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Abstract  21 

Agricultural drought is mainly caused by reduced soil moisture and precipitation and affects 22 

shows adverse impacts on the growth of crops and vegetation, and in turn thus affecting agricultural 23 

production and food security. For developing measures for drought mitigation, reliable agricultural 24 

drought forecasting is essential. In this study, we developed an agricultural drought forecasting 25 

model based on canonical vine copulas under three-dimensions (3C-vine model), in which the 26 

antecedent meteorological drought and agricultural drought persistence were utilized as predictors. 27 

Besides, the meta-Gaussian (MG) model was selected as a reference model to evaluate the forecast 28 

skill. The agricultural drought in August of 2018 was selected as a typical case study, and the spatial 29 

patterns of 1–3-month lead forecasts of agricultural drought utilizing the 3C-vine model resembled 30 

the corresponding observations, indicating the good predictive ability of the model. The performance 31 

metrics (NSE, R2, and RMSE) showed that the 3C-vine model outperformed the MG model for 32 

forecasting agricultural drought in August under diverse lead times. Also, the 3C-vine model 33 

exhibited excellent forecast skills in capturing the extreme agricultural drought over different 34 

selected typical regions. This study may help with to guide drought early warning, drought 35 

mitigation, and water resources scheduling.  36 

Keywords: agricultural drought forecasting, model comparison, vine copulas, meta-Gaussian  37 

1. Introduction 38 

Agriculture is the source of livelihoods of over 2.5 billion people worldwide, and the 39 

agricultural sector also sustains 82% of all drought impacts (FAO, 2021). A cascade of impacts of 40 

droughts, such as crop reduction and failure, increased human and tree mortality, and ecological 41 

disturbance, have attracted considerable attention (FAO, 2021; Lu et al., 2012; Modanesi et al., 2020; 42 
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Su et al., 2018; Zhang et al., 2018; Zhang et al., 2019; Zscheischler et al., 2020). Droughts have 43 

reduced global crop production by about 9–10% for the period 1964–2007 (Lesk et al., 2016). 44 

Additionally, droughts have caused overall crop and livestock production loss of $37 billion over 45 

the least developed and lower-middle-income countries (FAO, 2021). Agricultural drought 46 

forecasting, therefore, lies at the core of overall drought risk management and is critical for food 47 

security, early warning, and as well as drought preparedness and mitigation.  48 

Agricultural drought is generally referred to as soil moisture shortage, which adversely affects 49 

crop yield and vegetation health (Modanesi et al., 2020; Zhang et al., 2016; Zhang et al., 2021). 50 

Under natural conditions, atmospheric precipitation is a paramount source for replenishment of soil 51 

moisture (Wu et al., 2021a). Therefore, reduced soil moisture (agricultural drought) is mainly arise 52 

from due to precipitation deficit (meteorological drought) (Modanesi et al., 2020; Orth & and 53 

Destouni, 2018). Moreover, soil moisture has a good memory to drought because of the time-54 

integration effects (Long et al., 2019), i.e., agricultural drought persistence. The pPrevious 55 

meteorological drought and antecedent agricultural drought can be taken into consideration as 56 

predictors of subsequent agricultural drought. 57 

In hydrology, some physically-based hydrological models (e.g., Distributed Time-Variant Gain 58 

Hydrological Model (DTVGM; Ma et al, 2021) and Soil and Water Assessment Tool (SWAT; Wu et 59 

al., 2019)) are widely used in hydrological simulation and prediction, the droughts included as well. 60 

However, the physically-based hydrological models typically apply to a catchment or sub-regional 61 

scale, and generally require numerous hydrometeorological variables to achieve more accurate real-62 

time predictions (Liu et al., 2021a; Xu et al., 2021a). the tTraditional methods, such as regression 63 

models, machine learning models, and hybrid models (by considering both statistical and dynamical 64 
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predictions) (Hao et al., 2016), have been extensively employed to forecast drought, such as 65 

regression models, machine learning models, and hybrid models (by considering both statistical and 66 

dynamical predictions) (Hao et al., 2016). Yet, these models tend to be limited in considering the 67 

complex nonlinear (e.g., regression models), explicit physical mechanisms and over-fitting (e.g., 68 

machine learning models), as well as the demand of massive hydroclimatic data input (e.g., hybrid 69 

models). The copula functions overcome the limitations of the aforementioned conventional 70 

statistical methods. Since copulas can are flexible joining arbitrary marginal distributions of 71 

variables, they have been widely employed in risk assessment (Hao et al., 2017; Liu et al., 2021b; 72 

Sarhadi et al., 2016; Xu et al., 2021b; Zhang et al., 2021; Zhou et al., 2019), flood and runoff 73 

forecasting (Bevacqua et al., 2017b; Hemri et al., 2015; Liu et al., 2018; Zhang & and Singh, 2019), 74 

and drought forecasting (Ganguli & and Reddy, 2014; Wu et al., 2021a). However, when bivariate 75 

copulas are extended to higher-dimensional (≥ three-dimensions) cases, they are restricted due to 76 

nonexistence of analytical expressions (Liu et al., 2021a). Symmetric Archimedean copulas and 77 

nested Archimedean copulas partially have addressed the issues of dimensionality, but single 78 

parameter and Archimedean class are difficult to characterize the various dependence structures (Aas 79 

& and Berg, 2009; Hao et al., 2016; Wu et al., 2021a). Fortunately, the vine copulas addressed these 80 

limitations (Aas et al., 2009; Bedford & and Cooke, 2002; Joe, 1996).  81 

Vine copulas are flexible in decomposing any multi-dimensional joint distribution into a 82 

hierarchy of bivariate copulas or pair copula constructions (Aas et al., 2009; Bedford & and Cooke, 83 

2002; Liu et al., 2021a; Vernieuwe et al., 2015; Xiong et al., 2014). These copulas have been 84 

extensively applied in the hydrological field (Bevacqua et al., 2017b; Liu et al., 2021b; Vernieuwe 85 

et al., 2015; Wu et al., 2021a). For instance, Xiong et al. (2014) derived the annual runoff 86 
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distributions using canonical vine copulas. Liu et al. (2018) developed a framework to investigate 87 

compound floods based on canonical vine copulas. Wang et al. (2019) utilized regular vine copulas 88 

with historical streamflow and climate drivers to simulate monthly streamflow for the headwater 89 

catchment of the Yellow River basin. Liu et al. (2021a) developed a hybrid ensemble forecast model, 90 

using the Bayesian model averaging combined canonical vine copulas, to forecast water level. Wu 91 

et al. (2021a) proposed an agricultural drought forecast model based on vine copulas under four-92 

dimensional scenarios.  93 

The meta-Gaussian (MG) model, a popular statistical model in the hydrometeorological 94 

community, has explicit conditional distributions, is capable of joining multiple variables and have 95 

explicit conditional distributions,  which is apt for forecasting and risk assessment purposes (Hao 96 

et al., 2016; Hao et al., 2019a; Wu et al., 2021b; Zhang et al., 2021). The forecast skills of the MG 97 

model for drought or compound dry-hot events, for example, outperformed the persistence-based or 98 

random forecast models (Hao et al., 2016; Hao et al., 2019a; Wu et al., 2021b). However, the MG 99 

model only depicts the linear relationship among explanatory variables (predictors) and forecasted 100 

variable via covariate matrix, it cannot characterize the nonlinear or tail dependence existing in the 101 

variables (Hao et al., 2016). Fortunately, Vine copulas can flexibly combine multiple variables via 102 

bivariate copula to characterize numerous or complex dependencies.For example, the forecasting of 103 

compound dry-hot events in summer over Southern Africa was investigated, based on the MG model 104 

under 1-month and 3-month lead times (Hao et al., 2019). The propagation between meteorological 105 

drought and agricultural drought was characterized via the MG model (Xu et al., 2021). However, 106 

there There has been a rather limited investigation, to our knowledge, that carrying outconducting 107 

model comparisons between vine copulas and MG for agricultural drought forecasting under the 108 
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same conditions. Therefore, investigations on drought forecasting skills between vine copulas and 109 

the MG model are needed to obtain more reliable drought forecasts.the MG model was selected as 110 

a competition (or reference) model. 111 

The objective of this study therefore was to compare the forecast ability of agricultural drought 112 

in August of every year in the period 1961–2018 between canonical vine copulas (i.e., 3C-vine 113 

model) and MG model under three-dimensional scenario. In the following, we briefly describe the 114 

study area and data used in Section 2. The MG and 3C-vine models and performance metrics utilized 115 

are presented in Section 3. Results of the 3C-vine model application and assessment are given 116 

displayed in Section 4. Finally, the discussion and conclusions are presented in Section 5.  117 

2. Study area and data used 118 

China stretches across a vast area covering diverse climate regimes and is a major agricultural-119 

producing country (Wu et al., 2021a; Zhang et al., 2015). For the convenience of analyzing spatial 120 

patterns of agricultural drought, the climate of China was divided into seven sub-climate regions on 121 

the basis of Zhao (1983)Yao et al. (2018) and  Yao et al. (2018)Zhao (1983), as shown in Figure 1. 122 

For each sub-climate region, the temperature and moisture conditions when combined are roughly 123 

similar, and the type of soil and vegetation have a certain common characteristic (Zhao, 1983).  124 

---------------------------------------------------Figure 1. -------------------------------------------------- 125 

In this study, the gridded monthly precipitation with a 0.25°×0.25° spatial resolution was 126 

obtained from the CN05.1 dataset for the 1961–2018 period over the mainland of China (excluding 127 

the Taiwan province), which was provided by the China National Climate Center. The Copernicus 128 

Climate Change Service (C3S) at European Center for Medium-Range Weather Forecast (ECMWF) 129 
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has begun the release of the ERA5 back extension data covering the period 1950–1978 on the 130 

Climate Data Store (CDS). Therefore, the gridded monthly soil moisture with a 0.25°×0.25° spatial 131 

resolution corresponding to three soil depths (0–7 cm, 7–28 cm, and 28–100 cm) are available from 132 

the ECMWF ERA5 reanalysis datasets for 1961–1978: 133 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means-134 

preliminary-back-extension?tab=overview and 1979–2018: 135 

https://cds.climate.copernicus.eu./cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-136 

means?tab=overview. The CN05.1 and ERA5 reanalysis datasets have been extensively utilized 137 

numerous studies, e.g., drought monitoring and forecasting (Wu et al., 2021a; Zhang et al., 2021), 138 

long-term climatic analysis (He et al., 2021; Wu et al., 2017), and flash drought attribution analysis 139 

(Wang & and Yuan, 2021). 140 

3. Methodology 141 

We employed tThe Standardized Precipitation Index (SPI, based on monthly precipitation) and 142 

Standardized Soil moisture Index (SSI, based on monthly cumulative soil moisture at top-three soil 143 

depths), respectively, is leveraged to characterize meteorological drought and agricultural drought 144 

at a 6-month timescale, respectively. The empirical Gringorten plotting position formula (Gringorten, 145 

1963) was used to obtain the empirical cumulative probabilities of these two indexes, which were 146 

then transformed into standardized variables via the normal quantile transformation. Since 147 

meteorological drought is a source of other drought types (e.g., agricultural drought), the antecedent 148 

precipitation deficiency (i.e., meteorological drought) has a stronger effect on the subsequent soil 149 

moisture deficiency (i.e., agricultural drought). Moreover, soil moisture has a good memory for prior 150 

drought, i.e., agricultural drought persistence, which is attributed to the soil porosity characteristics 151 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means-preliminary-back-extension?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means-preliminary-back-extension?tab=overview
https://cds.climate.copernicus.eu./cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://cds.climate.copernicus.eu./cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
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and time-integration effects (Long et al., 2019; Wu et al., 2021a).  152 

We attempted to use the prior meteorological drought (SPIt–i; t denotes the target month (e.g., 153 

August), and i indicates lead time (month)) and agricultural drought persistence (SSIt–i) to forecast 154 

the subsequent agricultural drought (SSIt) based on the canonical vine copulas under three-155 

dimensional scenarios (3C-vine model). We selected the meta-Gaussian (MG) model as a reference 156 

model to assess the agricultural drought forecast performance of the 3C-vine model. Here, the 6-157 

month timescale SPI (SSI) in August, which is calculated by the cumulative precipitation (soil 158 

moisture) from March to August, can indirectly reflect the surplus or deficit situations of water in 159 

spring (March-April-May) and summer (June-July-August) seasons. Furthermore, August is a key 160 

growth period for crops (e.g., anthesis, fruiting, and seed filling) and vegetation and is also a period 161 

with frequent droughts (Wu et al., 2021a). Undoubtedly, agricultural drought forecast can be 162 

implemented in any month of interest, based on 3C-vine model and MG model. More detailed 163 

information is given below.  164 

3.1. Meta-Gaussian model under three-dimensional scenarios 165 

The mMeta-Gaussian (MG) model can effectively combine multiple hydrometeorological 166 

variables, which have gained attention for drought forecasting and risk assessment (Hao et al., 2019a; 167 

Hao et al., 2019b; Wu et al., 2021b; Zhang et al., 2021). Suppose the series of SPIt–i, SSIt–i, and SSIt 168 

correspond to random variables Y1, Y2, and Y3, respectively, the predictand y3 under the given 169 

conditions of y1 and y2 based on the MG model can be expressed as (Wilks, 2014): 170 

3 1 2 3 1 23 1 2 |( , ) |( , )
| ( , ) ~ ( , )

y y y y y y
y y y N          (1) 171 

where N signifies the Gaussian distribution function, ; 
3 1 2|( , )y y y

  denotes the conditional mean, ; 172 
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and 
3 1 2|( , )y y y

  represents the conditional covariate matrix.  173 

Furthermore, we removed the forecast values in a specific year of y1, y2, and y3, which denote 174 

y1
–yr, y2

–yr, and y3
–yr, respectively. Under this circumstance, the covariate matrix Σ regarding y1

–yr, 175 

y2
–yr, and y3

–yr can be written as:  176 

1 3 131 1 1 2 11 12

11 12
2 3 232 1 2 2 21 22

21 22

31 32 333 1 3 2 3 3

( , )( , ) ( , )

( , )( , ) ( , )

( , ) ( , ) ( , )

yr yryr yr yr yr

yr yryr yr yr yr

yr yr yr yr yr yr

y y Cy y y y C C

y y Cy y y y C CCov

C C Cy y y y y y

− −− − − −

− −− − − −

− − − − − −

   
     

= = =     
    

    

Σ Σ
Σ

Σ Σ
  (2) 177 

The forecast of specific years, i.e., y3
yr, can be derived as (Wilks, 2014): 178 

1

3

2

1
1

3 21 11

2

yr

yr

yr

yr

yyr

yry

y

y
y

y






−

−

−

−
 −
 = +

− 
 

Σ Σ        (3) 179 

where 
1

yr
y

 − , 
2

yr
y

 − , and 
3

yr
y

 −  represent the mean of y1
–yr, y2

–yr, and y3
–yr, respectively. ; y1

yr and 180 

y2
yr denote that y1 and y2 provided the forecast information at time t–i in a specific year. More details 181 

about forecasting agricultural drought based on the MG model can be found in Figure 3. 182 

3.2. Canonical vine copulas model under three-dimensional scenarios 183 

Copulas can effectively combine multiple variables without the restriction of marginal 184 

distributions (Nelsen, 2013; Sarhadi et al., 2016; Wang et al., 2019; Xiong et al., 2014). They were 185 

initially utilized for deriving joint distributions of two-dimensional variables, since parameters are 186 

easy to assess and the analytical solution is apt to obtain (Liu et al., 2021a; Sadegh et al., 2017). 187 

However, under higher-dimensional (e.g., d ≥ 3) scenarios, owing to the limitations of a great deal 188 

of parameters and complexity, the copulas (mainly referred to bivariate copulas) are difficult to 189 

promote and apply (Joe, 2014; Liu et al., 2018; Liu et al., 2021a; Sadegh et al., 2017). To overcome 190 

these limitations, Joe (1996) and Aas et al. (2009) developed vine copulas, a hierarchy of pair copula 191 
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constructions, for multi-dimensional cases. Vine copulas possess two sub-classes: canonical vine 192 

copulas (C-vine copulas) and drawable vine copulas (D-vine copulas). Here, we mainly employed 193 

the C-vine copulas to establish the forecast model of agricultural drought under three-dimensional 194 

conditions. Undoubtedly, a similar scheme is capable of applying to D-vine copulas.  195 

C-vine copulas may have numerous tree structures, especially for the case of higher dimensions, 196 

which are associated with the quantity and ordering of variables (Aas et al., 2009; Liu et al., 2018; 197 

Liu et al., 2021a; Wu et al., 2021a). Also, different ordering of variables affects the estimation of the 198 

parameters of C-vine copulas (Liu et al., 2021a; Wang et al., 2019). Given the ordering of variables 199 

Y1, Y2, and Y3 for three-dimensional C-vine copula model (termed as 3C-vine model hereinafter; 200 

Figure 2a), the joint probability density function (PDF), g123, can be expressed as (Aas et al., 2009):  201 

123 1 2 3 12 13 23|1
g g g g c c c= • • • • •        (4) 202 

where g1, g2, and g3 correspond to the margin density functions of g1(y1), g2(y2), and g3(y3), 203 

respectively; c is the bivariate copula density; c12, c13, and c23|1 signify the abbreviation of c1,2[G1(y1), 204 

G2(y2)], c1,3[G1(y1), G3(y3)], and c2,3|1[G(y2|y1), G(y3|y1)], respectively. The Gaussian (or Normal), 205 

Student-t, Clayton, and Frank copulas, as well as their rotated (survival) forms (Dißmann et al., 2013; 206 

Liu et al., 2021b) are utilized to obtain the optimal internal bivariate copulas for distinct trees in 3C-vine 207 

models based on the Akaike information criterion (AIC). With the help of CDVineCondFit R function 208 

in “CDVineCopulaConditional” R package (Bevacqua, 2017a), based on the AIC, we selected the 209 

optimal tree structures (i.e., detected the suitable variable ordering; seen in Figure 2). The selected 210 

bivariate copulas utilized in this study comprised Gaussian (or Normal), Student-t, Clayton, and 211 

Frank, as well as the corresponding survival functions. We used the R function CDVineCondFit in 212 

the “CDVineCopulaConditional” R package (Bevacqua, 2017), based on the Akaike information 213 



11 

 

criterion (AIC), to select the suitable bivariate copula for each pair of variables. 214 

---------------------------------------------------Figure 2. -------------------------------------------------- 215 

A conditional copula density needs to be addressed in Equation 4, i.e., G(y|w), where w is a d-216 

dimensional vector w = (w1, …, wd). Here, regarding the conditional distribution of z y given the 217 

conditions w, we introduced the h-function, h(y, w; θ), to indicate the G(y|w) as follows (Aas et al., 218 

2009; Joe, 1996): 219 

, |
( | ), ( | )

( , ; ) : ( | )
( | )

j jy w j j j

j j

C G y G w
h y G y

G w


− − −

−

   
= =



w
w w

w w
w

    (5) 220 

where θ denotes the parameter(s) of bivariate copula function |j jyw
C

−w ; wj represents an arbitrary 221 

component of w; and w–j indicates the excluding element wj from the vector w.  222 

Let the ordering variables be y1, y2, and y3, the conditional variables be y1 and y2, and the 223 

predictand be y3. Accordingly, the expression of G(y3|y1, y2), based on Equation 5, can be written as: 224 

 
 3 1 2

3 1 2 1,

3 1 2 3 1 12 2 1 11 21

2 1

( | ), ( | )
( | , = ( ; ) ( ; );

( | )

z z z
C G y y G y y

G y y y h h u u h u u
G y y

  


=


）   (6) 225 

where θij (i denotes a tree and j is an edge) represents the parameters of different conditional copulas 226 

in the 3C-vine model (Figure 2a); and uk (k = 1, …, 3) is the marginal cumulative distribution 227 

function (CDF) of yk. The CDF for each variable is substituted by the corresponding empirical 228 

Gringorten cumulative probability (Bevacqua et al., 2017b; Genest et al., 2009; Wu et al., 2021a).  229 

Here, we introduced the τ-th copula–quantile curve (Chen et al., 2009; Liu et al., 2018) to 230 

simulate u3 based on Equation 6 and derived its inverse distribution function as follows: 231 

   1 1 1

1 2 2 1 11 21 1 1

1 1

3 3 2
| , ) ( ( ; );( ) )( ;y hz z N h h u u uN G N u    − − −−−  == =

 
   (7) 232 
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where N–1 and h–1 signify the inverse form of Gaussian distribution and h-function, respectively; y3 233 

is the forecasted agricultural drought forecast at time t (i.e., SSIt); y1 and y2 are the predictors 234 

corresponding to the antecedent meteorological drought and agricultural drought persistence at time 235 

t–i (i.e., SPIt–i and SSIt–i). The R functions of BiCopHfunc and BiCopHinv in the R package 236 

“VineCopula” (Nagler et al., 2021) were utilized to model the h-function and its inverse form for 237 

Equation 7, respectively. 238 

The tree structure is related to the ordering variables, so when the ordering variables are y2, y1, 239 

and y3 (conditional variables are y1 and y2; Figure 2b), Equations 6 and 7 can be changed analogously 240 

as: 241 

 3 2 1 3 2 12 1 2 11 21
( , = ( ; ) ( ; );G y y y h h u u h u u  ）      (8) 242 

 1 1 1

1 2 11 21 1

1

3 3 2 2
( ( ; ); ) ;( )y uN h h h u uN u    − −− − =


=


    (9) 243 

With agricultural drought forecast via 3C-vine model, as the details presented in Figure 3, We 244 

we first selected the best 3C-vine model (i.e., selected the best model from Equations 7 and 9 245 

according to AIC). Then, generated a sample size of 1,000 uniformly distributed random values was 246 

generated over the interval [0, 1] by Monte Carlo simulation. ThenLast, the best 3C-vine model (i.e., 247 

selected the best model from Equation 7 and Equation 9 according to AIC) was utilized to obtain 248 

1,000 simulations (or estimations) for y3
yr. The best forecast of y3

yr was finally calculated by the 249 

mean value of these simulations. Note that the leave-one-out cross validation (LOOCV) (Wilks, 250 

2014) is applied to forecast agricultural drought for each grid cell in August of every year during 251 

1961–2018 based on the 3C-vine or MG models, namely, each time one sample (or observation) was 252 

left for validation, and the rest were used to establish 3C-vine model or MG model and obtain the 253 

corresponding parameters of these models. In other words, this process was repeated 58 times (the 254 
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length of years used in this study) for a specific grid cell. we applied the leave-one-out cross 255 

validation (LOOCV) (Wilks, 2014) to forecast agricultural drought in August of every year during 256 

1961–2018 for the 3C-vine model or MG model, namely, the validation sample was left one in each 257 

time, and the rest were used to establish the 3C-vine model or MG model and obtain the 258 

corresponding parameters. 259 

---------------------------------------------------Figure 3. -------------------------------------------------- 260 

3.3. Performance metrics 261 

Three evaluation metrics: The Nash-Sutcliffe efficiency (NSE), coefficient of determination 262 

(R2), and root mean square error (RMSE), were utilized to assess the forecast performance of 3C-263 

vine model or and MG model. These metrics can be expressed as: 264 

2

1

2

1

( )

1 ( ,1]

( )

n

i i

i

n

i

i

AP AO

NSE NSE

AO AO

=

=

−

= −  −

−




    (10) 265 

2

12 2

2 2

1 1

( )( )

[0,1]

( ) ( )

n

i i

i

n n

i i

i i

AO AO AP AP

R R

AO AO AP AP

=

= =

 
− − 

 
= 

− • −



 
   (1111) 266 

2

1

1
( ) [0, )

n

i i

i

RMSE AP AO RMSE
n =

= −  +     (12) 267 

where n is the number of forecast periods; AOi and APi are the i-th observed and forecasted 268 

agricultural droughts (i.e., SSI), respectively; AO   and AP   denote the mean of the SSI 269 

observations and forecasts in the target month (e.g., August), respectively. Moreover, a most positive 270 

NSE and R2 value and a lower RMSE value expressed indicate a good forecast performance for the 271 
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3C-vine model or MG model.  272 

4. Results 273 

4.1. Correlation patterns of agricultural drought with potential predictors 274 

The dependence between variables can be measured by the correlation coefficient, indirectly 275 

characterizing the quantity of common information between the two variables. In this study, wWe 276 

employed Kendall’s correlation coefficient (τk) to measure the dependence of agricultural drought at 277 

current time t (SSIt, herein t is August) with the previous meteorological drought (SPIt–i, i indicates 278 

the lag or lead time with 1–3-month herein) and agricultural drought persistence (SSIt–i). It should 279 

be mentioned that the significant correlation prevalent used may overestimate or overinterpret the 280 

dependence between variables (Wilks, 2016). Therefore, we adopted the maximum false discovery 281 

rate (FDR) of 0.1 to correct τk at the 0.05 significance level (Benjamini & and Hochberg, 1995; 282 

Röthlisberger & and Martius, 2019; Wilks, 2016).  283 

---------------------------------------------------Figure 4.3. -------------------------------------------------- 284 

Figure 3 4 summarizes 1–3-month lag τk between antecedent SPI (SSI) and succedent SSI for 285 

August during 1961–2018 over China. For most regions of China under 1–3-month lag times, the 286 

previous meteorological drought or agricultural drought persistence (memory) showed significant 287 

positive correlations (i.e., the stippling in Figure 4) with the target agricultural drought (i.e., the 288 

stippling in Figure 3). Also, we found perfect agricultural drought memory over many regions of 289 

China (excluding D4, a humid climate region) (Figures 4e and 4f3e and 3f), as the overlapping 290 

information existed in SSIt and SSIt–i. Additionally, the dependency pattern varied temporally and 291 

spatially, and this phenomenon evidently occurred with the lag (or lead) time extended, especially 292 
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between SPIt–i and SSIt (Figures 4a–4c3a–3c). Overall, the prior meteorological drought and 293 

agricultural drought memory provided reliable and useful forecast information for the subsequent 294 

agricultural drought for most areas of China.  295 

4.2. Forecast performance comparison between 3C-vine model and MG Model 296 

We leveraged the MG model as a reference model to measure the performance of 3C-vine 297 

model in forecasting the agricultural drought for the period 1961–2018 over China. Figures 5a–5i 298 

4a–4i show the difference in NSE, R2, and RMSE between 3C-vine and MG models, i.e., ΔNSE = 299 

NSE3C–NSEMG, ΔR2 = R2
3C–R2

MG, and ΔRMSE = RMSE3C–RMSEMG under 1–3-month lead times for 300 

August, respectively. between the 3C-vine model and MG model with respect to NSE3C–MG, R2
3C–301 

MG, and RMSE3C–MG under 1–3-month leads for August, respectively. In terms of the spatial extent 302 

of ΔNSE > 0NSE3C–MG > 0, ΔR2 > 0R2
3C–MG > 0, and ΔRMSE < 0RMSE3C–MG < 0, the agricultural 303 

drought forecast ability of 3C-vine model superior MG model was occupied 65%, 68%, and 58% of 304 

land areas in China, respectively, under the 1-month lead SSI forecast (Figures 5a, 5d, and 5g4a, 4d, 305 

and 4g), except for western China (D3 and D7) and central China (D4). The relationship between 306 

predictors and the forecasted variable was simple under 1–month lead time, so the MG model better 307 

showed their connection. However, with the lead time prolonged, the forecast skills of 3C-vine 308 

model outperformed the MG model for most regions of China (e.g., Figures 5e and 5f4e and 4f, 309 

accounting 72% and 74% of land areas in China for ΔR2 > 0R2
3C–MG > 0 under 2–3-month lead times, 310 

respectively). This indicates the 3C-vine model sufficiently utilized the forecasted information 311 

contained by previous meteorological drought and agricultural drought persistence in comparison 312 

with the MG model under the same conditions.  313 

It can be seen that tThe forecast ability of 3C-vine model, compared with the MG model, is 314 
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limited over climate region D5 (e.g., Figures 5b and 5c4b and 4c). This may be related to the fact 315 

that D5 is a crucial grain-producing region in China (Lu et al., 2012; Xiao et al., 2019; Zhang et al., 316 

2016), the intensive anthropogenic activities (e.g., irrigation and urbanization) may alter the linkage 317 

between meteorological drought and agricultural drought, as well as the strength of agricultural 318 

drought memory (AghaKouchak et al., 2021). To ensure food security, if D5 experiences a drought 319 

event at the previous stage, agricultural managers and policymakers would mitigate the drought 320 

through irrigation in a variety of ways, such as groundwater exploitation and reservoir operation 321 

(Zhang et al., 2016). However, under this circumstance, the soil water obtaining the supplement 322 

from the irrigation water would affect the performance of agricultural drought forecast.   323 

---------------------------------------------------Figure 5.4. -------------------------------------------------- 324 

In contrast with the MG model, the 3C-vine model yielded a better forecast performance for 325 

August under 1–3-month leads agricultural drought across most areas of China, except for the 326 

climate region D5.  327 

4.3. Case study and sub-climate region assessment 328 

The severe drought hit most regions of China in summer 2018, especially in southern and 329 

northern China, as the western North Pacific subtropical high abnormally impacted (Liu & and Zhu, 330 

2019; Zhang et al., 2020; Zhang et al., 2018). We chose the agricultural drought that occurred in 331 

August of 2018 as a case study to investigate the forecast ability of 3C-vine model. Similarly, the 332 

MG model was selected as a benchmark model. Figure 5 6 presents the SSI observations and 1–3-333 

month lead SSI forecasts for this agricultural drought using the 3C-vine model and MG model. 334 

Obviously, the 1–3-month lead SSI forecasts via 3C-vine model resembled the observations (Figures 335 

6a–6d5a–5d), which captured the droughts that emerged in southern China, northern China, and 336 
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northeastern China, i.e., climate regions D1–D2 and D4–D6. Comparing the 3C-vine model with 337 

the MG model under 2–3-month leads (Figures 6c–6d 5c–5d versus Figures 6f–6g5f–5g), we 338 

observed the deteriorating forecast skill of MG model in climate region D5, which tended to non-339 

drought state (i.e., SSI > 0), but the 3C-vine model better forecasted the agricultural drought for 340 

these regions under the same conditions, although the severity of agricultural drought had some 341 

decrement. The above analyses indicated that the 3C-vine model, using previous meteorological 342 

drought and agricultural drought persistence as two predictors, had the ability for reliable drought 343 

forecast over many regions of China.   344 

---------------------------------------------------Figure 6.5. -------------------------------------------------- 345 

---------------------------------------------------Figure 7.6. -------------------------------------------------- 346 

Furthermore, to explore the skill of 3C-vine model in capturing the extremum of agricultural 347 

drought (i.e., minimum and maximum SSIs), we randomly selected a typical region (black rectangle 348 

boxes in Figure 6b5b) in each climate region. Note that these extreme SSI values were calculated 349 

using the spatial average in each typical region. Figures 7a and 7b 6 shows the probability density 350 

function (PDF) curve of minimum and maximum SSIs for these selected typical regions (D1S–D7S) 351 

via the 3C-vine model and MG model for 1–3-month leads of August. Here, the vertical black dash 352 

line denotes the SSI observation in each subplot. The x-axis value of peak point (i.e., high probability) 353 

for each PDF curve is regarded as the best estimation of SSI under diverse lead times. With the 3C-354 

vine model as an example (analogously for the MG model), For for minimum SSI with 1–2-month 355 

lead times, the difference between forecasted SSI and observed SSI was slight (except for D3S), 356 

which all reflected the drought state for these typical regions (Figure 6a7a). The deteriorated skills 357 

of 3C-vine and MG models in a typical region D3S may be attributed to the lengthy response time 358 
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existing between precipitation deficiency and soil moisture shortage, which is caused by the limited 359 

precipitation that cannot effectively replenish the soil moisture depletion due to the incrassation of 360 

vadose zone. For the 3-month lead time, the poor forecasts were produced in a typical region D5S 361 

for the minimum SSI. This phenomenon may result in the agricultural manager utilizing irrigation 362 

to mitigate the effect of drought on crop growth, thus, the response relationship between 363 

meteorological drought and agricultural drought accordingly would change (Xu et al., 2021b).  364 

For the forecasted maximum SSI utilizing 3C-vine model (analogously for the MG model) over 365 

diverse regions, the excellence forecast ability is displayed for the 1–3-month leads (Figure 6b7b), 366 

excluding the typical regions D5S and D6S (PDF curve shifted left). For the abundant precipitation 367 

and higher soil moisture content in D6S, the shortened response time between precipitation and soil 368 

moisture (Xu et al., 2021b) may cause inferior forecasts of 3C-vine model for the target month. 369 

To display the robustness of 3C-vine model for forecasting agricultural drought in any month 370 

of interest, we further forecasted extreme agricultural drought in July for D1S–D7S (Figures 7c and 371 

7d). The difference between forecasted and observed extreme SSIs for the MG model is larger than 372 

that of 3C-vine model in distinct typical regions, e.g., the forecasted maximum SSI in July on D4S 373 

(Figure 7d). The width of PDF curve qualitatively provides an estimation of forecast uncertainty of 374 

3C-vine model and MG model. As shown in Figure 7, in comparison with the 3C-vine model, we 375 

found that the width of PDF curves in the MG model are broadened, indicating that the MG model 376 

produced more pronounced uncertainty for agricultural drought forecast. Furthermore, the skills of 377 

MG model tended to deteriorate over many selected typical regions, especially for 2–3-month lead 378 

times of July and August. Generally, compared with the MG model under different lead times, 379 

agricultural drought forecasts made by the 3C-vine model are more accurate across different typical 380 
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regions, in terms of predictive uncertainty (i.e., the width of PDF curve) as well as the difference 381 

between observed and forecasted extreme SSIs (Figures 7).  382 

Moreover, to assess the forecast performance (according to NSE, R2, and RMSE) of the 3C-vine 383 

model over each climate region, we counted the pixel contained in each climate region and 384 

constructed the boxplots for these performance metrics (Figures 5j–5l4j–4l). We still selected the 385 

MG model as the reference model, and obtained the difference between these two models, i.e., 386 

ΔNSENSE3C–MG, ΔR2R2
3C–MG, and ΔRMSERMSE3C–MG. The forecast performances of 3C-vine 387 

model and MG model were generally consistent for 1-month lead of August over climate regions 388 

D1–D7 (Figures 5j–5l4j–4l, the median percentile of ΔNSE, ΔR2, and ΔRMSENSE3C–MG, R2
3C–MG, 389 

and RMSE3C–MG were all around the 0 line), indicating the improved skills of 3C-vine model was 390 

limited under the same condition. Obviously, the median percentile of ΔNSENSE3C–MG and ΔR2R2
3C–391 

MG were greater than 0 as well as ΔRMSERMSE3C–MG was lower than 0, respectively, for 2–3-month 392 

leads SSI forecast of August in different climate regions D1–D7 (except for D5), indicating that the 393 

3C-vine model shows a better performance than the MG model in forecasting agricultural drought 394 

over diverse climate regions of China. more accurately forecasted agricultural drought than did the 395 

MG model in diverse climate regions. 396 

In conclusion, based the ability of typical agricultural drought forecasted (Figure 65) and 397 

extremum agricultural drought captured in selected typical regions (Figure 76) and the 398 

comprehensive forecast performance showed in diverse climate regions (Figures 5j–5l4j–4l), the 399 

3C-vine model had a good forecast skill for 1–3-month leads agricultural drought of August over 400 

most areas of China.  401 

5. Discussion and Conclusions 402 
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This study developed a C-vine copula model for forecasting agricultural drought over China 403 

under three dimensions, in which antecedent meteorological drought and agricultural drought 404 

persistence at time t–1 (t denotes target month) was were primarily employed as two predictors. We 405 

selected the MG model as a competition model, in terms of the difference in NSE, R2, and RMSE 406 

between 3C-vine and MG models, to evaluate the forecast performance of 3C-vine model. These 407 

performance metrics all displayed that the 3C-vine model, especially for 2–3-month lead times, 408 

outperformed the MG model in many climate regions over China (except for D5, which lies in humid 409 

and subhumid regions of northern China) (Figure 54). Compared with the MG model, the 3C-vine 410 

model yielded a good forecast skill for the selected typical agricultural droughts (Figure 5). Besides, 411 

the nearly perfect forecast of extremum agricultural drought in typical regions (Figure 76) further 412 

certified the excellent ability of 3C-vine model.  413 

Heterogeneous topography and anthropogenic activities (e.g., irrigation and urbanization) have 414 

certainly impacted precipitation interpolation and soil moisture simulation, which may depart from 415 

the actual precipitation or soil moisture conditions, notwithstanding the precipitation of CN05.1 and 416 

soil moisture of ERA5 that show good performances with respect to drought monitoring and 417 

forecasting over China (Wang & and Yuan, 2021; Wu et al., 2021a; Xu et al., 2009; Zhang et al., 418 

2021; Zhang et al., 2019). It can also influence the response (propagation) time between from 419 

meteorological drought and to agricultural drought as well as agricultural drought memory and can 420 

thus lead to the 3C-vine model falling short in some climate regions. To address this issue, we can 421 

comprehensively utilize multiple reanalysis data sets, e.g., the precipitation and soil moisture data 422 

in Global Land Data Assimilation System (GLDAS) and ERA5, to reduce the uncertainty resulting 423 

from a single data source (Wang & and Yuan, 2021; Wu et al., 2021a). Currently, it is a challenge to 424 
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consider irrigation activities into agricultural drought forecasting, especially at large spatial scales. 425 

In addition to antecedent precipitation deficit, air temperature, relative humidity, and 426 

evapotranspiration may influence soil moisture budget. Moreover, from the perspective of driving 427 

mechanisms, the effect of certain atmospheric circulation anomalies (e.g., El Niño-Southern 428 

Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North Arctic Oscillation (NAO)) on 429 

agricultural drought at regional and global scales can also be considered as predictors (Zhang et al., 430 

2021). Therefore, a more efficient space can be established by leveraging these predictors for 431 

forecasting agricultural drought forecasting.  432 

In recent years, a myriad of extreme events, such as heatwaves and flash droughts, have swept 433 

many regions around the globe. These extreme events have a rapid onset with a few days or weeks 434 

and lead to devastating impacts on agricultural production, water resource security, and human well-435 

being (Wang & and Yuan, 2021; Yuan et al., 2019; Zscheischler et al., 2020). Therefore, agricultural 436 

drought forecasting at finer temporal scales (e.g., weekly) is essential for agricultural managers and 437 

policymakers to manage and plan water use. Yet, with limited spatiotemporal resolution and the 438 

length of model sample, we temporally have not carried out agricultural drought forecasting at sub-439 

monthly or pentad temporal scales.  440 

The limitation of this study is that we choose a single “best” model from two C-vine copula 441 

candidate models (i.e., Figure 2) as the ideal forecast. However, as the inherent structural differences 442 

(i.e., ordering variables are different), the utilized best model may underestimate the forecast 443 

uncertainty (Liu et al., 2021a). Therefore, to reduce the predictive uncertainty and improve the 444 

forecast performance, a multi-model combination technique (e.g., Bayesian model averaging (Liu 445 

et al., 2021a; Long et al., 2017)) can be considered to merge different C-vine copula candidate 446 
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models. Moreover, as we only pay attention to the C-vine copulas and several bivariate copula 447 

functions, the other D-vine copulas or regular vine copulas, as well as a multitude of bivariate copula 448 

families (Sadegh et al., 2017) can be investigated to establish the forecast model for agricultural 449 

drought in the next work.  450 
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Figure Captions 856 

Figure 1. Seven sub-climate regions division over China. The specific information of climate 857 

regions D1–D7 is listed at the left-bottom in the panel.  858 

Figure 2. Different schematic (two types) of C-vine copulas under three-dimensional scenarios. For 859 

the first type (a), the ordering variables are y1, y2, and y3, while for the second type (b) that 860 

are y2, y1, and y3. C12(C21), C13(C23), and C23|1(C13|2) denotes bivariate copulas with 861 

parameters θ11, θ12, and θ21, respectively. Here, θij signifies the parameters of the j-th edge 862 

with respect to the i-th tree. G(•|•) denote conditional distribution functions.  863 

Figure 3. Flowchart of agricultural drought forecasting based on canonical vine copulas (3C-vine) 864 

and meta-Gaussian (MG) model under three-dimensional scenarios. Here, t denotes the 865 

target month (e.g., August); i signifies the lead times (1–3-months)); LOOCV is the 866 

abbreviation of leave-one-out cross validation; y1
–yr(y2

–yr) indicates the series after 867 

removing a sample (y1
yr(y2

yr)) for a specific year; and y3
yr is the agricultural drought forecast 868 

value for the target month of a specific year. Note that the optimal tree structure (i or ii on 869 

the right-hand side of this figure) is selected based on AIC to forecast agricultural drought.  870 

Figure 34. Spatial patterns of 1–3-months lag Kendall’s correlation coefficient (τk) between SPIt–i 871 

and SSIt (t denotes August, and i is 1–3-month lag time) (top row), as well as SSIt–i and SSIt 872 

(bottom row) for August during 1961–2018 over China. Note the stippling indicates where 873 

τk is at a 0.05 significance level, which is corrected via the false discovery rate (FDR) of 874 

0.1. 875 

Figure 45. Forecast performance based on (a–c) ΔNSE (difference of NSE between 3C-vine and MG 876 

models, NSE3C–NSEMG), (d–f) ΔR2 (R2
3C–R2

MG), and (g–i) ΔRMSE (RMSE3C–RMSEMG) for 877 



41 

 

the 1–3-month leads of August during 1961–2018 over China. The corresponding boxplots 878 

of (j) ΔNSE, (k) ΔR2, and (l) ΔRMSE relative to a threshold of 0 (horizontal black dash line) 879 

for agricultural drought forecast in August under 1–3-month leads in climate regions D1–880 

D7 over China. The percentage of ΔNSE > 0, ΔR2 > 0, and ΔRMSE < 0 is listed in the left-881 

bottom of corresponding sub-figure, respectively. Forecast performance of the 3C-vine 882 

model based on (a–c) NSE3C–MG (difference of NSE between 3C-vine model and MG 883 

model), (d–f) R2
3C–MG (difference of R2 between 3C-vine and MG models), and (g–i) 884 

RMSE3C–MG (difference in RMSE between 3C-vine and MG models) for the 1–3-month 885 

leads of August during 1961–2018 over China. The corresponding boxplots of (j) NSE3C–886 

MG, (k) R2
3C–MG, and (l) RMSE3C–MG relative to a threshold of 0 (horizontal black dash line) 887 

for agricultural drought forecast in August under 1–3-month leads in climate regions D1–888 

D7 over China. The percentage of NSE3C–MG > 0, R2
3C–MG > 0, and RMSE3C–MG < 0 is listed 889 

in the left-bottom of corresponding sub-figure, respectively. 890 

Figure 56. SSI observations in August of 2018 (a) as well as the corresponding SSI forecasts under 891 

1–3-month lead times utilizing 3C-vine model (b–d) and MG model (e–g) over China. The 892 

black rectangle boxes (as shown in b) denote the typical regions (corresponding to signify 893 

D1S–D7S) selected in climate regions D1–D7. 894 

Figure 67. Probability density function (PDF) curve of (a and c) minimum and (b and d) maximum 895 

SSI under 1–3-month lead times for August and July during the 1961–2018 period over 896 

seven selected typical regions in climate regions D1–D7 (i.e., these black rectangle boxes 897 

in Figure 6b correspond to signify D1S–D7S, respectively). Black dash line and text 898 

indicate the minimum and maximum observations of SSI in August and July over D1S–899 
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D7S. These texts with red (green), blue (yellow), and cyan (coral) colors of left (right) in 900 

each sub-figure are SSI forecasts under 1–3-month lead times of August or July via 3C-901 

vine model (MG model), which correspond to the abscissa projected by the peak point of 902 

each PDF. Probability density function (PDF) curve of (a) minimum and (b) maximum SSI 903 

under 1–3-month lead times for August during the 1961–2018 period over seven selected 904 

typical regions in climate regions D1–D7 (i.e., these black rectangle boxes in Figure 5b 905 

correspond to signify D1S–D7S, respectively). Black dash line and text indicate the (a) 906 

minimum and (b) maximum observations of SSI in D1S–D7S. These texts with red, blue, 907 

and cyan colors of top-right in each sub-figure are SSI forecasts under 1–3-month lead 908 

times of August, which correspond to the abscissa projected by the peak point of each PDF.909 
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Figure 1. Seven sub-climate regions division over China. The specific information of climate 911 

regions D1–D7 is listed at the left-bottom in the panel.912 
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Figure 2. Different schematic (two types) of C-vine copulas under three-dimensional scenarios. For 914 

the first type (a), the ordering variables are y1, y2, and y3, while for the second type (b) that are y2, y1, 915 

and y3. C12(C21), C13(C23), and C23|1(C13|2) denotes bivariate copulas with parameters θ11, θ12, and θ21, 916 

respectively. Here, θij signifies the parameters of the j-th edge with respect to the i-th tree. G(•|•) 917 

denote conditional distribution functions. 918 
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Figure 3. Flowchart of agricultural drought forecasting based on canonical vine copulas (3C-vine) 920 

and meta-Gaussian (MG) model under three-dimensional scenarios. Here, t denotes the target month 921 

(e.g., August); i signifies the lead times (1–3-months)); LOOCV is the abbreviation of leave-one-922 

out cross validation; y1
–yr(y2

–yr) indicates the series after removing a sample (y1
yr(y2

yr)) for a specific 923 

year; and y3
yr is the agricultural drought forecast value for the target month of a specific year. Note 924 

that the optimal tree structure (i or ii on the right-hand side of this figure) is selected based on AIC 925 

to forecast agricultural drought.  926 
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 927 

Figure 34. Spatial patterns of 1–3-months lag Kendall’s correlation coefficient (τk) between SPIt–i 928 

and SSIt (t denotes August, and i is 1–3-month lag time) (top row), as well as SSIt–i and SSIt (bottom 929 

row) for August during 1961–2018 over China. Note the stippling indicates where τk is at a 0.05 930 

significance level, which is corrected via the false discovery rate (FDR) of 0.1. 931 
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 932 

Figure 5. Forecast performance based on (a–c) ΔNSE (difference of NSE between 3C-vine and 933 

MG models, NSE3C–NSEMG), (d–f) ΔR2 (R2
3C–R2

MG), and (g–i) ΔRMSE (RMSE3C–RMSEMG) for the 934 
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1–3-month leads of August during 1961–2018 over China. The corresponding boxplots of (j) ΔNSE, 935 

(k) ΔR2, and (l) ΔRMSE relative to a threshold of 0 (horizontal black dash line) for agricultural 936 

drought forecast in August under 1–3-month leads in climate regions D1–D7 over China. The 937 

percentage of ΔNSE > 0, ΔR2 > 0, and ΔRMSE < 0 is listed in the left-bottom of corresponding sub-938 

figure, respectively.939 
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 940 

 941 

Figure 4. Forecast performance of the 3C-vine model based on (a–c) NSE3C–MG (difference of NSE 942 
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between 3C-vine model and MG model), (d–f) R2
3C–MG (difference of R2 between 3C-vine and MG 943 

models), and (g–i) RMSE3C–MG (difference in RMSE between 3C-vine and MG models) for the 1–944 

3-month leads of August during 1961–2018 over China. The corresponding boxplots of (j) NSE3C–945 

MG, (k) R2
3C–MG, and (l) RMSE3C–MG relative to a threshold of 0 (horizontal black dash line) for 946 

agricultural drought forecast in August under 1–3-month leads in climate regions D1–D7 over China. 947 

The percentage of NSE3C–MG > 0, R2
3C–MG > 0, and RMSE3C–MG < 0 is listed in the left-bottom of 948 

corresponding sub-figure, respectively.949 
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 950 

Figure 56. SSI observations in August of 2018 (a) as well as the corresponding SSI forecasts under 951 

1–3-month lead times utilizing 3C-vine model (b–d) and MG model (e–g) over China. The black 952 

rectangle boxes (as shown in b) denote the typical regions (corresponding to signify D1S–D7S) 953 

selected in climate regions D1–D7.954 
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 955 

Figure 7. Probability density function (PDF) curve of (a and c) minimum and (b and d) maximum 956 

SSI under 1–3-month lead times for August and July during the 1961–2018 period over seven 957 

selected typical regions in climate regions D1–D7 (i.e., these black rectangle boxes in Figure 6b 958 
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correspond to signify D1S–D7S, respectively). Black dash line and text indicate the minimum and 959 

maximum observations of SSI in August and July over D1S–D7S. These texts with red (green), blue 960 

(yellow), and cyan (coral) colors of left (right) in each sub-figure are SSI forecasts under 1–3-month 961 

lead times of August or July via 3C-vine model (MG model), which correspond to the abscissa 962 

projected by the peak point of each PDF. 963 

 964 

Figure 6. Probability density function (PDF) curve of (a) minimum and (b) maximum SSI under 1–965 

3-month lead times for August during the 1961–2018 period over seven selected typical regions in 966 

climate regions D1–D7 (i.e., these black rectangle boxes in Figure 5b correspond to signify D1S–967 

D7S, respectively). Black dash line and text indicate the (a) minimum and (b) maximum 968 

observations of SSI in D1S–D7S. These texts with red, blue, and cyan colors of top-right in each 969 

sub-figure are SSI forecasts under 1–3-month lead times of August, which correspond to the abscissa 970 

projected by the peak point of each PDF. 971 


