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Abstract. Subseasonal streamflow forecasts inform a multitude of water management decisions, from early flood warning to 

reservoir operation. óSeamlessô forecasts, i.e., forecasts that are reliable and sharp over a range of lead times (1-30 days) and 

aggregation time scales (e.g. daily to monthly) are of clear practical interest. However, existing forecast products are often 

ónon-seamlessô, i.e., developed and applied for a single time scale and lead time (e.g. 1 month ahead). If seamless forecasts are 

to be a viable replacement for existing ónon-seamlessô forecasts, it is important that they offer (at least) similar predictive 15 

performance at the time scale of the non-seamless forecast. 

This study compares forecasts from two probabilistic streamflow post-processing (QPP) models: the recently developed 

seamless daily Multi-Temporal Hydrological Residual Error (MuTHRE) model and the more traditional (non-seamless) 

monthly QPP model used in the Australian Bureau of Meteorologyôs Dynamic Forecasting System. Streamflow forecasts from 

both post-processing models are generated for 11 Australian catchments, using the GR4J hydrological model and pre-processed 20 

rainfall forecasts from the ACCESS-S numerical weather prediction model. Evaluating monthly forecasts with key 

performance metrics (reliability, sharpness, bias and CRPS skill score), we find that the seamless MuTHRE model achieves 

essentially the same performance as the non-seamless monthly QPP model for the vast majority of metrics and temporal 

stratifications (months and years). As such, MuTHRE provides the capability of óseamlessô daily streamflow forecasts with no 

loss of performance at the monthly scale ï the modeller can proverbially óhave their cake and eat it tooô. This finding 25 

demonstrates that seamless forecasting technologies, such as the MuTHRE post-processing model, are not only viable, but a 

preferred choice for future research development and practical adoption in streamflow forecasting. 
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1. Introduction  

Subseasonal streamflow forecasts (with lead times up to 30 days) can be used to inform a range of water management decisions, 30 

from flood warning and reservoir flood management at shorter lead times (e.g. up to a week) to river basin management at 

time scales up to a month. The uncertainty in these forecasts is often represented using ensemble and probabilistic methods. 

Probabilistic streamflow forecasts have traditionally been developed and applied at only a single lead time and time scale (e.g., 

Souza Filho and Lall, 2003; Pal et al., 2013; Hidalgo-Muñoz et al., 2015; Mendoza et al., 2017; Gibbs et al., 2018). However, 

since different applications require forecasts over a range of lead times and time scales, recent research has focussed on 35 

producing seamless forecasts, i.e. forecasts from a single product that are (statistically) reliable and sharp across multiple lead 

times and aggregation time scales (McInerney et al., 2020). For seamless forecasts to be a viable replacement for more 

traditional non-seamless forecasts (i.e. forecasts for a single lead time and time scale) it is important to establish that the 

performance of seamless forecasts is competitive with their non-seamless counterparts at the native time scale of the latter.  

Recent research by McInerney et al. (2020) has shown that seamless subseasonal forecasting is achievable. McInerney et al. 40 

(2020) developed the Multi -Temporal Hydrological Residual Error (MuTHRE) model for post-processing daily streamflow 

forecasts in order to improve reliability across a range of time scales. Using a case study with 11 catchments in the Murray 

Darling Basin, Australia, it was concluded that subseasonal forecasts generated using the MuTHRE streamflow post-

processing model are indeed seamless: daily forecasts are consistently reliable (i) for lead times between 1 and 30 days, and 

(ii) when aggregated to the monthly scale.  45 

Seamless subseasonal forecasts are reliable over a wide range of aggregation time scales (e.g. daily to monthly) and lead times 

(1-30 days). In contrast, non-seamless forecasts are either: (i) only available at a single time scale (e.g. a post-processing model 

developed directly at the monthly scale does not generate daily forecasts), or (ii) cannot be reliably aggregated to longer time 

scales (e.g., from daily to monthly). The practical benefits of seamless forecasts are as follows: 

1. Seamless forecasts can be used to inform decisions at a range of time scales. Forecast users can utilize seamless 50 

subseasonal forecasts to inform a wide range of decisions, including 

- Flood warning, where short-term forecasts (up to 1 week) on individual days are of practical interest (Cloke and 

Pappenberger, 2009); 

- Managing hydropower systems, which can utilize forecasts of inflow between 7 and 15 days to increase production in 

the electricity grid (Boucher and Ramos, 2019); 55 

- Managing reservoirs for rural water supply, where forecast volumes over long aggregation scales (e.g. weeks/months), 

and at long lead times (up to 1 month), are required due to long travel times (Murray-Darling Basin Authority, 2019); 

- Operation of urban water supply systems, where monthly forecasts are of value (Zhao and Zhao, 2014).  

2. Seamless daily forecasts are easily integrated into river system models used for real-time decision-making. Perhaps 

the greatest potential for seamless forecasts is their use as input into real-time decision-making tools used by urban and 60 

rural water authorities. These tools include river system models (e.g. eWater Source, Welsh et al., 2013), which run natively 

at the daily scale and are used to inform resource management decisions over larger time scales. Non-seamless streamflow 
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forecasts cannot be used as input into these models, because they do not match the time scale of the river system model, 

and are not reliable when aggregated to longer time scales (e.g. from daily to monthly). 

3. Seamless forecasts simplify forecasting systems, as a single seamless product can serve a range of forecast 65 

requirements at different time scales. As forecasts are often required at multiple time scales (e.g. daily to monthly), non-

seamless forecast strategies require developing models (e.g. hydrological, statistical or post-processing) for each time scale 

of interest (e.g. a daily model and a monthly model). Seamless forecasts offer practical benefits to forecast providers, e.g. 

the Australian Bureau of Meteorology, as they reduce the need to develop multiple non-seamless forecasts for different 

applications. A seamless forecasting system offers a single product that can serve a wide range of forecast requirements.  70 

These practical benefits of seamless forecasts provide a clear motivation for their development and use. However, for seamless 

forecasts to be a viable replacement for non-seamless forecasts, it is important that they do not come at the cost of a substantial 

loss of performance at the native time scale of the non-seamless forecast. For example, if aggregated forecasts from a seamless 

daily model were considerably worse than monthly forecasts from an existing non-seamless model, users of the monthly 

forecasts would prefer to continue using forecasts from the non-seamless model. In general, one might expect forecasts from 75 

a non-seamless model, developed and calibrated at single time scale, to provide superior performance compared to forecasts 

from a seamless model calibrated at shorter time scale and then aggregated. While the non-seamless model has only óone job 

to doô, which is to provide quality forecasts at single time scale, the seamless model is expected to produce good performance 

over a range of lead times and aggregation time scales. Herein lies a major challenge of seamless forecasting.  

Our interest in comparing the performance of aggregated seamless forecasts with non-seamless forecasts at their native time 80 

scale has similarities to previous research in aggregating deterministic streamflow predictions. For example, Wang et al. (2011) 

found that the WAPABA monthly rainfall-runoff model produced similar/better performance than aggregated predictions from 

the SIMHYD/AWBM daily rainfall-runoff models, despite only using observed monthly forcing data. Yang et al. (2016) 

compared daily and sub-daily versions of the SWAT model (with daily and sub-daily observed rainfall inputs) and found large 

differences in the partitioning of baseflow and direct runoff. However, to the best of the authorsô knowledge, no studies have 85 

compared aggregated probabilistic forecasts from a seamless model against probabilistic forecasts from a non-seamless model. 

The aim of this study is to establish whether aggregated forecasts from a (probabilistic) seamless model achieve comparable 

performance to those from a non-seamless (probabilistic) model at its native time scale. This aim is achieved by comparing 

the monthly forecast performance of the seamless MuTHRE post-processing model (aggregated from daily to monthly) against 

the non-seamless monthly streamflow post-processing model used in the Australian Bureau of Meteorologyôs Dynamic 90 

Forecasting System  (Woldemeskel et al., 2018). 

The remainder of the paper is organized as follows. Section 2 describes the forecasting methods, with a focus on the streamflow 

post-processing models, Section 3 introduces the case study methods, Sections 4 and 5 present and discuss case study results, 

and Section 6 provides concluding remarks. 
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2. Forecasting methods 95 

The forecasting methods investigated in this study share a similar general structure but differ in the streamflow post-processing 

model. To facilitate the presentation, this section is organised as follows. The general structure is outlined in Section 2.1. 

Common features of the post-processing models are described in Section 2.2. Specific details of the MuTHRE and monthly 

QPP models are described in Sections 2.3 and 2.4.  

2.1. General structure 100 

The forecasting methods in this study employ a deterministic hydrological model forced with an ensemble of rainfall forecasts 

and combined with a streamflow post-processing (QPP) model. This general structure is illustrated schematically in Figure 1 

and detailed next. 

  

Figure 1: Illustration of general approach used to produce streamflow forecasts. Layers represent ensemble members.  105 

The deterministic hydrological model, 1( , );h t th -ɗ x s, has a (single) set of parameters hɗ , inputs tx (including forecast 

rainfall 
foc

x ), and states 1t-s  at time 1t- . In general any rainfall-runoff model can be used for this purpose; in our case 

study we employ the rainfall-runoff model GR4J (see Section 3.2). 

The streamflow forecasts are obtained in two steps. First, an ensemble of focN  rainfall forecasts 
foc( )

foc; 1,..., }{ f f N=x  

generated by a numerical weather prediction model is propagated through the deterministic hydrological model to generate a 110 

corresponding ensemble of órawô streamflow forecasts, 
raw( )

foc}{ ; 1, ,f f N=q . Second, a probabilistic streamflow post-

processing model is applied to the raw forecasts to generate the (post-processed) streamflow forecasts 
( )

foc; 1 ,{ , }f f N=q

.  

The streamflow post-processing models are constructed using the residual error modelling approach. They comprise a 

deterministic component and a residual error model. The residual error model employs a streamflow transformation to 115 

represent the heteroscedasticity and skew of the errors, an autoregressive term to represent error persistence, and components 

to capture other features of errors such as seasonality. 
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We consider two forecasting methods, which differ in the structure and details of the streamflow post-processing model. A 

schematic representation of these models is given in Figure 2a. 120 

¶ Seamless MuTHRE streamflow post-processing model (McInerney et al., 2020). The residual error model is formulated 

at the daily scale and is applied directly to (daily) raw streamflow forecasts. Conceptually, the ensemble of raw streamflow 

forecasts accounts for forecast rainfall uncertainty and the residual error model accounts for hydrological uncertainty. 

¶ Non-seamless monthly streamflow post-processing (QPP) model (Woldemeskel et al., 2018). The residual error model 

is formulated at the monthly scale. It is applied to raw streamflow forecasts aggregated to the monthly scale and collapsed 125 

to their medium value. Conceptually, the residual error model accounts for both hydrological and forecast rainfall 

uncertainty. 

The post-processing models also differ in their parameter estimation (calibration) procedure. Figure 2b shows that the 

MuTHRE model is calibrated using observed daily rainfall and observed daily streamflow, whereas the monthly QPP model 

is calibrated to forecast daily rainfall and observed monthly streamflow (see Sections 2.3.4 and 2.4.4 for details). 130 

Figure 2c illustrates the key operational distinction between the models. The MuTHRE model produces seamless daily 

streamflow forecasts that can be used at a range of lead times and aggregation periods (e.g. daily, weekly, fortnightly, monthly). 

In contrast, the monthly QPP model produces only one-month ahead non-seamless monthly forecasts. 

The next section presents common features of the post-processing models, before moving to specific model details. 

2.2. Streamflow post-processing model 135 

 Deterministic component 

The deterministic component 
det

tq  is obtained from the raw streamflow forecasts (Figure 2a). The deterministic component 

used in the seamless MuTHRE and non-seamless monthly streamflow post-processing approaches are detailed in Sections 

2.3.2 and 2.4.2 respectively. 

 Residual error model 140 

The residual error model describing the relationship between the probabilistic streamflow estimate Qt and the deterministic 

component 
det

tq  is formulated as additive in transformed space, 

   
det; ) ( ; )( z z tt tz Q qz h= +ɗ ɗ  (1) 

where th is a random residual error term. 

 145 
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Figure 2 Conceptual diagrams of the seamless MuTHRE model and the non-seamless monthly QPP model. Ensemble components 

are indicated with multiple ólayersô. Panel (a) shows the post-processing model structure including the deterministic component and 

the residual error model (REM). Panel (b) shows the calibration approach to estimate the parameters of the streamflow post-150 
processing model. Panel (c) illustrates the key distinction between the forecasting products generated by the models: the MuTHRE 

model produces seamless daily streamflow forecasts that can be used at a range of lead times and aggregation periods (e.g. daily, 

weekly, fortnightly, monthly), whereas the monthly QPP model produces only monthly forecasts. 
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The transformation z , with parameters zɗ , is used to reduce the heteroscedasticity and skewness in residuals. We choose 

the  Box Cox transformation (e.g., Box and Cox, 1964), 155 

 
( ) 1

if 0
( ; , )

log( ) otherwise

q A

z q A

q A

l

l
l l

ë + -
¸î

=ì
î +í

  (2) 

with parameters { , }z Al=ɗ . The power parameter l is set to 0.2 in both streamflow post-processing models (McInerney 

et al., 2017). In the seamless MuTHRE model, the offset parameter A  is inferred as part of the hydrological model calibration 

(McInerney et al., 2020), while in the non-seamless monthly QPP model it is set to 1% of the mean observed monthly 

streamflow, i.e. 
mon0.01 mean( )A= ³ q  (Woldemeskel et al., 2018). 160 

The residual error term th is standardized and then modelled as an AR(1) process, 

 ( ) /t t ttn mh a= -   (3) 

  1t t tyhn fn-= +  (4) 

where tm and ta  are the (time-varying) mean and scaling factor of th,  hf is the lag-1 autoregressive parameter, and ty  

is the random component (referred to as the óinnovationô) at time t . 165 

When generating forecasts, recent streamflow observations are used to update errors via the AR(1) model, and reduce 

uncertainty in th for short lead times. 

2.3. Seamless MuTHRE model 

 Model structure 

The seamless MuTHRE post-processing model operates at the daily time scale. Uncertainty due to forecast rainfall and 170 

hydrological errors is represented using the ensemble dressing approach (Pagano et al., 2013). The ensemble of daily raw 

streamflow forecasts, 
raw

q , obtained by propagating an ensemble of rainfall forecasts through the hydrological model h , 

accounts for forecast rainfall uncertainty. A randomly generated replicate of the residual term, ɖ, is then added to each of the 

focN  raw streamflow forecast ensemble members to account for hydrological uncertainty. This produces an ensemble of focN

post-processed streamflow forecasts. See schematic in Figure 2a. Note that this approach to capturing forecast rainfall and 175 

hydrological uncertainty requires the rainfall forecasts to be reliable in order to produce reliable streamflow forecasts (Verkade 

et al., 2017). 
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 Deterministic component 

In the context of equation (1), the deterministic component in the MuTHRE model at its daily time step t is 180 

  det raw( ) ( )

1( ; , )f f

h t tt tq q h -= =ɗ x s (5) 

i.e., the residual error model is applied directly to each ensemble member of the raw forecasts (Figure 2a). 

 Residual error model  

The MuTHRE model assumes that the mean of the residual error ï tm in equation (3) ï varies in time due to óseasonalityô 

and ódynamic biasesô (associated with hydrologic non-stationarity), 185 

  (s) (b) *

( )t d t tm m m m= + + (6) 

The seasonality component 
(s)

( )d tm  describes the mean value of ɛ on the day-of-the-year ( )d t , the dynamic bias term 
(b)

tm  

describes the mean value of ɛ (after removing seasonality) over the preceding bN  days ( 30bN =  is used), and 
*m  is a 

constant to capture the remaining bias. Full details of these terms are provided in McInerney et al. (2020). 

The scaling factor ï ta  in equation (3) ï is constant (set to 1 for simplicity).  190 

Innovations are modelled using a two-component mixed-Gaussian distribution 

 ( )2 2

mix 1 1 2 2 1~ , , , ,ty wm s m s   (7) 

where 1mand 2m  are the means of the two components, which are set to zero, 1s and 2s  are the standard deviations of the 

components, and 1w  is the weight of the first component. Compared to a standard Gaussian distribution, the mixed-Gaussian 

distribution allows for fattier tails (i.e., excess kurtosis) in the distribution of innovations, which has been shown to improve 195 

reliability of daily forecasts at short lead times (Li et al., 2016). Note that the mixed-Gaussian distribution does not offer 

benefits at longer lead times, nor when aggregating forecasts to the monthly scale (McInerney et al., 2020). 

 Calibration of residual error model  

The parameters of the residual error model 
(s) (b) * 2 2

1 2 1}{ , , , , , ,whfm s sɛ ɛ  are estimated from the following daily scale data 

(see Figure 2b): 200 

(i) Daily hydrological model simulations 
sim

q  forced with observed rainfall x ;    

(ii)  Daily observed streamflow q . 
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Seasonality (
(s)
ɛ ) and dynamic bias (

(b)
ɛ ) terms are calculated using moving averages, parameters

*m  and hf are estimated 

as the sample mean and lag-1 auto-correlation of the de-trended residuals, while the mixed-Gaussian parameters 
2 2

1 2 1, , }{ ws s  

are estimated using maximum-likelihood. Full details of the calibration procedure are provided in McInerney et al. (2020). 205 

2.4. Non-seamless monthly QPP model 

 Model structure 

The non-seamless monthly QPP model operates at the monthly time scale. The raw forecasts are aggregated from daily to 

monthly scale and collapsed to their median value yielding 
det,mon

q , i.e., the uncertainty from the raw streamflow ensemble 

is discarded. The combined forecast rainfall uncertainty and hydrological uncertainty are represented through the residual error 210 

term ɖ. Monthly streamflow forecasts are obtained from 
det,mon

q  by adding focN  replicates of ɖ. See schematic in Figure 

2a. 

 Deterministic component 

The deterministic component in the non-seamless model at its monthly time step t is computed  

as follows, 215 

  ( )raw,mon( ) raw( )

*average ; * ( )f f

t tqq t T t= Í  (8) 

  ( )det raw,mon( )

focmedian ; 1, ,tt

fq q f N==  (9) 

where ( )T t  is averaging window (range of days) corresponding to the monthly time step t. 

 Residual error model  

The residual error model is applied at the monthly scale after collapsing the ensemble of raw forecasts to a single time series. 220 

The monthly residual error model captures seasonality in residuals by varying the mean tm and scaling factor ta  in equation 

(3) by month. Innovations are assumed to be independent and identically distributed Gaussian, 

  ( )2~ 0,t yy s  (10) 

where ys  is the standard deviation of the innovations. 

 Calibration  of residual error model  225 

The parameters of the monthly residual error model { }2, ,{ , ; 1, ,12}y m m mhf s m a= »  are estimated from the following 

monthly scale data (see Figure 2b): 

(i) Monthly deterministic forecasts 
det,mon

q  obtained using forecast rainfall as described in Section 2.4.2; 
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(ii)  Monthly observed streamflow 
mon

q . 

All parameters are calibrated using the method-of-moments. Full details are provided in Woldemeskel et al. (2018). 230 

3. Case study  

3.1. Catchments and Data 

The case study uses a set of 11 catchments from the Murray Darling Basin in Australia, including four catchments on the 

Upper Murray River (NSW and Victoria) and seven catchments on the Goulburn River (Victoria). These catchments have 

winter dominated rainfall which leads to higher streamflow between June and October (see Figure 3), and have fewer than 5% 235 

of days with no flow. Catchment properties are summarised in Table 1. This same set of catchments was used to extensively 

evaluate the MuTHRE model in McInerney et al. (2020). 

Time series of daily observed streamflow over a 22-year period between 1991 and 2012 are obtained from the Hydrologic 

Reference Stations (HRS) dataset (http://www.bom.gov.au/water/hrs). Observed rainfall and PET data over the same period 

are obtained from the Australia Bureau of Meteorologyôs climate data service (www.bom.gov.au/climate), with a 240 

climatological average used for PET (McInerney et al., 2021). 

Rainfall forecasts are provided by the Australian Community Climate Earth-System Simulator - Seasonal (ACCESS-S) 

(Hudson et al., 2017). The ACCESS-S rainfall forecasts are pre-processed using the method of Schepen et al. (2018) in order 

to reduce biases and improve the reliability in comparison to observed rainfall. An ensemble of 100 pre-processed rainfall 

forecasts that begin on the first day of each month and extend out to a maximum lead time of 1 month are used. 245 

3.2. Hydrological model  

The conceptual rainfall-runoff model GR4J (Perrin et al., 2003) is used as the deterministic hydrological model h  for 

simulating daily streamflow from rainfall and PET inputs (see Section 2.1). GR4J has been widely used and evaluated over 

diverse catchment climatologies and physical characteristics (Perrin et al., 2003; Hunter et al., 2021). GR4J represents the 

processes of interception, infiltration and percolation, and has four calibration parameters:1x  is the capacity of the production 250 

store (mm), 2x  is the water exchange coefficient (mm), 3x  is the capacity of the routing store (mm), and4x  is the time 

parameter of the unit hydrograph (days). 

 

http://www.bom.gov.au/water/hrs
http://www.bom.gov.au/climate)a
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Figure 3: Location of the 11 case study catchments (panel a), and mean observed streamflow for each month (panel b) and each year 255 
(panel c). Boxplots in panels (b) and (c) show distribution s of mean observed streamflow over the 11 catchments. 

Table 1: Properties of the 11 case study catchments. 

Catchment Site ID  Area (km2) 

Mean 

rainfall  

(mm/yr)  

Mean 

runoff 

(mm/yr)  

Runoff 

ratio 

Zero flow 

days (%)  

Aridity 

index 

Murray River at Biggara 401012 1257 1117 370 0.33 0 0.99 

Jingellic Creek at Jingellic 401013 390 876 112 0.13 1.1 0.68 

Cudgewa Creek at Berringama 401208 351 1127 209 0.19 0 0.90 

Gibbo River at Gibbo Park 401217 390 1138 273 0.24 0 1.01 

Acheron River at Taggerty 405209 629 1234 443 0.36 0 1.2 

Delatite River at TongaBridge 405214 368 959 248 0.26 0 0.85 

Goulburn River at Dohertys 405219 700 1156 424 0.37 0 1.0 

Hughes Creek at Tarcombe Rd 405228 475 760 116 0.15 1.3 0.65 

King Parrot Creek at Flowerdale 405231A 181 999 187 0.19 0 0.95 

Seven at D/S Polly McQuinns Weir 405234 148 852 226 0.27 0 0.71 

Seven Creeks River at Kialla West 405269 1513 655 93 0.14 3.0 0.53 
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3.3. Calibration/evaluation procedure 260 

Calibration of model parameters and evaluation of forecasts is performed using a leave-one-year-out cross validation procedure 

(McInerney et al., 2020). For each calendar year j , hydrological and residual error model parameters are calibrated using 

observed streamflow data from the entire evaluation period, except for year j  and the subsequent years 1j+  to 4j+  

(which are excluded to reduce the influence of system memory on model evaluation, as described in Pokhrel et al., 2013). 

Hydrological model parameters are estimated using likelihood maximisation based on the BC0.2 error model (McInerney et 265 

al., 2020), implemented using a quasi-Newton optimization algorithm run with 100 independent multistarts (Kavetski and 

Clark, 2010). Methods for estimating residual error model parameters are described in Sections 2.3.4 and 2.4.4. 

Note that in this work we do not consider parametric uncertainty (in the hydrological and residual error models), which is 

expected to be a (relatively) minor contributor to total forecast uncertainty given the long data period used in the estimation; 

this simplification is common in contemporary forecasting implementations (e.g., Engeland and Steinsland, 2014; Verkade et 270 

al., 2017). 

For each year j , calibrated hydrological and error models are used to generate an ensemble of 100 streamflow forecasts. Daily 

forecasts from the MuTHRE model begin on the first day of each month, and extend out to a maximum lead time of 1 month 

(which is the same as the rainfall forecasts). 

This calibration/forecasting process is repeated for all 22 years, resulting in 22 sets of one-year forecasts, which are 275 

subsequently merged into a single 22-year forecast to facilitate evaluation against streamflow observations. 

3.4. Forecast evaluation 

 Performance metrics 

Streamflow forecasts are evaluated using numerical metrics for the following attributes:  

Reliability refers to the degree of statistical consistency between the forecast distribution and the observed data. It is evaluated 280 

using the reliability metric of Evin et al. (2014). Lower metric values are better, with 0 representing perfect reliability, and 1 

representing the worst reliability. 

Sharpness refers to the spread of the forecast distribution, with sharper forecasts those with lower spread. We use the sharpness 

metric of McInerney et al. (2020), which is based on the ratio of the average 90% inter-quantile range (IQR) of the forecasts 

and a climatological distribution (described below). Lower values are better, with 0 representing a deterministic forecast (with 285 

no spread) and 1 representing the same sharpness as climatology. In contrast to the other attributes considered here, sharpness 

is a property of the forecast only and does not depend on the observed data. 

Volumetric bias refers to the long-term water balance error. It is quantified using the metric of McInerney et al. (2017) as the 

relative absolute difference between total observed streamflow and the total forecast streamflow (averaged over the forecast 

ensemble). Lower values are better, with 0 representing unbiased forecasts. 290 

Combined performance is quantified using the continuous ranked probability score (CRPS). The CRPS is defined as the sum 

of squared differences between forecast cumulative distribution function (CDF) and the empirical CDF of the observation. 
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Note that the CRPS can be decomposed into terms representing individual performance aspects, namely reliability, and 

uncertainty/resolution (related to sharpness) (Hersbach, 2000). We express this metric as a skill score (CRPSS) relative to the 

climatological distribution. Higher CRPSS values are better, with a value of 1 representing a perfectly accurate deterministic 295 

forecast, and 0 representing the same skill as the climatological distribution. 

The climatological distribution represents the distribution of daily streamflow for a given time of the year based solely on 

previously observed streamflow at that time of the year. The climatological distribution is constructed using a 29 day moving-

window approach, described in detail in McInerney et al. (2020). 

 Aggregation and stratification  300 

The study focuses on the performance of the streamflow post-processing models at the monthly scale. The monthly MuTHRE 

forecasts are obtained by aggregating daily forecasts to the monthly scale. The monthly QPP model generates monthly forecasts 

directly. 

Overall evaluation of monthly forecasts is performed using data from the entire evaluation period, i.e. all months and years, 

with more detailed stratified performance evaluation performed for individual months and years. 305 

We also demonstrate the ability of the MuTHRE model to produce seamless forecasts, which are reliable over a range of lead 

times and aggregation scales. This is achieved by evaluating both (i) daily forecasts stratified by lead times from 1-28 days, 

and (ii) cumulative flow forecasts for periods 1-28 days. The forecast is considered óseamlessô if reliability metrics are similar 

across all lead times and aggregation scales. The evaluation of cumulative flow forecasts expands on the analysis of McInerney 

et al. (2020), who evaluated only daily and monthly forecasts, and provides and important demonstration of seamless 310 

forecasting over the entire range of time scales from 1 to 28 days. We note that cumulative flow forecasts over 1 month 

correspond to monthly forecasts. 

 Evaluation of practical significance of differences between streamflow post-processing models  

Forecast performance of the two streamflow post-processing models is compared across multiple catchments using practical 

significance tests, as described next. For each combination of performance metric (e.g., reliability) and stratification (e.g., 315 

month), a statistical test is used to determine whether differences in metric values over the range of catchments exceed a pre-

defined margin representing practical significance (relevance). 

The statistical tests are performed using the paired Wilcoxon signed rank test (Bauer, 1972), with controls applied to reduce 

the false discovery rate to 5%, corresponding to a confidence level of 95% (Benjamini and Hochberg, 1995; Wilks, 2006). The 

practical significance margin is taken as 20% of the median metric value for the non-seamless monthly QPP model (following 320 

McInerney et al., 2020). 
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4. Results  

4.1. Demonstration of seamless forecasting capabilities of the MuTHRE model 

Daily forecasts 325 

 

Figure 4: Time series of daily and cumulative probabilistic forecasts from the seamless MuTHRE model for Murray River at Biggara 

(401012, see Figure 3) for May 2002. The non-seamless monthly QPP model does not have the capability to produce these forecasts. 

Figure 4 illustrates the streamflow forecast time series in the Biggara catchment (Catchment ID 401012, see Figure 3). Daily 

forecasts from the seamless MuTHRE model for a representative time period beginning on 1st May 2002 are shown in Figure 330 

4a. The observed daily streamflow lies within the 90% probability limits of the MuTHRE forecasts for each lead time. As 

expected, the probability limits are tight for short lead times (when forecast rainfall uncertainty and hydrological uncertainty 

are small), and widen for longer lead times. 

Figure 5 (left column) shows the performance of daily forecasts from the MuTHRE model for lead times of 1-28 days, 

evaluated over all case study catchments. The key finding from this analysis is that reliability is relatively constant over all 335 

lead times, with median metric values lying in the tight range of 0.04-0.06 (Figure 5a). We also note that forecasts are sharper 

and have better CRPSS at short lead times, and that bias is relatively constant. 
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 340 

Figure 5: Performance of MuTHRE forecasts in terms of daily streamflow (left) and cumulative flow (right). Metrics shown for 

reliability  (top row), sharpness (2nd row), volumetric bias (3rd row) and CRPSS (bottom row). The bars indicate the full range of 

metric values across the 11 case study catchments and the line indicates the median metric values. Note the inverted y-axis for 

CRPSS, for visual consistency with the other metrics. 

  345 
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Cumulative flow forecasts 

Figure 4b shows cumulative flow forecasts out to 28 days in the Biggara catchment for the representative time period. The 

cumulative flows based on observed streamflow lie well within the 90% probability limits of the MuTHRE forecasts for all 

lead times.  

Figure 5 (right column) shows the performance of cumulative flow forecasts from the MuTHRE model for lead times of 1-28 350 

days over all catchments. Again, we see that reliability is relatively constant over all lead times, with median metric values 

between 0.04 and 0.06 (Figure 5b). We also note that sharpness, volumetric bias and CRPSS metrics are typically better for 

cumulative forecasts than for daily forecasts (compare left and right columns in Figure 5). 

In summary, the forecasts from the MuTHRE model are seamless, because they are reliable over (a) the range of lead times, 

and (b) multiple aggregation scales, from the shortest scale of 1 day, to the longest scale of 1 month, and everything in between. 355 

This result confirms and extends previous findings in McInerney et al. (2020) who focused on daily and monthly scales only. 

In contrast to the seamless MuTHRE model, the non-seamless monthly QPP model does not have the capability to produce 

forecasts of daily streamflow and cumulative flows for time periods below one month. 

4.2. Comparison of monthly forecasts   

 360 

Figure 6: Time series of monthly probabilistic forecasts for Murray River at Biggara (401012, see Figure 3) for the seamless 

MuTHRE model and non-seamless monthly QPP model. Results are shown between the years 2000 and 2011. 

Figure 6 compares monthly forecasts from the seamless MuTHRE model and non-seamless monthly QPP model for the 

Biggara catchment. While there are some minor differences between the two forecasts (e.g. the monthly QPP model produces 

larger spread than the MuTHRE model during 2010), the two forecasts are clearly very similar. 365 
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Figure 7 compares monthly forecasts from the MuTHRE and monthly QPP models in terms of overall performance (left 

column), and when stratified by month (middle column), and year (right column). The key findings are as follows. 

Reliability . Figure 7a shows similar overall reliability of monthly forecasts from the MuTHRE and monthly QPP models. 

While the median metric value of 0.06 for the MuTHRE model is worse than the median value of 0.04 for the monthly QPP 370 

model, these differences are not practically significant (based on the test described in Section 3.4.3). Figure 7b shows that 

when performance is stratified by month, the two models have similar reliability (i.e. not practically significant) for all 12 

months. When stratified by year, the MuTHRE model achieves similar reliability to the monthly QPP model for 20 out of the 

22 years, while the monthly QPP model achieves practically significant improvements in 2 of the 22 years (Figure 7c).  

Sharpness. Figure 7d shows that the overall sharpness of monthly forecasts from the MuTHRE model is slightly better than 375 

the monthly QPP model (median metric values of 0.44 c.f. 0.49), although differences are not practically significant. Figure 

7e shows that when sharpness is stratified by month, the MuTHRE model provides practically significant improvement in 

September and similar performance in the other 11 months. Figure 7f shows sharpness stratified by year is similar for both 

models for all years.  

Volumetric bias. Figure 7g shows that the overall volumetric bias from both models is similar (median of 0.01). Figure 7h 380 

shows that when stratified by month, the MuTHRE model produces practically significant improvements in December and 

similar performance in the remaining 11 months. Figure 7i shows that when stratified by year, the MuTHRE model produces 

practically significant improvements in 1 year (2005), the monthly QPP model provides practically significant improvements 

in 3 years, with similar performance in the remaining 18 years. 

CRPSS. In terms of overall CRPSS, Figure 7j shows that the MuTHRE model (median metric value of 0.45) provides slight 385 

improvement over the monthly QPP model (median metric value of 0.42), although these differences are not practically 

significant. Figure 7k shows that when stratified by month, the MuTHRE model provides similar performance in all 12 months. 

Figure 7i shows that when performance is stratified by year, the MuTHRE model provides practically significant improvements 

in CRPSS in 2 out of 22, and similar performance in the remaining 20 years. 

In summary, aggregated forecasts from the seamless MuTHRE model offer similar (not practically significant), and in some 390 

cases superior performance, to forecasts from the non-seamless monthly QPP model, for the vast majority of performance 

metrics and stratifications considered in this study. 
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Figure 7: Overall performance (all months and years, left column), performance stratified by month (middle column) and 

performance stratified by year (right column), of monthly forecasts from the seamless MuTHRE and non-seamless monthly QPP 395 
models. Results are shown for reliability  (top row), sharpness (2nd row), volumetric bias (3rd row) and CRPSS (bottom row). Boxplots 

in the left column show the distribution of metric values over the 11 catchments. In the other columns, vertical bars indicate the full 

range of metric values across the catchments, the line indicates the median metric values, and circles/squares indicate that the 

MuTHRE  model performs practically significantly better/worse than the monthly QPP model. 








