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accurate and rapid flood prediction) 
 
Response to Reviewer 1 
Comment 1  

“I find the topic of the submitted manuscript very interesting and also within the scope of HESS. 

Rapid flood prediction mapping in urban areas has a few challenges when compared with flood 

modelling purposes (e.g., fluvial flood mapping). The authors identify these challenges and 

propose a data-driven flood model based on LSTM networks and Bayesian optimisation.”  

Response: We greatly thank the helpful and encouraging comments from the reviewer and the 

acknowledgment on the contribution and value of our work. We have fully addressed each of the 

reviewer’s comments in the revised version and the paper has been greatly improved thanks to 

the reviewer.  

 

Comment 2 

“The optimisation part is interesting, but the implementation and justification of the LSTM flood 

model lacks, in my opinion, novelty. One of the arguments of the authors for using LSTM to 

predict flooding is its suitability to predict time series, i.e. to include the time dimension in the 

flood prediction mapping. However, they fail to do so as they predict only the maximum water 

depth maps. This has been presented in previous recent studies (that are correctly acknowledged 

by the authors); so, what are the novel aspects of this study? Simple a different network 

architecture? I believe this is not for a scientific contribution that aims to contribute to the 

advance of the (applied) science.”  

Response: We agree with the reviewer and have greatly enhanced the methodology and related 

descriptions and results. To improve the novelty of the paper, in the revised version we have 

revealed the advantages of the LSTM network on flood time series predictions. Specifically, the 

following contents have been incorporated:   

(1) Create an additional dataset for flood time series. To research the prediction 

performance of LSTM on flood time series, an additional dataset including 11 rainfall events 

and resulted flood time series has been included. The flooded water depths were recorded 



every ten minutes for the entire case study under each rainfall. Among that, nine rainfalls 

were used for training and the other two rains for testing.  

(2) Explore the LSTM network for time series predictions. With the revised 

methodology and dataset, the tested results showed that our model can well predict flood 

variations at different time steps. Figure 1 below shows the sample comparisons between 

ground truths and model predictions of flood maps in time dimension. In visual quality, the 

predicted flood maps were in good agreement with ground truths at all time steps. The 

overall prediction effects (based on the relative error) and the evaluation indicators on the 

degree of similarity were summarized in Figure 2. These indicators further validated the 

model performance, which was also satisfying in predicting flood time series.  

 
Figure 1: Sample comparisons of flood maps between ground truths and model predictions 

at different time steps in the entire case study. 



 
Figure 2: (a) Relative error and (b) Degree of similarity (BD, HID, SS and 2D-CC) of flood 

predictions at different time steps. Specifically, the closer the BD is to 0, and the HID, SS, 

2D-CC are to 1, the better the prediction performance. 

 

Comment 3 

“One of the main challenges about data-driven models, in general, is the capability of the 

models to generalize to different case studies or contexts. This aspect is not investigated nor 

discussed in the manuscript - it is only briefly mentioned, and for the 1st time, in the conclusions 

section. Since terrain elevation is not part of the input data set, it seems that the proposed model 

is not at all generalisable to other cases.”  

Response: We agree with the reviewer that one of the main challenges of data-driven models is 

their compatibility. In the field of machine learning, the transfer learning (TL) technology can 



significantly improve the application field of intelligent algorithms. In this paper, we used 

transfer learning technology to transfer the LSTM network obtained from the current site 

(Site A) to another site (Site B), so as to expand the compatibility and generalization ability 

of our method.  

 
The TL is a deep learning method to transfer knowledge from one domain (source domain) to 

another domain (target domain), see Figure 3. Through the training of a source model (pre-

trained network) using the source data (Site A), the pre-trained network can gain a strong ability 

of feature extraction. Subsequently, with fine-tuning (transfer learning) the new data (Site B), the 

pre-trained network can quickly adapt to the new site under different scenarios. With this method, 

a lot of training time can be saved for the target domain (the new site), and better training effects 

can be achieved, especially when there are limited training samples in the target domain.  

 
Figure 3: Transfer learning technology. 

In the revised version, we have included a new case study to test the performance of our method 

with the TL technology. The main landuse, drainage system and surface elevation are shown in 

Figure 4. The tested results (Figure 5) showed that with TL the proposed model was applicable 

and generalisable to other cases and the predicted flood maps were consistent and similar to 

the ground truths. Specifically, Table 1 shows the achieved performance indicators of all tested 

rainfall events. The obtained BD is close to 0, and HID, SS and 2D-CC are close to 1, which 

means the model predictions are highly similar to the ground truth results. This further proves 

that the flood prediction of the new site can be realized through the TL technology.  
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Figure 4: (a) landuse and (b) drainage network and DEM of the new case study. 
 

 
Figure 5: Sample comparison of flood maps of (a) ground truth and (b) model prediction in 
the new case study under a 50-yr event. 

Table 1: The performance indicators of tested rainfalls in the new case study. 

Rainfall 

events 

Performance indicators 

BD HID SS 2D-CC 

A 0.003167 0.9994 0.99981 0.997707 

B 0.003961 0.999227 0.99995 0.999361 

C 0.010744 0.99613 0.997472 0.929869 

D 0.003279 0.99948 0.999982 0.999637 

E 0.009604 0.99651 0.997349 0.927005 

F 0.003337 0.999381 0.99996 0.999301 



Comment 4 

“The limitations of the model and study presented at the end of the Conclusions section are very 

similar to those of other previous studies. If the authors are aware of these limitations from 

previous studies, I would expect them to try to address at least some of the previous studies 

limitations to improve the knowledge.”  

Response: Thanks for the suggestions. We have improved the methodology and better explained 

the novelty of the revised paper. We have also better present the related literature and revised the 

Conclusions section. To summarize, the paper has been improved in three aspects following the 

reviewer’s comments.  

(1) Comment 2: enhance the model capability in predicting flood time series, highlighting 

the prediction effects of the LSTM network in time dimension 

(2) Comment 3: the adoption of transfer learning technology to improve the compatibility 

and generalization ability of the proposed method 

(3) Comment 5: explore the role of Bayesian Optimization Algorithm in the LSTM 

network, and the determination of best design scheme of the network  

 

Comment 5 

“As mentioned above, I think the part of the optimisation could be better explored in the 

manuscript. Perhaps this could be the novel contribution of the study?”  

Response: Thanks for the suggestions. In the revised version, we have added more methodology 

descriptions and parameterization analysis of the Bayesian optimization. Specifically, it included 

the following contents:  

(1) Clarify more optimization process and details in the methodology section, see the 

added workflow of the Bayesian optimization process in Figure 6.  

The optimization process is implemented as follows: (1) A group of hyper-parameter 

combination 𝑥𝑥0  (e.g., maxEpochs, learning rates) is randomly selected within the value 

ranges of the hyper-parameters (shown in Section 2.3.2); (2) The 𝑥𝑥0 is input to the network 

for training to obtain the corresponding objective function 𝑓𝑓(𝑥𝑥0) ; (3) The probability 

distribution of 𝑓𝑓(𝑥𝑥) corresponding to 𝑥𝑥  is calculated and predicted through the Gaussian 

process using all the inputs (𝑥𝑥,𝑓𝑓(𝑥𝑥)); (4) The optimal 𝑥𝑥 is determined by the acquisition 

function in the probability distribution; (5) The 𝑥𝑥 obtained from Step (4) is taken as the 



hyper-parameter combination of the network to train, and calculate the objective function 

𝑓𝑓(𝑥𝑥); (6) Before reaching the maximum iteration number, the (𝑥𝑥,𝑓𝑓(𝑥𝑥)) obtained in Step (5) 

will be used as the input of the Gaussian process to continuously update the probability 

model to obtain a new (𝑥𝑥,𝑓𝑓(𝑥𝑥)). Once the maximum iteration number is reached, the 𝑥𝑥 

corresponding to the minimum value of 𝑓𝑓(𝑥𝑥)  is taken as the optimal hyper-parameter 

combination 𝑥𝑥∗. 

 
Figure 6: The Bayesian optimization process.  

 

(2) In the Result section, we analyzed the influence of network parameters (i.e., network 

depth, Epoch, MinBatchSize and initial learning rate) on the prediction results (see 

Figure 7). 

The results show that: (1) There are large errors when the values of MaxEpochs (i.e., 

maximum number of epochs) are set too low. Increasing the number of training epochs can 

avoid adverse events. (2) The MiniBatchSize has little influence on the prediction results, 

but it is not appropriate to take too large or small values. In this case, the MiniBatchSize of 

20-70 can ensure an ideal prediction effect. (3) It is recommended to set a low learning rate. 
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When the value is low, the achieved error is small and close to 0. (4) A deeper network layer 

can obtain a smaller prediction error. With the parameterization analysis, the best design 

scheme of the LSTM can be determined through the optimization.  

 
Figure 7: Influence of four types of network parameters on model prediction performance 

(i.e., relative error).  

 
Comment 6 

“The manuscript is, in general, well written, making it easy to read.”  

Response: We thank the reviewer for the positive feedback and enlightening advices. 

 

Specific comments:  
1. “Line 43: this is valid also for physically-based models. Rephrase?”  

Response: Comments incorporated in the revised version.  

 
2. “Line 113 & 115: why different models Mike Urban & Flood vs Mike 21? Please provide 

justification or mention only the model used.”  



Response: We agree and have clarified in the revised version that ‘Mike Urban’ was used as the 

physical model.  

3. “Line 145: can "... for the long-term memory of data" be better described?”  

Response: Yes, we have replaced “the long-term memory of data” with “the time-varying data”.  

 
4. “Line 149: unclear sentence. It seems that something is missing.”  

Response: We agree and have added a new sentence to better explain the information: “It is a 

priori probability that is used as the basis for selecting the parameter combination in the next 

iteration”. 

 
5. “Lines 279 - 282: this can't be seen in the plots. The colour scale does not have units. How 

does the colour scale relate to the yy axis?” 

Response: We have revised the original Figure 9 and Figure 10, and the related legends, 

captions and texts to better clarify the information and discuss the results. The units of color 

scales in Figure 9 and 10 are meter (i.e., water depth) and relative error (-), respectively.  

 
Figure 9: Sample comparison of flood maps between ground truth and model prediction in the 

best case scenario. 

 



 
Figure 10: Relative error of (a) best (i.e., minimum), (b) mean, and (c) worst (i.e., maximum) 

case scenarios, respectively. (d) summarizes the relative error data in boxplots for the three types 

of scenarios.  

 
6.  “Line 306: the worst and best cases are also interesting to be analyzed and discussed.”  

Response: We agree and have added more data and discussions on the worst and best case 

scenarios. Figure 10 has been revised to better present the information. It is shown in Figure 10d 

that in all cases, the mean errors were below 1%. The errors were much higher in the worst case, 

where there were a small number of cells associated with relative errors greater than 20%. These 

high-error cells were mainly located in/near the water bodies.  

  



Paper ID: hess-2021-596 (A deep learning technique-based data-driven model for 
accurate and rapid flood prediction) 
 

Response to Reviewer 2 
Comment 1  

“The author used the rainfall as the input to generate simulated flood inundation maps. The paper is well 

organized, and the LSTM model and Bayesian optimization method appears to be correct and effective. 

However, there are three major issues. First, the summary of the earlier work needed improvement. There 

are many related papers using data-driven approach to generate flood maps, however the authors do not 

include them in the introduction. Second, a research may be regarded as a novel study if it resolves a 

problem or constraint in earlier studies. However, the LSTM is a new neural network layer that can 

perform better than ANN or linear regression models, and this manuscript does not appear to have 

demonstrated its novelty. Lastly, this manuscript lacked baseline models and results, which prevented me 

from knowing how much better the LSTM model is than a simple average baseline, linear regression 

model, or an ANN model.”  

Response: We greatly thank the reviewer for the valuable comments to improve the paper. We have 

significantly revised the paper following the suggestions and better explained the novelty of the work. 

Overall, the paper has been improved in the following aspects: 

(1) We have improved the summary of the previous work and added more related papers 

and suggested references to better explain the novelty of the proposed methodology.  

(2) We have enhanced the prediction effects of the LSTM network in predicting not 

only the maximum water depths, but also flood time series, which was a 

constraint/has not been reported in the previous literature. The proposed method enabled 

the flood prediction in time dimension, which is a new contribution to the field.   

(3) The revised paper adopted the transfer learning technology to improve the 

compatibility and generalization ability of the proposed model. New results showed 

the model can be well applied to other case studies. The practical application prospect of 

the proposed method is enhanced.  

(4) We have analyzed the role of Bayesian Optimization Algorithm in the LSTM 

network, and the determination of best design scheme of the network. This has not been 

explored in the previous literature.   

(5) Following the reviewer’s suggestions, we have added two flood prediction algorithms 



(ANN and CNN) as the baseline models to confirm the effectiveness of the proposed 

method. New results show that the LSTM is more competitive than the other two 

algorithms and performed better in terms of evaluation indicators.  
 

Comment 2 

“Method section 2.2. If my understanding is correct, all the flood maps are simulated by your physically-

based model. Thus, your are developing a deep learning model as a surrogate model of your Mike series 

models. Such studies have been studied in the past several years using Deep Learning models (see the 

following papers). If the main difference between your study and theirs is the use of LSTM other than a 

fully connect layer, this is not novel enough. 

Berkhahn, S., Fuchs, L., & Neuweiler, I. (2019). An ensemble neural network model for real-time 

prediction of urban floods. Journal of hydrology, 575, 743-754; Lin, Q., Leandro, J., Wu, W., Bhola, P., 

& Disse, M. (2020). Prediction of maximum flood inundation extents with resilient backpropagation 

neural network: case study of Kulmbach. Frontiers in Earth Science, 8, 332.” 

Response: First of all, sorry for insufficiently addressing the novelty of the proposed method in the 

original version. As responded to Comment 1 that we have significantly revised the paper (including the 

introduction, methodology and related results) to better explain the contribution of our work. One of the 

novelties is to predict flood maps in time dimensions (Figure 1 below). Also the Bayesian optimization 

approach has significantly improved the accuracy of prediction. 

 
Figure 1: Sample comparisons of flood maps between ground truths and model predictions at different 
time steps in the entire case study. 



Secondly, this study is aimed to develop a flood prediction model that is applicable to various types of 

case studies, not just as a surrogate model of the physical model. The physical model was used to provide 

training samples for our model to learn the flood feature extraction ability. In the revised version we used 

the transfer learning (TL) technology to transfer the LSTM network obtained from the current site (Site A) 

to another site (Site B), to expand the compatibility and generalization ability of our method. A new case 

study (Figure 2) was used to test the performance of the method. Results (Figure 3) showed that with TL 

the proposed model can be well adapted to other cases and the predicted flood maps were consistent to the 

ground truths. Specifically, the model performance indicators in the new case are shown in Table 1. It is 

shown that the predicted results are very satisfying (BD is close to 0, HID, SS and 2D-CC are close to 1), 

which proves that flood disaster prediction of the new site can be realized through the TL technology.  

 
Figure 2: (a) main landuse and (b) drainage network and DEM of new case study. 
 

 
Figure 3: Sample comparison of flood maps of (a) ground truth and (b) model prediction in the new case 
study under a 50-yr event. 



 
Table 1: The performance indicators of all tested rainfall events in the new case study. 

Rainfall events 
Performance indicators 
BD HID SS 2D-CC 

A 0.003167 0.9994 0.99981 0.997707 
B 0.003961 0.999227 0.99995 0.999361 
C 0.010744 0.99613 0.997472 0.929869 
D 0.003279 0.99948 0.999982 0.999637 
E 0.009604 0.99651 0.997349 0.927005 
F 0.003337 0.999381 0.99996 0.999301 

 

Comment 3 

“What is the color in Figure 6a represents? Can you provide more details about this figure? It seems like 

the increase of the number of optimizations does not decrease the error much.”  

Response: We thank this comment to improve the presentation of the optimization results. The color of 

the bubble chart in Figure 6a represents the size of the error value. We have revised the chart to better 

demonstrate the variations of the relative errors along with the iterations. 

 
Figure 6: The mean relative errors along with the Bayesian optimization process. 

 

Comment 4 

“Are your figures 9 and 10 captions correct? And, is your legend correct for Figure 10? The base color 

Cyan should represent 0 on your Y-axis, but the legend shows it is 0.5 relative error.”  

Response: We thank the reviewer for pointing out the problems. Both figure captions were typos and we 

have corrected them in the revised version. The data of Figure 10 was correct, but the base color was 

misleading in the previous version because we adopted the ‘shading interpolation’ function to visualize 



the figure. We have revised Figure 10 to better present the information and added a subplot to summarize 

the data for different case scenarios.   

 
Figure 10: Relative error of (a) best (i.e., minimum), (b) mean, and (c) worst (i.e., maximum) case 

scenarios, respectively. (d) summarizes the data in boxplots for the three types of scenarios. 

 

Comment 5 

“Can you provide results from several baseline models to justify your model performance is good? Some 

sample baselines could be: 1, models such as ANN as Berkhahn, S., Fuchs, L., & Neuweiler, I. (2019) did 

(deep learning model using only FC layers other than LSTM). 2, a Lasso or Ridge Regression (or 

machine learning models) for each point with the overall rainfall as input, water depth as output. 3, an 

average/median flood map of the training dataset (a.k.a. simple average, see the link below). Without 

these baselines, your results in Figure 8a and 8b cannot prove much -- we know your model is good, but 

we don't know how good your model comparing to other simple linear models or simple average of 

training sets. 

https://otexts.com/fpp2/simple-methods.htm”  

Response: Following your suggestions, we have investigated two additional flood models (ANN and 

CNN) to justify the performance of our model. We will explain more details on the ANN (a fully 



connected network (Back-Propagation neural network)) and CNN (including two convolution layers, one 

pooling layer and a fully connection layer) models in the revised literature review and Methodology 

section.  

 
The new results (Figure 4) showed that the LSTM model outperformed the two baseline models in terms 

of evaluation indicators on both the relative error and the degree of similarity. This confirms the excellent 

performance of LSTM in flood prediction on water depth and spatial distribution. The ANN performed 

poorly in predicting water depths and there were a large number of cells associated with large errors. 

Regarding the BD, HID and SS, the CNN was the least ideal in predicting the spatial distributions. One 

possible reason could be that the convolution operation of CNN filtered part of the feature information of 

flood distribution. Note that the ANN’s prediction based on the 2D-CC indicator was worst. This could be 

due to that the fully connected network structure of ANN was prone to overfitting, and may also be 

interfered by some redundant information.  

 
Figure 4: (a) the mean relative error and (b) degree of similarity indicators of the proposed LSTM and two 

baseline models (ANN and CNN), respectively.  

 

Furthermore, a sample illustration of the predicted flood maps by the three types of models is shown in 

Figure 5. It is clear that in visual quality our proposed model is also more competitive in flood predictions 

than the other two methods. 



 
Figure 5: A sample comparison of flood inundation maps of ground truth, LSTM, ANN and CNN models 

under an 85-year rainfall event.  


