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Abstract

Agricultural drought is mainly caused by reduced soil moisture and precipitation and shows
adverse impacts on the growth of crops and vegetation, thus affecting agricultural production and
food security. For developing measures for drought mitigation, reliable agricultural drought
forecasting is essential. In this study, we developed an agricultural drought forecasting model based
on canonical vine copulas under three-dimensions (3C-vine model), in which the antecedent
meteorological drought and agricultural drought persistence were utilized as predictors. Besides, the
meta-Gaussian (MG) model was selected as a reference model to evaluate the forecast skill. The
agricultural drought in August of 2018 was selected as a typical case study, and the spatial patterns
of 1-3-month lead forecasts of agricultural drought utilizing the 3C-vine model resembled the
corresponding observations, indicating the good predictive ability of the model. The performance
metrics (NSE, R%, and RMSE) showed that the 3C-vine model outperformed the MG model for
forecasting agricultural drought in August under diverse lead times. Also, the 3C-vine model
exhibited excellent forecast skills in capturing the extreme agricultural drought over different
selected typical regions. This study may help to guide drought early warning, drought mitigation,

and water resources scheduling.
Keywords: drought forecasting, model comparison, vine copulas, meta-Gaussian
1. Introduction
Agriculture is the source of livelihoods of over 2.5 billion people worldwide, and the
agricultural sector also sustains 82% of all drought impacts (FAO, 2021). A cascade of impacts of

droughts, such as crop reduction and failure, increased human and tree mortality, and ecological

disturbance, have attracted considerable attention (FAO, 2021; Lu et al., 2012; Modanesi et al., 2020;
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Su et al., 2018; Zhang et al., 2018; Zhang et al., 2019; Zscheischler et al., 2020). Droughts have
reduced global crop production by about 9-10% for the period 1964-2007 (Lesk et al., 2016).
Additionally, droughts have caused overall crop and livestock production loss of $37 billion over
the least developed and lower-middle-income countries (FAO, 2021). Agricultural drought
forecasting, therefore, lies at the core of overall drought risk management and is critical for food

security, early warning, as well as drought preparedness and mitigation.

Agricultural drought is generally referred to as soil moisture shortage, which adversely affects
crop yield and vegetation health (Modanesi et al., 2020; Zhang et al., 2016; Zhang et al., 2021).
Under natural conditions, atmospheric precipitation is a paramount source for replenishment of soil
moisture (Wu et al., 2021a). Therefore, reduced soil moisture (agricultural drought) mainly
arisearises from precipitation deficit (meteorological drought) (Modanesi et al., 2020; Orth and
Destouni, 2018). Moreover, soil moisture has a good memory to drought because of the time-
integration effects (Long et al., 2019), i.e., agricultural drought persistence. Previous meteorological
drought and antecedent agricultural drought can be taken into consideration as predictors of

subsequent agricultural drought.

In hydrology, some physically-based hydrological models (e.g., Distributed Time-Variant Gain
Hydrological Model (DTVGM; Ma et al, 2021) and Soil and Water Assessment Tool (SWAT; Wu et
al., 2019)) are widely used in hydrological simulation and prediction, the droughts included as well.
However, the physically-based hydrological models typically apply to a catchment or sub-regional
scale, and generally require numerous hydrometeorological variables to achieve more accurate real-
time predictions (Liu et al., 2021a; Xu et al., 2021a). Traditional methods, such as regression models,

machine learning models, and hybrid models (by considering both statistical and dynamical



65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

&0

81

82

&3

&4

85

86

predictions) (Hao et al., 2016), have been extensively employed to forecast drought. Yet, these
models tend to be limited in considering the complex nonlinear (e.g., regression models), explicit
physical mechanisms and over-fitting (e.g., machine learning models), as well as the demand of

massive hydroclimatic data input (e.g., hybrid models). The copula functions, first introduced by

Sklar (1959), overcome the limitations of the abovementioned aferementioned—conventional

statistical methods-; and the applications of copulas in hydrology and geosciences go back to the

2000s (e.g., De Michele and Salvadori, 2003; Favre et al., 2004: Salvadori and De Michele, 2004).

Since copulas are flexible joining arbitrary marginal distributions of variables, they have been

widely employed in hydrological research community, such as frequency analysis and risk

assessment (De Michele et al., 2013; Hao et al., 2017; Liu et al., 2021b; Sarhadi et al., 2016; Xu et

al., 2021b; Zhang et al., 2021; Zhou et al., 2019), flood and runoff forecasting (Bevacqua et al.,
2017b; Hemri et al., 2015; Liu et al., 2018; Zhang and Singh, 2019), and drought forecasting
(Ganguli and Reddy, 2014; Wu et al., 2021a). However, when bivariate copulas are extended to
higher-dimensional (> three-dimensions) cases, they are restricted due to nonexistence of analytical
expressions (Liu et al., 2021a). Symmetric Archimedean copulas and nested Archimedean copulas
partially have addressed the issues of dimensionality, but single parameter and Archimedean class
are difficult to characterize the various dependence structures (Aas and Berg, 2009; Hao et al., 2016;

Wu et al., 2021a). Fortunately, the vine copulas, which have been developed by Joe (1996) as well

as Bedford and Cooke (2002), can be adopted to addressed these limitations—<{Aas—et-al—2009:

Vine copulas are flexible in decomposing any multi-dimensional joint distribution into a

hierarchy of bivariate copulas or pair copula constructions (Aas et al., 2009; Bedford and Cooke,
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2002; Liu et al., 2021a; Vernieuwe et al., 2015; Xiong et al., 2014). These copulas have been
extensively applied in the hydrological field (Bevacqua et al., 2017b; Liu et al., 2021b; Vernieuwe
et al.,, 2015; Wu et al., 2021a). For instance, Xiong et al. (2014) derived the annual runoff
distributions using canonical vine copulas. Liu et al. (2018) developed a framework to investigate
compound floods based on canonical vine copulas. Wang et al. (2019) utilized regular vine copulas
with historical streamflow and climate drivers to simulate monthly streamflow for the headwater
catchment of the Yellow River basin. Liu et al. (2021a) developed a hybrid ensemble forecast model,
using the Bayesian model averaging combined canonical vine copulas, to forecast water level. Wu
et al. (2021a) proposed an agricultural drought forecast model based on vine copulas under four-

dimensional scenarios.

The meta-Gaussian (MG) model, a popular statistical model in the hydrometeorological
community, has explicit conditional distributions, which is apt for forecasting and risk assessment
purposes (Hao et al., 2016; Hao et al., 2019a; Wu et al., 2021b; Zhang et al., 2021). The forecast
skills of the MG model for drought or compound dry-hot events, for example, outperformed the
persistence-based or random forecast models (Hao et al., 2016; Hao et al., 2019a; Wu et al., 2021b).
However, the MG model only depicts the linear relationship among explanatory variables (predictors)
and forecasted variable via covariate matrix, it cannot characterize the nonlinear or tail dependence
existing in the variables (Hao et al., 2016). Fortunately, Vine copulas can flexibly combine multiple
variables via bivariate copula to characterize numerous or complex dependencies. There has been a
rather limited investigation, to our knowledge, that conducting model comparisons between vine
copulas and MG for agricultural drought forecasting under the same conditions. Therefore,

investigations on drought forecasting skills between vine copulas and the MG model are needed to
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obtain more reliable drought forecasts.

The objective of this study therefore was to compare the forecast ability of agricultural drought
in August of every year in the period 1961-2018 between canonical vine copulas (i.e., 3C-vine
model) and MG model under three-dimensional scenario. In the following, we briefly describe the
study area and data used in Section 2. The MG and 3C-vine models and performance metrics utilized
are presented in Section 3. Results of the 3C-vine model application and assessment are displayed

in Section 4. Finally, the discussion and conclusions are presented in Section 5.

2. Study area and data used

China stretches across a vast area covering diverse climate regimes and is a major agricultural-
producing country (Wu et al., 2021a; Zhang et al., 2015). For the convenience of analyzing spatial
patterns of agricultural drought, the climate of China was divided into seven sub-climate regions on
the basis of Zhao (1983) and Yao et al. (2018), as shown in Figure 1. For each sub-climate region,
the temperature and moisture conditions when combined are roughly similar, and the type of soil

and vegetation have a certain common characteristic (Zhao, 1983).

Figure 1.

In this study, the gridded monthly precipitation with a 0.25°%0.25° spatial resolution was
obtained from the CNO5.1 dataset for the 1961-2018 period over the mainland of China (excluding

the Taiwan province), which was provided by the Climate Change Research Center, Chinese

Academy of Sciences (available at http://ccrec.iap.ac.cn/resource/detail?1d=228)China—National

Climate-Center. The Copernicus Climate Change Service (C3S) at European Center for Medium-

Range Weather Forecast (ECMWF) has begun the release of the ERAS back extension data covering
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the period 1950-1978 on the Climate Data Store (CDS). Therefore, the gridded monthly soil
moisture with a 0.25°%x0.25° spatial resolution corresponding to three soil depths (0—7 cm, 7-28 cm,
and 28-100 cm) are available from the ECMWF ERAS reanalysis datasets for 1961-1978:

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-eraS-single-levels-monthly-means-

preliminary-back-extension?tab=overview and 1979-2018:

https://cds.climate.copernicus.eu./cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-

means?tab=overview. The CNO05.1 and ERAS reanalysis datasets have been extensively utilized

numerous studies, e.g., drought monitoring and forecasting (Wu et al., 2021a; Zhang et al., 2021),
long-term climatic analysis (He et al., 2021; Wu et al., 2017), and flash drought attribution analysis

(Wang and Yuan, 2021).

3. Methodology

The Standardized Precipitation Index (SPI, based on monthly precipitation) and Standardized
Soil moisture Index (SSI, based on monthly cumulative soil moisture at top-three soil depths) is
leveraged to characterize meteorological drought and agricultural drought at a 6-month timescale,
respectively. The empirical Gringorten plotting position formula (Gringorten, 1963) was used to
obtain the empirical cumulative probabilities of these two indexes, which were then transformed
into standardized variables via the normal quantile transformation. Since meteorological drought is
a source of other drought types (e.g., agricultural drought), the antecedent precipitation deficiency
(i.e., meteorological drought) has a stronger effect on the subsequent soil moisture deficiency (i.e.,
agricultural drought). Moreover, soil moisture has a good memory for prior drought, i.e., agricultural
drought persistence, which is attributed to the soil porosity characteristics and time-integration

effects (Long et al., 2019; Wu et al., 2021a).
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We attempted to use the prior meteorological drought (SPI:; ¢ denotes the target month (e.g.,
August), and i indicates lead time (month)) and agricultural drought persistence (SSI+) to forecast
the subsequent agricultural drought (SSI;) based on the canonical vine copulas under three-
dimensional scenarios (3C-vine model). We selected the meta-Gaussian (MG) model as a reference
model to assess the agricultural drought forecast performance of the 3C-vine model. Here, the 6-
month timescale SPI (SSI) in August, which is calculated by the cumulative precipitation (soil
moisture) from March to August, can indirectly reflect the surplus or deficit situations of water in
spring (March-April-May) and summer (June-July-August) seasons. Furthermore, August is a key
growth period for crops (e.g., anthesis, fruiting, and seed filling) and vegetation and is also a period
with frequent droughts (Wu et al., 2021a). Undoubtedly, agricultural drought forecast can be
implemented in any month of interest, based on 3C-vine model and MG model. More detailed

information is given below.

3.1. Meta-Gaussian model under three-dimensional scenarios

Meta-Gaussian (MG) model can effectively combine multiple hydrometeorological variables,
which have gained attention for drought forecasting and risk assessment (Hao et al., 2019a; Hao et
al., 2019b; Wu et al., 2021b; Zhang et al., 2021). Suppose the series of SPI;;, SSI:;, and SSI;
correspond to random variables Y1, Y2, and Y3, respectively, the predictand y3 under the given

conditions of y1 and y2 based on the MG model can be expressed as (Wilks, 2014):

Vs |(y1’y2)NN('uyz\(yl,yz)’Zyz\(yl,yz)) (1)

where N signifies the Gaussian distribution function; 4 y,) denotes the conditional mean; and

3l

win,v,) represents the conditional covariate matrix.
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Furthermore, we removed the forecast values in a specific year of y1, y2, and y3, which denote
1?7, 2, and y37”, respectively. Under this circumstance, the covariate matrix X regarding y17”,

y2’, and y37” can be written as:

(yl_y",y3_y")—| Cov,, Cov,
(yziyr 5 y37yr) = COVZ] COV22

L7 7o)
T=Covl 7y Ly, )

Cov
13 le 2
e

21 22

z
11
Cov,, |=

(y37yrsy17yr) (y{y",yziyr)‘ ‘(y;yr’y;yr) Cov31 COVSZ |C0V33

where Covmn = Cov(ym>", v» ") denotes the covariance between v and v (m=1,2.3:n=1,

2, 3). The forecast of specific years, i.e., y3", can be derived as (Wilks, 2014):

T } 3

yr
Yy = ﬂv —wr
72

Vi

Vi

V3

J’3yr =M .t Z2121711 [

where Moy Moo s and M- represent the mean of y177, y27”, and y37”, respectively; y»” and
2" denote that y1 and y» provided the forecast information at time #—i in a specific year. More details

about forecasting agricultural drought based on the MG model can be found in Figure 3.
3.2. Canonical vine copulas model under three-dimensional scenarios

Copulas can effectively combine multiple variables without the restriction of marginal
distributions (Nelsen, 2013; Sarhadi et al., 2016; Wang et al., 2019; Xiong et al., 2014). They were
initially utilized for deriving joint distributions of two-dimensional variables, since parameters are
easy to assess and the analytical solution is apt to obtain (Liu et al., 2021a; Sadegh et al., 2017).
However, under higher-dimensional (e.g.,d = 3) scenarios, owing to the limitations of a great deal
of parameters and complexity, the copulas (mainly referred to bivariate copulas) are difficult to
promote and apply (Joe, 2014; Liu et al., 2018; Liu et al., 2021a; Sadegh et al., 2017). To overcome

these limitations, Joe (1996) and Aas et al. (2009) developed vine copulas, a hierarchy of pair copula
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constructions, for multi-dimensional cases. Vine copulas possess two sub-classes: canonical vine
copulas (C-vine copulas) and drawable vine copulas (D-vine copulas). Here, we mainly employed
the C-vine copulas to establish the forecast model of agricultural drought under three-dimensional

conditions. Undoubtedly, a similar scheme is capable of applying to D-vine copulas.

C-vine copulas may have numerous tree structures, especially for the case of higher dimensions,
which are associated with the quantity and ordering of variables (Aas et al., 2009; Liu et al., 2018;
Liuetal., 2021a; Wu et al., 2021a). Also, different ordering of variables affects the estimation of the
parameters of C-vine copulas (Liu et al., 2021a; Wang et al., 2019). Given the ordering of variables
Y1, Y2, and Y3 for three-dimensional C-vine copula model (termed as 3C-vine model hereinafter;

Figure 2a), the joint probability density function (PDF), gi23, can be expressed as (Aas et al., 2009):

8123 = 81°8,°83°C,%°C13°Cyy 4)

where g1, g2, and g3 correspond to the margin density functions of gi(y1), 22(32), and g3()3),
respectively; c is the bivariate copula density; ci2, c13, and c23)1 signify the abbreviation of c12[Gi1()1),

G20n2)], c13[G1(y1), G3(»3)], and c2.31[G(2[v1), G(y3|y1)], respectively. The Gm(ym) corresponds to

cumulative density function (CDF) of the ym: G(2[y1) denotes the conditional probability

distribution of y» under known conditions of yi, that is similar for G(y3[y1). The Gaussian (or Normal),

Student-t, Clayton, and Frank copulas, as well as their rotated (survival) forms (Diflmann et al., 2013;
Liu et al., 2021b) are utilized to obtain the optimal internal bivariate copulas for distinct trees in 3C-vine
models based on the Akaike information criterion (AIC). With the help of CDVineCondFit R function
in “CDVineCopulaConditional” R package (Bevacqua, 2017a), based on the AIC, we selected the

optimal tree structures (i.e., detected the suitable variable ordering; seen in Figure 2).

Figure 2.
10
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A conditional copula density needs to be addressed in Equation 4, i.e., G(y|w), where w is a d-
dimensional vector w = (w1, ..., waq). Here, regarding the conditional distribution of y given the
conditions w, we introduced the 4-function, 4(y, w; ), to indicate the G(y|w) as follows (Aas et al.,

2009; Joe, 1996):

acy’w/‘w*f [G(y | W*j)’G(Wj | ij)J
aG(Wj |W7j.)

h(y,w;0):=G(y|w)= )

where 6 denotes the parameter(s) of bivariate copula function C ~; wj represents an arbitrary
J

.

component of w; and w-; indicates the excluding element w; from the vector w.

Let the ordering variables be y1, y2, and y3, the conditional variables be y1 and y2, and the

predictand be y3. Accordingly, the expression of G(y3|y1, y2), based on Equation 5, can be written as:

oC, 1. [Cs13).G(r,y 1 9)]
oG(y, 1 »)

Gy |y, ¥)= :h{h(ua |u15012)|h(u2 |u1;911);921} (6)

where 6;; (i denotes a tree and j is an edge) represents the parameters of different conditional copulas
in the 3C-vine model (Figure 2a); and ux (k = 1, -2, 3) is the marginal evmulative-distribution

funetion(CDF} of yr. The CDF for each variable is substituted by the corresponding empirical

Gringorten cumulative probability (Bevacqua et al., 2017b; Genest et al., 2009; Wu et al., 2021a).

Here, we introduced the 7-th copula—quantile curve (Chen et al., 2009; Liu et al., 2018) to

simulate u3 based on Equation 6 and derived its inverse distribution function as follows:
¥ = NGy} = N7 )= N7 7 (07 (e [ 36,30, 36, (7

where N'! and 4! signify the inverse form of Gaussian distribution and A-function, respectively; y3
is the forecasted agricultural drought at time # (i.e., SSI/); y1 and y» are the predictors corresponding

to the antecedent meteorological drought and agricultural drought persistence at time i (i.e., SPIr-i
11
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and SS7r-). The R functions of BiCopHfunc and BiCopHinv in the R package “VineCopula” (Nagler

et al., 2021) were utilized to model the A-function and its inverse form for Equation 7, respectively.

The tree structure is related to the ordering variables, so when the ordering variables are y», y1,
and y3 (conditional variables are y1 and y2; Figure 2b), Equations 6 and 7 can be changed analogously

as:
G (3, |y, v )=h {h(u3 1y 0,,)|A(u, |u2;9“);¢921} (8)
v, = N—l(u3) _ N |:h_1 {h‘l(f‘h(ul ‘”2;011);921) |u2;012” (9)

With agricultural drought forecast via 3C-vine model, as the details presented in Figure 3, we
first selected the best 3C-vine model (i.e., selected the best model from Equations 7 and 9 according
to minimum AIC). Then, a sample size of 1,000 uniformly distributed random values was generated
over the interval [0, 1] by Monte Carlo simulation. Last, the best 3C-vine model was utilized to
obtain 1,000 simulations (or estimations) for y3". The best forecast of y3»” was finally calculated by
the mean value of these simulations. Note that the leave-one-out cross validation (LOOCV) (Wilks,
2014) is applied to forecast agricultural drought for each grid cell in August of every year during
1961-2018 based on the 3C-vine model or MG models, namely, each time one sample (or
observation) was left for validation, and the rest were used to establish 3C-vine model or MG model
and obtain the corresponding parameters of these models. In other words, this process was repeated

58 times (the length of years used in this study) for a specific grid cell.

Figure 3.

3.3. Performance metrics

Three evaluation metrics: Nash-Sutcliffe efficiency (NSE), coefficient of determination (R?),

12
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and root mean square error (RMSE), were utilized to assess the forecast performance of 3C-vine

model and MG model. These metrics can be expressed as:

z (APz o AOi)2

NSE =1-+£! — NSE e (—0,1] (10)
D> (40,- 40y’
i=1

i=1

{i(AO,» ~A0)(4P —E}
R’ R? €[0,1] (11)

S (40,~ 40Y’ » 3 (AP, ~ 4Py
i=1 i=1

RMSE = \/lz (AP, — A0,) RMSE €[0,+x) (12)
n -

where n is the number of forecast periods; 40; and AP;: are the i-th observed and forecasted
agricultural droughts (i.e., SSI), respectively; A0 and AP denote the mean of the SSI
observations and forecasts in the target month (e.g., August), respectively. Moreover, a most positive
NSE and R? value and a lower RMSE value indicate a good forecast performance for the 3C-vine

model or MG model.
4. Results
4.1. Correlation patterns of agricultural drought with potential predictors

The dependence between variables can be measured by the correlation coefficient, indirectly
characterizing the quantity of common information between two variables. We employed Kendall’s
correlation coefficient (7x) to measure the dependence of agricultural drought at current time # (SSI;,
herein ¢ is August) with the previous meteorological drought (SPI., i indicates the lag or lead times

with 1-3-month herein) and agricultural drought persistence (SSI«). It should be mentioned that the

13
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significant correlation prevalent used may overestimate or overinterpret the dependence between
variables (Wilks, 2016). Therefore, we adopted the maximum false discovery rate (FDR) of 0.1 to
correct 7x at the 0.05 significance level (Benjamini and Hochberg, 1995; Réthlisberger and Martius,

2019; Wilks, 2016).

Figure 4.

Figure 4 summarizes 1-3-month lag 7z« between antecedent SPI (SSI) and succedent SSI for
August during 1961-2018 over China. For most regions of China under 1-3-month lag times, the
previous meteorological drought or agricultural drought persistence (memory) showed significant
positive correlations (i.e., the stippling in Figure 4) with the target agricultural drought. Also, we
found perfect agricultural drought memory over many regions of China (excluding D4, a humid
climate region) (Figures 4e and 4f), as the overlapping information existed in SSI; and SSI:.
Additionally, the dependency pattern varied temporally and spatially, and this phenomenon
evidently occurred with the lag (or lead) time extended, especially between SPI:; and SSI; (Figures
4a—4c). Overall, the prior meteorological drought and agricultural drought memory provided reliable

and useful forecast information for the subsequent agricultural drought for most areas of China.

4.2. Forecast performance comparison between 3C-vine model and MG Model

We leveraged the MG model as a reference model to measure the performance of 3C-vine
model in forecasting agricultural drought for the period 1961-2018 over China. Figures 5a—51 show
the difference in NSE, R?, and RMSE between 3C-vine and MG models, i.e., ANSE = NSE3c—NSEwa,
AR? = R%:c-R*mc, and ARMSE = RMSE3c—RMSEwvG under 1-3-month lead times for August,
respectively. In terms of the spatial extent of ANSE > 0, AR? > 0, and ARMSE < 0, the agricultural

drought forecast ability of 3C-vine model superior MG model was occupied 65%, 68%, and 58% of
14
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land areas in China, respectively, under the 1-month lead SSI forecast (Figures 5a, 5d, and 5g). The
relationship between predictors and the forecasted variable was simple under 1-month lead time, so
the MG model better showed their connection. However, with the lead time prolonged, the forecast
skills of 3C-vine model outperformed the MG model for most regions of China (e.g., Figures Se and
5f, accounting 72% and 74% of land areas in China for AR?> > 0 under 2-3-month lead times,
respectively). This indicates the 3C-vine model sufficiently utilized the forecasted information
contained by previous meteorological drought and agricultural drought persistence in comparison

with the MG model under the same conditions.

The forecast ability of 3C-vine model, compared with the MG model, is limited over climate
region D5 (e.g., Figures 5b and 5c). This may be related to the fact that D5 is a crucial grain-
producing region in China (Lu et al., 2012; Xiao et al., 2019; Zhang et al., 2016), the intensive
anthropogenic activities (e.g., irrigation and urbanization) may alter the linkage between
meteorological drought and agricultural drought, as well as the strength of agricultural drought
memory (AghaKouchak et al., 2021). To ensure food security, if D5 experiences a drought event at
the previous stage, agricultural managers and policymakers would mitigate the drought through
irrigation in a variety of ways, such as groundwater exploitation and reservoir operation (Zhang et
al., 2016). However, under this circumstance, the soil water obtaining the supplement from the

irrigation water would affect the performance of agricultural drought forecast.

Figure 5.

In contrast with the MG model, the 3C-vine model yielded a better forecast performance for
August under 1-3-month leads agricultural drought across most areas of China, except for the

climate region D5.
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4.3. Case study and sub-climate region assessment

The severe drought hit most regions of China in summer 2018, especially in southern and
northern China, as the western North Pacific subtropical high abnormally impacted (Liu and Zhu,
2019; Zhang et al., 2020; Zhang et al., 2018). We chose the agricultural drought that occurred in
August of 2018 as a case study to investigate the forecast ability of 3C-vine model. Similarly, the
MG model was selected as a benchmark model. Figure 6 presents the SSI observations and 1-3-
month lead SSI forecasts for this agricultural drought using the 3C-vine model and MG model.
Obviously, the 1-3-month lead SSI forecasts via 3C-vine model resembled the observations (Figures
6a—6d), which captured the droughts that emerged in southern China, northern China, and
northeastern China, i.e., climate regions D1-D2 and D4-D6. Comparing the 3C-vine model with
the MG model under 2-3-month leads (Figures 6¢c—6d versus Figures 6f—6g), we observed the
deteriorating forecast skill of MG model in climate region D5, which tended to non-drought state
(i.e., SSI > 0), but the 3C-vine model better forecasted the agricultural drought for these regions
under the same conditions, although the severity of agricultural drought had some decrement. The
above analyses indicated that the 3C-vine model, using previous meteorological drought and
agricultural drought persistence as two predictors, had the ability for reliable drought forecast over

many regions of China.

Figure 6.

Figure 7.

Furthermore, to explore the skill of 3C-vine model in capturing the extremum of agricultural
drought (i.e., minimum and maximum SSIs), we randomly selected a typical region (black rectangle

boxes in Figure 6b) in each climate region. Note that these extreme SSI values were calculated using
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the spatial average in each typical region. Figures 7a and 7b shows the probability density function
(PDF) curve of minimum and maximum SSIs for these selected typical regions (D1S—D7S) via the
3C-vine model and MG model for 1-3-month leads of August. Here, the vertical black dash line
denotes the SSI observation in each subplot. The x-axis value of peak point (i.e., high probability)
for each PDF curve is regarded as the best estimation of SSI under diverse lead times. With the 3C-
vine model as an example (analogously for the MG model), for minimum SSI with 1-2-month lead
times, the difference between forecasted SSI and observed SSI was slight (except for D3S), which
all reflected the drought state for these typical regions (Figure 7a). The deteriorated skills of 3C-vine
and MG models in a typical region D3S may be attributed to the lengthy response time existing
between precipitation deficiency and soil moisture shortage, which is caused by the limited
precipitation that cannot effectively replenish the soil moisture depletion due to the incrassation of
vadose zone. For the 3-month lead time, the poor forecasts were produced in a typical region D5S
for the minimum SSI. This phenomenon may result in the agricultural manager utilizing irrigation
to mitigate the effect of drought on crop growth, thus, the response relationship between

meteorological drought and agricultural drought accordingly would change (Xu et al., 2021b).

For the forecasted maximum SSI utilizing 3C-vine model (analogously for the MG model) over
diverse regions, the excellence forecast ability is displayed for the 1-3-month leads (Figure 7b),
excluding the typical regions D5S and D6S (PDF curve shifted left). For the abundant precipitation
and higher soil moisture content in D6S, the shortened response time between precipitation and soil

moisture (Xu et al., 2021b) may cause inferior forecasts of 3C-vine model for the target month.

To display the robustness of 3C-vine model for forecasting agricultural drought in any month
of interest, we further forecasted extreme agricultural drought in July for D1S-D7S (Figures 7c and
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7d). The difference between forecasted and observed extreme SSIs for the MG model is larger than
that of 3C-vine model in distinct typical regions, e.g., the forecasted maximum SSI in July on D4S
(Figure 7d). The width of PDF curve qualitatively provides an estimation of forecast uncertainty of
3C-vine model and MG model. As shown in Figure 7, in comparison with the 3C-vine model, we
found that the width of PDF curves in the MG model are broadened, indicating that the MG model
produced more pronounced uncertainty for agricultural drought forecast. Furthermore, the skills of
MG model tended to deteriorate over many selected typical regions, especially for 2—3-month lead
times of July and August. Generally, compared with the MG model under different lead times,
agricultural drought forecasts made by the 3C-vine model are more accurate across different typical
regions, in terms of predictive uncertainty (i.e., the width of PDF curve) as well as the difference

between observed and forecasted extreme SSIs (Figures 7).

Moreover, to assess the forecast performance (according to NSE, R?, and RMSE) of the 3C-vine
model over each climate region, we counted the pixel contained in each climate region and
constructed the boxplots for these performance metrics (Figures 57—51). We still selected the MG
model as the reference model, and obtained the difference between these two models, i.e., ANSE,
AR?, and ARMSE. The forecast performances of 3C-vine model and MG model were generally
consistent for 1-month lead of August over climate regions D1-D7 (Figures 5j—51, the median
percentile of ANSE, AR?, and ARMSE were all around the 0 line), indicating the improved skills of
3C-vine model was limited under the same condition. Obviously, the median percentile of ANSE
and AR? were greater than 0 as well as ARMSE was lower than 0, respectively, for 2-3-month leads
SSI forecast of August in different climate regions D1-D7 (except for D5), indicating that the 3C-

vine model shows a better performance than the MG model in forecasting agricultural drought over

18



382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

diverse climate regions of China.

In conclusion, based the ability of typical agricultural drought forecasted (Figure 6) and
extremum agricultural drought captured in selected typical regions (Figure 7) and the comprehensive
forecast performance showed in diverse climate regions (Figures 5j—51), the 3C-vine model had a

good forecast skill for 1-3-month leads agricultural drought of August over most areas of China.

5. Discussion and Conclusions

This study developed a C-vine copula model for forecasting agricultural drought over China
under three dimensions, in which antecedent meteorological drought and agricultural drought
persistence were employed as two predictors. We selected the MG model as a competition model,
in terms of the difference in NSE, R?, and RMSE between 3C-vine and MG models, to evaluate the
forecast performance of 3C-vine model. These performance metrics all displayed that the 3C-vine
model, especially for 2—3-month lead times, outperformed the MG model in many climate regions
over China (except for D5, which lies in humid and subhumid regions of northern China) (Figure 5).
Compared with the MG model, the 3C-vine model yielded a good forecast skill for the selected
typical agricultural droughts (Figure 5). Besides, the nearly perfect forecast of extremum agricultural

drought in typical regions (Figure 7) further certified the excellent ability of 3C-vine model.

Heterogeneous topography and anthropogenic activities (e.g., irrigation and urbanization) have
certainly impacted precipitation interpolation and soil moisture simulation, which may depart from
the actual precipitation or soil moisture conditions, notwithstanding the precipitation of CN05.1 and
soil moisture of ERAS show good performances with respect to drought monitoring and forecasting
over China (Wang and Yuan, 2021; Wu et al., 2021a; Xu et al., 2009; Zhang et al., 2021; Zhang et

al., 2019). It can also influence the response (propagation) time from meteorological drought to
19
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agricultural drought as well as agricultural drought memory and can thus lead to the 3C-vine model
falling short in some climate regions. To address this issue, we can comprehensively utilize multiple
reanalysis data sets, e.g., the precipitation and soil moisture data in Global Land Data Assimilation
System (GLDAS) and ERAS, to reduce the uncertainty resulting from a single data source (Wang
and Yuan, 2021; Wu et al., 2021a). Currently, it is a challenge to consider irrigation activities into
agricultural drought forecasting, especially at large spatial scales. In addition to antecedent
precipitation deficit, air temperature, relative humidity, and evapotranspiration may influence soil
moisture budget. Moreover, from the perspective of driving mechanisms, the effect of certain
atmospheric circulation anomalies (e.g., El Nifio-Southern Oscillation (ENSO), Pacific Decadal
Oscillation (PDO), and North Arctic Oscillation (NAO)) on agricultural drought at regional and
global scales can also be considered as predictors (Zhang et al., 2021). Therefore, a more efficient

space can be established by leveraging these predictors for forecasting agricultural drought.

In recent years, a myriad of extreme events, such as heatwaves and flash droughts, have swept
many regions around the globe. These extreme events have a rapid onset with a few days or weeks
and lead to devastating impacts on agricultural production, water resource security, and human well-
being (Wang and Yuan, 2021; Yuan et al., 2019; Zscheischler et al., 2020). Therefore, agricultural
drought forecasting at finer temporal scales (e.g., weekly) is essential for agricultural managers and
policymakers to manage and plan water use. Yet, with limited spatiotemporal resolution and the
length of model sample, we temporally have not carried out agricultural drought forecasting at sub-

monthly or pentad temporal scales.

The limitation of this study is that we choose a “best” model from two C-vine copula candidate
models (i.e., Figure 2) as the ideal forecast. However, as the inherent structural differences (i.e.,

20



426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

ordering variables are different), the utilized best model may underestimate the forecast uncertainty
(Liu et al., 2021a). Therefore, to reduce the predictive uncertainty and improve the forecast
performance, a multi-model combination technique (e.g., Bayesian model averaging (Liu et al.,
2021a; Long et al., 2017)) can be considered to merge different C-vine copula candidate models.
Moreover, as we only pay attention to the C-vine copulas and several bivariate copula functions, the
other D-vine copulas or regular vine copulas, as well as a multitude of bivariate copula families
(Sadegh et al., 2017) can be investigated to establish the forecast model for agricultural drought in

the next work.
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Figure Captions

Figure 1. Seven sub-climate regions division over China. The specific information of climate

regions D1-D7 is listed at the left-bottom in the panel.

Figure 2. Different schematic (two types) of C-vine copulas under three-dimensional scenarios. For
the first type (a), the ordering variables are y1, y2, and y3, while for the second type (b) that
are )2, y1, and y3. Ci2(Ca1), Ci13(C23), and Co3i(Ci3p) denotes bivariate copulas with
parameters 611, 612, and 61, respectively. Here, 8; signifies the parameters of the j-th edge

with respect to the i-th tree. G(¢|*) denote conditional distribution functions.

Figure 3. Flowchart of agricultural drought forecasting based on canonical vine copulas (3C-vine)
and meta-Gaussian (MG) model under three-dimensional scenarios. Here, ¢ denotes the
target month (e.g., August); i signifies the lead times (1-3-months)); LOOCV is the
abbreviation of leave-one-out cross validation; y1?"()27") indicates the series after
removing a sample (y1*"(12”")) for a specific year; and y3” is the agricultural drought forecast
value for the target month of a specific year. Note that the optimal tree structure (i or ii on

the right-hand side of this figure) is selected based on AIC to forecast agricultural drought.

Figure 4. Spatial patterns of 1-3-months lag Kendall’s correlation coefficient (zx) between SPI.; and
SSI; (¢ denotes August, and i is 1-3-month lag time) (top row), as well as SSI+; and SSI:
(bottom row) for August during 1961-2018 over China. Note the stippling indicates where
7 1s at a 0.05 significance level, which is corrected via the false discovery rate (FDR) of

0.1.

Figure 5. Forecast performance based on (a—c) ANSE (difference of NSE between 3C-vine and MG
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710

models, NSE3c—NSEwmG), (d—f) AR? (R?3c—R*Ma), and (g—i) ARMSE (RMSE3c—RMSEwmg) for
the 1-3-month leads of August during 1961-2018 over China. The corresponding boxplots
of (j) ANSE, (k) AR?, and (1) ARMSE relative to a threshold of 0 (horizontal black dash line)
for agricultural drought forecast in August under 1-3-month leads in climate regions D1—
D7 over China. The percentage of ANSE > 0, AR? > 0, and ARMSE < 0 is listed in the left-

bottom of corresponding sub-figure, respectively.

Figure 6. SSI observations in August of 2018 (a) as well as the corresponding SSI forecasts under

1-3-month lead times utilizing 3C-vine model (b—d) and MG model (e—g) over China. The
black rectangle boxes (as shown in b) denote the typical regions (corresponding to signify

DI1S-D7S) selected in climate regions D1-D7.

Figure 7. Probability density function (PDF) curve of (a and ¢) minimum and (b and d) maximum

SSI under 1-3-month lead times for August and July during the 1961-2018 period over
seven selected typical regions in climate regions D1-D7 (i.e., these black rectangle boxes
in Figure 6b correspond to signify D1S-D7S, respectively). Black dash line and text
indicate the minimum and maximum observations of SSI in August and July over D1S—
D7S. These texts with red (green), blue (yellow), and cyan (coral) colors of left (right) in
each sub-figure are SSI forecasts under 1-3-month lead times of August or July via 3C-
vine model (MG model), which correspond to the abscissa projected by the peak point of

each PDF.
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Figure 3. Flowchart of agricultural drought forecasting based on canonical vine copulas (3C-vine)
and meta-Gaussian (MG) model under three-dimensional scenarios. Here, ¢ denotes the target month
(e.g., August); i signifies the lead times (1-3-months)); LOOCYV is the abbreviation of leave-one-
out cross validation; y12"(y27") indicates the series after removing a sample (y”"(y2’")) for a specific
year; and y3"" is the agricultural drought forecast value for the target month of a specific year. Note
that the optimal tree structure (i or ii on the right-hand side of this figure) is selected based on AIC

to forecast agricultural drought.
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734 Figure 5. Forecast performance based on (a—c) A NSE (difference of NSE between 3C-vine and
735 MG models, NSE3c—NSEwmG), (d—f) AR? (R*3c—R*Mmc), and (g—i) ARMSE (RMSE3c—RMSEwmc) for the

38



736 1-3-month leads of August during 1961-2018 over China. The corresponding boxplots of (j) ANSE,
737 (k) AR?, and (1) ARMSE relative to a threshold of 0 (horizontal black dash line) for agricultural
738  drought forecast in August under 1-3-month leads in climate regions D1-D7 over China. The
739 percentage of ANSE > 0, AR>> 0, and ARMSE < 0 is listed in the left-bottom of corresponding sub-

740  figure, respectively.
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Figure 6. SSI observations in August of 2018 (a) as well as the corresponding SSI forecasts under
1-3-month lead times utilizing 3C-vine model (b—d) and MG model (e—g) over China. The black
rectangle boxes (as shown in b) denote the typical regions (corresponding to signify D1S-D7S)

selected in climate regions D1-D7.
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747  Figure 7. Probability density function (PDF) curve of (a and ¢) minimum and (b and d) maximum
748  SSI under 1-3-month lead times for August and July during the 1961-2018 period over seven
749  selected typical regions in climate regions D1-D7 (i.e., these black rectangle boxes in Figure 6b
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correspond to signify D1S-D7S, respectively). Black dash line and text indicate the minimum and
maximum observations of SSI in August and July over D1S—D7S. These texts with red (green), blue
(yellow), and cyan (coral) colors of left (right) in each sub-figure are SSI forecasts under 1-3-month
lead times of August or July via 3C-vine model (MG model), which correspond to the abscissa

projected by the peak point of each PDF.
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