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Abstract. Evaporation is an important meteorological variable that has also a great impact on water management. In this study, 

FAO-56 Penman-Monteith equation (FAO56-PM), multiple stepwise regression (MLR) and Kohonen self-organizing map (K-

SOM) techniques were used for the estimation of daily pan evaporation (Ep) in three treatments, where C was the standard 

class A pan with top water, S was A pan with sediment covered bottom, and SM was class A pan containing submerged 

macrophytes (Myriophyllum sipctatum., Potamogeton perfoliatus, and Najas marina), in an six-season experiment. The 10 

modelling approach included six measured meteorological variables; daily mean air temperatures (Ta), maximum and 

minimum air temperatures, global radiation (Rs), relative humidity (RH), and wind speed (u) in the 2015-2020 growing seasons 

(from June to September), at Keszthely, Hungary. Average Ep varied from 0.6 to 6.9 mm d-1 for C, 0.7 to 7.9 mm d-1 for S, 

whereas from 0.9 to 8.2 mm d-1 for SM during the growing seasons studied. Correlation analysis and K-SOM visual 

representation revealed that Ta and Rs had stronger positive correlation, while RH had a negative correlation with the Ep of C, 15 

S and SM. Performances of the different models were compared using statistical indices, which included the root mean square 

error (RMSE), mean absolute error (MAE), scatter index (SI) and Nash-Sutcliffe efficiency (NSE).  The results showed that 

the MLR method provided close compliance with the observed pan evaporation values, but the K-SOM method gave better 

estimates than the other methods. Overall, K-SOM has high accuracy and huge potential for Ep estimation for water bodies 

where freshwater submerged macrophytes are present. 20 

1 Introduction 

Open water evaporation is one of the paramount elements of the hydrological cycle (Brutsaert, 1982). Evaporation losses from 

various surfaces appear to be increasing in recent decades (Mbangiwa et al., 2019). Due to climate change, it is also extremely 

important to determine evaporation as accurately as possible (Fournier et al., 2021), for which both direct and indirect methods 

are available. As a direct method, the evaporation pans (primarily the class A pan proposed by the World Meteorological 25 

Organization, WMO) are used extensively throughout the world to measure open water evaporation and to estimate reference 

evapotranspiration (Rahimikhoob, 2009). Measurements of pan evaporation may be spatially and temporally limited (Jensen 

et el., 1990; Rahimikhoob, 2009), like in case of maintenance problems which can affect the accuracy of evaporation 

measurements, e.g., most often turbidity of water, watering of birds or other animals (Tabari et al., 2010). 

https://doi.org/10.5194/hess-2021-590
Preprint. Discussion started: 1 December 2021
c© Author(s) 2021. CC BY 4.0 License.



2 

 

To indirectly determine evaporation, several methods can be used: empirical equations are applied that estimate evaporation 30 

based on meteorological variables (air temperature, Ta, relative humidity, RH, global radiation, Rs), or transfer and water 

budget methods (Burman, 1976). The most widely used empirical formula is a FAO-56 Penman–Monteith equation (FAO56-

PM) (Allen et al., 1998), which is the standard method for computation of daily reference evapotranspiration. However, 

measuring meteorological variables requires sophisticated instruments, which can often be challenging (Arunkumar and 

Jothiprakash, 2013). The amount of required data and the difficulty of the estimation of the unknown meteorological elements 35 

may be additional problems (Sanikhani et al., 2015; Khatibi, Ghorbani, Naghshara et al., 2020). Therefore, there is a need for 

alternative methods that are simple and effective, require fewer inputs and are also able to solve problems which are difficult 

to formalize (Sudheer et al., 2003). 

A promising tool that can be used to estimate Ep and is a suitable alternative to the empirical models is the different neural 

networks (Kim et al., 2015), thus the neural networks are increasingly used in evaporation and evapotranspiration estimation 40 

(Kumar et al., 2002; Keskin and Terzi 2006; Rahimikhoob, 2009). The machine learning techniques can map high dimensional 

data to a low dimensional space and show some similar properties based on internal data relationships (Pearce et al., 2011; 

Zelazny et al., 2011). In recent years, machine learning techniques have been broadly employed in hydrological and 

environmental models, including to forecast evaporation (Wu et al., 2020). Numerous results in the literature indicate that 

machine learning algorithms such as artificial neural network (ANN), M5 model tree (M5T), support vector machines (SVM), 45 

multivariate adaptive regression splines (MARS), gradient boosting with categorical features support (CatBoost), random 

forest (RF) perform excellently in predicting pan evaporation as well (Dong et al., 2021). The unsupervised NNs, including 

Kohonen Self Organizing Maps (K-SOM), has several advantages (Kohonen, 1982). The essence of this method is to group 

the large-dimensional array of the input layer into a 2-dimensional array in the output layer, so that all variables of the input 

vectors can be found in each node of the output layer (Adeloye et al., 2011). Another advantage of K-SOM over traditional 50 

models is that it also has visualization abilities (Hadjisolomou et al., 2018). 

Whether it is an empirical formula or NN, the values of the model are compared to the observed values. Evaporation of open 

water surfaces is usually measured by means of pans endowed with unrealistic properties. These pans are filled with clean tap 

water and the evaporated water is also replaced with tap water. The literature data therefore refer to these pans filled with clean 

water. In nature, however, there may also be submerged macrophyte living in the open water. These plants are primary 55 

producers in lake ecosystems (Kimmel and Groeger, 1984; Zhang et al., 2017), thus, their presence is essential and affects the 

water quality (Yan et al., 2019). Furthermore, the species that are rooted in the sediment can stabilize the sediment by inhibiting 

its resuspension (Madsen and Cedergreen, 2002; Vymazal, 2013).  Ta is an important factor in crop appearance and related 

variations in the duration of seasons as well as growth and development of the submerged macrophyte (Barko et al., 1982). 

Changes in the Ta regime of a water body had been reported to result in alterations of macrophyte community composition 60 

(Barko et al., 1982), which may affect the temporal appearance and spatial distribution of macrophytes in the future. As a 

result, due to global climate change, it is of paramount importance to examine submerged macrophytes in all aspects, including 

their effect on evaporation. 
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Since there is little information in the literature on how submersed macrophytes affect the evaporation of a lake, one of the 

aims of this study was to investigate the effect of littoral sediment and macrophytes on Ep. At the study site, in Hungary, 65 

submerged macrophytes colonize in lakes in the summer season (from June to September). Lake Balaton is the largest shallow 

freshwater lake in Central Europe with surface area of 596 km2 (Figure 1). The three most dominant submerged macrophytes 

in the Lake Balaton are Potamogeton perfoliatus, Myriophyllum spicatum and Najas marina, therefore, it was appropriate to 

include these three species in the study. 

The second main aim of this paper was to estimate daily Ep using FAO-56 Penman-Monteith (FAO56-PM), Kohonen self-70 

organization map (K-SOM) and multiple stepwise linear regression (MLR) methods in class A pan with different ingredients, 

sediments and macrophytes. The current study differs from previous evaporation estimates by using NNs even with those pans 

containing sediments and submerged macrophytes. Their evaporation will be treated directly by K-SOM, in which the 

modelling is more than the simple Ep of a Class A pan filled with clean tap water. 

 75 

Figure 1: Location map of the study area with Agrometeorological Research Station (ARS) at Keszthely, Hungary (from 

http://alabamamaps.ua.edu). 
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2 Materials and methods 

2.1 Case study and data description 

The climate of the region is mild continental (Cfb) with warm, dry summers and fairly cold winters according to the Köppen-80 

Geiger classification (Kottek, Grieser, Beck, Rudolf and Rubel, 2006). Months included in the study (from June to September). 

Meteorological variables were recorded by a QLC-50 climate station (Vaisala, Helsinki, Finland) fitted with a CM-3 

pyranometer (Kipp & Zonen Corp., Delft, the Netherlands) located at Keszthely Agrometeorological Research Station (ARS) 

(latitude: 46°44′N, longitude: 17°14ʹE, elevation: 124 m above sea level) between 2015-2020. The ARS is placed on the area 

of the Hungarian University of Agriculture and Life Sciences. With the exception of wind speed, meteorological data of Ta, 85 

RH, Rs, daily maximum temperature (Tmax), daily minimum temperature (Tmin) and precipitation (P)were measured at 2 m 

above the ground surface.  The height of windspeed (u) measurements was 10.5 m. The daily mean values of meteorological 

variables were calculated as average of 10 minutes observations of a 24-hour period. 

In this study, class A evaporation pans were used to determine daily evaporation (Ep). The class A pans were 1.21 m in diameter 

and 0.25 m in height located on an elevated (~0.15 m) wooden grid, with a water surface area of ~1.15 m2. The daily rate of 90 

Ep was calculated from the difference in water level for two consecutive days, considering any precipitation that may have 

fallen into the pans. The daily water loss was measured every morning at 7.00 am LMT. 

In the ARS area 3 class A pans were placed, 5 meters apart (Figure 2). A class A pan was recommended by the WMO to be 

used as a standard treatment (control, C). Two class A pans were covered on the bottom with sediment to a thickness of 0.002 

m (S). Submerged, freshwater aquatic macrophytes (Myriophyllum sipctatum., Potamogeton perfoliatus, and Najas marina) 95 

were planted in three class A pans with sediment-covered bottom (Anda et al., 2016; Anda et al., 2018). Due to the development 

of submersed macrophytes, Class A pans were operational from June to September in the growing season 2015-2020. 

 

Figure 2: Class A pans with different treatments: C, S and SM denote ‘‘empty”, sediment-covered and macrophyte-planted class A 

pans in the middle of the meteorological garden. 100 

2.2 Multiple stepwise regression (MLR) 

The regression models are important tools for investigating relations between dependent and independent data (Razi and 

Athappilly, 2005), which method has been used for a long time in the investigation of meteorological variables. Evaporation 

can be modelled by multiple linear regressions using different meteorological variables (e.g., Ta, RH, u) (Almedeij, 2012). 
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The MLR can be expressed by the following equation: 105 

𝑦 =  𝑏0 + 𝑏1𝑥1 + ⋯ + 𝑏𝑘𝑥𝑘 + 𝑎 ,          (1) 

where b0, b1 … and bk are fitting constant, x1… and xk represent the observed meteorological variables and a is a random error 

term. The a is remaining effects on estimated Ep (y) of variables not explicitly included in the model (Patle et al., 2020). The 

dependent variable, y was Ep. 

2.3 FAO-56 Penman-Monteith (FAO56-PM) method 110 

The reference evapotranspiration ET0 was estimated by the WMO standardized FAO-56 Penman-Monteith method (Allen et 

al., 1998; Allen et al., 2005) the at a daily step for short reference crops (clipped grass of 12 cm) as followed: 

𝐸𝑇0 =
0.408∆(𝑅𝑛−𝐺)+𝛾

900

𝑇𝑎+273
𝑢(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+0.34𝑢)
,          (2) 

where Rn is net radiation [MJ m–2 d–1], G is the soil heat flux density [MJ m–2 d–1], Ta is the mean daily air temperature at 2 m 

height [°C], u is wind speed [m s–1] at 2 m height, es is the saturation vapor pressure [kPa], ea is the actual vapor pressure [kPa], 115 

Δ is the slope of the vapor pressure curve [kPa °C–1], γ is a psychrometric constant [kPa °C–1], and 0.408 is a conversion factor 

from MJ m–2 d–1 to equivalent evaporation in mm d–1. 

2.4 Kohonen self-organization map (K-SOM) 

The K-SOM is a nonlinear mapping technique, which identifies groups of similarity in data sets without normal distribution 

assumption (Kohonen, 1982). SOM is a powerful and effective tool for complex data analyses such as data mining, estimation, 120 

and prediction. Using SOM, informative reference vectors are obtained via iterative updates under three main successive 

procedures: competition with nodes (1), selection of a winner node (2) and updating of the reference vector (3) (Yu et al., 

2018). Every node has its vector adjusted according to sequential algorithm with the Gaussian neighbourhood function. The 

SOM consists of an input layer and an output layer (Park et al., 2006), where the output layer consists of so-called neurons, 

which are usually located in a hexagonal grid and are fully interconnected (Peeters et al., 2007). A schematic illustration of K-125 

SOM is presented in Figure 3. 
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Figure 3: Illustration of the winning node and its neighbourhood in the Kohonen self-organizing map (K-SOM). 

The importance of K-SOM in the field of environmental science lies in the fact that SOMs can be used for prediction and 130 

correlation analysis, mostly with visual representation (Barreto and Pérez-Uribe, 2007). An outstanding element of this is that 

K-SOM finds statistically significant dependencies among the variables in a multidimensional data sample. In the case where 

two variables are highly correlated, K-SOM produces two similar component planes (Barreto and Pérez-Uribe, 2007). 

2.5 Statistics and performance evaluation criteria 

The Shapiro–Wilk test was used as a statistical test for normality, with a chosen alpha value of 0.05 (p<0.05). Two-way 135 

analysis of variance (ANOVA) with Tukey’s HSD test was performed to examine the impacts of treatments C, S and SM on 

class A pan Ep. The impact of meteorological elements on Ep of C, S and SM treatments, Pearson’s correlation analysis was 

used. This, as well as the MLR, was carried out with SPSS Statistics software. In this study, the K-SOM algorithm was executed 
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using MATLAB 2019b software. To train and test the models, 50% of the data (2015–2017) and 50% (2018–2020) were used, 

respectively. 140 

Performance of the proposed models is evaluated by computing statistical indices, such as root mean square error (RMSE), 

mean absolute error (MAE), scatter index (SI) and Nash-Sutcliffe efficiency (NSE) between observed and estimated values of 

Ep for the data sets considered. The RMSE range is zero to infinity (0 < RMSE < ∞); the lower the RMSE, the better the 

model’s performance. The RMSE is proportional to the observed mean, as a result SI (Shiri and Kişi, 2011) forms a good non-

dimensional error measure. NSE (Nash and Sutcliffe 1970; ASCE 1993) compares the congruence between the observed and 145 

predicted data. A high value of NSE (NSE ≤ 1) indicates high efficiency of the model (Duan et al., 2016; Li and Liu, 2020). 

These evaluation criteria calculate as following equations: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝐸𝑝𝑜𝑏𝑠,𝑖

−𝐸𝑝𝑒𝑠𝑡,𝑖
)2𝑛

𝑖=1

𝑛
,          (3) 

𝑀𝐴𝐸 =  
∑ |𝐸𝑝𝑒𝑠𝑡,𝑖

−𝐸𝑝𝑜𝑏𝑠,𝑖
|𝑛

𝑖=1

𝑛
 ,          (4) 

𝑁𝑆𝐸 = 1 − 
∑ (𝐸𝑝𝑜𝑏𝑠,𝑖

−𝐸𝑝𝑒𝑠𝑡,𝑖
)2𝑛

𝑖=1

∑ (𝐸𝑝𝑒𝑠𝑡,𝑖
−𝐸𝑝𝑒𝑠𝑡,𝑚)2𝑛

𝑖=1

 ,          (5) 150 

𝑆𝐼 = √
∑ [(𝐸𝑝𝑒𝑠𝑡,𝑖

−𝐸𝑝𝑒𝑠𝑡,𝑚
)−(𝐸𝑝𝑜𝑏𝑠,𝑖

−𝐸𝑝𝑜𝑏𝑠,𝑚
)]𝑁

𝑖=1

∑ 𝐸𝑝𝑜𝑏𝑠,𝑖
2𝑁

𝑖=1

 ,         (6) 

where Ep obs,i, Ep est,i observed and estimated pan evaporation values on the ith day, Ep obs,m and Ep est,m is the mean value of Ep 

obs,i and Ep est,I, respectively. The total number of testing patterns is denoted by n and i represent the number of particular 

instances of the testing pattern. 

3 Results 155 

3.1 Meteorological variables and pan evaporation 

The long-term (1971–2000) growing season’s average Ta at Keszthely is 18.8 °C, the hottest month is July with a mean monthly 

Ta of 20.5 °C, while the coolest month is September (15.7 °C). In the study period, the seasonal mean Ta were 5.5-15.7% 

higher than the 30-year average. The climate of Keszthely is characterized by highly variable and irregular P with a long-term 

seasonal total of 274.3 mm from June to September. Monthly seasonal mean precipitation sums varied from 78.5 mm (June) 160 

to 57.1 mm (September). Out of six investigated seasons, 2015 and 2019 were characteristically arid with 27.6% and 26.4% 

less seasonal total P, respectively, compared to the 30-year average. In the other study seasons, there were 4.7-30.7% more P 

(data not shown) than that of the climate norm.  

Figure 4 displays the meteorological variables and observed daily Ep in different pan treatments determined in a box-and-

whisker plot between growing season 2015-2020, indicating minimum, first quartile, median, third quartile, and maximum 165 
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values. An increasing trend was observed in the Tmin with an increment of 9.6% while the Tmax exhibited an unchanged trend 

over the studied growing seasons. RH and Rs displays a regular pattern during the 6 growing seasons. In terms of averages, an 

unchanged trend is observed in u with an irregular pattern. 

 

Figure 4: Box plot of meteorological parameters (Ta – daily mean temperature [°C], Tmax – daily maximum temperature [°C], Tmin 170 
– daily minimum temperature [°C], RH – relative humidity [%], Rs – global radiation [MJ m-2 d-1], u – wind speed [m s-1]) and daily 

evaporation of different pan treatments [mm d-1] (C – control, S – Class A pan with sediment cover bottom, SM – Class A pan with 

submerged macrophyte) in 2015-2020 growing seasons (June-September). 

Daily Ep rates were related to seasonal Ta variations and not to rainfall patterns. Average daily Ep varied from 0.6 to 6.9 mm 

d-1 for C, 0.7 to 7.9 mm d-1 for S, and from 0.9 to 8.2 mm d-1 for SM during the growing seasons studied. During the warmer 175 

seasons of 2015, 2018 and 2019, 10.2%, 10.1% and 7.8%higher daily mean Ep rates   for C, S and SM, respectively, were 

recorded, compared to cooler growing seasons (Figure 4). A two-way ANOVA was conducted to explore the impact of the 

2015  2016  2017  2018  2019  2020 2015  2016  2017  2018  2019  2020 2015  2016  2017  2018  2019  2020
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studied seasons and the treatment on Ep rates. There were significant main effects caused by the growing season (F (5, 211) = 

24.241, p = 0.001) and the pan treatment (F (2, 236) = 67.855, p = 0.001) in full dataset. The interaction between seasons and 

treatments was not significant (F (10, 29) = 0.085, p = 0.503). Tukey HSD post-hoc tests revealed significant differences 180 

among the three pan treatments (p < 0.001 for all pairwise comparisons) for the training, testing phase and full dataset (Table 

1). 

 

Table 1. The impact of sediment (S) and submerged aquatic macrophytes (SM) on evaporation rates (Ep) of Class A pan (C) 

in the full data set (2015-2020), training (2015-2017) and testing (2018-2020) phase with 95% confidence intervals 185 

Multiple Comparisons 

     95% Confidence Interval 

(I) treatment (J) treatment 

Mean difference  

(I-J) Std. Error Sig. Lower Bound Upper Bound 

Full dataset (2015-2020) 

C S -0.490* 0.0733 0.000 -0.662 -0.318 

 SM -0.845* 0.0735 0.000 -1.017 -0.672 

S C 0.490* 0.0733 0.000 0.318 0.662 

 SM -0.355* 0.0733 0.000 -0.526 -0.183 

SM C 0.845* 0.0735 0.000 0.672 1.017 

 S 0.355* 0.0733 0.000 0.183 0.526 

Training data set (2015-2017) 

C S -0.712* 0.1066 0.000 -0.962 -0.462 

 SM -0.731* 0.1072 0.000 -0.982 -0.479 

S C 0.712* 0.1066 0.000 0.462 0.962 

 SM -0.019* 0.1124 0.019 -0.283 0.245 

SM C 0.731* 0.1072 0.000 0.479 0.982 

 S 0.019* 0.1124 0.019 -0.245 0.283 

Testing data set (2018-2020) 

C S -0.505* 0.0993 0.000 -0.738 -0.272 

 SM -0.716* 0.1001 0.000 -0.951 -0.481 

S C 0.505* 0.0993 0.000 0.272 0.738 

 SM -0.211* 0.0990 0.045 -0.443 0.022 

SM C 0.716* 0.1001 0.000 0.481 0.951 

 S 0.211* 0.0990 0.045 -0.022 0.443 

Based on observed means. The error term is Mean Square (Error) = 1.741. 

Based on observed means. The error term is Mean Square (Error) = 1.840. 

Based on observed means. The error term is Mean Square (Error) = 1.647. 

*The mean difference is significant at the 0.05 level. 
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The correlation of evaporation of different pan treatments with other meteorological variables is also given in Table 2. The Ta, 

Tmax and Rs positively impacted the Ep, while RH had a negative correlation with Ep. In this study, u hardly affected the Ep 

rates irrespective to treatment. The descriptive statistics of both training and testing datasets showed that most of the 

meteorological variables and Ep were similar to the full data set.  190 

 

Table 2. Statistics of meteorological variables (Ta - mean air temperature, Tmax - maximum air temperature, Tmin - minimum 

air temperature, RH - relative humidity, Rs - solar radiation, u - wind speed) and their correlation with evaporation (Ep) of C, 

S and SM in the full time series (2015-2020), training (2015-2017) and testing phases (2018-2020). C, S and SM are control 

class A pan, A pan with sediment cover-bottom and A pan with planted freshwater submerged macrophyte, respectively. 195 

Data set Statistics Ta Tmax Tmin RH u Rs Ep of C Ep of S Ep of SM 

    
[°C] [°C] [°C] [%] [m s-1] 

[MJ m-2 

day-1] [mm d-1] [mm d-1] [mm d-1] 

Full Average 21.1 27.5 14.8 72.7 1.3 22.4 3.4 3.9 4.3 

 (2015-

2020) 
SD 3.2 4.0 3.2 8.0 0.9 6.0 1.2 1.4 1.5 

  CV 0.15 0.14 0.21 0.11 0.70 0.27 0.35 0.35 0.35 

  Max 29.2 38.5 22.0 98.0 5.7 33.9 6.9 7.9 8.3 

  Min 11.7 16.5 4.8 46.0 0.0 3.0 0.6 0.7 0.9 

  

Correlation 

with Ep of C 
0.59** 0.53** 0.42** -0.43** 0.01 0.50** 1.00 - - 

  

Correlation 

with Ep of S 
0.57** 0.51** 0.40** -0.42** 0.03 0.53** 0.92** 1.00 - 

  

Correlation 

with Ep of SM 
0.56** 0.50** 0.37** -0.44** 0.01 0.52** 0.90** 0.93** 1.00 

Training Average 20.9 27.5 14.4 71.0 1.4 23.1 3.4 4.0 4.4 

 (2015-

2017) 
SD 3.4 4.4 3.3 7.5 0.9 6.1 1.2 1.4 1.6 

  CV 0.16 0.16 0.23 0.11 0.67 0.26 0.36 0.35 0.36 

  Max 29.2 38.5 22.0 89.0 5.2 33.9 6.7 7.0 8.2 

  Min 11.7 16.5 4.8 54.0 0.3 3.0 0.7 0.7 0.9 

  

Correlation 

with Ep of C 
0.65** 0.59** 0.49** -0.48** 0.05 0.51** 1.00 - - 

  

Correlation 

with Ep of S 
0.63** 0.58** 0.45** -0.47** 0.00 0.56** 0.91** 1.00 - 

  

Correlation 

with Ep of SM 
0.63** 0.57** 0.44** -0.50** 0.04 0.54** 0.89** 0.93** 1.00 

Testing Average 21.2 27.4 15.3 74.2 1.2 21.8 3.4 3.9 4.1 
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 (2018-

2020) 
SD 2.9 3.5 3.0 8.2 0.9 5.7 1.2 1.4 1.4 

  CV 0.13 0.13 0.20 0.11 0.73 0.26 0.35 0.35 0.34 

  Max 27.3 35.3 21.1 98.0 5.7 31.6 6.9 7.9 8.3 

  Min 12.1 16.6 6.5 46.0 0.0 4.7 0.6 0.7 1.0 

  

Correlation 

with Ep of C 
0.53** 0.46** 0.35** -0.41** 0.06 0.51** 1.00 - - 

  

Correlation 

with Ep of S 
0.51** 0.44** 0.35** -0.39** 0.06 0.50** 0.92** 1.00 - 

  

Correlation 

with Ep of SM 
0.49** 0.41** 0.33** -0.38** 0.05 0.49** 0.92** 0.95** 1.00 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

3.2 K-SOM features 

Two indicators are most often used to qualitatively evaluate the two main goals of the K-SOM algorithm: quantization error 

(QE) and topographic error (TE) (Table 3). The QE shows how closely the map vectors match the data vectors, thereby 200 

quantifying map resolution (Kohonen, 1995). The TE, in turn, determines the extent to which the topology of the input data 

structure is preserved on the output map (Kiviluoto, 1996). QE and TE does not have a default value, but the smaller the QE 

and TE (if the values tend to be zero) the better the model is. In this study, the values of QE and TE were equal to 0.016 and 

0.820, respectively, indicating that the K-SOM was appropriately trained in topology.  

 205 

Table 3 Characteristics of trained Kohonen Self-Organizing Map (K-SOM) model 

Characteristics Values 

Normalization method 

 

variance: 
 

Codebook 312 x 3 

Map Size 24 x 13 

Neighbourhood function Gaussian 

Shape Sheet 

Lattice Hexagonal 

Final Topographic error (TE) 0.820 

Final Quantization error (QE) 0.016 

 

K-SOM can be interpreted using the output map and the individual component planes, so the relationships between each 

variable can be explored. The component planes help to visually illustrate areas in which the intensity of the relationship of 

𝑥 , = (𝑥 − �̅�)/𝜎𝑥 
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the variables is high, low, or average and thus helps to better understand the relationship between the Ep and meteorological 210 

variables. The component planes for each variable of the K-SOM model are shown in Figure 5. 

 

Figure 5: Kohonen Self-Organizing Map (K-SOM) visualization of pan evaporation and meteorological variables assessment (Ta – 

daily mean temperature [°C], Tmax – daily maximum temperature [°C], Tmin – daily minimum temperature [°C], RH – relative 

humidity [%], Rs – global radiation [MJ m-2 d-1], u – wind speed [m s-1] and Ep - daily evaporation [mm d-1]). The bars indicate the 215 
intensity of the variables: the red colour is high importance, and the blue colour is low importance. 

On the maps, the warm colours (red, orange) show positive correlation between the study variables, and the darker the colours 

(blue), the lower the relative value of the component of the corresponding variable. Thus, the correlation between the K-SOM 

modelled values of Ep, Ta, Tmin, Tmax, Rs, RH, and u becomes clearly visible. The colour gradient of Ep was similar to those for 

variables related to available energy (Ta, Tmin, Tmax and Rs), indicating that these contribute most to the increase of Ep. The 220 

component planes also visually confirm the negative correlation between RH and Ep, with high values of the RH resulting in 

low values of the Ep. 

3.3 FAO56-PM, MLR and K-SOM models 

Figure 6. depicts the time variation and X-Y scatter plots of the observed and estimated daily Ep values obtained by C, S and 

SM during the testing period (2018-2020). 225 
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Figure 6: Time series and X-Y scatter plot of observed and predicted daily pan evaporation (Ep) in different pan treatment (C – 

control, S – pan with sediment cover bottom, SM – pan with submerged macrophytes) by daily multiple stepwise regression (MLR), 

FAO-56 Penman-Monteith (FAO56-PM) and Kohonen self-organization map (K-SOM) models during testing period (2018-2020 

growing seasons). 230 

From the figure, it can be observed that most of the estimated daily Ep values are close to the observed daily Ep values for all 

three pan treatments. The regression line is above the 1:1 line up to 4 mm, which means that the FAO56-PM and MLR models 
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slightly overestimated the magnitude of the daily Ep values in different pan treatments. However, above 4 mm daily Ep, the 

FAO56-PM and MLR models already underestimated the observed Ep values. The daily Ep values of C, S, and SM of the K-

SOM model follow the 1:1 line most accurately. For all three models, R2 values were highest for MS treatment (FAO56-PM: 235 

0.1393, MLR: 0.6242, K-SOM: 9864). In the case of K-SOM, it can also be observed that low Ep values are overestimated, 

while higher Ep values are underestimated, although the estimated "middle" Ep values (which occur most frequently in a 

growing season) were close to the observed Ep values regardless of pan treatment. A greater degree of underestimation is 

observed for MS treatment for K-SOM. 

4 Discussion 240 

To date, there is few information about the impact of submerged aquatic macrophytes on Ep rate. According to a previous 

study, aquatic plants evapotranspirated 26% more water than free water surface (Brezny et al., 1973). Anda et al. (2016; 2018) 

have shown that the presence of sediment increases the evaporation of the Class A pans by an average of 12.7% and the 

submerged aquatic macrophytes by an average of 21.3%. Jiménez-Rodríguez et al., (2019) reported that the observed Ep were 

higher for aquatic plants than the open water cover. Concerning the relationship between pan treatments and meteorological 245 

variables, it can be concluded that positive correlation was observed with most meteorological variables, while a negative 

correlation was observed with RH. This result was supported by other researches in the literature (Sheffield et al., 2017). In 

this study, u hardly affected the Ep rates of each treatment. This does not confirm the conclusions made by earlier studies 

(McVicar et al., 2012). This may be due to the fact that Keszthely is sheltered by surrounding mountains causing lower wind 

speeds (Anda et al., 2016). 250 

In this study, we developed Ep models based on three different approaches (FAO56-PM, MLR and K-SOM) with daily 

meteorological variables, and tested the performance of the models by four commonly used statistical indicators (MAE [Ideal 

= 0, (0,+∞)], RMSE [Ideal = 0, (0,+∞) ], NSE [Ideal = 1, (−∞,1)], SI [Ideal = 0, (0,+∞)]).  Figure 7 shows the overall 

performance of the three predicted methods at the three pan treatments. 

 255 

Figure 7: Error statistics (root mean square error - RMSE, mean absolute error - MAE, scatter index - SI and Nash-Sutcliffe 

efficiency - NSE) for the multiple stepwise regression (MLR), FAO-56 Penman-Monteith reference crop evapotranspiration 

(FAO56-PM) and Kohonen self-organization map (K-SOM) models during the testing period for different pan treatments (C is 
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standard class A pan with clean water, S is class A pan with sediment cover bottom, and SM is class A pan containing submerges 

macrophyte). 260 

The K-SOM models (RMSE = 0.222–0.253; NSE = 0.761–0.951; SI = 0.065–0.074) performed the best in the testing period, 

and their RMSE and MAPE were lower, and their NSE were higher than those of FAO56-PM and MLR models regardless of 

pan treatment (C: 0.951; S: 0.906; SM: 0.761). Additionally, the MAE value for treatments C and S was the lowest in the K-

SOM models (MAE = 0.164 and MAE = 0.338, respectively), in contrast, the FAO56-PM had the best MAE value for SM 

treatment (MAE=0.601).  265 

Overall, the MLR (RMSE = 0.834; MAE = 0.660; S = 0.217) was slightly superior to FAO56-PM (RMSE = 0.877; MAE = 

0.675; SI = 0.220) in the S, and there was only a small difference in the value of NSE between the two models (MLR: 0.572; 

FAO56-PM: 0.580). In the C treatment, RMSE (0.796) and SI (0.200) were lower for FAO56-PM, while MAE (0.648) and 

NSE (0.531) values were more favourable for the MLR model. Nevertheless, both the K-SOM model and MLR model were 

better than the FAO56-PM model during the testing period for “non-empty” treatments (S and SM). 270 

Many researchers have conducted research with neural networks aimed at the estimation of Ep as a function of meteorological 

variables (Keskin and Terzi, 2006). Several of these researchers found better results in Ep estimation with neural network than 

those obtained from the Priestley-Taylor and the Penman methods (Rahimikhoob, 2009; Malik et al., 2020). Consistent with 

other studies, this study demonstrated that modelling of Ep is possible through the use of K-SOM technique in addition to the 

FAO56-PM and MLR methods. The comparison results indicated that, in general, the K-SOM model was superior to the 275 

FAO56-PM and MLR methods. Chang et al. (2010) used different methods to estimate pan evaporation, including also the K-

SOM and the FAO56-PM. According to the results of Chang et al. (2010), K-SOM was the best of the studied methods, and it 

was found that the Penman-Monteith method is also likely to underestimate evaporation. Malik et al. (2017) used four heuristic 

approaches and two climate-based models to approximate monthly pan evaporation, where the K-SOM model performed better 

than the climate-based models. The regression line in scatter plots has R2 as 0.937 for K-SOM model at Pantnagar and 280 

Ranichauri (India), respectively. In the study of Malik et al. (2017), RMSE values were 0.685 and 1.126 for K-SOM, when 

50% of the total available data was used in the testing of models in two stations. 

4 Conclusions 

The Ep of a class A pan with submerged aquatic macrophytes and with a sediment-covered bottom was observed at Keszthely, 

over six consecutive (2015-2020) growing seasons. In this study, it was attempted to model Ep by employing models consisting 285 

of FAO56-PM, MLR and K-SOM, using daily pan evaporation values in different Class A pan treatments (C, S, SM). The Ep 

rate of SM and S was always significantly higher than that of the "empty" class A pan each growing season. The presence of 

submerged macrophyte resulted in a higher Ep than in the sediment-covered class A pan. 

Daily Ep rates for all pan treatments were related to seasonal Ta variations. Correlation analysis revealed that Ta, Tmax, Tmin and 

Rs had a positive correlation with pan evaporation, whereas RH had a negative correlation (-0.42-0.44) with Ep of C, S and 290 
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SM in full dataset. Among all, the R of Ta (ranged from 0.56-0.59) had a stronger positive correlation followed by R of Tmax 

(ranged from 0.50-0.53) and R of Rs (ranged from 0.50-0.53). The relationship with u was low for the Ep of the three treatments, 

which can be explained by the low u of Keszthely in the growing seasons. Using the visualization capability of the K-SOM, it 

was clearly confirmed that the Ep was more closely correlated with the variables related to available energy, than the RH. 

The performance accuracy of the different applied models was evaluated with RMSE, MAE, NSE and SI statistics. Results 295 

showed that the K-SOM model has high priority in prediction precision over the FAO56-PM and MLR models. Comparing 

the FAO56-PM and MLR models, MLR performed better in this study in S and SM treatments. 

Hydrometeorological networks and water resource management can obtain useful information from the results of the current 

research. The findings of this specific study should also be investigated further in correlation with different neural network 

methods and different climate types in the future. 300 
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