

1 **Model Comparisons Between Canonical Vine Copulas and Meta-Gaussian**
2 **for Forecasting Agricultural Drought over China**

3 Authors: Haijiang Wu^{1,2}, Xiaoling Su^{1,2*}, Vijay P. Singh^{3,4}, Te Zhang², Jixia Qi², and

4 Shengzhi Huang⁵

5 Affiliation:

6 ¹*Key Laboratory for Agricultural Soil and Water Engineering in Arid Area of Ministry of Education,*

7 *Northwest A&F University, Yangling, Shaanxi, 712100, China*

8 ²*College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling,*

9 *Shaanxi, 712100, China*

10 ³*Department of Biological and Agricultural Engineering & Zachry Department of Civil and*

11 *Environmental Engineering, Texas A&M University, College Station, TX 77843-2117, USA*

12 ⁴*National Water and Energy Center, UAE University, Al Ain, UAE*

13 ⁵*State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area, Xi'an University of*

14 *Technology, Xi'an, Shaanxi, 710048, China*

15 *Corresponding Author:

16 Dr. Xiaoling Su, College of Water Resources and Architectural Engineering, Northwest A&F

17 University, Weihui Road 23, Yangling, Shaanxi, China, *Email: xiaolingsu@nwafu.edu.cn* (X. Su).

18

19

20

21 **Abstract**

22 Agricultural drought is mainly caused by reduced soil moisture and precipitation and shows
23 adverse impacts on the growth of crops and vegetation, thus affecting agricultural production and
24 food security. For developing measures for drought mitigation, reliable agricultural drought
25 forecasting is essential. In this study, we developed an agricultural drought forecasting model based
26 on canonical vine copulas under three-dimensions (3C-vine model), in which the antecedent
27 meteorological drought and agricultural drought persistence were utilized as predictors. Besides, the
28 meta-Gaussian (MG) model was selected as a reference model to evaluate the forecast skill. The
29 agricultural drought in August of 2018 was selected as a typical case study, and the spatial patterns
30 of 1–3-month lead forecasts of agricultural drought utilizing the 3C-vine model resembled the
31 corresponding observations, indicating the good predictive ability of the model. The performance
32 metrics (NSE, R^2 , and RMSE) showed that the 3C-vine model outperformed the MG model for
33 forecasting agricultural drought in August under diverse lead times. Also, the 3C-vine model
34 exhibited excellent forecast skills in capturing the extreme agricultural drought over different
35 selected typical regions. This study may help to guide drought early warning, drought mitigation,
36 and water resources scheduling.

37 **Keywords:** drought forecasting, model comparison, vine copulas, meta-Gaussian

38 **1. Introduction**

39 Agriculture is the source of livelihoods of over 2.5 billion people worldwide, and the
40 agricultural sector also sustains 82% of all drought impacts (FAO, 2021). A cascade of impacts of
41 droughts, such as crop reduction and failure, increased human and tree mortality, and ecological
42 disturbance, have attracted considerable attention (FAO, 2021; Lu et al., 2012; Modanesi et al., 2020;

43 Su et al., 2018; Zhang et al., 2018; Zhang et al., 2019; Zscheischler et al., 2020). Droughts have
44 reduced global crop production by about 9–10% for the period 1964–2007 (Lesk et al., 2016).
45 Additionally, droughts have caused overall crop and livestock production loss of \$37 billion over
46 the least developed and lower-middle-income countries (FAO, 2021). Agricultural drought
47 forecasting, therefore, lies at the core of overall drought risk management and is critical for food
48 security, early warning, as well as drought preparedness and mitigation.

49 Agricultural drought is generally referred to as soil moisture shortage, which adversely affects
50 crop yield and vegetation health (Modanesi et al., 2020; Zhang et al., 2016; Zhang et al., 2021).
51 Under natural conditions, atmospheric precipitation is a paramount source for replenishment of soil
52 moisture (Wu et al., 2021a). Therefore, reduced soil moisture (agricultural drought) mainly
53 ~~arise~~arises from precipitation deficit (meteorological drought) (Modanesi et al., 2020; Orth and
54 Destouni, 2018). Moreover, soil moisture has a good memory to drought because of the time-
55 integration effects (Long et al., 2019), i.e., agricultural drought persistence. Previous meteorological
56 drought and antecedent agricultural drought can be taken into consideration as predictors of
57 subsequent agricultural drought.

58 In hydrology, some physically-based hydrological models (e.g., Distributed Time-Variant Gain
59 Hydrological Model (DTVGM; Ma et al, 2021) and Soil and Water Assessment Tool (SWAT; Wu et
60 al., 2019)) are widely used in hydrological simulation and prediction, the droughts included as well.
61 However, the physically-based hydrological models typically apply to a catchment or sub-regional
62 scale, and generally require numerous hydrometeorological variables to achieve more accurate real-
63 time predictions (Liu et al., 2021a; Xu et al., 2021a). Traditional methods, such as regression models,
64 machine learning models, and hybrid models (by considering both statistical and dynamical

65 predictions) (Hao et al., 2016), have been extensively employed to forecast drought. Yet, these
66 models tend to be limited in considering the complex nonlinear (e.g., regression models), explicit
67 physical mechanisms and over-fitting (e.g., machine learning models), as well as the demand of
68 massive hydroclimatic data input (e.g., hybrid models). The copula functions, first introduced by
69 Sklar (1959), overcome the limitations of the abovementioned aforementioned conventional
70 statistical methods; and the applications of copulas in hydrology and geosciences go back to the
71 2000s (e.g., De Michele and Salvadori, 2003; Favre et al., 2004; Salvadori and De Michele, 2004).
72 Since copulas are flexible joining arbitrary marginal distributions of variables, they have been
73 widely employed in hydrological research community, such as frequency analysis and risk
74 assessment (De Michele et al., 2013; Hao et al., 2017; Liu et al., 2021b; Sarhadi et al., 2016; Xu et
75 al., 2021b; Zhang et al., 2021; Zhou et al., 2019), flood and runoff forecasting (Bevacqua et al.,
76 2017b; Hemri et al., 2015; Liu et al., 2018; Zhang and Singh, 2019), and drought forecasting
77 (Ganguli and Reddy, 2014; Wu et al., 2021a). However, when bivariate copulas are extended to
78 higher-dimensional (\geq three-dimensions) cases, they are restricted due to nonexistence of analytical
79 expressions (Liu et al., 2021a). Symmetric Archimedean copulas and nested Archimedean copulas
80 partially have addressed the issues of dimensionality, but single parameter and Archimedean class
81 are difficult to characterize the various dependence structures (Aas and Berg, 2009; Hao et al., 2016;
82 Wu et al., 2021a). Fortunately, the vine copulas, which have been developed by Joe (1996) as well
83 as Bedford and Cooke (2002), can be adopted to addressed these limitations (Aas et al., 2009;
84 Bedford and Cooke, 2002; Joe, 1996).

85 Vine copulas are flexible in decomposing any multi-dimensional joint distribution into a
86 hierarchy of bivariate copulas or pair copula constructions (Aas et al., 2009; Bedford and Cooke,

87 2002; Liu et al., 2021a; Vernieuwe et al., 2015; Xiong et al., 2014). These copulas have been
88 extensively applied in the hydrological field (Bevacqua et al., 2017b; Liu et al., 2021b; Vernieuwe
89 et al., 2015; Wu et al., 2021a). For instance, Xiong et al. (2014) derived the annual runoff
90 distributions using canonical vine copulas. Liu et al. (2018) developed a framework to investigate
91 compound floods based on canonical vine copulas. Wang et al. (2019) utilized regular vine copulas
92 with historical streamflow and climate drivers to simulate monthly streamflow for the headwater
93 catchment of the Yellow River basin. Liu et al. (2021a) developed a hybrid ensemble forecast model,
94 using the Bayesian model averaging combined canonical vine copulas, to forecast water level. Wu
95 et al. (2021a) proposed an agricultural drought forecast model based on vine copulas under four-
96 dimensional scenarios.

97 The meta-Gaussian (MG) model, a popular statistical model in the hydrometeorological
98 community, has explicit conditional distributions, which is apt for forecasting and risk assessment
99 purposes (Hao et al., 2016; Hao et al., 2019a; Wu et al., 2021b; Zhang et al., 2021). The forecast
100 skills of the MG model for drought or compound dry-hot events, for example, outperformed the
101 persistence-based or random forecast models (Hao et al., 2016; Hao et al., 2019a; Wu et al., 2021b).
102 However, the MG model only depicts the linear relationship among explanatory variables (predictors)
103 and forecasted variable via covariate matrix, it cannot characterize the nonlinear or tail dependence
104 existing in the variables (Hao et al., 2016). Fortunately, Vine copulas can flexibly combine multiple
105 variables via bivariate copula to characterize numerous or complex dependencies. There has been a
106 rather limited investigation, to our knowledge, that conducting model comparisons between vine
107 copulas and MG for agricultural drought forecasting under the same conditions. Therefore,
108 investigations on drought forecasting skills between vine copulas and the MG model are needed to

109 obtain more reliable drought forecasts.

110 The objective of this study therefore was to compare the forecast ability of agricultural drought
111 in August of every year in the period 1961–2018 between canonical vine copulas (i.e., 3C-vine
112 model) and MG model under three-dimensional scenario. In the following, we briefly describe the
113 study area and data used in Section 2. The MG and 3C-vine models and performance metrics utilized
114 are presented in Section 3. Results of the 3C-vine model application and assessment are displayed
115 in Section 4. Finally, the discussion and conclusions are presented in Section 5.

116 **2. Study area and data used**

117 China stretches across a vast area covering diverse climate regimes and is a major agricultural-
118 producing country (Wu et al., 2021a; Zhang et al., 2015). For the convenience of analyzing spatial
119 patterns of agricultural drought, the climate of China was divided into seven sub-climate regions on
120 the basis of Zhao (1983) and Yao et al. (2018), as shown in Figure 1. For each sub-climate region,
121 the temperature and moisture conditions when combined are roughly similar, and the type of soil
122 and vegetation have a certain common characteristic (Zhao, 1983).

123 -----**Figure 1.**-----

124 In this study, the gridded monthly precipitation with a $0.25^\circ \times 0.25^\circ$ spatial resolution was
125 obtained from the CN05.1 dataset for the 1961–2018 period over the mainland of China (excluding
126 the Taiwan province), which was provided by the [Climate Change Research Center, Chinese
127 Academy of Sciences \(available at <http://ccrc.iap.ac.cn/resource/detail?id=228>\)](http://ccrc.iap.ac.cn/resource/detail?id=228)
128 [China National Climate Center](http://ccrc.iap.ac.cn/resource/detail?id=228). The Copernicus Climate Change Service (C3S) at European Center for Medium-
129 Range Weather Forecast (ECMWF) has begun the release of the ERA5 back extension data covering

130 the period 1950–1978 on the Climate Data Store (CDS). Therefore, the gridded monthly soil
131 moisture with a $0.25^\circ \times 0.25^\circ$ spatial resolution corresponding to three soil depths (0–7 cm, 7–28 cm,
132 and 28–100 cm) are available from the ECMWF ERA5 reanalysis datasets for 1961–1978:
133 <https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means-preliminary-back-extension?tab=overview> and 1979–2018:
134 <https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview>. The CN05.1 and ERA5 reanalysis datasets have been extensively utilized
135 numerous studies, e.g., drought monitoring and forecasting (Wu et al., 2021a; Zhang et al., 2021),
136 long-term climatic analysis (He et al., 2021; Wu et al., 2017), and flash drought attribution analysis
137 (Wang and Yuan, 2021).

140 **3. Methodology**

141 The Standardized Precipitation Index (SPI, based on monthly precipitation) and Standardized
142 Soil moisture Index (SSI, based on monthly cumulative soil moisture at top-three soil depths) is
143 leveraged to characterize meteorological drought and agricultural drought at a 6-month timescale,
144 respectively. The empirical Gringorten plotting position formula (Gringorten, 1963) was used to
145 obtain the empirical cumulative probabilities of these two indexes, which were then transformed
146 into standardized variables via the normal quantile transformation. Since meteorological drought is
147 a source of other drought types (e.g., agricultural drought), the antecedent precipitation deficiency
148 (i.e., meteorological drought) has a stronger effect on the subsequent soil moisture deficiency (i.e.,
149 agricultural drought). Moreover, soil moisture has a good memory for prior drought, i.e., agricultural
150 drought persistence, which is attributed to the soil porosity characteristics and time-integration
151 effects (Long et al., 2019; Wu et al., 2021a).

152 We attempted to use the prior meteorological drought (SPI_{t-i} ; t denotes the target month (e.g.,
153 August), and i indicates lead time (month)) and agricultural drought persistence (SSI_{t-i}) to forecast
154 the subsequent agricultural drought (SSI_t) based on the canonical vine copulas under three-
155 dimensional scenarios (3C-vine model). We selected the meta-Gaussian (MG) model as a reference
156 model to assess the agricultural drought forecast performance of the 3C-vine model. Here, the 6-
157 month timescale SPI (SSI) in August, which is calculated by the cumulative precipitation (soil
158 moisture) from March to August, can indirectly reflect the surplus or deficit situations of water in
159 spring (March-April-May) and summer (June-July-August) seasons. Furthermore, August is a key
160 growth period for crops (e.g., anthesis, fruiting, and seed filling) and vegetation and is also a period
161 with frequent droughts (Wu et al., 2021a). Undoubtedly, agricultural drought forecast can be
162 implemented in any month of interest, based on 3C-vine model and MG model. More detailed
163 information is given below.

164 **3.1. Meta-Gaussian model under three-dimensional scenarios**

165 Meta-Gaussian (MG) model can effectively combine multiple hydrometeorological variables,
166 which have gained attention for drought forecasting and risk assessment (Hao et al., 2019a; Hao et
167 al., 2019b; Wu et al., 2021b; Zhang et al., 2021). Suppose the series of SPI_{t-i} , SSI_{t-i} , and SSI_t
168 correspond to random variables Y_1 , Y_2 , and Y_3 , respectively, the predictand y_3 under the given
169 conditions of y_1 and y_2 based on the MG model can be expressed as (Wilks, 2014):

$$170 \quad y_3 | (y_1, y_2) \sim N(\mu_{y_3|(y_1, y_2)}, \Sigma_{y_3|(y_1, y_2)}) \quad (1)$$

171 where N signifies the Gaussian distribution function; $\mu_{y_3|(y_1, y_2)}$ denotes the conditional mean; and
172 $\Sigma_{y_3|(y_1, y_2)}$ represents the conditional covariate matrix.

173 Furthermore, we removed the forecast values in a specific year of y_1 , y_2 , and y_3 , which denote

174 y_1^{-yr} , y_2^{-yr} , and y_3^{-yr} , respectively. Under this circumstance, the covariate matrix Σ regarding y_1^{-yr} ,

175 y_2^{-yr} , and y_3^{-yr} can be written as:

$$176 \quad \Sigma = Cov \begin{bmatrix} (y_1^{-yr}, y_1^{-yr}) & (y_1^{-yr}, y_2^{-yr}) \\ (y_2^{-yr}, y_1^{-yr}) & (y_2^{-yr}, y_2^{-yr}) \\ (y_3^{-yr}, y_1^{-yr}) & (y_3^{-yr}, y_2^{-yr}) \end{bmatrix} = \begin{bmatrix} (y_1^{-yr}, y_3^{-yr}) \\ (y_2^{-yr}, y_3^{-yr}) \\ (y_3^{-yr}, y_3^{-yr}) \end{bmatrix} = \begin{bmatrix} Cov_{11} & Cov_{12} \\ Cov_{21} & Cov_{22} \\ Cov_{31} & Cov_{32} \end{bmatrix} = \begin{bmatrix} Cov_{13} \\ Cov_{23} \\ Cov_{33} \end{bmatrix} = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \quad (2)$$

177 where $Cov_{mn} = Cov(y_m^{-yr}, y_n^{-yr})$ denotes the covariance between y_m^{-yr} and y_n^{-yr} ($m = 1, 2, 3; n = 1,$

178 2, 3). The forecast of specific years, i.e., y_3^{yr} , can be derived as (Wilks, 2014):

$$179 \quad y_3^{yr} = \mu_{y_3^{-yr}} + \Sigma_{21} \Sigma_{11}^{-1} \begin{bmatrix} y_1^{yr} - \mu_{y_1^{-yr}} \\ y_2^{yr} - \mu_{y_2^{-yr}} \end{bmatrix} \quad (3)$$

180 where $\mu_{y_1^{-yr}}$, $\mu_{y_2^{-yr}}$, and $\mu_{y_3^{-yr}}$ represent the mean of y_1^{-yr} , y_2^{-yr} , and y_3^{-yr} , respectively; y_1^{yr} and

181 y_2^{yr} denote that y_1 and y_2 provided the forecast information at time $t-i$ in a specific year. More details

182 about forecasting agricultural drought based on the MG model can be found in Figure 3.

183 **3.2. Canonical vine copulas model under three-dimensional scenarios**

184 Copulas can effectively combine multiple variables without the restriction of marginal

185 distributions (Nelsen, 2013; Sarhadi et al., 2016; Wang et al., 2019; Xiong et al., 2014). They were

186 initially utilized for deriving joint distributions of two-dimensional variables, since parameters are

187 easy to assess and the analytical solution is apt to obtain (Liu et al., 2021a; Sadegh et al., 2017).

188 However, under higher-dimensional (e.g., $d \geq 3$) scenarios, owing to the limitations of a great deal

189 of parameters and complexity, the copulas (mainly referred to bivariate copulas) are difficult to

190 promote and apply (Joe, 2014; Liu et al., 2018; Liu et al., 2021a; Sadegh et al., 2017). To overcome

191 these limitations, Joe (1996) and Aas et al. (2009) developed vine copulas, a hierarchy of pair copula

192 constructions, for multi-dimensional cases. Vine copulas possess two sub-classes: canonical vine
193 copulas (C-vine copulas) and drawable vine copulas (D-vine copulas). Here, we mainly employed
194 the C-vine copulas to establish the forecast model of agricultural drought under three-dimensional
195 conditions. Undoubtedly, a similar scheme is capable of applying to D-vine copulas.

196 C-vine copulas may have numerous tree structures, especially for the case of higher dimensions,
197 which are associated with the quantity and ordering of variables (Aas et al., 2009; Liu et al., 2018;
198 Liu et al., 2021a; Wu et al., 2021a). Also, different ordering of variables affects the estimation of the
199 parameters of C-vine copulas (Liu et al., 2021a; Wang et al., 2019). Given the ordering of variables
200 Y_1 , Y_2 , and Y_3 for three-dimensional C-vine copula model (termed as 3C-vine model hereinafter;
201 Figure 2a), the joint probability density function (PDF), g_{123} , can be expressed as (Aas et al., 2009):

202
$$g_{123} = g_1 \cdot g_2 \cdot g_3 \cdot c_{12} \cdot c_{13} \cdot c_{23|1} \quad (4)$$

203 where g_1 , g_2 , and g_3 correspond to the margin density functions of $g_1(y_1)$, $g_2(y_2)$, and $g_3(y_3)$,
204 respectively; c is the bivariate copula density; c_{12} , c_{13} , and $c_{23|1}$ signify the abbreviation of $c_{1,2}[G_1(y_1),$
205 $G_2(y_2)]$, $c_{1,3}[G_1(y_1), G_3(y_3)]$, and $c_{2,3|1}[G(y_2|y_1), G(y_3|y_1)]$, respectively. The $G_m(y_m)$ corresponds to
206 cumulative density function (CDF) of the y_m ; $G(y_2|y_1)$ denotes the conditional probability
207 distribution of y_2 under known conditions of y_1 , that is similar for $G(y_3|y_1)$. The Gaussian (or Normal),
208 Student-t, Clayton, and Frank copulas, as well as their rotated (survival) forms (Dißmann et al., 2013;
209 Liu et al., 2021b) are utilized to obtain the optimal internal bivariate copulas for distinct trees in 3C-vine
210 models based on the Akaike information criterion (AIC). With the help of *CDVineCondFit* R function
211 in “*CDVineCopulaConditional*” R package (Bevacqua, 2017a), based on the AIC, we selected the
212 optimal tree structures (i.e., detected the suitable variable ordering; seen in Figure 2).

213 -----**Figure 2.**-----

214 A conditional copula density needs to be addressed in Equation 4, i.e., $G(y|\mathbf{w})$, where \mathbf{w} is a d -
 215 dimensional vector $\mathbf{w} = (w_1, \dots, w_d)$. Here, regarding the conditional distribution of y given the
 216 conditions \mathbf{w} , we introduced the h -function, $h(y, \mathbf{w}; \theta)$, to indicate the $G(y|\mathbf{w})$ as follows (Aas et al.,
 217 2009; Joe, 1996):

$$218 \quad h(y, \mathbf{w}; \theta) := G(y | \mathbf{w}) = \frac{\partial C_{y, w_j | \mathbf{w}_{-j}} [G(y | \mathbf{w}_{-j}), G(w_j | \mathbf{w}_{-j})]}{\partial G(w_j | \mathbf{w}_{-j})} \quad (5)$$

219 where θ denotes the parameter(s) of bivariate copula function $C_{y, w_j | \mathbf{w}_{-j}}$; w_j represents an arbitrary
 220 component of \mathbf{w} ; and w_{-j} indicates the excluding element w_j from the vector \mathbf{w} .

221 Let the ordering variables be y_1 , y_2 , and y_3 , the conditional variables be y_1 and y_2 , and the
 222 predictand be y_3 . Accordingly, the expression of $G(y_3 | y_1, y_2)$, based on Equation 5, can be written as:

$$223 \quad G(y_3 | y_1, y_2) = \frac{\partial C_{y_3, y_1 | y_2} [G(y_3 | y_1), G(y_2 | y_1)]}{\partial G(y_2 | y_1)} = h\{h(u_3 | u_1; \theta_{12}) | h(u_2 | u_1; \theta_{11}); \theta_{21}\} \quad (6)$$

224 where θ_{ij} (i denotes a tree and j is an edge) represents the parameters of different conditional copulas
 225 in the 3C-vine model (Figure 2a); and u_k ($k = 1, \dots, 3$) is the marginal cumulative distribution
 226 function (CDF) of y_k . The CDF for each variable is substituted by the corresponding empirical
 227 Gringorten cumulative probability (Bevacqua et al., 2017b; Genest et al., 2009; Wu et al., 2021a).

228 Here, we introduced the τ -th copula-quantile curve (Chen et al., 2009; Liu et al., 2018) to
 229 simulate u_3 based on Equation 6 and derived its inverse distribution function as follows:

$$230 \quad y_3 = N^{-1}\{G(\tau | y_1, y_2)\} = N^{-1}(u_3) = N^{-1}\left[h^{-1}\left\{h^{-1}(\tau | h(u_2 | u_1; \theta_{11}); \theta_{21}) | u_1; \theta_{12}\right\}\right] \quad (7)$$

231 where N^{-1} and h^{-1} signify the inverse form of Gaussian distribution and h -function, respectively; y_3
 232 is the forecasted agricultural drought at time t (i.e., SSI_t); y_1 and y_2 are the predictors corresponding
 233 to the antecedent meteorological drought and agricultural drought persistence at time $t-i$ (i.e., SPI_{t-i}

234 and SSI_{t-i}). The R functions of *BiCopHfunc* and *BiCopHinv* in the R package “*VineCopula*” (Nagler
235 et al., 2021) were utilized to model the h -function and its inverse form for Equation 7, respectively.

236 The tree structure is related to the ordering variables, so when the ordering variables are y_2, y_1 ,
237 and y_3 (conditional variables are y_1 and y_2 ; Figure 2b), Equations 6 and 7 can be changed analogously
238 as:

239
$$G(y_3 | y_2, y_1) = h\{h(u_3 | u_2; \theta_{12}) | h(u_1 | u_2; \theta_{11}); \theta_{21}\} \quad (8)$$

240
$$y_3 = N^{-1}(u_3) = N^{-1}\left[h^{-1}\left\{h^{-1}\left(\tau | h(u_1 | u_2; \theta_{11}); \theta_{21}\right) | u_2; \theta_{12}\right\}\right] \quad (9)$$

241 With agricultural drought forecast via 3C-vine model, as the details presented in Figure 3, we
242 first selected the best 3C-vine model (i.e., selected the best model from Equations 7 and 9 according
243 to minimum AIC). Then, a sample size of 1,000 uniformly distributed random values was generated
244 over the interval [0, 1] by Monte Carlo simulation. Last, the best 3C-vine model was utilized to
245 obtain 1,000 simulations (or estimations) for y_3^{yr} . The best forecast of y_3^{yr} was finally calculated by
246 the mean value of these simulations. Note that the leave-one-out cross validation (LOOCV) (Wilks,
247 2014) is applied to forecast agricultural drought for each grid cell in August of every year during
248 1961–2018 based on the 3C-vine model or MG models, namely, each time one sample (or
249 observation) was left for validation, and the rest were used to establish 3C-vine model or MG model
250 and obtain the corresponding parameters of these models. In other words, this process was repeated
251 58 times (the length of years used in this study) for a specific grid cell.

252 -----**Figure 3.**-----

253 **3.3. Performance metrics**

254 Three evaluation metrics: Nash-Sutcliffe efficiency (NSE), coefficient of determination (R^2),

255 and root mean square error (RMSE), were utilized to assess the forecast performance of 3C-vine
 256 model and MG model. These metrics can be expressed as:

$$257 \quad NSE = 1 - \frac{\sum_{i=1}^n (AP_i - AO_i)^2}{\sum_{i=1}^n (AO_i - \overline{AO})^2} \quad NSE \in (-\infty, 1] \quad (10)$$

$$258 \quad R^2 = \frac{\left[\sum_{i=1}^n (AO_i - \overline{AO})(AP_i - \overline{AP}) \right]^2}{\sum_{i=1}^n (AO_i - \overline{AO})^2 \cdot \sum_{i=1}^n (AP_i - \overline{AP})^2} \quad R^2 \in [0, 1] \quad (11)$$

$$259 \quad RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^n (AP_i - AO_i)^2} \quad RMSE \in [0, +\infty) \quad (12)$$

260 where n is the number of forecast periods; AO_i and AP_i are the i -th observed and forecasted
 261 agricultural droughts (i.e., SSI), respectively; \overline{AO} and \overline{AP} denote the mean of the SSI
 262 observations and forecasts in the target month (e.g., August), respectively. Moreover, a most positive
 263 NSE and R^2 value and a lower $RMSE$ value indicate a good forecast performance for the 3C-vine
 264 model or MG model.

265 **4. Results**

266 **4.1. Correlation patterns of agricultural drought with potential predictors**

267 The dependence between variables can be measured by the correlation coefficient, indirectly
 268 characterizing the quantity of common information between two variables. We employed Kendall's
 269 correlation coefficient (τ_k) to measure the dependence of agricultural drought at current time t (SSI,
 270 herein t is August) with the previous meteorological drought (SPI_{t-i} , i indicates the lag or lead time
 271 with 1–3-month herein) and agricultural drought persistence (SSI_{t-i}). It should be mentioned that the

272 significant correlation prevalent used may overestimate or overinterpret the dependence between
273 variables (Wilks, 2016). Therefore, we adopted the maximum false discovery rate (FDR) of 0.1 to
274 correct τ_k at the 0.05 significance level (Benjamini and Hochberg, 1995; Röthlisberger and Martius,
275 2019; Wilks, 2016).

276 -----**Figure 4.**-----

277 Figure 4 summarizes 1–3-month lag τ_k between antecedent SPI (SSI) and succedent SSI for
278 August during 1961–2018 over China. For most regions of China under 1–3-month lag times, the
279 previous meteorological drought or agricultural drought persistence (memory) showed significant
280 positive correlations (i.e., the stippling in Figure 4) with the target agricultural drought. Also, we
281 found perfect agricultural drought memory over many regions of China (excluding D4, a humid
282 climate region) (Figures 4e and 4f), as the overlapping information existed in SSI_t and SSI_{t-i} .
283 Additionally, the dependency pattern varied temporally and spatially, and this phenomenon
284 evidently occurred with the lag (or lead) time extended, especially between SPI_{t-i} and SSI_t (Figures
285 4a–4c). Overall, the prior meteorological drought and agricultural drought memory provided reliable
286 and useful forecast information for the subsequent agricultural drought for most areas of China.

287 **4.2. Forecast performance comparison between 3C-vine model and MG Model**

288 We leveraged the MG model as a reference model to measure the performance of 3C-vine
289 model in forecasting agricultural drought for the period 1961–2018 over China. Figures 5a–5i show
290 the difference in NSE , R^2 , and $RMSE$ between 3C-vine and MG models, i.e., $\Delta NSE = NSE_{3C} - NSE_{MG}$,
291 $\Delta R^2 = R^2_{3C} - R^2_{MG}$, and $\Delta RMSE = RMSE_{3C} - RMSE_{MG}$ under 1–3-month lead times for August,
292 respectively. In terms of the spatial extent of $\Delta NSE > 0$, $\Delta R^2 > 0$, and $\Delta RMSE < 0$, the agricultural
293 drought forecast ability of 3C-vine model superior MG model was occupied 65%, 68%, and 58% of

294 land areas in China, respectively, under the 1-month lead SSI forecast (Figures 5a, 5d, and 5g). The
295 relationship between predictors and the forecasted variable was simple under 1-month lead time, so
296 the MG model better showed their connection. However, with the lead time prolonged, the forecast
297 skills of 3C-vine model outperformed the MG model for most regions of China (e.g., Figures 5e and
298 5f, accounting 72% and 74% of land areas in China for $\Delta R^2 > 0$ under 2–3-month lead times,
299 respectively). This indicates the 3C-vine model sufficiently utilized the forecasted information
300 contained by previous meteorological drought and agricultural drought persistence in comparison
301 with the MG model under the same conditions.

302 The forecast ability of 3C-vine model, compared with the MG model, is limited over climate
303 region D5 (e.g., Figures 5b and 5c). This may be related to the fact that D5 is a crucial grain-
304 producing region in China (Lu et al., 2012; Xiao et al., 2019; Zhang et al., 2016), the intensive
305 anthropogenic activities (e.g., irrigation and urbanization) may alter the linkage between
306 meteorological drought and agricultural drought, as well as the strength of agricultural drought
307 memory (AghaKouchak et al., 2021). To ensure food security, if D5 experiences a drought event at
308 the previous stage, agricultural managers and policymakers would mitigate the drought through
309 irrigation in a variety of ways, such as groundwater exploitation and reservoir operation (Zhang et
310 al., 2016). However, under this circumstance, the soil water obtaining the supplement from the
311 irrigation water would affect the performance of agricultural drought forecast.

312 -----Figure 5. -----

313 In contrast with the MG model, the 3C-vine model yielded a better forecast performance for
314 August under 1–3-month leads agricultural drought across most areas of China, except for the
315 climate region D5.

316 **4.3. Case study and sub-climate region assessment**

317 The severe drought hit most regions of China in summer 2018, especially in southern and
318 northern China, as the western North Pacific subtropical high abnormally impacted (Liu and Zhu,
319 2019; Zhang et al., 2020; Zhang et al., 2018). We chose the agricultural drought that occurred in
320 August of 2018 as a case study to investigate the forecast ability of 3C-vine model. Similarly, the
321 MG model was selected as a benchmark model. Figure 6 presents the SSI observations and 1–3-
322 month lead SSI forecasts for this agricultural drought using the 3C-vine model and MG model.
323 Obviously, the 1–3-month lead SSI forecasts via 3C-vine model resembled the observations (Figures
324 6a–6d), which captured the droughts that emerged in southern China, northern China, and
325 northeastern China, i.e., climate regions D1–D2 and D4–D6. Comparing the 3C-vine model with
326 the MG model under 2–3-month leads (Figures 6c–6d versus Figures 6f–6g), we observed the
327 deteriorating forecast skill of MG model in climate region D5, which tended to non-drought state
328 (i.e., $SSI > 0$), but the 3C-vine model better forecasted the agricultural drought for these regions
329 under the same conditions, although the severity of agricultural drought had some decrement. The
330 above analyses indicated that the 3C-vine model, using previous meteorological drought and
331 agricultural drought persistence as two predictors, had the ability for reliable drought forecast over
332 many regions of China.

333 -----**Figure 6.**-----

334 -----**Figure 7.**-----

335 Furthermore, to explore the skill of 3C-vine model in capturing the extremum of agricultural
336 drought (i.e., minimum and maximum SSIs), we randomly selected a typical region (black rectangle
337 boxes in Figure 6b) in each climate region. Note that these extreme SSI values were calculated using

338 the spatial average in each typical region. Figures 7a and 7b shows the probability density function
339 (PDF) curve of minimum and maximum SSIs for these selected typical regions (D1S–D7S) via the
340 3C-vine model and MG model for 1–3-month leads of August. Here, the vertical black dash line
341 denotes the SSI observation in each subplot. The x -axis value of peak point (i.e., high probability)
342 for each PDF curve is regarded as the best estimation of SSI under diverse lead times. With the 3C-
343 vine model as an example (analogously for the MG model), for minimum SSI with 1–2-month lead
344 times, the difference between forecasted SSI and observed SSI was slight (except for D3S), which
345 all reflected the drought state for these typical regions (Figure 7a). The deteriorated skills of 3C-vine
346 and MG models in a typical region D3S may be attributed to the lengthy response time existing
347 between precipitation deficiency and soil moisture shortage, which is caused by the limited
348 precipitation that cannot effectively replenish the soil moisture depletion due to the incrasation of
349 vadose zone. For the 3-month lead time, the poor forecasts were produced in a typical region D5S
350 for the minimum SSI. This phenomenon may result in the agricultural manager utilizing irrigation
351 to mitigate the effect of drought on crop growth, thus, the response relationship between
352 meteorological drought and agricultural drought accordingly would change (Xu et al., 2021b).

353 For the forecasted maximum SSI utilizing 3C-vine model (analogously for the MG model) over
354 diverse regions, the excellence forecast ability is displayed for the 1–3-month leads (Figure 7b),
355 excluding the typical regions D5S and D6S (PDF curve shifted left). For the abundant precipitation
356 and higher soil moisture content in D6S, the shortened response time between precipitation and soil
357 moisture (Xu et al., 2021b) may cause inferior forecasts of 3C-vine model for the target month.

358 To display the robustness of 3C-vine model for forecasting agricultural drought in any month
359 of interest, we further forecasted extreme agricultural drought in July for D1S–D7S (Figures 7c and

360 7d). The difference between forecasted and observed extreme SSIs for the MG model is larger than
361 that of 3C-vine model in distinct typical regions, e.g., the forecasted maximum SSI in July on D4S
362 (Figure 7d). The width of PDF curve qualitatively provides an estimation of forecast uncertainty of
363 3C-vine model and MG model. As shown in Figure 7, in comparison with the 3C-vine model, we
364 found that the width of PDF curves in the MG model are broadened, indicating that the MG model
365 produced more pronounced uncertainty for agricultural drought forecast. Furthermore, the skills of
366 MG model tended to deteriorate over many selected typical regions, especially for 2–3-month lead
367 times of July and August. Generally, compared with the MG model under different lead times,
368 agricultural drought forecasts made by the 3C-vine model are more accurate across different typical
369 regions, in terms of predictive uncertainty (i.e., the width of PDF curve) as well as the difference
370 between observed and forecasted extreme SSIs (Figures 7).

371 Moreover, to assess the forecast performance (according to *NSE*, R^2 , and *RMSE*) of the 3C-vine
372 model over each climate region, we counted the pixel contained in each climate region and
373 constructed the boxplots for these performance metrics (Figures 5j–5l). We still selected the MG
374 model as the reference model, and obtained the difference between these two models, i.e., ΔNSE ,
375 ΔR^2 , and $\Delta RMSE$. The forecast performances of 3C-vine model and MG model were generally
376 consistent for 1-month lead of August over climate regions D1–D7 (Figures 5j–5l, the median
377 percentile of ΔNSE , ΔR^2 , and $\Delta RMSE$ were all around the 0 line), indicating the improved skills of
378 3C-vine model was limited under the same condition. Obviously, the median percentile of ΔNSE
379 and ΔR^2 were greater than 0 as well as $\Delta RMSE$ was lower than 0, respectively, for 2–3-month leads
380 SSI forecast of August in different climate regions D1–D7 (except for D5), indicating that the 3C-
381 vine model shows a better performance than the MG model in forecasting agricultural drought over

382 diverse climate regions of China.

383 In conclusion, based the ability of typical agricultural drought forecasted (Figure 6) and
384 extremum agricultural drought captured in selected typical regions (Figure 7) and the comprehensive
385 forecast performance showed in diverse climate regions (Figures 5j–5l), the 3C-vine model had a
386 good forecast skill for 1–3-month leads agricultural drought of August over most areas of China.

387 **5. Discussion and Conclusions**

388 This study developed a C-vine copula model for forecasting agricultural drought over China
389 under three dimensions, in which antecedent meteorological drought and agricultural drought
390 persistence were employed as two predictors. We selected the MG model as a competition model,
391 in terms of the difference in NSE, R^2 , and RMSE between 3C-vine and MG models, to evaluate the
392 forecast performance of 3C-vine model. These performance metrics all displayed that the 3C-vine
393 model, especially for 2–3-month lead times, outperformed the MG model in many climate regions
394 over China (except for D5, which lies in humid and subhumid regions of northern China) (Figure 5).
395 Compared with the MG model, the 3C-vine model yielded a good forecast skill for the selected
396 typical agricultural droughts (Figure 5). Besides, the nearly perfect forecast of extremum agricultural
397 drought in typical regions (Figure 7) further certified the excellent ability of 3C-vine model.

398 Heterogeneous topography and anthropogenic activities (e.g., irrigation and urbanization) have
399 certainly impacted precipitation interpolation and soil moisture simulation, which may depart from
400 the actual precipitation or soil moisture conditions, notwithstanding the precipitation of CN05.1 and
401 soil moisture of ERA5 show good performances with respect to drought monitoring and forecasting
402 over China (Wang and Yuan, 2021; Wu et al., 2021a; Xu et al., 2009; Zhang et al., 2021; Zhang et
403 al., 2019). It can also influence the response (propagation) time from meteorological drought to

404 agricultural drought as well as agricultural drought memory and can thus lead to the 3C-vine model
405 falling short in some climate regions. To address this issue, we can comprehensively utilize multiple
406 reanalysis data sets, e.g., the precipitation and soil moisture data in Global Land Data Assimilation
407 System (GLDAS) and ERA5, to reduce the uncertainty resulting from a single data source (Wang
408 and Yuan, 2021; Wu et al., 2021a). Currently, it is a challenge to consider irrigation activities into
409 agricultural drought forecasting, especially at large spatial scales. In addition to antecedent
410 precipitation deficit, air temperature, relative humidity, and evapotranspiration may influence soil
411 moisture budget. Moreover, from the perspective of driving mechanisms, the effect of certain
412 atmospheric circulation anomalies (e.g., El Niño-Southern Oscillation (ENSO), Pacific Decadal
413 Oscillation (PDO), and North Arctic Oscillation (NAO)) on agricultural drought at regional and
414 global scales can also be considered as predictors (Zhang et al., 2021). Therefore, a more efficient
415 space can be established by leveraging these predictors for forecasting agricultural drought.

416 In recent years, a myriad of extreme events, such as heatwaves and flash droughts, have swept
417 many regions around the globe. These extreme events have a rapid onset with a few days or weeks
418 and lead to devastating impacts on agricultural production, water resource security, and human well-
419 being (Wang and Yuan, 2021; Yuan et al., 2019; Zscheischler et al., 2020). Therefore, agricultural
420 drought forecasting at finer temporal scales (e.g., weekly) is essential for agricultural managers and
421 policymakers to manage and plan water use. Yet, with limited spatiotemporal resolution and the
422 length of model sample, we temporally have not carried out agricultural drought forecasting at sub-
423 monthly or pentad temporal scales.

424 The limitation of this study is that we choose a “best” model from two C-vine copula candidate
425 models (i.e., Figure 2) as the ideal forecast. However, as the inherent structural differences (i.e.,

426 ordering variables are different), the utilized best model may underestimate the forecast uncertainty
427 (Liu et al., 2021a). Therefore, to reduce the predictive uncertainty and improve the forecast
428 performance, a multi-model combination technique (e.g., Bayesian model averaging (Liu et al.,
429 2021a; Long et al., 2017)) can be considered to merge different C-vine copula candidate models.
430 Moreover, as we only pay attention to the C-vine copulas and several bivariate copula functions, the
431 other D-vine copulas or regular vine copulas, as well as a multitude of bivariate copula families
432 (Sadegh et al., 2017) can be investigated to establish the forecast model for agricultural drought in
433 the next work.

434 **Data availability**

435 The grided monthly [CN05.1](#) precipitation data with a 0.25° spatial resolution was provided by
436 the Climate Change Research Center, Chinese Academy of Sciences (available at
437 <http://ccrc.iap.ac.cn/resource/detail?id=228>)~~the CN05.1 (<http://data.ema.en>) for~~ [during](#) the period
438 of 1961–2018. The gridded monthly soil moisture data with three soil depths (0–7 cm, 7–28 cm, and
439 28–100 cm) from the European Center for Medium-Range Weather Forecast (ECMWF) ERA5
440 reanalysis datasets are available at 1961–1978:
441 <https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means-preliminary-back-extension?tab=overview> and 1979–2018:
442 <https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview>.

445 **Author contribution**

446 Haijiang Wu: Conceptualization, Methodology, Software, Visualization, Writing - original draft.
447 Xiaoling Su: Writing - review & editing, Data curation, Validation, Investigation, Funding

448 acquisition, Supervision, Formal analysis. Vijay P. Singh: Writing - review & editing, Supervision.
449 Te Zhang: Formal analysis, Investigation. Jixia Qi: Data curation, Investigation. Shengzhi Huang:
450 Writing - review & editing, Investigation.

451 **Competing interests**

452 The authors declare that they have no conflict of interest.

453 **Acknowledgements**

454 The authors would like to thank two anonymous reviewers [and Editor Carlo De Michele](#) for
455 their constructive comments and suggestions which contributed to improving the quality of the paper.
456 This study was financially supported by the National Natural Science Foundation of China (Grants
457 No. 51879222 and 52079111).

458 **References**

459 Aas, K., and Berg, D.: Models for construction of multivariate dependence – a comparison study,
460 Eur. J. Financ., 15(7-8), 639–659, <https://doi.org/10.1080/13518470802588767>, 2009.
461 Aas, K., Czado, C., Frigessi, A., and Bakken, H.: Pair-copula constructions of multiple dependence.
462 Insur. Math. Econ., 44(2), 182–198. <https://doi.org/10.1016/j.insmatheco.2007.02.001>, 2009.
463 AghaKouchak, A., Mirchi, A., Madani, K., Di Baldassarre, G., Nazemi, A., Alborzi, A., Anjileli, H.,
464 Azarderakhsh, M., Chiang, F., Hassanzadeh, E., Huning, L. S., Mallakpour, I., Martinez, A.,
465 Mazdiyasni, O., Moftakhari, H., Norouzi, H., Sadegh, M., Sadeqi, D., Van Loon, A. F., and
466 Wanders, N.: Anthropogenic Drought: Definition, Challenges, and Opportunities, Rev.
467 Geophys., 59(2), e2019RG000683, <https://doi.org/10.1029/2019rg000683>, 2021.
468 Bedford, T., and Cooke, R. M.: Vines—A new graphical model for dependent random variables, Ann.

469 Stat., 30(4), 1031–1068, <https://doi.org/10.1214/aos/1031689016>, 2002.

470 Benjamini, Y., and Hochberg, Y.: Controlling the false discovery rate: A practical and powerful
471 approach to multiple testing, J. R. Stat. Soc. Ser. B-Stat. Methodol., 57(1), 289–300,
472 <https://doi.org/10.1111/j.2517-6161.1995.tb02031.x>, 1995.

473 Bevacqua, E.: CDVineCopulaConditional: Sampling from conditional C- and D-vine copulas, R
474 package, version 0.1.1, <https://CRAN.R-project.org/package=CDVineCopulaConditional>,
475 2017a.

476 Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., and Vrac, M.: Multivariate statistical
477 modelling of compound events via pair-copula constructions: analysis of floods in Ravenna
478 (Italy), Hydrol. Earth Syst. Sci., 21(6), 2701–2723, <https://doi.org/10.5194/hess-21-2701>–
479 2017, 2017b.

480 Chen, X., Koenker, R., and Xiao, Z.: Copula-based nonlinear quantile autoregression, Econom. J.,
481 12, S50–S67, <https://doi.org/10.1111/j.1368-423X.2008.00274.x>, 2009.

482 [De Michele, C., and Salvadori, G.: A Generalized Pareto intensity-duration model of storm rainfall
483 exploiting 2-Copulas. J. Geophys. Res., 108\(D2\), 4067, https://doi.org/10.1029/2002jd002534,](#)
484 [2003.](#)

485 [De Michele, C., Salvadori, G., Vezzoli, R., and Pecora, S.: Multivariate assessment of droughts:
486 Frequency analysis and dynamic return period, Water Resour. Res., 49, 6985–6994,](#)
487 [https://doi.org/10.1002/wrcr.20551, 2013.](#)

488 Dißmann, J., Brechmann, E. C., Czado, C., and Kurowicka, D.: Selecting and estimating regular
489 vine copulae and application to financial returns, Comput. Stat. Data Anal., 59, 52–69,
490 <https://doi.org/10.1016/j.csda.2012.08.010>, 2013.

491 FAO: The impact of disasters and crises on agriculture and food security, Food and Agriculture

492 Organization of the United Nations, Rome, <https://doi.org/10.4060/cb3673en>, 2021.

493 [Favre, A.-C., El Adlouni, S., Perreault, L., Thiémonge, N., and Bobée, B.: Multivariate hydrological](#)

494 [frequency analysis using copulas. Water Resour. Res., 40\(1\), W01101,](#)

495 [<https://doi.org/10.1029/2003wr002456>, 2004.](#)

496 Ganguli, P., and Reddy, M. J.: Ensemble prediction of regional droughts using climate inputs and
497 the SVM-copula approach, Hydrol. Process., 28(19), 4989–5009.
498 <https://doi.org/10.1002/hyp.9966>, 2014.

499 Genest, C., Rémillard, B., and Beaudoin, D.: Goodness-of-fit tests for copulas: A review and a power
500 study, Insur. Math. Econ., 44(2), 199–213, <https://doi.org/10.1016/j.insmatheco.2007.10.005>,
501 2009.

502 Gringorten, I. I.: A plotting rule for extreme probability paper, J. Geophys. Res., 68(3), 813–814,
503 <https://doi.org/10.1029/JZ068i003p00813>, 1963.

504 Hao, Z., Hao, F., Singh, V. P., Sun, A. Y., and Xia, Y.: Probabilistic prediction of hydrologic drought
505 using a conditional probability approach based on the meta-Gaussian model, J. Hydrol., 542,
506 772–780, <https://doi.org/10.1016/j.jhydrol.2016.09.048>, 2016.

507 Hao, Z., Hao, F., Singh, V. P., and Ouyang W.: Quantitative risk assessment of the effects of drought
508 on extreme temperature in eastern China, J. Geophys. Res.-Atmos., 122, 9050–9059,
509 <https://doi.org/10.1002/2017JD027030>, 2017.

510 Hao, Z., Hao, F., Singh, V. P., and Zhang, X.: Statistical prediction of the severity of compound dry-
511 hot events based on El Niño-Southern Oscillation, J. Hydrol., 572, 243–250.
512 <https://doi.org/10.1016/j.jhydrol.2019.03.001>, 2019a.

513 Hao, Z., Hao, F., Xia, Y., Singh, V. P., and Zhang, X.: A monitoring and prediction system for
514 compound dry and hot events, Environ. Res. Lett., 14(11), 114034,

515 https://doi.org/10.1088/1748-9326/ab4df5, 2019b.

516 He, L., Hao, X., Li, H., and Han, T.: How Do Extreme Summer Precipitation Events Over Eastern
517 China Subregions Change? *Geophys. Res. Lett.*, 48, e2020GL091849,
518 https://doi.org/10.1029/2020GL091849, 2021.

519 Hemri, S., Lisniak, D., and Klein, B.: Multivariate postprocessing techniques for probabilistic
520 hydrological forecasting, *Water Resour. Res.*, 51(9), 7436–7451,
521 https://doi.org/10.1002/2014wr016473, 2015.

522 Joe, H.: Families of m-variate distributions with given margins and $m(m-1)/2$ bivariate dependence
523 parameters, Institute of Mathematical Statistics Lecture Notes – Monograph Series
524 Distributions with fixed marginals and related topics, 120–141,
525 https://doi.org/10.1214/lnms/1215452614, 1996.

526 Joe, H.: Dependence modeling with copulas, Chapman and Hall/CRC, 2014.

527 Lesk, C., Rowhani, P., and Ramankutty, N.: Influence of extreme weather disasters on global crop
528 production, *Nature*, 529(7584), 84–87, https://doi.org/10.1038/nature16467, 2016.

529 Liu, B., and Zhu, C.: Extremely Late Onset of the 2018 South China Sea Summer Monsoon
530 Following a La Niña Event: Effects of Triple SST Anomaly Mode in the North Atlantic and a
531 Weaker Mongolian Cyclone, *Geophys. Res. Lett.*, 46(5), 2956–2963,
532 https://doi.org/10.1029/2018gl081718, 2019.

533 Liu, Z., Cheng, L., Hao, Z., Li, J., Thorstensen, A., and Gao, H.: A Framework for Exploring Joint
534 Effects of Conditional Factors on Compound Floods, *Water Resour. Res.*, 54(4), 2681–2696,
535 https://doi.org/10.1002/2017wr021662, 2018.

536 Liu, Z., Cheng, L., Lin, K., and Cai, H.: A hybrid bayesian vine model for water level prediction,
537 *Environ. Modell. Softw.*, 142, 105075, https://doi.org/10.1016/j.envsoft.2021.105075, 2021a.

538 Liu, Z., Xie, Y., Cheng, L., Lin, K., Tu, X., and Chen, X.: Stability of spatial dependence structure
539 of extreme precipitation and the concurrent risk over a nested basin, *J. Hydrol.*, 602, 126766,
540 <https://doi.org/10.1016/j.jhydrol.2021.126766>, 2021b.

541 Long, D., Bai, L., Yan, L., Zhang, C., Yang, W., Lei, H., Quan, J., Meng, X., and Shi, C.: Generation
542 of spatially complete and daily continuous surface soil moisture of high spatial resolution,
543 *Remote Sens. Environ.*, 233, 111364, <https://doi.org/10.1016/j.rse.2019.111364>, 2019.

544 Long, D., Pan, Y., Zhou, J., Chen, Y., Hou, X., Hong, Y., Scanlon, B. R., and Longuevergne, L.:
545 Global analysis of spatiotemporal variability in merged total water storage changes using
546 multiple GRACE products and global hydrological models, *Remote Sens. Environ.*, 192, 198–
547 216, <https://doi.org/10.1016/j.rse.2017.02.011>, 2017.

548 Lu, Y., Wu, K., Jiang, Y., Guo, Y., and Desneux, N.: Widespread adoption of Bt cotton and insecticide
549 decrease promotes biocontrol services, *Nature*, 487(7407), 362–365,
550 <https://doi.org/10.1038/nature11153>, 2012.

551 Ma, F., Luo, L., Ye, A., and Duan, Q.: Seasonal drought predictability and forecast skill in the semi-
552 arid endorheic Heihe River basin in northwestern China, *Hydrol. Earth Syst. Sci.*, 22, 5697–
553 5709, <https://doi.org/10.5194/hess-22-5697-2018>, 2018.

554 Modanesi, S., Massari, C., Camici, S., Brocca, L., and Amarnath, G.: Do Satellite Surface Soil
555 Moisture Observations Better Retain Information About Crop-Yield Variability in Drought
556 Conditions? *Water Resour. Res.*, 56(2), e2019WR025855,
557 <https://doi.org/10.1029/2019wr025855>, 2020.

558 Nagler, T., Schepsmeier, U., Stoeber, J., Brechmann, E. C., Graeler, B., Erhardt, T., Almeida, C.,
559 Min, A., Czado, C., Hofmann, M., Killiches, M., Joe, H., and Vatter, T.: VineCopula: Statistical
560 Inference of Vine Copulas, R Package Version 2.4.2, <https://CRAN.R>

561 project.org/package=VineCopula, 2021.

562 Nelsen, R. B.: An Introduction to Copulas, 2nd ed., Springer, N. Y., 2013.

563 Orth, R., and Destouni, G.: Drought reduces blue-water fluxes more strongly than green-water fluxes

564 in Europe, *Nat. Commun.*, 9(1), 3602, <https://doi.org/10.1038/s41467-018-06013-7>, 2018.

565 Röthlisberger, M., and Martius, O.: Quantifying the Local Effect of Northern Hemisphere

566 Atmospheric Blocks on the Persistence of Summer Hot and Dry Spells, *Geophys. Res. Lett.*,

567 46(16), 10101–10111, <https://doi.org/10.1029/2019gl083745>, 2019.

568 Sadegh, M., Ragno, E., and AghaKouchak, A.: Multivariate Copula Analysis Toolbox (MvCAT):

569 Describing dependence and underlying uncertainty using a Bayesian framework, *Water Resour.*

570 *Res.*, 53(6), 5166–5183, <https://doi.org/10.1002/2016wr020242>, 2017.

571 [Salvadori, G., and De Michele, C.: Frequency analysis via copulas: Theoretical aspects and](#)

572 [applications to hydrological events. Water Resour. Res., 40\(12\), W12511,](#)

573 [<https://doi.org/10.1029/2004wr003133>, 2004.](#)

574 Sarhadi, A., Burn, D. H., Concepción Ausín, M., and Wiper, M. P.: Time-varying nonstationary

575 multivariate risk analysis using a dynamic Bayesian copula, *Water Resour. Res.*, 52(3), 2327–

576 2349, <https://doi.org/10.1002/2015wr018525>, 2016.

577 [Sklar, A.: Fonctions de Répartition à Dimensions et Leurs marges, 8, Publications de l’Institut de](#)

578 [Statistique de L’Université de Paris, Paris, France, 1959.](#)

579 Su, B., Huang, J., Fischer, T., Wang, Y., Kundzewicz, Z. W., Zhai, J., Sun, H., Wang, A., Zeng, X.,

580 Wang, G., Tao, H., Gemmer, M., Li, X., and Jiang, T.: Drought losses in China might double

581 between the 1.5 degrees C and 2.0 degrees C warming, *P. Natl. Acad. Sci. USA*, 115(42),

582 10600–10605, <https://doi.org/10.1073/pnas.1802129115>, 2018.

583 Vernieuwe, H., Vandenberghe, S., De Baets, B., and Verhoest, N. E. C.: A continuous rainfall model

584 based on vine copulas, *Hydrol. Earth Syst. Sci.*, 19(6), 2685–2699,
585 <https://doi.org/10.5194/hess-19-2685-2015>, 2015.

586 Wang, W., Dong, Z., Lall, U., Dong, N., and Yang, M.: Monthly Streamflow Simulation for the
587 Headwater Catchment of the Yellow River Basin With a Hybrid Statistical-Dynamical Model,
588 *Water Resour. Res.*, 55(9), 7606–7621, <https://doi.org/10.1029/2019wr025103>, 2019.

589 Wang, Y., and Yuan, X.: Anthropogenic Speeding Up of South China Flash Droughts as Exemplified
590 by the 2019 Summer-Autumn Transition Season, *Geophys. Res. Lett.*, 48(9), e2020GL091901,
591 <https://doi.org/10.1029/2020gl091901>, 2021.

592 Wilks, D. S.: *Statistical methods in the atmospheric sciences*, Academic Press, 2014.

593 Wilks, D. S.: “The Stippling Shows Statistically Significant Grid Points”: How Research Results are
594 Routinely Overstated and Overinterpreted, and What to Do about It, *B. Am. Meteorol. Soc.*,
595 97(12), 2263–2273, <https://doi.org/10.1175/bams-d-15-00267.1>, 2016.

596 Wu, H., Su, X., Singh, V. P., Feng, K., and Niu, J.: Agricultural Drought Prediction Based on
597 Conditional Distributions of Vine Copulas, *Water Resour. Res.*, 57(8), e2021WR029562,
598 <https://doi.org/10.1029/2021wr029562>, 2021a.

599 Wu, H., Su, X., and Zhang, G.: Prediction of agricultural drought in China based on Meta-Gaussian
600 model, *Acta Geogr. Sin.*, 76(3), 525–538, <https://doi.org/10.11821/dlxb202103003>, 2021b.

601 Wu, J., Chen, X., Yu, Z., Yao, H., Li, W., and Zhang, D.: Assessing the impact of human regulations
602 on hydrological drought development and recovery based on a ‘simulated-observed’
603 comparison of the SWAT model. *J. Hydrol.*, 577, 123990,
604 <https://doi.org/10.1016/j.jhydrol.2019.123990>, 2019.

605 Wu, J., Gao, X., Giorgi, F., and Chen, D.: Changes of effective temperature and cold/hot days in late
606 decades over China based on a high resolution gridded observation dataset, *Int. J. Climatol.*,

607 37, 788–800, <https://doi.org/10.1002/joc.5038>, 2017.

608 Xiao, G., Zhao, Z., Liang, L., Meng, F., Wu, W., and Guo, Y.: Improving nitrogen and water use
609 efficiency in a wheat-maize rotation system in the North China Plain using optimized farming
610 practices, *Agric. Water Manage.*, 212, 172–180, <https://doi.org/10.1016/j.agwat.2018.09.011>,
611 2019.

612 Xiong, L., Yu, K.-x., and Gottschalk, L.: Estimation of the distribution of annual runoff from climatic
613 variables using copulas, *Water Resour. Res.*, 50(9), 7134–7152,
614 <https://doi.org/10.1002/2013wr015159>, 2014.

615 Xu, L., Chen, N., Chen, Z., Zhang, C., and Yu, H.: Spatiotemporal forecasting in earth system science:
616 Methods, uncertainties, predictability and future directions. *Earth-Sci. Rev.*, 222, 103828,
617 <https://doi.org/10.1016/j.earscirev.2021.103828>, 2021a.

618 Xu, Y., Gao, X., Shen, Y., Xu, C., Shi, Y., and Giorgi, F.: A daily temperature dataset over China and
619 its application in validating a RCM simulation, *Adv. Atmos. Sci.*, 26(4), 763–772,
620 <https://doi.org/10.1007/s00376-009-9029-z>, 2009.

621 Xu, Y., Zhang, X., Hao, Z., Singh, V. P., and Hao, F.: Characterization of agricultural drought
622 propagation over China based on bivariate probabilistic quantification, *J. Hydrol.*, 598, 126194,
623 <https://doi.org/10.1016/j.jhydrol.2021.126194>, 2021b.

624 Yao, N., Li, Y., Lei, T., and Peng, L.: Drought evolution, severity and trends in mainland China over
625 1961–2013, *Sci. Total Environ.*, 616–617, 73–89,
626 <https://doi.org/10.1016/j.scitotenv.2017.10.327>, 2018.

627 Yuan, X., Wang, L., Wu, P., Ji, P., Sheffield, J., and Zhang, M.: Anthropogenic shift towards higher
628 risk of flash drought over China, *Nat. Commun.*, 10(1), 4661, <https://doi.org/10.1038/s41467-019-12692-7>, 2019.

630 Zhang, J., Mu, Q., and Huang, J.: Assessing the remotely sensed Drought Severity Index for
631 agricultural drought monitoring and impact analysis in North China, *Ecol. Indic.*, 63, 296–309,
632 <https://doi.org/10.1016/j.ecolind.2015.11.062>, 2016.

633 Zhang, L., and Singh, V. P.: *Copulas and their applications in water resources engineering*,
634 Cambridge University Press, 2019.

635 Zhang, L., Zhou, T., Chen, X., Wu, P., Christidis, N., and Lott, F. C.: The late spring drought of 2018
636 in South China, *Bull. Amer. Meteorol. Soc.*, 101(1), S59–S64, <https://doi.org/10.1175/BAMS-D-19-0202.1>, 2020.

638 Zhang, Q., Qi, T., Singh, V. P., Chen, Y. D., and Xiao, M.: Regional Frequency Analysis of Droughts
639 in China: A Multivariate Perspective, *Water Resour. Manag.*, 29(6), 1767–1787,
640 <https://doi.org/10.1007/s11269-014-0910-x>, 2015.

641 Zhang, Q., Li, Q., Singh, V. P., Shi, P., Huang, Q., and Sun, P.: Nonparametric integrated
642 agrometeorological drought monitoring: Model development and application, *J. Geophys.
643 Res.-Atmos.*, 123, 73–88, <https://doi.org/10.1002/2017JD027448>, 2018.

644 Zhang, Q., Yu, H., Sun, P., Singh, V. P., and Shi, P.: Multisource data based agricultural drought
645 monitoring and agricultural loss in China, *Glob. Planet. Change*, 172, 298–306,
646 <https://doi.org/10.1016/j.gloplacha.2018.10.017>, 2019.

647 Zhang, T., Su, X., and Feng, K.: The development of a novel nonstationary meteorological and
648 hydrological drought index using the climatic and anthropogenic indices as covariates, *Sci.
649 Total Environ.*, 786, 147385, <https://doi.org/10.1016/j.scitotenv.2021.147385>, 2021.

650 Zhang, X., Su, Z., Lv, J., Liu, W., Ma, M., Peng, J., and Leng, G.: A Set of Satellite-Based Near
651 Real-Time Meteorological Drought Monitoring Data over China, *Remote Sens.*, 11(4), 453,
652 <https://doi.org/10.3390/rs11040453>, 2019.

653 Zhang, Y., Hao, Z., Feng, S., Zhang, X., Xu, Y., and Hao, F.: Agricultural drought prediction in China
654 based on drought propagation and large-scale drivers, *Agric. Water Manage.*, 255, 107028,
655 <https://doi.org/10.1016/j.agwat.2021.107028>, 2021.

656 Zhang, Y., Wang, Z., Sha, S., and Feng, J.: Drought Events and Its Causes in Summer of 2018 in
657 China. *J. Arid Meteorol.*, 36(5), 884–892, [https://doi.org/10.11755/j.issn.1006-7639\(2018\)-05-0884](https://doi.org/10.11755/j.issn.1006-7639(2018)-05-0884), 2018.

659 Zhao, S.: A new scheme for comprehensive physical regionalization in China, *Acta Geogr. Sin.*,
660 38(1), 1–10, 1983.

661 Zhou, S., Williams, A. P., Berg, A. M., Cook, B. I., Zhang, Y., Hagemann, S., Lorenz, R., Seneviratne,
662 S. I., and Gentine, P.: Land-atmosphere feedbacks exacerbate concurrent soil drought and
663 atmospheric aridity, *P. Natl. Acad. Sci. USA*, 116(38), 18848–18853,
664 <https://doi.org/10.1073/pnas.1904955116>, 2019.

665 Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk,
666 B., AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N.
667 N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, *Nature
668 Reviews Earth & Environment*, 1(7), 333–347, <https://doi.org/10.1038/s43017-020-0060-z>,
669 2020.

670

671

Figure Captions

672 **Figure 1.** Seven sub-climate regions division over China. The specific information of climate
673 regions D1–D7 is listed at the left-bottom in the panel.

674 **Figure 2.** Different schematic (two types) of C-vine copulas under three-dimensional scenarios. For
675 the first type (a), the ordering variables are y_1 , y_2 , and y_3 , while for the second type (b) that
676 are y_2 , y_1 , and y_3 . $C_{12}(C_{21})$, $C_{13}(C_{23})$, and $C_{23|1}(C_{13|2})$ denotes bivariate copulas with
677 parameters θ_{11} , θ_{12} , and θ_{21} , respectively. Here, θ_{ij} signifies the parameters of the j -th edge
678 with respect to the i -th tree. $G(\cdot|\cdot)$ denote conditional distribution functions.

679 **Figure 3.** Flowchart of agricultural drought forecasting based on canonical vine copulas (3C-vine)
680 and meta-Gaussian (MG) model under three-dimensional scenarios. Here, t denotes the
681 target month (e.g., August); i signifies the lead times (1–3-months)); LOOCV is the
682 abbreviation of leave-one-out cross validation; $y_1^{-yr}(y_2^{-yr})$ indicates the series after
683 removing a sample ($y_1^{yr}(y_2^{yr})$) for a specific year; and y_3^{yr} is the agricultural drought forecast
684 value for the target month of a specific year. Note that the optimal tree structure (i or ii on
685 the right-hand side of this figure) is selected based on AIC to forecast agricultural drought.

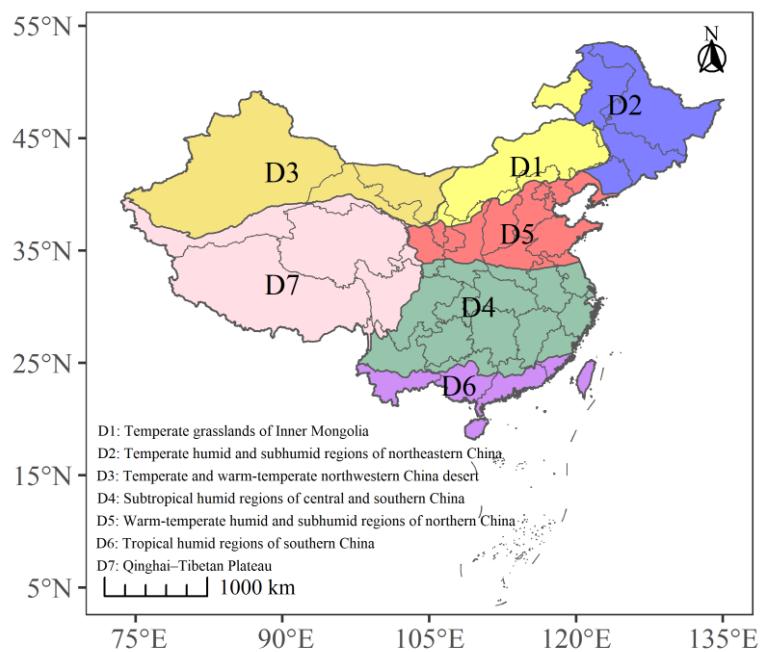
686 **Figure 4.** Spatial patterns of 1–3-months lag Kendall’s correlation coefficient (τ_k) between SPI_{t-i} and
687 SSI_t (t denotes August, and i is 1–3-month lag time) (top row), as well as SSI_{t-i} and SSI_t
688 (bottom row) for August during 1961–2018 over China. Note the stippling indicates where
689 τ_k is at a 0.05 significance level, which is corrected via the false discovery rate (FDR) of
690 0.1.

691 **Figure 5.** Forecast performance based on (a–c) ΔNSE (difference of NSE between 3C-vine and MG

692 models, $NSE_{3C}-NSE_{MG}$), (d–f) ΔR^2 ($R^2_{3C}-R^2_{MG}$), and (g–i) $\Delta RMSE$ ($RMSE_{3C}-RMSE_{MG}$) for
693 the 1–3-month leads of August during 1961–2018 over China. The corresponding boxplots
694 of (j) ΔNSE , (k) ΔR^2 , and (l) $\Delta RMSE$ relative to a threshold of 0 (horizontal black dash line)
695 for agricultural drought forecast in August under 1–3-month leads in climate regions D1–
696 D7 over China. The percentage of $\Delta NSE > 0$, $\Delta R^2 > 0$, and $\Delta RMSE < 0$ is listed in the left-
697 bottom of corresponding sub-figure, respectively.

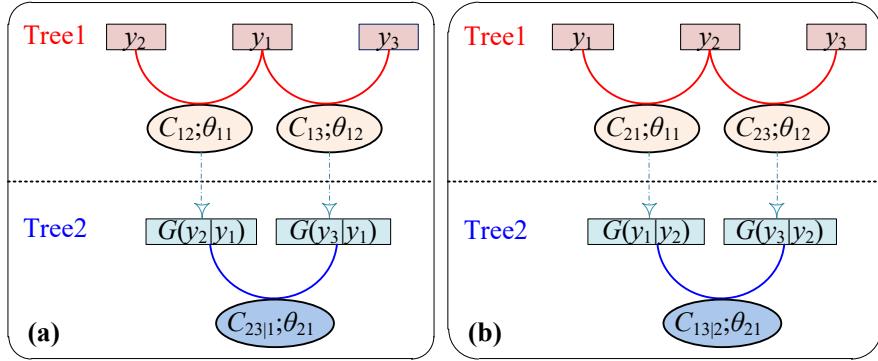
698 **Figure 6.** SSI observations in August of 2018 (a) as well as the corresponding SSI forecasts under
699 1–3-month lead times utilizing 3C-vine model (b–d) and MG model (e–g) over China. The
700 black rectangle boxes (as shown in b) denote the typical regions (corresponding to signify
701 D1S–D7S) selected in climate regions D1–D7.

702 **Figure 7.** Probability density function (PDF) curve of (a and c) minimum and (b and d) maximum
703 SSI under 1–3-month lead times for August and July during the 1961–2018 period over
704 seven selected typical regions in climate regions D1–D7 (i.e., these black rectangle boxes
705 in Figure 6b correspond to signify D1S–D7S, respectively). Black dash line and text
706 indicate the minimum and maximum observations of SSI in August and July over D1S–
707 D7S. These texts with red (green), blue (yellow), and cyan (coral) colors of left (right) in
708 each sub-figure are SSI forecasts under 1–3-month lead times of August or July via 3C-
709 vine model (MG model), which correspond to the abscissa projected by the peak point of
710 each PDF.



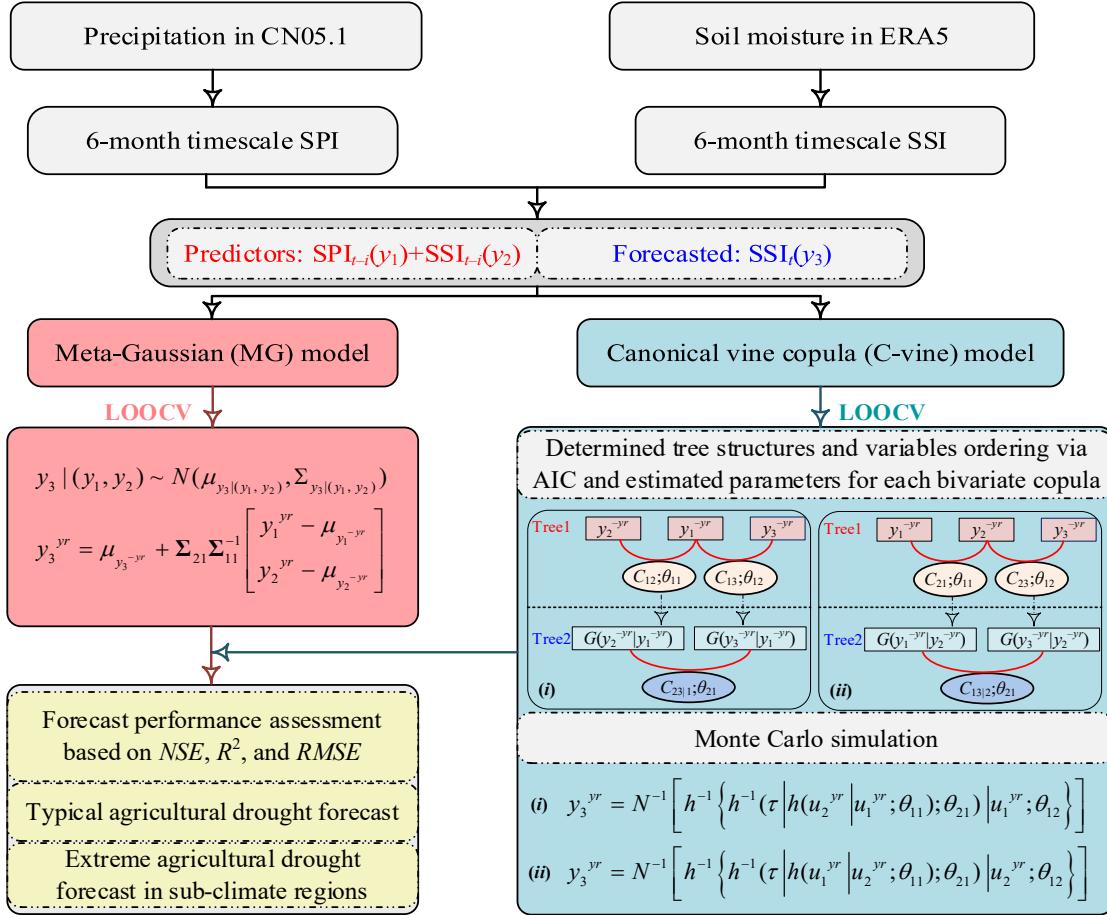
711

712 **Figure 1.** Seven sub-climate regions division over China. The specific information of climate
713 regions D1–D7 is listed at the left-bottom in the panel.



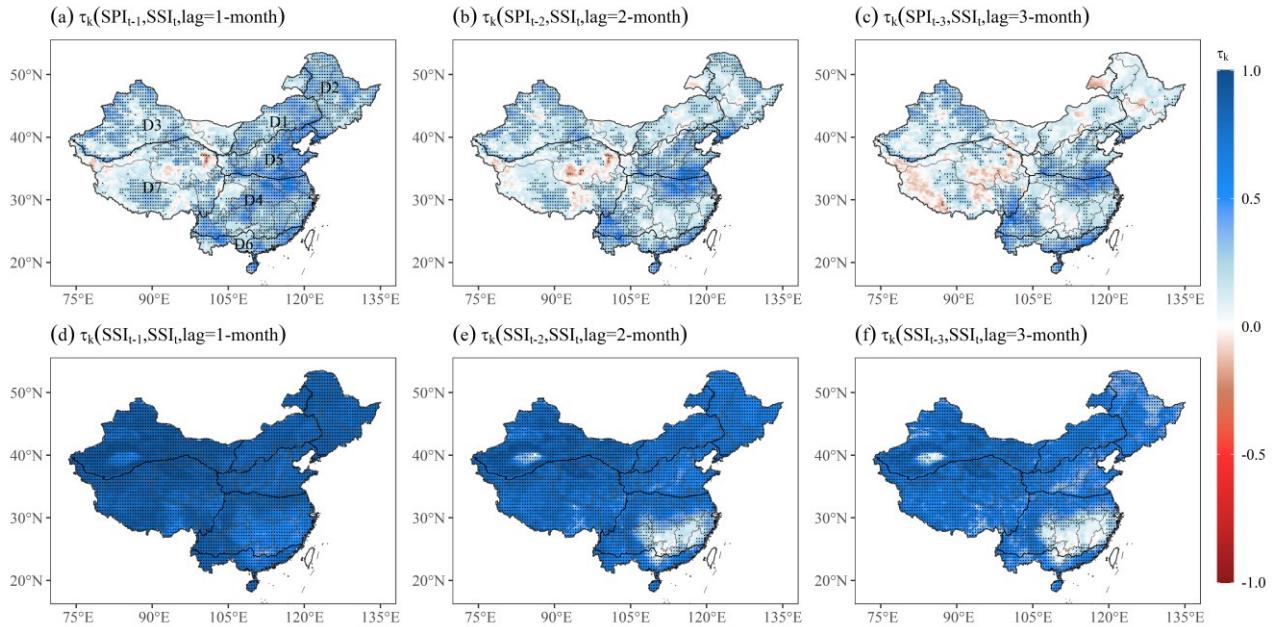
714

715 **Figure 2.** Different schematic (two types) of C-vine copulas under three-dimensional scenarios. For
 716 the first type (a), the ordering variables are y_1 , y_2 , and y_3 , while for the second type (b) that are y_2 , y_1 ,
 717 and y_3 . $C_{12}(C_{21})$, $C_{13}(C_{23})$, and $C_{23|1}(C_{13|2})$ denotes bivariate copulas with parameters θ_{11} , θ_{12} , and θ_{21} ,
 718 respectively. Here, θ_{ij} signifies the parameters of the j -th edge with respect to the i -th tree. $G(\bullet|\bullet)$
 719 denote conditional distribution functions.



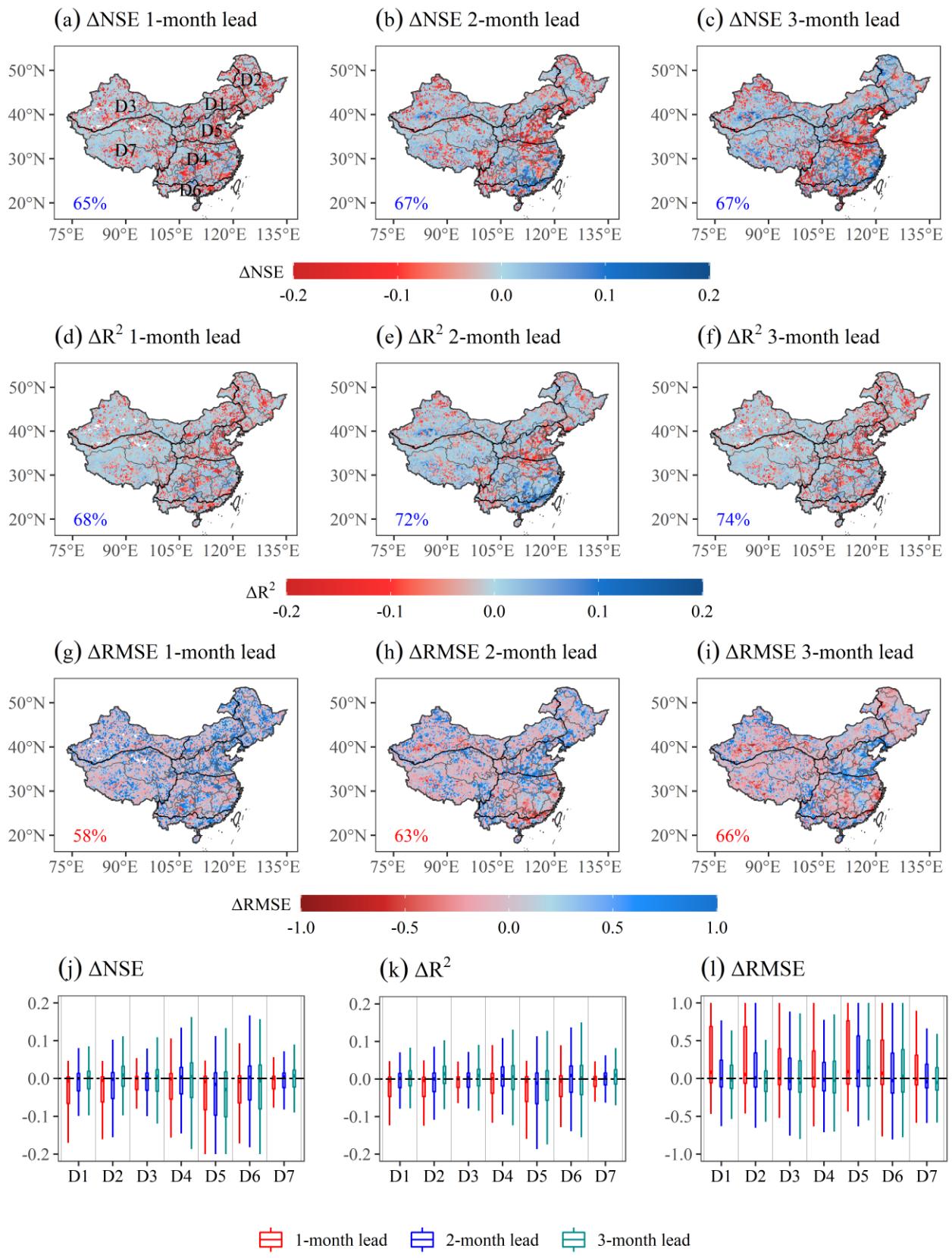
720

721 **Figure 3.** Flowchart of agricultural drought forecasting based on canonical vine copulas (3C-vine)
 722 and meta-Gaussian (MG) model under three-dimensional scenarios. Here, t denotes the target month
 723 (e.g., August); i signifies the lead times (1–3-months)); LOOCV is the abbreviation of leave-one-
 724 out cross validation; $y_1^{-yr}(y_2^{-yr})$ indicates the series after removing a sample ($y_1^{yr}(y_2^{yr})$) for a specific
 725 year; and y_3^{yr} is the agricultural drought forecast value for the target month of a specific year. Note
 726 that the optimal tree structure (i or ii on the right-hand side of this figure) is selected based on AIC
 727 to forecast agricultural drought.



728

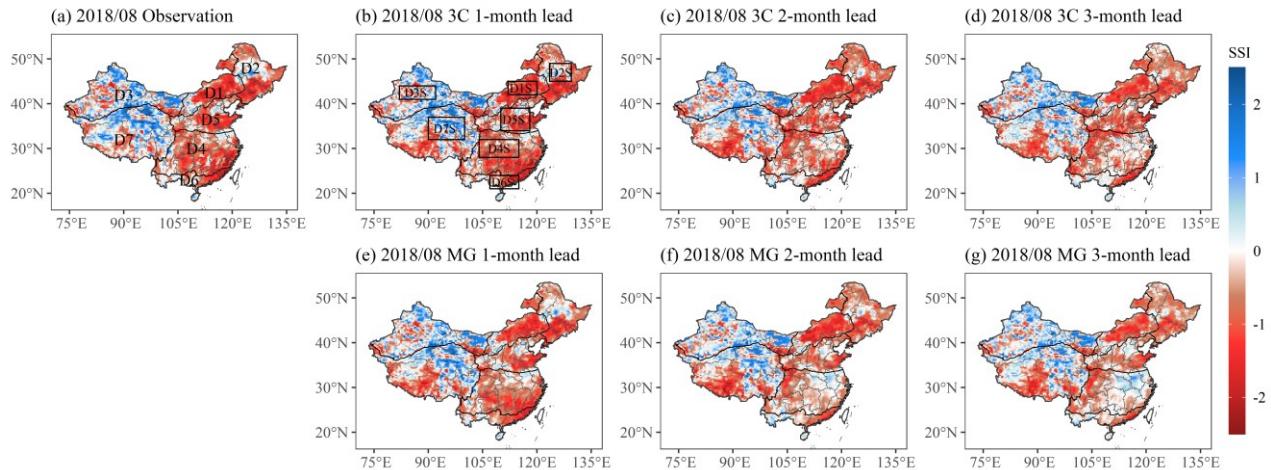
729 **Figure 4.** Spatial patterns of 1–3-months lag Kendall's correlation coefficient (τ_k) between SPI_{t-i} and
 730 SSI_t (t denotes August, and i is 1–3-month lag time) (top row), as well as SSI_{t-i} and SSI_t (bottom
 731 row) for August during 1961–2018 over China. Note the stippling indicates where τ_k is at a 0.05
 732 significance level, which is corrected via the false discovery rate (FDR) of 0.1.



733

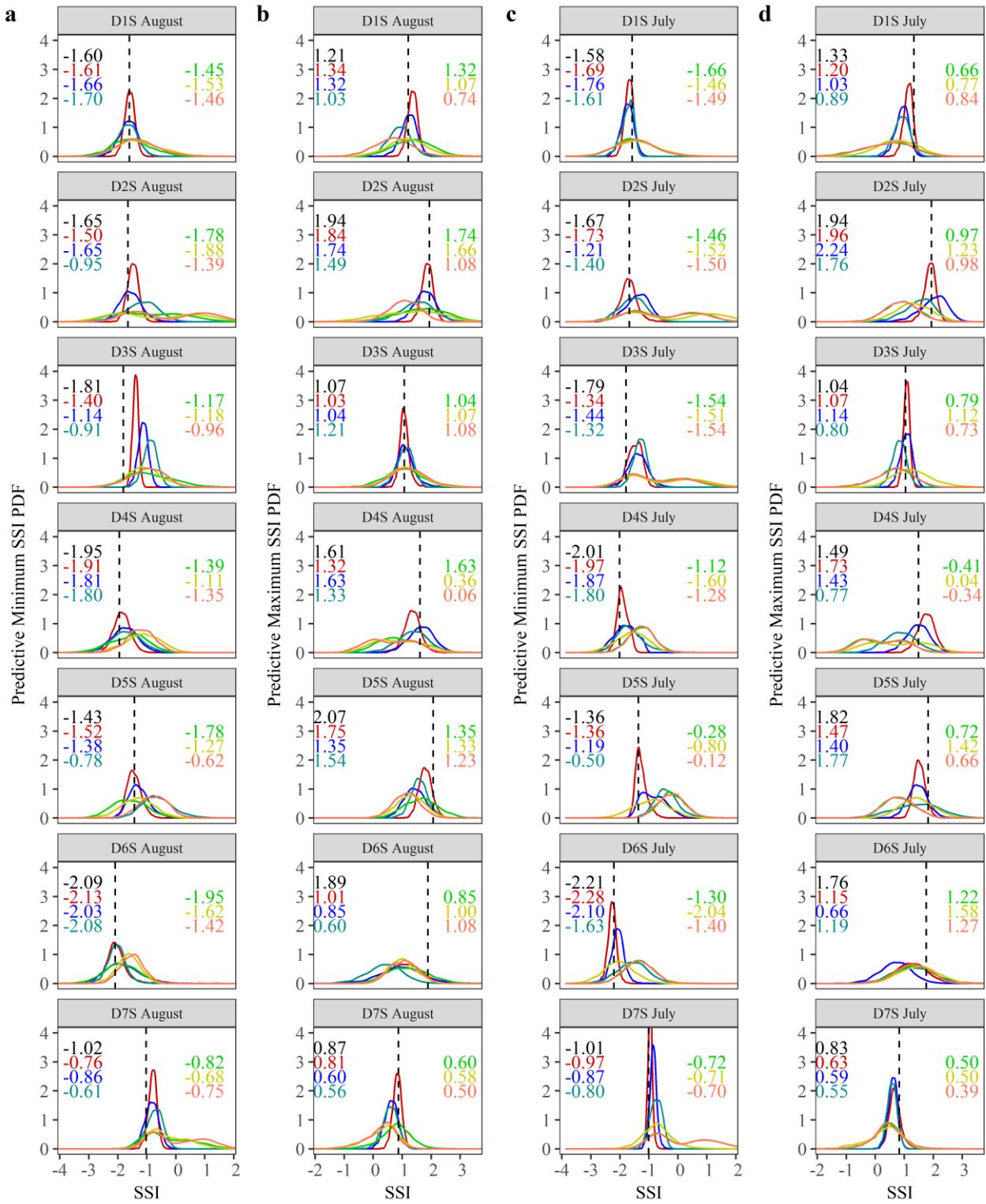
734 **Figure 5.** Forecast performance based on (a-c) ΔNSE (difference of NSE between 3C-vine and
 735 MG models, $NSE_{3C}-NSE_{MG}$), (d-f) ΔR^2 ($R^2_{3C}-R^2_{MG}$), and (g-i) $\Delta RMSE$ ($RMSE_{3C}-RMSE_{MG}$) for the

736 1–3-month leads of August during 1961–2018 over China. The corresponding boxplots of (j) ΔNSE ,
737 (k) ΔR^2 , and (l) $\Delta RMSE$ relative to a threshold of 0 (horizontal black dash line) for agricultural
738 drought forecast in August under 1–3-month leads in climate regions D1–D7 over China. The
739 percentage of $\Delta NSE > 0$, $\Delta R^2 > 0$, and $\Delta RMSE < 0$ is listed in the left-bottom of corresponding sub-
740 figure, respectively.



741

742 **Figure 6.** SSI observations in August of 2018 (a) as well as the corresponding SSI forecasts under
 743 1–3-month lead times utilizing 3C-vine model (b–d) and MG model (e–g) over China. The black
 744 rectangle boxes (as shown in b) denote the typical regions (corresponding to signify D1–D7S)
 745 selected in climate regions D1–D7.



— 3C 1-month lead — 3C 2-month lead — 3C 3-month lead — MG 1-month lead — MG 2-month lead — MG 3-month lead

746

747 **Figure 7.** Probability density function (PDF) curve of (a and c) minimum and (b and d) maximum
748 SSI under 1–3-month lead times for August and July during the 1961–2018 period over seven
749 selected typical regions in climate regions D1–D7 (i.e., these black rectangle boxes in Figure 6b

750 correspond to signify D1S–D7S, respectively). Black dash line and text indicate the minimum and
751 maximum observations of SSI in August and July over D1S–D7S. These texts with red (green), blue
752 (yellow), and cyan (coral) colors of left (right) in each sub-figure are SSI forecasts under 1–3-month
753 lead times of August or July via 3C-vine model (MG model), which correspond to the abscissa
754 projected by the peak point of each PDF.