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Abstract. An accurate and rapid urban flood prediction model is essential to support decision-making on 

flood management, especially under increasing extreme precipitation conditions driven by climate 

change and urbanization. This study developed a deep learning technique-based data-driven flood 

prediction model based on an integration of LSTM network and Bayesian optimization. A case study in 10 

north China was applied to test the model performance and the results clearly showed that the model can 

accurately predict flood maps for various hyetograph inputs, meanwhile with substantial improvements 

in computation time. The model predicted flood maps 19,585 times faster than the physical-based 

hydrodynamic model and achieved a mean relative error of 9.5%. For retrieving the spatial patterns of 

water depths, the degree of similarity of the flood maps was very high. In a best case, the difference 15 

between the ground truth and model prediction was only 0.76% and the spatial distributions of inundated 

paths and areas were almost identical. The proposed model showed a robust generalizability and high 

computational efficiency, and can potentially replace and/or complement the conventional 

hydrodynamic model for urban flood assessment and management, particularly in applications of real 

time control, optimization and emergency design and plan. 20 

1 Introduction 

Flooding has been one of the most frequent and disturbing disasters in many urban areas, especially 

under impacts of climate change and urbanization (Arnone et al., 2018; Zhou et al., 2019; Kaspersen et 

al., 2017; Mahmoud and Gan, 2018). Prediction of flooding plays a key role in urban flood evaluation 

and management and can provide effective decision aid tools to reduce flooding impacts on both society 25 

and environment (Lowe et al., 2017; Xie et al., 2017; Hou et al., 2021a). Establishing rapid and accurate 

flood prediction methods is thus essential, however, a complicated and challenging task (Guo et al., 
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2021). Conventionally, hydrodynamic models have been employed for applications such as flood 

inundation simulations, assessment of mitigation and adaptation measures (Wolfs and Willems, 2013; 

Wang et al., 2021; Li et al., 2019). Despite the fact that the physically-based models can well simulate the 30 

drainage and surface flooding processes, they require a large number of inputs to describe the model 

structure and parameters, and are often computational intensive, especially with the two-dimensional 

calculations (Yin et al., 2020; Jamali et al., 2018; Ziliani et al., 2019; Hou et al., 2021b). Meanwhile, 

there is an inevitable need for conceptualization and simplification in the physical model, and the 

relevant calibration and validation procedures are also quite challenging (Davidsen et al., 2017; 35 

Coulthard et al., 2013; Wu et al., 2018).  

To solve the bottleneck problems on complex model construction, long computation time and high 

cost of the hydrodynamic models, the potential of novel deep learning techniques in capturing and 

predicting flooding processes have been increasingly explored in recent years to alleviate the burden on 

physical modelling (Han et al., 2021; Guo et al., 2021; Hou et al., 2021a). The deep learning (DL) 40 

methods harbor intelligent learning mechanisms and can extract learning data features from historical 

knowledge. The DL can find the relationships between input and output data with much lower 

computational cost, in particular with high-performance computers. It has been demonstrated that these 

DLs have excellent generalization capabilities so that even complex data features (e.g., flood pattern and 

tendency) can be automatically learned with a high prediction accuracy and computation efficiency 45 

(Lecun and Bengio, 1995; Rawat and Wang, 2017; Guo et al., 2021; Yosinski et al., 2014). With proper 

data provided, the methods can learn the flood patterns through data features and eliminate the analysis of 

the actual physical processes. The high computation efficiency is essential, especially for modelling 

flooding impacts in urban areas with complex local conditions and high spatial resolutions.  

A number of early attempts on deep learning applications are found in the field of drainage and 50 

flood condition detection and assessment. Bhola et al. (2019) employed computer vision algorithms and 

edge detection techniques to identify water levels from images as supplementary validation data for flood 

forecasting. Moy De Vitry et al. (2019) used a deep convolutional neural network (DCNN) approach for 

scalable flood level trend monitoring with data from surveillance camera systems. Han et al. (2021) 

proposed a YOLO-based deep learning framework to automatically monitor the urban road inundation 55 

under both dry and wet conditions. Hou et al. (2021c) performed an experimental flooding test using 

surveillance cameras to obtain flood images and employed a Mask R-CNN (mask region-based 
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convolutional neural network) to detect and segment the inundated areas in river channels. Guo et al. 

(2021) adopted a DCNN-based approach for urban flood prediction and was reported to achieve 

satisfying prediction accuracy and computation efficiency. Zhu et al. (2020) developed a probabilistic 60 

long short-term memory (LSTM) network coupled with Gaussian process (GP) to improve the 

streamflow forecasting in the upper Yangtze River. Note that different from other popular deep learning 

algorithms, the LSTM network allows inputs of unequal dimensions/ lengths, which is especially suitable 

for processing time-series data, such as traffic flow (Xia et al., 2021) and power systems (Ciechulski and 

Osowski, 2021). All these studies have demonstrated remarkable capabilities of DL in automated data 65 

feature learning with high prediction accuracy and efficiency. The reliability of the methods was also 

verified in the various types of applications. 

Despite the advances of the studies, most of which focused on relatively large spatial scales and 

required several types of input data (e.g., rainfall, terrain, flow depth) for model predictions. So far, no 

study has explored the automated prediction of urban-scale flood inundation using the LSTM-based deep 70 

learning techniques. This goal of this study is to provide a novel end-to-end method for a dynamic, rapid 

and accurate urban flood prediction for real-time evaluation and emergency decision-making. Given the 

uncertainty/unknown of rainfall events and the advantages of LSTM, we present a deep learning-based 

technique with an integration of LSTM network and Bayesian optimization. The inundation areas and 

water depths can be forecasted with only rainfall inputs. The method is tested in a case study in northern 75 

China with various rainfall conditions. The developed method showed very promising prediction 

accuracy and low computation cost and is thus of great value to be used as decision making aids in urban 

flood evaluation and management.  

2 Methodology and data 

To examine the performance of the proposed approach, we firstly selected a case study and obtained the 80 

relevant data describing the rainfall inputs, local topography and drainage systems. A coupled 1D-2D 

hydrodynamic model was employed to simulate the inundation areas and water depths under various 

design rainfall events. Then the DL technique-based prediction model was established and trained based 

on the simulated flood maps and tested with random rainfall inputs to examine the relevant prediction 

accuracy and computation cost.  85 
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2.1 Case study area 

A portion of the city Hohhot, the capital of the Inner Mongolia Autonomous Region, was used as the case 

study to test the performance of proposed method. The city is located in Northern China and within a cold 

semi-arid climate zone. The winters are dry but the summers can be very hot and rainy. The average 

annual rainfall was approximately 396 mm, with majority of which concentrated from July to August 90 

(Zhou et al., 2018; Zhou et al., 2016). The detailed landuse is shown in Fig. 1a and mainly consists of 

residential areas, commercial districts, institutes, green spaces and other landuse. The terrain is high in 

the north and lower in the south (see Fig. 1b) and thus the runoffs generally flow in a north to south 

direction. The service level of the drainage system was rather low and the original design return period 

was below once a year (Zhou et al., 2018). In recent years, flooding has occurred more frequently in the 95 

area. Nevertheless, there is a lack of accurate historical data on flood areas and depths and thus 

simulations of flood events are performed with a 1d/2D coupled hydrodynamic model (to be introduced 

in the following sections) under various design rainfalls. 

 
Figure 1: case study (a) landuse and (b) drainage system with DEM descriptions. 100 

The input rainfall hydrographs for model training and validation were calculated using the regional 

Storm Intensity Formula (SIF) (q=635×(1+0.841×lg(P))/t^0.61, where q is the storm intensity 

((L/s)/hm2), p is the design return period (a) and t is the rainfall duration (minutes), respectively) (Zhang 

and Guan, 2012; Zhou et al., 2016). The rainfall calculation follows the national code for design of 

outdoor drainage (Mohurd, 2016) and the design principles of Chicago Design Storms (Berggren et al., 105 

2014; Panthou et al., 2014; Zhou et al., 2012). The detailed procedures in applying the regional SIF to 
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obtain CDSs are outlined in the national Technical Guidelines for Establishment of 

Intensity-Duration-Frequency Curve and Design Rainstorm Profile (Mohurd, 2014). In this study, we 

adopted in total 90 rainfall events, with return periods ranging from 2 to 100 years and rainfall duration of 

2, 4 or 6 hours, respectively. All rainfall inputs were generated with a temporal resolution of 10 minutes. 110 

2.2 Physically-based hydrodynamic model  

The overland flooding maps under the 90 rainfall inputs were simulated using the 1D-2D coupled 

hydrodynamic model, namely Mike Urban & Mike Flood (Mike by Dhi, 2016a). The hydrological inputs 

and pipe flows were simulated using the 1D Mouse model and the overland flows were calculated using 

the Mike 21 model. With the precipitation inputs, the runoff model was described by the general 115 

catchment data, such as locations, areas, imperviousness, and time of concentration. The shape of the 

runoff hydrograph was computed by the ‘Time-Area’ method (Mike by Dhi, 2016b). The calculation of 

unsteady flow in the pipe network was done by solving the Saint Venant equations, that are the vertically 

integrated equations of conservation of continuity (i.e., continuity equation) and momentum (i.e., 

momentum equation) (Mike by Dhi, 2016c). The surface flow model was described by the MIKE 21 120 

rectangular grid component and links between the 1D and 2D models were established to simulate the 

flow interactions between the pipeline and overland flows. Especially, the flow in the links is governed 

by an orifice equation (Mike by Dhi, 2016d). When the underground drainage is surcharged, the excess 

water will flow to the surface and conduct surface inundation calculations under the context of extreme 

precipitation. On the surface, the water typically flows along buildings or streets based on a description 125 

of the local digital elevation/topography (Mark et al., 2004; Leandro et al., 2009). 

Model outputs include overland flow paths, extents, depths and velocities at different time steps. 

One of the most commonly used outputs is the flood maps describing the maximum water depths caused 

by the given rainfall inputs (Kaspersen et al., 2017; Mike by Dhi, 2016a; Zhou et al., 2012). These flood 

maps can be further integrated with vulnerability data for an assessment of flood risk levels at different 130 

spatial scales (Sampson et al., 2014; De Moel et al., 2009; Ashley et al., 2007). In doing so, critical areas 

with higher levels of flood risks can be identified and allocated with priorities in mitigation and 

adaptation plans (De Moel et al., 2015; Zhou et al., 2012). As shown in Fig. 2 that changes in input 

rainfalls lead to variations in simulated flood maps. Increases in flood extents and depths are seen with 

rainfalls of larger return periods in the case study. Specifically, there were in total 90 flood maps output 135 
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as the dataset for deep learning model. Among that, 90% of the flood maps were randomly selected for 

model training and validation, and the rest 10% for testing. That means, for the deep learning model, all 

the tested hyetographs were the inputs and all the simulated flood maps were ground truth (GT) data to 

train the model network. After the training, the randomly sampled 10% flood maps were used to test the 

model prediction performances.  140 

 
Figure 2: Maximum flood maps simulated using hydrodynamic models for four return periods. 

2.3 Deep learning model for flood prediction 

2.3.1 LSTM (Long Short Term Memory) network  

The LSTM network has advantages in processing time-series data, especially for the long-term memory 145 

of data. As shown in Fig. 3 that the LSTM network is used to predict the flood maps, with the rainfall 

intensity series used as the network input. Ideally, the network can predict the flood depth distributions in 

the region as close as the real values/ ground truth (GT) values. The relative error between the output and 

GT values is calculated and used as a priori condition for the Bayesian optimization (BO). Finally, an 

https://doi.org/10.5194/hess-2021-596
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



7 

optimal network model (e.g., with an appropriate number of layers) is obtained through the iterative BO 150 

process.  

 

Figure 3. Method implementation steps.  

A benchmark LSTM network structure is shown in Fig. 4. With the input data (rainfall intensity), 

the LSTM gets the output (water depth) through a series of functional layers, including a LSTM layer 155 

(containing N neural units), a Leaky ReLU activation function (Eq. (1)), and a fully connection (FC) 

layer. In the LSTM layer, the rainfall is input to N neural units and N outputs (i.e., h0, h1, h2, …, hN) are 

obtained. The outputs of these neural units are then transformed nonlinearly by the Leaky ReLU 

activation function and enter the FC layer. Eventually, the FC layer delivers the output of the network. 

Specifically, the LSTM network is trained through the adaptive moment estimation (Adam) optimizer 160 

(Eqs. (2-4)). Meanwhile, two performance indicators were used to reflect the network training, which are 

the loss (Eq. (5)) and root mean square error (RMSE, Eq. (6)) respectively.  

𝑓𝑓(𝑥𝑥) = �         𝑥𝑥,              𝑥𝑥 ≥ 0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑥𝑥,       𝑥𝑥 < 0 (1) 

𝑚𝑚𝑙𝑙 = 𝛽𝛽1𝑚𝑚𝑙𝑙 + (1 − 𝛽𝛽1)∇𝐸𝐸(𝜃𝜃𝑙𝑙) (2) 

𝑣𝑣𝑙𝑙 = 𝛽𝛽2𝑣𝑣𝑙𝑙−1 + (1 − 𝛽𝛽2)[∇𝐸𝐸(𝜃𝜃𝑙𝑙)]2 (3) 

𝜃𝜃𝑙𝑙+1 = 𝜃𝜃𝑙𝑙 +
𝛼𝛼𝑚𝑚𝑙𝑙

�𝑣𝑣𝑙𝑙 + 𝜀𝜀
 (4) 
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Where, 𝑥𝑥 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are input and scale factor (0.01), receptively. Any input value that is less than zero 

is multiplied by a fixed scale factor. 𝛽𝛽1  and 𝛽𝛽2  are the Gradient Decay Factor (0.9) and Squared 

Gradient Decay Factor (0.999), respectively. 𝐸𝐸(𝜃𝜃) is the loss function, m and v are the momentum terms, 165 

and ɛ=10-8. n is the number of samples, 𝑦𝑦𝑖𝑖 and 𝑦𝑦�𝑖𝑖 are the predicted and real results, respectively.  

 

Figure 4: Framework of the LSTM network. 

The neural unit is a key component of the LSTM network and the structure of a single neural unit is 

shown in Fig. 5, including a forget gate (Eq. (7)), an input gate (Eqs. (8-10)) and an output gate (Eqs. 170 

(11-12)). The forget gate determines how many unit states at time (t-1) are retained until time (t). The 

input gate determines the update of the unit states. The output of the LSTM neural unit state is 

determined by the nonlinear activation function (Sigmoid, in Eq. (13)) and the output gate. In general, an 

input (x) passes through a neural unit to get an output (h). Specifically, the calculation process of a single 

LSTM neural unit is shown as follows:  175 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑾𝑾𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) = 𝜎𝜎(𝑾𝑾𝑓𝑓ℎℎ𝑡𝑡−1 + 𝑾𝑾𝑓𝑓𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑓𝑓) (7) 

𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠 =
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (5) 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 = �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (6) 
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𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑾𝑾𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (8) 

𝑠𝑠𝑡𝑡′ = tanh(𝑾𝑾𝑐𝑐[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐) (9) 

𝑠𝑠𝑡𝑡 = 𝑓𝑓𝑡𝑡𝑠𝑠𝑡𝑡−1 + 𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡′ (10) 

𝐿𝐿𝑡𝑡 = 𝜎𝜎(𝑾𝑾𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (11) 

ℎ𝑡𝑡 = 𝐿𝐿𝑡𝑡 × tanh( 𝑠𝑠𝑡𝑡) (12) 

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑠𝑠−𝑓𝑓
 (13) 

Where, 𝑓𝑓𝑡𝑡 is the output of the forget gate, 𝑾𝑾𝑓𝑓 and 𝑏𝑏𝑓𝑓 are the weight matrix and bias of the forget gate, 

and ℎ𝑡𝑡−1 and 𝑥𝑥𝑡𝑡 are the output of the previous neural unit (time (t-1)) and the current input (time (t)), 

respectively. 𝑖𝑖𝑡𝑡 is the output of the input gate, 𝑠𝑠𝑡𝑡′  and 𝑠𝑠𝑡𝑡 are the unit state of the current input and 

current time, respectively. 𝐿𝐿𝑡𝑡 is the output of the output gate, ℎ𝑡𝑡 is the neural unit output of time (t).  

180 
Figure 5: The structure of single neural unit. 

In this paper, the LSTM network was built in the MATLAB 2021a (MathWorks Inc, Natick, MA, 

US). The input was the rainfall intensity varying with time, and the output was the flood map of the case 

study site. The training platform was performed on a computer with NVIDIA RTX GeForce 2060 GPU, 

Intel Core i7-4790 @ 3.60 GHz CPU, Windows 10. 185 
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2.3.2 Bayesian optimization 

One problem with the aforementioned LSTM network is that its structure layers, learning rate, number of 

training epochs, mini-BatchSize and number of neural units were all unknown. To start from scratch, it 

can be very difficult and time consuming to manually select and fine-tune these hyper-parameters. 

Bayesian optimization (BO) is an algorithm that can automatically search for the optimal 190 

hyper-parameter combinations. The BO is a continuously updated probability model (Eq. (14)) and 

assumes that the probability of occurrence of Event A under the a priori condition of Event B is directly 

proportional to the probability of occurrence of the a posteriori condition of Event B. That is, for 

successively occurring events, the latter events are related to all previous events. It is a potential 

hyper-parametric optimization scheme, which means the most likely parametric combination is inferred 195 

through a number of a priori attempts (i.e., training network models with different structures).  

The posterior probability of the optimization function is updated through a number of evaluations of 

objective function to obtain the optimal parameter combination. It can provide reference for the 

subsequent tried models according to the a priori conditions (i.e., historical evaluation records, which are 

the mean relative errors of the tried network model in this paper). When selecting the next group of 200 

parameter combinations, the algorithm made full use of the previous evaluation information to reduce the 

search time of the parameters. Specifically, we designed a variety of search ranges of the 

hyper-parameters and BO algorithm automatically took the values from the search ranges and constantly 

tried the network models with different structures, and then recorded the errors. In this paper, the 

hyper-parameters to be optimized included the number of LSTM layer, learning rate, Epoch, 205 

mini-BatchSize, and number of hidden units. The search ranges of these five parameters were set to [1-5], 

[10-4-1], [0-600], [0-100] and [0-100], respectively. Finally, BO inferred the possible optimal network 

combination according to the historical error information. The selection process is shown in Eq. (15).  

𝑃𝑃(𝐴𝐴|𝐵𝐵) ∝ 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴) (14) 

𝑥𝑥∗ = arg min
𝑓𝑓∈𝜒𝜒

𝑓𝑓(𝑥𝑥) (15) 

Where, 𝑃𝑃(𝐴𝐴|𝐵𝐵)  and 𝑃𝑃(𝐴𝐴)  are the posterior and prior probabilities of Event A, respectively, and 

𝑃𝑃(𝐵𝐵|𝐴𝐴) is the observation point probability obtained from the previous events. 𝑓𝑓(𝑥𝑥) is the objective 210 

https://doi.org/10.5194/hess-2021-596
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



11 

function (i.e., the mean relative error (Eq. (16)), see the next section), 𝑥𝑥∗ is the optimal parametric 

combination, and 𝜒𝜒 is the value range of parameters.  

2.3.3 Performance indicators 

In order to evaluate the reliability of the proposed method, five indexes were employed to evaluate the 

prediction results, focusing on estimating the differences in flood depths and the spatial patterns of the 215 

flood distributions. First of all, the mean relative error (Mre) was used to calculate the depth error 

between the prediction results (PR) and the ground truth (GT). Next, the 2-D correlation coefficient 

(2D-CC) and structural similarity (SS) were used to evaluate the correlation and similarity of images 

(distributions of flood areas), respectively. Further, the Bhattacharyya distance (BD) and Histogram 

Intersection Distance (HID) measure the similarity of two discrete or continuous probability distributions. 220 

They were adopted to measure the amount of overlap between two statistical samples or images 

(distribution of water area). 

𝑅𝑅𝑀𝑀𝑠𝑠 = �
|(𝑃𝑃𝑅𝑅 − 𝐺𝐺𝐺𝐺)|

𝐺𝐺𝐺𝐺
 (16) 

2𝐷𝐷 − 𝐶𝐶𝐶𝐶(𝐼𝐼, 𝐽𝐽) =
∑ ∑ (𝐼𝐼𝑚𝑚𝑛𝑛 − 𝐼𝐼)(𝐽𝐽𝑚𝑚𝑛𝑛 − 𝐽𝐽)𝑛𝑛𝑚𝑚

�(∑ ∑ (𝐼𝐼𝑚𝑚𝑛𝑛 − 𝐼𝐼)2)(∑ ∑ (𝐽𝐽𝑚𝑚𝑛𝑛 − 𝐽𝐽)2)𝑛𝑛𝑚𝑚𝑛𝑛𝑚𝑚

 (17) 

𝑅𝑅𝑅𝑅(𝐼𝐼, 𝐽𝐽) =
(2𝜇𝜇𝐼𝐼𝜇𝜇𝐽𝐽 + 𝐶𝐶1)(2𝜎𝜎𝐼𝐼𝐽𝐽 + 𝐶𝐶2)

(𝜇𝜇𝐼𝐼2 + 𝜇𝜇𝐽𝐽2 + 𝐶𝐶1)(𝜎𝜎𝐼𝐼2 + 𝜎𝜎𝐽𝐽2 + 𝐶𝐶2)
 (18) 

𝐵𝐵𝐷𝐷(𝐼𝐼, 𝐽𝐽) = − ln(��𝑝𝑝(𝑥𝑥)𝑞𝑞(𝑥𝑥)
𝑓𝑓∈𝑋𝑋

) (19) 

𝐻𝐻𝐼𝐼𝐷𝐷(𝐼𝐼, 𝐽𝐽) =
∑ min(𝑝𝑝(𝑥𝑥), 𝑞𝑞(𝑥𝑥))𝑓𝑓∈𝑋𝑋

∑ 𝑝𝑝(𝑥𝑥)𝑓𝑓∈𝑋𝑋
 (20) 

Where, 𝐼𝐼 and 𝐽𝐽 are the average pixel values of Image I and J, respectively, 𝜇𝜇𝑓𝑓, 𝜇𝜇𝑦𝑦, 𝜎𝜎𝑓𝑓 𝜎𝜎𝑦𝑦 and 𝜎𝜎𝑓𝑓𝑦𝑦 are 

the pixel local mean, standard deviation and cross covariance of Image I and J, respectively. 𝐶𝐶1 and 𝐶𝐶2 

were 6.5 and 58.5 respectively. 𝑝𝑝(𝑥𝑥) and 𝑞𝑞(𝑥𝑥) are probability distributions of pixels of Image I and 225 

Image J, respectively. X is the domain of 𝑝𝑝(𝑥𝑥) and 𝑞𝑞(𝑥𝑥). 
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3 Results and discussion 

An illustration of the mean relative error of the testing dataset obtained from the 100 Bayesian 

optimizations is shown in Fig. 6a. The range of mean error is between 0.095 and 0.73 and the details on 

the error value of each number of BO optimization can be seen by the size of the bubble plot. Especially, 230 

one of the networks, with a mean relative error value of 0.095, worked best in learning the flood map 

features. Figure 6b shows the RMSE and loss of the model with the best performance identified from the 

Bayesian optimization. It is shown that the loss curve stably decreased along the network training and the 

model achieved a convergence status after the 100 iterations with a small loss value. This implies that the 

deep learning network is very robust and trained well with the input data. The detailed network structure 235 

of the optimized model is shown in Fig. 7. The learning rates, Epoch, mini-BatchSize, and number of 

hidden units were 0.0146, 385, 59 and 94 respectively.  

 
Figure 6: (a) the mean relative errors obtained from the 100 Bayesian optimizations, and (b) the RMSE and 

loss achieved by the model with the best performance. 240 
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Figure 7: The optimized model structure of the LSTM network. Batchnorm_#: Batch normalization layer, 

normalize the network training data (mapping raw data to [0, 1]) to speed up the training speed.  

We further analyzed the statistics of the performance indicators of the best performing model. 

Boxplots of the specific relative error of each testing flood map is shown in Fig. 8a. As shown previously, 245 

the deep learning model obtained satisfying results with a mean relative error of 9.5%. The achieved 

minimum RE of a single prediction is 0.76%, which implies the predicted flood map (both the inundation 

locations and depths) is very close to the ground truth map for validation. Through statistics, the degree 

of similarity is illustrated by the four types of parameters in Fig. 8b. First of all, the Bhattacharyya 

distances of the testing dataset were all close to zero, which means that the spatial distributions of the 250 

ground truth and predicted flood hazard maps were very similar and a majority of the two map 

populations were overlapped. The good results were further verified by the Histogram intersection 

distance, structural similarity and 2D correlation coefficient as their values were all close to one. This 

implies that the spatial similarity of the predicted maps was very high. On the whole, Figure 8a and 8b 

indicate that the model is superior in learning and predicting the flood maps with different hyetographs.  255 

The computation times of the hydrodynamic model and the deep learning model are compared in 

Fig. 8c. The average computation time of the hydrodynamic model was 153.2s, while the mean time of 

the prediction model was significantly reduced, with a value of 0.038s. It is shown in Fig. 8d that the 

hydrodynamic model took almost 19,585 times (i.e., mean value) the simulation time of the deep learning 

model. In the worst case, the hydrodynamic model simulates the flood map more than 36,600 times 260 

slower. Note that in fact, the computation time of the hydrodynamic model was even longer, as the model 

needs to run the hydrological and pipe-network+2D simulations separately and a manual integration of 

the two simulations were not taken into account. The results show that with proper model training, the 
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deep learning model is accurate and much more computational efficient, which can provide important 

support tools for real-time/rapid forecasting of urban flooding and emergency decision-making.  265 

 
Figure 8: (a) relative error, (b) degree of similarity, (c) computation time and (d) deep learning (DL) 

efficiency (i.e., computation time of DL model divided by computation time of hydrodynamic model) achieved 

with the testing datasets. 

In visual quality, Figure 9 illustrated the inundated areas of the ground truth and the predicted flood 270 

maps with the best model performance (i.e., with the minimum relative error). In total there are 27,183 

grids in the flood map. It can be seen that the deep learning model successfully retrieved the depths and 

spatial patterns of the inundated areas. The two maps were almost identical and it is very difficult to tell 

the difference without looking into further statistic details. Figure 10a shows the corresponding spatial 

distributions of the relative errors of the flood map. The differences between the two maps were almost 275 

negligible except the highlighted regions near the water bodies. The predicted flood map could identify 

all the flow paths and local depressions as the ground truth map. Meanwhile, the spatial distributions of 

the mean relative errors of the testing dataset are shown in Fig. 10b. Results indicate that there is a good 

agreement between the series of predictions and the ground truth maps. The distribution of the mean 

errors is even in most areas, with an error below 1%. We also note that the errors are greater where there 280 

are higher water depths and more flow volumes. In the maximum case, the relative error of predicted 

water depths near the water bodies can reach above 10% (Fig. 10c).  
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Figure 9: Flood inundation maps simulated based on Mike Urban & Mike Flood. 

285 

Figure 10: Flood inundation maps simulated based on Mike Urban & Mike Flood. 

The prediction accuracies of the deep learning model are further examined as a function of water 

depths in Fig. 11. Results show that the flood map dataset is imbalanced as a majority of the results 

contain no and shallow water. Results show that for water depth below 3m, the model performed well 

and most errors were below 2%. The errors tended to increase under extreme conditions, with water 290 

depths above 3.5m. Figure 11b shows that the predicted water depths are basically consistent with the 

ground truth water depths. These results clearly indicate that the deep learning model generalizes well 
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with the different hyetograph variations and can produce very accurate flood results even with only 

rainfall inputs.  

295 
Figure 11: (a) Relative errors of predicted flood maps as a function of water depths, and (b) ground truth 

water depths as a function of predicted water depths. 

4 Conclusions 

A rapid, accurate and dynamic flood prediction tool is of great significance to urban water management 

to protect people, social assets and environment from flood hazards. This study proposed a deep learning 300 

technique-based data-driven flood prediction approach, employing an integration of the LSTM technique 

and Bayesian optimization approach. Results clearly show that model can accurately produce flood maps 

for various hyetograph inputs with much lower computation costs. The presented model showed a robust 

generalizability and predicted the flood maps 19,585 times faster than the hydrodynamic model. The 

achieved mean relative error in water depths is 9.5% and the degree of similarity of flood maps was very 305 

high. Specifically, in a best case, the difference between the ground truth and model prediction was only 

0.76% and the spatial patterns of the two types of maps were almost identical. In conclusion, the accuracy 

and efficiency of the proposed method is satisfying.  

We acknowledge some limitations in this study and discuss directions of future work. First of all, 

the current training and testing data were obtained from hydrodynamic modelling due to a lack of 310 

detailed field site data. In future work, we consider adopting image capture techniques for data 

supplement, such as deep learning techniques for automated detection, acquisition and evaluation of 

water depths from camera images. In doing so, there will be more real case/field survey dataset for model 

https://doi.org/10.5194/hess-2021-596
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



17 

training and testing. Meanwhile, data augmentation is useful in enhancing the quantity and quality of 

input data, which will be tested in future investigations. In addition, the deep-learning model currently 315 

only predicts the maximum water depths caused by the rainfall inputs. This means that the temporal 

changes in water depths during the rainfall events were not considered. Further research to predict the 

dynamic changes in both temporal and spatial scales is of great interest.  

Despite the limitations, this work with its advances can well contribute to a better understanding of 

the deep learning techniques for urban flood mapping. The proposed methodology predicts water depths 320 

with only rainfall inputs, without further requirements of e.g., local terrains and geographical conditions. 

The approach can be easily adjusted or adopted for other types of applications in water management field. 

More importantly, the proposed method can potentially replace and/or complement the conventional 

detailed hydrodynamic model for urban flood assessment and management, particularly in applications 

of real time control, optimization and emergency design and plan.   325 
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