020). Therefore, agricultural 419 

drought forecasting at finer temporal scales (e.g., weekly) is essential for agricultural managers and 420 

policymakers to manage and plan water use. Yet, with limited spatiotemporal resolution and the 421 

length of model sample, we temporally have not carried out agricultural drought forecasting at sub-422 

monthly or pentad temporal scales.  423 

The limitation of this study is that we choose a “best” model from two C-vine copula candidate 424 

models (i.e., Figure 2) as the ideal forecast. However, as the inherent structural differences (i.e., 425 
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ordering variables are different), the utilized best model may underestimate the forecast uncertainty 426 

(Liu et al., 2021a). Therefore, to reduce the predictive uncertainty and improve the forecast 427 

performance, a multi-model combination technique (e.g., Bayesian model averaging (Liu et al., 428 

2021a; Long et al., 2017)) can be considered to merge different C-vine copula candidate models. 429 

Moreover, as we only pay attention to the C-vine copulas and several bivariate copula functions, the 430 

other D-vine copulas or regular vine copulas, as well as a multitude of bivariate copula families 431 

(Sadegh et al., 2017) can be investigated to establish the forecast model for agricultural drought in 432 

the next work. 433 
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Figure Captions 671 

Figure 1. Seven sub-climate regions division over China. The specific information of climate 672 

regions D1–D7 is listed at the left-bottom in the panel.  673 

Figure 2. Different schematic (two types) of C-vine copulas under three-dimensional scenarios. For 674 

the first type (a), the ordering variables are y1, y2, and y3, while for the second type (b) that 675 

are y2, y1, and y3. C12(C21), C13(C23), and C23|1(C13|2) denotes bivariate copulas with 676 

parameters θ11, θ12, and θ21, respectively. Here, θij signifies the parameters of the j-th edge 677 

with respect to the i-th tree. G(•|•) denote conditional distribution functions.  678 

Figure 3. Flowchart of agricultural drought forecasting based on canonical vine copulas (3C-vine) 679 

and meta-Gaussian (MG) model under three-dimensional scenarios. Here, t denotes the 680 

target month (e.g., August); i signifies the lead times (1–3-months)); LOOCV is the 681 

abbreviation of leave-one-out cross validation; y1
–yr(y2

–yr) indicates the series after 682 

removing a sample (y1
yr(y2

yr)) for a specific year; and y3
yr is the agricultural drought forecast 683 

value for the target month of a specific year. Note that the optimal tree structure (i or ii on 684 

the right-hand side of this figure) is selected based on AIC to forecast agricultural drought.  685 

Figure 4. Spatial patterns of 1–3-months lag Kendall’s correlation coefficient (τk) between SPIt–i and 686 

SSIt (t denotes August, and i is 1–3-month lag time) (top row), as well as SSIt–i and SSIt 687 

(bottom row) for August during 1961–2018 over China. Note the stippling indicates where 688 

τk is at a 0.05 significance level, which is corrected via the false discovery rate (FDR) of 689 

0.1. 690 

Figure 5. Forecast performance based on (a–c) ΔNSE (difference of NSE between 3C-vine and MG 691 
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models, NSE3C–NSEMG), (d–f) ΔR2 (R2
3C–R2

MG), and (g–i) ΔRMSE (RMSE3C–RMSEMG) for 692 

the 1–3-month leads of August during 1961–2018 over China. The corresponding boxplots 693 

of (j) ΔNSE, (k) ΔR2, and (l) ΔRMSE relative to a threshold of 0 (horizontal black dash line) 694 

for agricultural drought forecast in August under 1–3-month leads in climate regions D1–695 

D7 over China. The percentage of ΔNSE > 0, ΔR2 > 0, and ΔRMSE < 0 is listed in the left-696 

bottom of corresponding sub-figure, respectively.  697 

Figure 6. SSI observations in August of 2018 (a) as well as the corresponding SSI forecasts under 698 

1–3-month lead times utilizing 3C-vine model (b–d) and MG model (e–g) over China. The 699 

black rectangle boxes (as shown in b) denote the typical regions (corresponding to signify 700 

D1S–D7S) selected in climate regions D1–D7. 701 

Figure 7. Probability density function (PDF) curve of (a and c) minimum and (b and d) maximum 702 

SSI under 1–3-month lead times for August and July during the 1961–2018 period over 703 

seven selected typical regions in climate regions D1–D7 (i.e., these black rectangle boxes 704 

in Figure 6b correspond to signify D1S–D7S, respectively). Black dash line and text 705 

indicate the minimum and maximum observations of SSI in August and July over D1S–706 

D7S. These texts with red (green), blue (yellow), and cyan (coral) colors of left (right) in 707 

each sub-figure are SSI forecasts under 1–3-month lead times of August or July via 3C-708 

vine model (MG model), which correspond to the abscissa projected by the peak point of 709 

each PDF. 710 
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 711 

Figure 1. Seven sub-climate regions division over China. The specific information of climate 712 

regions D1–D7 is listed at the left-bottom in the panel.713 
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Figure 2. Different schematic (two types) of C-vine copulas under three-dimensional scenarios. For 715 

the first type (a), the ordering variables are y1, y2, and y3, while for the second type (b) that are y2, y1, 716 

and y3. C12(C21), C13(C23), and C23|1(C13|2) denotes bivariate copulas with parameters θ11, θ12, and θ21, 717 

respectively. Here, θij signifies the parameters of the j-th edge with respect to the i-th tree. G(•|•) 718 

denote conditional distribution functions. 719 
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Figure 3. Flowchart of agricultural drought forecasting based on canonical vine copulas (3C-vine) 721 

and meta-Gaussian (MG) model under three-dimensional scenarios. Here, t denotes the target month 722 

(e.g., August); i signifies the lead times (1–3-months)); LOOCV is the abbreviation of leave-one-723 

out cross validation; y1
–yr(y2

–yr) indicates the series after removing a sample (y1
yr(y2

yr)) for a specific 724 

year; and y3
yr is the agricultural drought forecast value for the target month of a specific year. Note 725 

that the optimal tree structure (i or ii on the right-hand side of this figure) is selected based on AIC 726 

to forecast agricultural drought.  727 
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 728 

Figure 4. Spatial patterns of 1–3-months lag Kendall’s correlation coefficient (τk) between SPIt–i and 729 

SSIt (t denotes August, and i is 1–3-month lag time) (top row), as well as SSIt–i and SSIt (bottom 730 

row) for August during 1961–2018 over China. Note the stippling indicates where τk is at a 0.05 731 

significance level, which is corrected via the false discovery rate (FDR) of 0.1. 732 
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 733 

Figure 5. Forecast performance based on (a–c) ΔNSE (difference of NSE between 3C-vine and 734 

MG models, NSE3C–NSEMG), (d–f) ΔR2 (R2
3C–R2

MG), and (g–i) ΔRMSE (RMSE3C–RMSEMG) for the 735 
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1–3-month leads of August during 1961–2018 over China. The corresponding boxplots of (j) ΔNSE, 736 

(k) ΔR2, and (l) ΔRMSE relative to a threshold of 0 (horizontal black dash line) for agricultural 737 

drought forecast in August under 1–3-month leads in climate regions D1–D7 over China. The 738 

percentage of ΔNSE > 0, ΔR2 > 0, and ΔRMSE < 0 is listed in the left-bottom of corresponding sub-739 

figure, respectively.740 



40 

 

 741 

Figure 6. SSI observations in August of 2018 (a) as well as the corresponding SSI forecasts under 742 

1–3-month lead times utilizing 3C-vine model (b–d) and MG model (e–g) over China. The black 743 

rectangle boxes (as shown in b) denote the typical regions (corresponding to signify D1S–D7S) 744 

selected in climate regions D1–D7.745 
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 746 

Figure 7. Probability density function (PDF) curve of (a and c) minimum and (b and d) maximum 747 

SSI under 1–3-month lead times for August and July during the 1961–2018 period over seven 748 

selected typical regions in climate regions D1–D7 (i.e., these black rectangle boxes in Figure 6b 749 
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correspond to signify D1S–D7S, respectively). Black dash line and text indicate the minimum and 750 

maximum observations of SSI in August and July over D1S–D7S. These texts with red (green), blue 751 

(yellow), and cyan (coral) colors of left (right) in each sub-figure are SSI forecasts under 1–3-month 752 

lead times of August or July via 3C-vine model (MG model), which correspond to the abscissa 753 

projected by the peak point of each PDF. 754 


