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Abstract. Subseasonal streamfldarecasts inform a multitude of water management decisimm, early flood warning to

reserwir operation Sé&@aml essd forecast s, andsbhamver&anged leas tintes-8D Hags) and r e r
aggregdbn time scals (e.g. dailyto monthly) are of clear practical interest. However, existing forecast productstemne
o0ncreaml e sevdioped and appliddr a single time scale and lead time (e.g. 1 month ahead). If seamless forecasts are
to be a viable repbeaeimesso6f déorergastsngi 6nos | mpovet ant
performance at the time scale of the 1s@amless forecast.

This study compares forecasts from two probabilistic streamflowgrosessing (QPP) models: the recently developed
seamless daily MuKTemporal Hydrological Residual Error (MUuTHRE) model ahéd more traditional (neeeamless)

mont hly QPP model wused in the Australian Bureau of Met ec
both postprocessing models are generated for 11 Australian catchments, using the GR4J hydnataigicahd prgprocessed

rainfall forecasts from the ACCESS numerical weather prediction model. Evaluating monthly forecasts with key
performance metrics (reliability, sharpness, bias and CRPS skill score), we find that the seamless MUTHRE model achieve:
essentially the same performance as the-sgamless monthly QPP model for the vast majority of metrics and temporal
stratifications (months and years). As such, MuTHRE pr o)
loss of perfomance at the monthly scalet he model | er can proverbially O0have
demonstrates that seamless forecasting technologies, such as the MuTHRIBEsting model, are not only viable, but a

preferred choice for futunesearch development and practical adoption in streamflow forecasting.
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1. Introduction

Subseasonal streamflow forecasts (with lead times up to 30cdaybE used timform a range ofvatermanagement decisions,

from flood warning and reservoir flood mayjeament ashorter lead times (e.g. up to a weekyiver basinmanagement at

time scalesuip toa month The uncertainty in these forecasts is often represented using ensemble and probabilistic methods.

Probabilisticstreamflow forecastbavetraditionallybeendeveloped andppliedat only a single lead time and time sc@dy.,

Souza Filho and Lall, 2003; Pal et &013; HidalgeMufioz et al., 2015; Mendoza et al., 2017; Gibbs et al., 26i@yever,

since different applications requirforecastsover a range ofead tmes and time scalgsecent research has focussed on

producingseamlesforecastsi.e. forecasts from a single product that(atatistically)reliable and sharp acrosuiltiple lead
times and aggregation time scal@dcinerney et al., 2020)For seamlesdorecasts tde a viable replacement fomore
traditional nonseamlesdorecastg(i.e. forecasts foa single lead timeandtime scalgit is important to establish that the
performance of seamless forecasts is competitive with theiseamless counterparts at the native time scale of the latter.

Recent research byicinerney et al. (20200as shown that seamless subseasonal forecasting is achiédelblerney et al.

(2020)developed théMulti-Temporal Hydrological Residual ErroMUTHRE) modelfor postprocessinglaily streamflow

forecastdn order toimprove reliabilityacross a range of time scaleéksinga case studyith 11 catchments in the Murray

Darling Basin, Australiait was concluded that subseasonal forecasts generated thsinguTHRE streamflow post

processingnodel are indeedeamlessdaily forecasts are consistently reliable (i) for lead times between 1 and 30 days, and

(il) when aggregated tine monthlyscale

Seamless subseasonal forecaseseliableover awide range of aggregation time scales (e.g. daityonthly)and lead times

(1-30 days) In contrastnonseamless forecasts ai¢her (i) only available at a single time scale (epostprocessing model

developed directly at theonthlyscaledoesnot generate daily forecadt®or (i) cannot beaeliably aggregated to longer time

scaleqe.g., from daily to monthly The practical benefits aeamless forecasase as follows:
1. Seamlesdorecasts can be usedo inform decisions at a range of time sdas. Forecastuserscan utilize seamless
subseasondbrecastgo inform a wide range of decisions, including
- Flood warning,where shorterm forecasts (up to 1 week) amdividual days areof practicalinterest(Cloke and
Pappenberger, 2009)

- Managing lydropowersystens, which can utilizeorecasts of inflow between 7 adé days to increase production in
the electricity gridBoucher and Ramos, 2019)

- Managng reservoirdor rural water supplywhereforecast volumesverlong aggregation scal¢s.g.weeks/months
and at long lead timgsip to 1 month, are required due tong travel timegMurray-Darling Basin Authority, 2019)

- Operation of than water supplgystemswhere monthly forecasts are of valizhao and Zhao, 2014)

2. Seamless daily forecasts areagly integrated into river system models used for reatime decisionmaking. Perhaps
the greatest potential for seamless forecastiseir useas input into reatime decigon-making tools used by urban and
rural water authorities. Thesgolsinclude river system mode(s.g. eWater Source, Welsh et al., 201@&hich runnatively
at the daily scaland are used to infornesource management decisions daggertime scalesNon-seamlesstreamflow
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forecasts cannot be used as input into these mdmelaysehey do not matchthe time scale athe river system model,
and are not reliable when aggregated to longer time scales (e.g. from daily to monthly).

3. Seamless forecasts simplify forecasting systems, as a single seamless product can serve a range of forecast
requirements at dfferent time scales.As forecasts are often requiraimultiple time scales (e.g. dailynwonthly), nor
seamless forecast strategiequire developing mode{s.g. hydrological, statistical or pgstocessingjor each time scale
of interest (e.gadaly model anda monthly model). Seamless forecastter practical benefits téorecastproviders e.g.
the Australian Bureau of Meteorology, as they reduce the need to develop multiiHeamless forecasts for different
applications. A seamless foredagtsystem offers a single product that can serve a wide range of forecast requirements.

These pactical benefits of seamless forecasts progidear motivation for the development and usklowever, for seamless

forecasts to be a viable replacememtrfonrseamless forecasts, it is important that they do not come at the cost of a substantial

loss ofperformance at theativetime scale of the neaeamlesforecast. For example, if aggregated forecasts from a seamless
daily model were considerably worigan monthly forecasts from an existing reeamless model, users of the monthly
forecasts would prefer to continue using forecasts from theseamless model. In general, one might exforetcasts from

a nonseamless model, developed and calibrated at single time scale, to provide superior peritsmaacedo forecasts

from aseamlessnodelcalibrated at shorter time scale and then aggregated. While treeaoiess model has ordyne job

to daj which is to provide quality forecasts at single time scale, the seamless model is expected to produce good performanc

over a range of lead times and aggregation time scales. Hieeetnmajor challenge of seamless forecasting.

Our interest in comparindné performance of aggregated seamless forecasts witbeaonless forecasts at their native time

scale has similarities to previous research in aggregating deterministic streamflow predictions. For @xamgpd¢al. (2011)

found that the WAPABA monthlkainfall-runoff model produced similar/better performance than aggregatedtmwadifrom

the SIMHYD/AWBM daily rainfall-runoff models despite only usingbservedmonthly forcing dataYang et al. (2016)

compared daily and stidaily versions of the SWAT model (with daily and sidily observed rainfall inputs) and found large

differences in the partitioning of baseflavnd di rect runoff. However, to the bes
compared aggregat@dobabilisticforecasts from a seamless model against probabilisticdfstefrom a noseamless model.

The aim of this study is testablish whether agegated forecasts from(@robabilistic) seamless model achieve comparable

performance to those from a ngeamlesgprobabilistic) model at its native time scal&his aim is achieved by comparing

the monthly forecast performance of the seamless MuTptiREprocessingnodel (aggregated from daily to monthly) against

the nonrseamless monthlgtreamflow posprocessingmo d e | used in the Australian Bu

Forecasting SysteniWoldemeskel et al., 2018)

The remainder of the paper is organized as foll@estion2 describes théorecasting methodsiith a focus on thetreamflow

postprocessingnodels Section3 introduces the case study methd8isctionst and5 present and discussise studyesults,

andSection6 provides concluding remarks.
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2. Forecasting methods

The forecasting methodisvestigatedn thisstudyshare a similar general struog but differ in the streamflow peptocessing
model To facilitate the presentation, this section is organised as follows. The general structure is outlined ir2 Section
Common features of the pgstocessing modslare describeéth Section2.2. Specific details of the MUTHRE and monthly
QPP models are described in Sectidriand2.4.

2.1. Generalstructure

The forecasting methods in tlegidyemploya deteministic hydrological moddborced with an ensemble of rainfall forecasts
andcombinedwith a steamflow pos{processindQPP)model. Ths general structures illustratedschematicallyn Figurel

and detailed next.

- ¢ -
% Raw forecast ! Forecast

streamflow, gV ‘. model J streamflow
~ -

Hydrological
model, h

Forecast
rainfall, xfoc

Figure 1: lllustration of general approach used to produce streamflow forecasts. Layers represent ensemble members.
The deterministichydrological model h(d ;% t_9, has a(single set of parameterdh, inputs X, (including forecast

rainfall Xfoc), and states§_; at timet - 1. In general any rainfalunoff modelcanbe used for this purpose; in our case
study we employ the rainfatlnoff model GR4J (se®ection3.2).

The streamflow forecasts are obtained in two steps. First, an ensemNgcotainfall forecast&{Xfoc(f); f =1 ...,Nfoc}
generated by a numerical weather predictimdel is propagated through the determinibtidrologicalmodel to generate a

raw (f ); f :l

corresponding ensemble éawostreamflow forecast {( . ,Nfoc} . Second, grobabilisticstreamflow post

processing modé$ applied taheraw forecast$o gereratethe (postprocesseddtreamflow forecastéq(f); f=1..., Nfoc}

The streamflow posprocessing models are constructed using the residual error modelling approactcomipisea
deterministiccomponentand a residual erromodel The residualkerror model employsa streamflow transformation to
represent the hetoscedasticity anskew of the errors, an autoregressive term to represent error persiatehcemponents

to capture other features of errors such as seasonality.

Paged of 24



We consider two feecastingmethods which differ in thestructure and details of the streamflow ppicessing modeA
120 schematic representation of these models is givEigure2a.
1 Seamless MITHRE streamflow postprocessingmodel (Mclnerney et al., 2020Y he residual error model isrmulated
at thedaily scale and is applied éictly to @daily) raw streamflow forecast€onceptually, the ensembdéraw streamflow
forecastsaaccouns for forecast rainfaluncertainty and the residual error model acceforthydrological uncertainty
1 Non-seamlessnonthly streamflow postprocessing(QPP) model (Woldemeskel et al., 2018 he residual error model
125 is formulated at thenonthlyscale It is applied to raw streamflow forecastggregated to the monthly scale and collapsed
to their medium value. Conceptually, the residual error model accdontboth hydrological and forecast rainfall
uncertainty
The postprocessing models also differ iheir parameter estimation (calibration) procedufigiure 2b shows thatthe
MuTHRE model iscalibrated usingpbservedaily rainfall andobserved daily streamflowheeasthe monthly QPP model
130 iscalibrated tdorecastdaily rainfall andobserved monthly streamflo@@eeSection2.3.4and2.4.4for details)
Figure 2c illustrates the key operational distinction betwedka models. TheMuTHRE model produces seamless daily
streamflow forecasthatcan be used at a range of lead times and aggregationgp@rigddaily, weekly, fortnightly, monthly)
In contrastthe monthly QPP model produces oahe-month aheasonseamlessnonthly forecasts.
The next section presents common featofghe pos{processing models, before moving to specific model details.
135 2.2. Streamflow postprocessing model

Deterministic component
The deterministic componerﬂtdet is obtained from the raw streamflow forecasig(re2a). The deterministic component
used in the seamless MUTHRE and 1s@amless monthly streamflow pgwsbcessing approaches are detaile®éttions
2.3.2and2.4.2respectively.
14G21 Residual error model
Theresidual error model describing the relationshipmieen the probabilistic streamflow estim&ieand the deterministic

componentq[det is formulated as additive in transformed space
2.2.2. . — .
2Q;d,)=z(d%; ¢) #, L)

Where/7t is a randonresidual erroterm.

145
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(a) MODEL STRUCTURE
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Raw forecast daily || [ Meonthly QPP ‘I N forecas‘:
streamflow g™=v 1 maodel ] "
M s streamflow
==

Figure 2 Conceptual diagrams of the seamless MuTHRE model and the noigeamless monthly QPP modeEnsemble components
are indicated with multiple dayersa Panel (a) shows the pogtrocessing model structure including the deterministic component and
the residual error model (REM). Panel (b)shows the calibration approach to estimate the parameters of the streamflow pest
processing model. Panel (c) illustrates the key distinction between the forecasting products generated by the models: the NRIE
model produces seamless daily streamflow forasts that can be used at a range of lead times and aggregation periods (e.g. daily,
weekly, fortnightly, monthly), whereas the monthly QPP model produces only monthly forecasts.

150
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The transformationZ , with parameter£fZ , is usedto reducethe heteroscedasticity and skewness in residWsks.choose
155 the Box Cox transformatiofe.g., Box and Cox, 1964)
é(q+A 1 .
parA” 15 o

2G/,A=i  J ’ @
flog(g+ A) otherwise

with parametersl, ={/, A . The power parametef is set to0.2in bothstreamflow posprocessingnodels(McInerney

et al., 2017)In the seamless MUTHRE model, the offset paraméeis inferred as part of the hydrological model calibration

(Mclnerney et al., 220), while in the nonseamless monthly QPP model it is set to 1% of the mean observed monthly

160 streamflow, i.e. A=0.01 3meanf™" (Woldemeskel et al., 2018)

Theresidual erroterm /7t is standardized and thenodelled as an AR(1) process,

n=0 -ml a ®
n=f.g, 4

where /1] and &, are the (timevarying) mean andcaling factor 01‘/7t , 1, is the lagl autoregressive parametand Y,

165 is therandom component (referred to as @mmovatiord at timet.

When generating forecasts, recent streamflow observations are used to update errors via the AR(1) model, and reduc
uncertainty in/7t for short kad times.

2.3. Seamless MUTHRE model
Model structure
170 The seamless MuTHRRostprocessingmodel operates at the daily time scdlmcertaintydue to forecast rainfall and

hydrological errorss represented using the ensemble dressing app({agfano et al., 201.3The ensemble of daily raw

2.3.58treamflow forecastsqraw, obtained by propagating @nsemble of rainfall forecasts through the hydrological médel

accaunts for forecast rainfall uncertaint.randomly generated replicate of the residual tegfnjs thenadded to eacbf the

Nfoc raw streamflow forecaginsemble membsgto account for hydrologicalncertainty This producesmensemble oNfoC

175 pod-processed streamflow forecastee schematic iRigure 2a. Note that this approach to caphg forecast rainfall and
hydrological uncertaintyequireghe rainfall forecastt® be reliable in order to produce reliable streamflow fored®&skade
et al., 2017)
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Deterministic component

180 In the context of equatiofi), the deterministicomponentn the MUTHRE modeét itsdaily time stept is
det — ~raw(f ) . )
g =q™" H(d; £ .9 (5)
i.e.,the residual error model is applidiectlyto eachensemble member of thaw forecast (Figure2a).
Residual error model
The MuTHRE model assumes that thean of theesidual erroii /7] in equation(3) i varies intime due toGeasonalitf
185 anddynamic bias(associated withydrologicnonstationarity)
— ( *
m=f +h o+ ®)
23.2.

The seasonalitgcomponentnzs()t) describeghe mean value of on the dayof-the-year d(t), the dynamic bias terrﬂf)

describeghe mean value of (after removing seasonality) over the preceng days (Nb =30 is used), and/ﬁ isa

2.3.xz0nstant tacapturetheremainingbias Full details of these terms goeovidedin Mclnerney et al. (2020)

190

195

Thescaling factoii & in equation(3) i is constant (set to 1 for simplicity).

Innovations are modelled using a twomponent mixedsaussian distribution
2
Vi ~ N (7. §. m 5w 0

where /M and /73 arethe means of thewo components, which are set to ze&,and S, are the standard deviations of the

components, andlV; is the weight of the first componei@ompared to a standard Gaussian distribution, the A@eadssian

distribution allowsfor fattier tails (i.e., excess kurtos)sn the distribution of innovations, which has been shown to improve
reliability of daily forecasts at short lead tim@s et al., 2016) Note that the mixetaussian distributiodoes notoffer
benefitsat longer lead timesior when aggregatg forecastdo the monthly scal@Vclinerney et al., 2020)

Calibration of residual error model

: S ) i f . . .
The parameters of the residual error mc{ﬁeﬁ , &5,m,I,, §2, ;,W]} areestimated fronthe followingdaily scaledata

200 , {seeFigure2b):

(i) Daily hydrological model simulationqSim forced with observed rainfa ;

(i) Daily observed streamflowg .
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Seasonality € (S)) and dynamic biase((b)) terms are calculated using moving averaga&ametertﬁ and , are eimated

2
asthe sample mean ditag-1 autecorrelation of the dérended residuals, while the mix@hussiarparameters[sl ) é,W]}

205 are estimated using maximdiikelihood. Full details of the calibration procedure are provigelclinerney et al. (2020)
2.4. Non-seamlessnonthly QPP model
Model structure
The nonseamless mohty QPP model operates at the monthly time scBhe raw forecasts are aggregated from daily to

monthly scale and collapsed to their median value yield]ﬁ%’mon, i.e.,the uncertainty from the raw streamflow ensemble

210 isdiscardedThecombined érecast rainfallincertaintyand hydrological uncertaingrerepresented through the residaedor

det,mon

term . Monthly streamflow forecastsre obtained frong] by adding NfOC replicates of(] . See schematic iRigure

2a.
Deterministic component
2.4.11 he deterministicomponentn the norseamless modal itsmonthlytime stept is computed

215 as follows
gt ) = averag(éqt*raw(f el T( t)) €S)

o = mediar( ™™} £ =1,.., N, ) ©)

24.2.
whereT(t) is averaging window (range of days) corresponding to the monthly time step

Residual error model

220 The residual error model is applied at the monthly scale after collapsirensemble of raw forecasts to a single time series.
Themonthlyresidual error model captures seasonality in residuals by varying the fileand scaling factod; in equation

(3) by month.Innovations are assumed to be independent and identically distributed Gaussian,
2.4.3.
2
y, ~N (O,Sy) (10

Where.Sy is thestandard deviationf the innovations.
225 Calibration of residual error model

The parameters of themonthly residual error modeﬁfh, é,{ oA dn =1, »,12}} are estimatedfrom the following
2.44.

monthlyscaledata(seeFigure2b):

() Monthly deterministic forecast§™"™" obtained using forecast rainfalbdescribed in Sectio?.4.2
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(i) Monthly observed streamfloy| .

All parameters are calibrated using the metbbdhomentsFull details are provideith Woldemeskel et al. (2018)

3. Casestudy

3.1. Catchments and Data

The case study usessat of 11 catchments from tihdurray Darling Basin in Australiaincluding four catchments on the

Upper Murray River (NSW and Victoria) and seveatchments on the GoulbuRiver (Victoria) These catchments have

winter dominated rainfall which leads to higher streamflow between June and Octol#gg(se8), andhave fewer than 5%

of days with no flow. Catchment properties are summarise@able 1. This same set of catchments was used to extensively
evaluate the MUTHRE modal Mcinerney et al. (2020)

Time series of daily observedireamflowover a 22year period between 1991 and 2Gir2 obtained from the Hydrologic

Reference Stations (HRS) datadaty://www.bom.gov.au/water/hrsObservedainfall and PET data ovehe same period

ar e obtained from

t he

A uss tlimatel data seBicenwf@nebam.govfau/clivhate) with rao | o gy

climatological average used for PEVicinerney et al., 2021)

Rainfall forecasts are provided blget Australian Community Climate EarBystem Simulator Seasonal ACCESSS)

(Hudsonet al., 2017)The ACCESSS rainfall forecastare preprocessed using theethod ofSchepen et al. (2018) order

to reduce biases and improve the reliabilitycomparison to observed rainfain ensemblef 100 pre-processedainfall

forecass thatbegin on the first day of each morathd extend out ta maximum lead time of 1 mon#nreused.

3.2. Hydrological model

The conceptual rainfaunoff model GR4J(Perrin et al., 2003)s used as the deterministic hydrological modelfor

simulating daily streamflow from rainfall and PET inp(¢eeSection2.1). GR4J has beenidely used and evaluated over

diverse catchment climatologies aphysical characteristic®errin et al., 2003; Hunter et al., 202GR4J representhe

processes dhterception, infiltration and percolation, and thasr calibration parameterX; is the capacity of the production

store (mm),X, is the water exchange coefficient (mnX), is the capacity of the routing store (mm), agdis the time

parameter of the unit hydrograph (days).
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(panel c) Boxplots in panels (b) and (cshowdistribution s of mean observed streamflowover the 11 catchments.

Table 1: Properties of the 11 case study catchments

Catchment StetD |wrea (am)| rainial | runoft | RO | Zerofow | Aridy
(mm/yr) | (mml/yr)
Murray River at Biggara 401012 1257 1117 370 0.33 0 0.99
Jingellic Creek at Jingellic 401013 390 876 112 0.13 1.1 0.68
Cudgewa Creek at Berringamg 401208 351 1127 209 0.19 0 0.90
Gibbo River at Gibbo Park 401217 390 1138 273 0.24 0 1.01
Acheron River at Taggerty 405209 629 1234 443 0.36 0 1.2
Delatite River at TongaBridge | 405214 368 959 248 0.26 0 0.85
Goulburn River at Dohertys 405219 700 1156 424 0.37 0 1.0
Hughes Creek at Tarcombe Rq 405228 475 760 116 0.15 1.3 0.65
King Parrot Creek at Flowerdalg 405231A 181 999 187 0.19 0 0.%
Seven at D/S PollilcQuinns Wei 405234 148 852 226 0.27 0.71
Seven CreekRiver at Kialla West| 405269 1513 655 93 0.14 3.0 0.53
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260 3.3. Calibration/evaluation procedure
Calibration of model parameters and evaluation of forecasts is performed using@ariegearout cross validation procedure

(Mclnerney et al., 2020For eachcalendaryear j, hydrological and residuarror model parameters are calibrated using

observedstreamflowdata from the entire evaluation pericgkceptfor year j and thesubsequenyears j +1to | +4

(which are excluded to reduce the influence of system memory on model evaluation, as described in Pokhrel et al., 2013)
265 Hydrological modeparameters are estimated using likelihood maximisation basea @Cb.2 error modgMclnerney et

al., 2020) implemented using a qualiewton optimizatiomalgorithmrun with 100 independent multistarti<avetski and

Clark, 2010) Methodsfor estimating residual error model parametersdaseribed inSedions2.3.4and2.4.4

Note that in this work we do not consider partmoeuncertainty (in the hydrological and residual error models), wisich

expected to be a (relatively) minor contributor to total forecast uncertainty given the long data period used in thenestimati
270 this simplification is common in contemporary forstiag implementationg.g., Engeland and Steinsland, 2014; Verkade et

al., 2017)

For each year] , calibrated hydrological and error models are use@teateain ensemble dfoOstreamflow forecastaily

forecasts from the MUTHRE modeégin on the first day of each mop#md extend out ta maximum lead time of 1 month
(which is the same as the rainfall forecasts)
275 This calibration/forecasting process rispeatedfor all 22 years resulting in 22sets of oneear forecasts, which are
subsequently merged intesangle22-year forecasto facilitate evaluatiomgainst streamflow observations
3.4. Forecastevaluation
Performance metrics
Streamflow forecastareevaluatedising numerical metrider thefollowing attributes
280 Reliabilityrefers tathedegree oftatistical consistency between the forecast distributiontaabsened data. Its evaluated
using thereliability metric of Evin et al. (2014)Lower metricvaluesare betterwith O representingerfect reliability, and 1
3_4_1r_epresenting thevorst reliability.
Sharpnessefers to the spread of the forecast distribution, with sharper forecasts those witbpoga\We use the sharpness
metric ofMclnerney et al. (2020which is based on thratio of the averag80%inter-quantile range (IQR) of the forecasts
285 andaclimatological distribution{described below) ower values are better, with O representing a deterministic forecast (with
nospread and 1 representing the same sharpness as climatthogpntrast to the other attributes considered here, sharpness
is a property of the forecast ordapddoes notlepenl on the obserd data
Volumetric biagefers tothe longtermwater balancerror. It is quantified using the metric Mclnerney et al. (20173sthe
relative absolute difference between total observed streamflow and the total forecast streamflow (averagedooeeast
290 ensemblg Lower values are better, withr8presenting unbiased forecasts.
Combined performande quantified using the continuous ranked probability score (CRP®8)CRPS islefinedas the sum

of squaredlifferencesbetween forecast cumtie distribution function (CDF) and the empirical CDF of the observation.
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Note thatthe CRPScan be decomposed into terms representing individual performance aspects, namely reliability, and
uncertainty/resolution (related to sharpnékirsbach, 2000)We express this metric as a skill score (CRPSS) relative to the
climatological distribution. Higher CRPSS values begter, with a value of flepresenting perfectly accurate deterministic
forecast, and @epresentinghe same skill as the climatological distribution.
The climatological distributionrepresents the distribution of daily streamflow for a given timeéhefyiear based solely on
previously observed streamflow at that time of the year. The climatological distrimitionstructed using 29 day moving
window approach, described in detailNftinerney et al. (2020)

Aggregation and stratification
Thestudy focuses on thgerformance of thetreamflow posprocessingnodek at the monthly scel The monthly MUTHRE
forecasts are obtained by aggregatiady forecastso the monthly scal@ he monthly QPP model generates monthly forecasts
directly.
Overall evaluation ofmonthly forecastss performedusing data fronthe entire evaluation period, i.e. all months and years
with more detailedstratified performanceevaluationperformed for individuamonths and yeas.
We also demonstrate tlability of the MUTHRE model to produce seamless forecasts, which are raliadla range of lead

times and aggregation scales. This is achieved by evaluadthdi) daily forecasts stratified by lead tim&fom 1-28 days,

2.
and(ii) cumulativeflow forecasts for periods28days The f or ecast i breliabiitymetridsane sidilar6é s e a

across all lead times and aggregation scales evaluation of cumulative flow forecasts expands on the analydioérney
et al. (2020) who evaluated only daily and monthly forecasts, and provides and important demonstration of seamless
forecasting over the entire range of time scélem 1 to 28 days. We note # cumulative flow forecasts over 1 month
correspond to monthly forecasts.

Evaluation of practical significance ofdifferences betweerstreamflow postprocessingmodels
Forecast performanad the twostreamflow posprocessingnodels is compared acrasalltiple catchmentsisingpractical
significance testsas described next. For eacbmbination of performance metric (e.g., reliability) and stratificaeg.,

month), astatistical tests used to determinghether differencesiimetric valuesver tre range of catchmenéxceeda pre

s.4.definedmarginrepresenting practical significance (relevance)

320

The datisticaltests are performed usitige paired Wilcoxon signed rank téBauer, 1972)with controls applied toeduce
thefalse discoveryateto 5% corresponding to a confidence level of 9@énjamini and Hochberg, 1995; Wilks, 2006he
practical significancemarginis taken as 20% of the median metric value formtbeseamless monthly QPP modfdllowing

Mclnerney et al., 2020)
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4. Results
4.1. Demonstration of seamless forecasting capabilities of the MUTHRE model

Daily forecasts
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Figure 4: Time series of daily and cumulative probabilistic forecasts from the seamless MUTHRE model for Murray River at Biggara
(401012, se€igure 3) for May 2002. The nonseamless monthly QPP model does not have the capability to produce these forecasts.

Figure4 illustratesthe streamflowforecast time series in the Biggara catchm@att¢hment ID401012, se€igure 3). Daily
forecasts from theeamles$AuTHRE modelfor a representative time peribeginning on $May 2002are shown irFigure

4a. The observed daily streamflow lies within the 90% probability limits of the MuTHIREEdsts for each ledine. As
expected, the probability limits are tight for short lead tiffvesen forecast rainfall uncertainty and hydrological uncertainty
aresmal)), and widerfor longer lead times.

Figure 5 (left column) showshe performance of daily forecasts from the MUTHRE model for lead tiofies28 days,
evaluated oveall case study catchments. The key finding from this analysis isehability is relatively constant ovell
leadtimes, with median metric values lying in the tight range of @.@% (igure5a). We also note that fecasts are sharper
andhave better CRPSS at short lead times, and that bias is relatively constant.
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Figure 5: Performance of MUTHRE forecasts in terms of daily streamflow (left) and cumulative flow (right) Metrics shown for
reliability (top row), sharpness(2™ row), volumetric bias (39 row) and CRPSS (bottom row). The bars indicate the full range of
metric values across thell case studycatchments and the line indicates the median metric valuedlote the inverted y-axis for
CRPSS for visual consistency with the other metrics
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Cumulative flow forecasts

Figure4b shows cumulative flow forecasts out to 28 days in the Biggara catchmehe fiiepresentative time period. The
cumulative flows based on observed streamflow lie well within the 90% probability limits of the MuTHRE forecasts for all
lead times.

Figure5 (right column) showshe performance ofumulative flowforecasts from the MUTHRE model for lead tinoé4-28
daysover allcatchmentsAgain, we see thateliability is relatively constant ovell leadtimes, with median metr values
between 0.04 an@.06 Figure5b). We also notethat sharpness, volumetrliasand CRPSS metrics are typically better for
cumulative forecasts thdar daily forecasts (compare left and right columngigureb).

In summary, thdorecasts from the MUTHRE model are seamlbssauséehey are reliable over (a) the range of lead times,
and (b) multiple aggregation scales, from the shortest scale of 1 day, to the $oaggedtl month, and everything in between.
Thisresultconfirms and extends previous findingshittinerney et al. (2020)ho focused on daily and madnty scales only

In contrast to the seamless MUTHRE model, the-seamless monthly QPP model does not have the capability to produce
forecasts of daily streamflow and cumulative flows for time perimiswone month.

4.2. Comparison of monthly forecasts
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Figure 6: Time series of monthly probabilistic forecasts for Murray River at Biggara (401012, sekigure 3) for the seamless
MuTHRE model and non-seamless monthly QPP model. Results are shown between the years 2000 and 2011.

Figure 6 compares monthly forecasts from teeamlessMuTHRE model and norseamless monthly BP modelfor the
Biggara catchmentWhile there are some minor differences between the two forecastdigergonthly QPP model produces

larger spread than the MUTHRE model during 2010), the two forecasts are clearly very similar
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Figure 7 comparesmonthly forecasts from gtMuTHRE and monthly QPP models in terms of overall performance (left
column), and when stratified by month (middle column), and year (right column). The key findings are as follows.
Reliability . Figure 7a showssimilar overall reliability of monthly forecasts from the MUTHRE and montl@¥?P models.

While themedian metric valuef 0.06 for the MUTHRE model iworsethan the median value of 0.04 for the monthly QPP
model,these differences are not practically significéased on the testescribedn Section3.4.3. Figure 7b shows that

when performance is stratified by month, the two models hiamigas reliability (i.e. not practically significant) foall 12
months When stratified by year, the MUTHRE modaehievessimilar reliability to the monthly QPP model for 20 out of the

22 yearswhile the monthly QPP modeichievegractically significant improvements ind? the 22 yearsHigure7c).

Sharpness Figure 7d shows that the overatharpness of monthly forecasts from the MUTHRE model is slightly better than
the monthly QPP modémedian metric values of 0.44f. 0.49, although differences are not practically significafigure

7e shows that when sharpness is stratified by month, the MUTHRE model provides practically significant improvement in
September and similar performance in the other 11 moRitsre 7f shows sharpness stratified by y&asimilar for both
models forall years.

Volumetric bias. Figure 7g shows that #overall volumetric bias from both rdels is similar (median of 0.p1Figure 7h

shows that when stratified by month, the MUTHRE model produces practically signififganavements in Decemband

similar performance in the remaining 11 monffiglure7i shows that when stratified by year, the MUTHRE model produces
practicaly significant improvements ith year(2005) the monthly QPP model provides practically significant improvements

in 3 years with similar performance irthe remaining 1§ears

CRPSS In terms ofoverall CRPSSFigure7j shows that the MUTHRE model (median metric value of 0.45) provides slight
improvement over the monthly QPP model (median metric value of 0.42), although these differences are not practically
significant.Figure7k shows that when stratified by month, the MUTHRE model provides similar performance in all 12 months.
Figure7i shows that when performance is stratified by year, the MUTHRE model provides practically siginifizamements

in CRPSS in 2 out of 22, and similar performance in the remaining 20 years.

In summary, aggregatddrecasts from the seamless MUTHRE model offer similar (not practically significant), and in some
cases superior performance, to forecasts from theseamless monthly QPP model, for the vast majority of performance

metrics and stratific&ins considereah this study.
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Figure 7. Overall performance (@ll months and years,left column), performance stratified by month (middle column) and
performance stratified by year (right column), of monthly forecasts from the seamless MUTHRE and neseamless monthly QPP
models Results are shown foreliability (top row), sharpnesg2™ row), volumetric bias (3¢ row) and CRPSS (bottom row). Boxplots
in the left column show the disribution of metric values over the 11 catchmentsln the other columns vertical bars indicate the full
range of metric values across the catchmentshe line indicates the median metric valuesand drcles/squares indicatethat the
MuTHRE modd performs practically significantly better/worsethan the monthly QPP model
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