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 25 

ABSTRACT 26 

 27 

Stochastically generated streamflow time series are increasingly used for various water 28 

management and hazard assessment applications. The sequences provide realizations, 29 

preserving the temporal and spatial characteristics observed in the historic data. However, the 30 

simulations are further desirable to represent nonstationarity to account for past and future 31 

interannual oscillations. This study proposes an approach for stochastically generating future 32 

multisite daily streamflow to evaluate future water security conditioned on a national-wide 33 

relationship between annual daily maximum temperature and annual streamflow. The approach 34 

is attractive since it can avoid limitations and uncertainties introduced during realization and 35 

bias correction processes for climate model-based rainfall information. Alternatively, this 36 

approach relies on high projection skills of temperature variability. While the approach is 37 

developed by coupling annual and daily simulations, it includes (1) a wavelet decomposition-38 

based autoregressive simulation to impose the signal of regional climate covariate; (2) 39 

clustering-based spatial pattern recognition and simulation; and (3) block bootstrapping and 40 

vine copula-based simulation for multisite streamflow simulation. The approach is applied as 41 

an example to multiple basins in South Korea. Results show that the generated sequences 42 

properly preserve many of the historical characteristics across basins. For future streamflow 43 

simulations, significant decreases in streamflow are projected, likely resulting in nontrivial 44 

impacts on regional water security. Finally, we conclude with a discussion of possible 45 

improvements to further refine the approach. 46 

 47 

Keywords: Streamflow simulations, Nonstationary-based simulation, Future streamflow 48 

generation, and South Korea. 49 

 50 
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1. Introduction 51 

Water security is facing uncertainty in the near future but is increasingly perceived as a major 52 

threat to society and the economy (Grey et al., 2013; Wheater, 2015). Together with socio-53 

economic and land-use changes, water-related losses in a warmer climate are projected to 54 

increase around the world (Klein et al., 2014). To recognize the possible threat, water planners 55 

need future hydrological scenarios that are utilized to evaluate the robustness of water resource 56 

systems and infrastructure. However, there is no universal procedure to generate the scenarios, 57 

which is still in need of further investigation. 58 

 59 

The most common approach for projecting how future climate conditions affect local water 60 

security is using climate simulations (e.g., precipitation and evapotranspiration) of general 61 

climate models (GCMs) under future greenhouse gas emission scenarios. Projections from 62 

these numerical models over multidecadal timescales offer climate scenarios that can be 63 

utilized to investigate the impacts of anthropogenic climate change on hydrologic responses 64 

(Karlsson et al., 2016; Van Huijgevoort et al., 2014). While these impacts are often associated 65 

with the changes in altered atmospheric circulations at both global and regional scales (Gao et 66 

al., 2020; Seidel et al., 2008) and water cycle systems (Kundzewicz et al., 2008), they are 67 

primarily affected by the changes in water vapor content from a warm climate (Asadieh and 68 

Krakauer, 2015; Bao et al., 2017; Prein et al., 2017). 69 

 70 

Although GCMs are valuable tools for projecting global changes in atmospheric dynamics, 71 

their projected scenarios have often been criticized due to low reliability (Merz et al., 2014; 72 

Salvi et al., 2017; Stephens et al., 2010). Also, the fidelity of regional climate in GCMs 73 

substantially varies across seasons (Gu et al., 2015; Tabari and Willems, 2018), regions (Bock 74 
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et al., 2018; Jiang et al., 2016), and climate variables (Eghdamirad et al., 2017; Strobach and 75 

Bel, 2017) due to the differences in the physical processes and numerical limitations imposed 76 

by spatial resolutions. The outputs in GCMs occasionally provide improper scenarios for the 77 

purpose of local water resources management (Blöschl and Montanari, 2010; Kiem and 78 

Verdon-Kidd, 2011). This is particularly true for the direct use of climate-modeled precipitation 79 

simulations when they are employed for hydrological impact studies (Knighton et al., 2019). 80 

The simulation is further problematic if low frequency climate oscillations (e.g., multiyear 81 

droughts) are of interest or where multidecadal rainfall variability is significantly high (Kiem 82 

et al., 2016). Even though higher-resolution models can improve some aspects of modeled 83 

climate (Kendon et al., 2017), they are offset by being computationally intensive, which is 84 

inefficient for water supply agencies. 85 

 86 

While efforts on the improvement of climate models are continually encouraged, representation 87 

of climate change signals in climate models is not straightforward due to the inherent chaotic 88 

nature of atmospheric and oceanic processes and their interactions (Aalbers et al., 2018; 89 

Hawkins et al., 2016). Moreover, when hydrological models are utilized to transfer climate 90 

simulations into hydrologic response (e.g., flow), underestimations of extreme events are 91 

frequently observed, hindering proper interpretation of climate change signals (Ahn and Kim, 92 

2019). Alternatively, a few studies have proposed a projection approach indirectly 93 

incorporating climate change signals for hydrological impact studies by utilizing the signals 94 

from a regional climate covariate (Kiem et al., 2021; Stagge and Moglen, 2013; Wasko and 95 

Sharma, 2017). These approaches are developed based on stochastic modeling approaches. For 96 

example, Stagge and Moglen (2013) have developed an approach for stochastically generating 97 

future streamflow using GCM-based climate indicators and found that summer flows are 98 
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projected to decrease, caused by a shift to shorter, more sporadic rain events. Wasko and 99 

Sharma (2017) have utilized the parameters of a Neyman-Scott rectangular pulse model 100 

conditioned on monthly average temperatures and revealed a significant reduction in the 101 

medium-sized floods that contribute a great amount to local reservoir inflows.  102 

 103 

Stochastic modeling-based projection not only offers more samples to represent hydrological 104 

variability but also requires less computational burden for evaluating regional water system 105 

performance (Borgomeo et al., 2015; Hirsch, 1979). Hence, it is commonly employed to pursue 106 

water resources decision-making including reservoir planning (Guimarães and Santos, 2011; 107 

Vogel and Stedinger, 1988), hydroelectric system operation (Lanini et al., 2014), environmental 108 

flow strategy (Aguilar et al., 2014). The typically used stochastic modeling approaches are 109 

classified into two classes known as parametric and nonparametric models. Parametric models 110 

include autoregressive moving average (ARMA) models, fractional Gaussian noise models and 111 

wavelet-based simulation (Brunner and Gilleland, 2020; Kirsch et al., 2013; Papalexiou, 2018). 112 

Nonparametric models include kernel density estimation and bootstrapping approaches 113 

(Herman et al., 2016; Salas and Lee, 2010; Sharma et al., 1997). More recently, semi-114 

parametric approaches that use both parametric and non-parametric modules have been proven 115 

to be useful since the advantage of each class can be combined in a relatively simple model 116 

structure. 117 

 118 

In this study, following the recent work in Kiem et al. (2021), we employ interannual 119 

temperature variability as a regional climate covariate. The projection approach by indirectly 120 

incorporating a signal from the temperature variable is attractive for hydrological impact 121 

studies since temperature simulations have relatively high projection skills and their 122 
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projections are widely available throughout worldwide regions (Johnson and Sharma, 2009; 123 

Klein et al., 2014). Also, the covariate is strongly associated with regional streamflow 124 

variability. Numerous studies have reported that changes in temperature are often linked to the 125 

intensification of storms (Barbero et al., 2018; Utsumi et al., 2011) and rainfall duration (Herath 126 

et al., 2018; Panthou et al., 2014; Wasko et al., 2015). In this line, the changes can be 127 

significantly meaningful for interannual streamflow oscillations. To be specific, years with 128 

higher (lower) temperatures have drier (wetter) moisture due to more (less) evaporation, 129 

leading to decreased (increased) streamflow (Kiem et al., 2016; Sheffield et al., 2012; Van Loon, 130 

2015). 131 

 132 

Summing up, this study presents a new approach for stochastically generating future daily 133 

streamflow simulations at multiple sites for water supply security assessments over South 134 

Korea. The proposed approach is semi-parametric and includes [1] a wavelet decomposition-135 

based autoregressive simulation to impose the signal of climate change; [2] clustering-based 136 

spatial pattern recognition and simulation; and [3] a block bootstrapping and vine copula-based 137 

simulation. Based on our new finding about the strong regional relationship between 138 

temperature and streamflow over the study area, we develop future streamflow simulations by 139 

using alternative climate model outputs rather than using precipitation variable, which is in line 140 

with recent works (Farnham et al., 2018; Kiem et al., 2021; Yu et al., 2018). Previous studies 141 

have used climate covariates to simulate hydroclimate responses under climate change (Kiem 142 

et al., 2021; Steinschneider et al., 2019; Wasko and Sharma, 2017; Yu et al., 2018; Zaerpour et 143 

al., 2021). The proposed approach has three novelties when compared to previous works: [1] 144 

we explicitly characterize the daily spatial pattern in the regional streamflow network and 145 

utilize it for simulating realistic regional streamflow occurrences; [2] we model inter-annual 146 
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variability in simulating regional streamflow based on the signal from the regional covariates, 147 

which could eventually lead to a suitable representation of hydrologic extreme events over 148 

long-term simulation periods (Sparks et al., 2018); [3] we identify a strong association between 149 

annual daily maximum temperature and regional streamflow over the study area at annual time 150 

scales and utilize it for nonstationary-based streamflow simulations. 151 

 152 

The remainder of this paper is organized as follows. Section 2 presents the methodology of the 153 

nonstationary stochastic streamflow simulation model that is conditioned on a regional climate 154 

covariate. Section 3 provides the application information to the study area, focusing on the 155 

twelve primary basins in South Korea. The conditional stochastic model is evaluated in Section 156 

4. Also, changes in streamflow from climate projection scenarios are addressed in the section. 157 

Finally, this paper concludes in Section 5 with a discussion of the limitations of our approach 158 

and future research needs. 159 

 160 

2. A Multisite Stochastic Streamflow Simulation Conditioned on Climate Covariates 161 

The stochastic model proposed for synthetic streamflow simulations couples annual and daily 162 

simulation modules. Regional annual streamflows are generated using a wavelet autoregressive 163 

model (Kwon et al., 2007) to allow for conditioning on climate covariates. Daily multisite 164 

streamflows are generated using the semi-parametric model akin to multisite weather generator 165 

models in Apipattanavis et al. (2007) and Steinschneider et al. (2019). For post-processing, 166 

daily simulations are reconstructed based on the realizations of annual streamflow. Figure 1 167 

gives an overview of the input, modules and the simulation step, which are demonstrated in 168 

more detail in the following sub-sections. 169 

 170 
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2.1 Module I: Regional annual streamflow generation 171 

Consider �̃�𝑡  with time, t = 1, …, T represents a time series of annual regional-averaged 172 

streamflow. This time series is decomposed into K orthogonal component series 𝑧𝑘,𝑡  that 173 

inform different frequency signals and a residual component 𝜀𝑡. 174 

 175 

�̃�𝑡 =  ∑ 𝑧𝑘,𝑡
𝐾
𝑘=1 + 𝜀𝑡         Eq. (1) 176 

 177 

A simulation of �̃�𝑡  is generated with time series models of each frequency component and 178 

residual noise. To simulate the signals, we consider autoregressive (AR) models with adding 179 

the vector of climate covariate (𝜙𝑡) while only AR models are considered for the residuals: 180 

 181 

�̃�𝑡 =  ∑ (∑ 𝛼𝑘,𝑖 × 𝑧𝑘,𝑡−𝑖 + 𝛽𝑘 × 𝜙𝑡 + 𝜖𝑘,𝑡
𝑝𝑘
𝑖=1 )𝐾

𝑘=1 +  ∑ 𝛾𝑖 × 𝜀𝑡−𝑖
𝑝𝑟
𝑖=1 + 𝜁𝑡  Eq. (2) 182 

 183 

where 𝑝𝑘 is the order of the AR model for the kth frequency signals, 𝑝𝑟 is the model order for 184 

the residual noises, 𝛼𝑘,𝑖, 𝛽𝑘, and 𝛾𝑖 are the AR model coefficients. 𝜖𝑘,𝑡 and 𝜁𝑡 are independent, 185 

and identically-distributed, white noise processes. Wavelet decomposition is used to generate 186 

the frequency component and noise term in equation (2). Also, in this study, 𝜙𝑡 is transformed 187 

to be approximately normally distributed using the Box-Cox transformation (Box and Cox, 188 

1964) before being employed in equation (2). The decomposed time series are then summed 189 

together to synthesize a time series of regional annual streamflow �̃�𝑡 . Also, a variance 190 

correction factor is applied in �̃�𝑡, following Nowak et al. (2011). Similar to Ahn (2020), this 191 

study simply utilizes a first order AR model for the orders of 𝑝𝑘 and 𝑝𝑟 although the AR orders 192 

can be determined using the penalized likelihood function (e.g., Bayesian information criterion 193 

(BIC) (Schwarz, 1978)). A more thorough exposition of the theoretical background of the 194 
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wavelet transformation approach can be found in Kwon et al. (2007) and Torrence and Compo 195 

(1998).  196 

 197 

2.2 Module II: Multisite daily streamflow generation 198 

2.2.1 Identification and generation of spatial pattern in streamflow 199 

This study first determines spatial occurrence patterns (s) of daily streamflow over the study 200 

area using the self-organizing map (SOM; Kohonen, 1990). SOMs are neural network 201 

algorithms that utilize unsupervised classification to perform nonlinear mapping of high-202 

dimensional datasets onto regularly arranged two-dimensional arrays referred to as SOMs 203 

(Kohonen, 1991). Here, each of the elements in the SOM array is denoted as a node. From the 204 

SOM analysis, each day is partitioned into one of the nodes (i.e., spatial output patterns). While 205 

the number of nodes is dependent on the level of detail desired in the analysis, a moderate-206 

sized number of noises is preferred. To consider major spatial patterns, this study adopts 2 × 3 207 

nodes. We also tested different grid sizes (2 × 2, 3 × 3 and 4 × 4) and found that 2 × 3 SOM 208 

most effectively captures the important heterogeneity (not shown). 209 

 210 

Afterward, a synthetic daily time series of spatial patterns is modeled using the first-order 211 

Markov chain with a time-varying transition probability matrix (𝑇𝑀𝜂𝜍
𝑗

) constructed in each 212 

Julian day 𝑗. To be specific, 𝑇𝑀𝜂𝜍
𝑗

 on simulation day j is estimated using the SOM patterns over 213 

21 days centered on day j (i.e., 𝑠𝑗−10  through 𝑠𝑗+10 ). Each 𝑇𝑀𝜂𝜍  has a size 6 × 6  with each 214 

coordinate showing the probability of a state occurring at day j and transitioning to another 215 

state at day j + 1. These conditional probabilities (CP) are computed using the following 216 

equation: 217 

 218 
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𝐶𝑃𝜂𝜍 =  𝑃[𝑠𝑗+1 = 𝜂|𝑠𝑗 = 𝜍]       Eq. (3) 219 

 220 

where 𝜂 and 𝜍 are the spatial patterns for the present and the next day, respectively. We generate 221 

the sequences of six spatial patterns for all the applicant period using the time-varying 222 

transitional matrices. 223 

 224 

2.2.2 Generation of multisite streamflows conditioned on identified spatial patterns 225 

Multisite streamflows are simulated based on the block bootstrapping technique and generated 226 

sequences of spatial patterns. Let the simulated spatial patterns from time t to n days contain 227 

the 𝜔th (𝜔 = 1, …, 6) pattern. While n substantially varies according to season, it can maintain 228 

longer than three months (presented in the Results section). To resample historical streamflows, 229 

this study confines the longest historical block day length (𝑛∗∗) to 10 days. We thereby resample 230 

a 𝑛∗-day block of historical streamflow data that are classified into the 𝜔th pattern, where 𝑛∗ 231 

is the longest historical block length available such that 𝑛∗ ≤ 𝑛∗∗. A block is resampled from 232 

all H historical blocks of length 𝑛∗ of which the central day is within a 𝜗-day window of the 233 

day for simulation day 𝑗 (𝜗 =  ±10 day). Here, to resample a block, the H historical blocks are 234 

weighted using importance sampling based on the similarity between the streamflows on the 235 

first day of the historical blocks and the simulated streamflow in the simulation day 𝑗-1 to 236 

represent a more realistic fluctuation in the streamflow sequence. If the day length 𝑛∗ of the 237 

resampled block is less than 𝑛∗∗ , the remaining length 𝑛∗∗− 𝑛∗  is employed as a basis to 238 

resample another block for the 𝜔th pattern, and this process is repeated until the data for the 239 

entire block of 𝑛 days are resampled. 240 

 241 

2.2.3 Multiple-dependence structure-based jittering to streamflow simulations 242 
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Based on the block bootstrapping described above, the multisite streamflows are generated but 243 

they are unable to simulate values outside the range of existing records. To alleviate this 244 

limitation, a vine-copula-based jittering approach is added to the daily generation model. Vine 245 

copulas are hierarchical models that describe multivariate copulas using a rich variety of 246 

bivariate copula (Aas et al., 2009). Let 𝑢𝑡,𝜍 be the non-exceedance probability for simulated 247 

streamflow value (i.e., 𝑢𝑡,𝜍 = 𝐹(𝑞𝑡,𝜍|𝜗)) from the block bootstrapping at time t and site 𝜍. In 248 

this study, the non-exceedance probability is modeled on a monthly basis by using a Gamma 249 

distribution although a heavy-tailed distribution (e.g., an extended generalized Pareto 250 

distribution (Papastathopoulos and Tawn, 2013)) is more desirable. A new vector of 𝑢𝑡
∗  is 251 

generated based on the values of 𝑢𝑡 that are centered but are not equal. The perturbations are 252 

simulated by using the conditional distribution functions (𝐹(𝑞𝑡,𝜍|𝜐), also known as h functions 253 

(Ahn, 2021), with the following recursive relationship (Aas et al., 2009): 254 

 255 

ℎ(𝑞𝑡,𝜍|𝜐) ∶= 𝐹(𝑞𝑗|𝜐) =  
𝜕𝐶𝑗𝑖|𝜐(𝐹(𝑞𝑗|𝜐),𝐹(𝑞𝑖|𝜐))

𝜕𝐹(𝑞𝑖|𝜐)
     Eq. (4) 256 

 257 

where 𝜐 is the streamflow vector excluding 𝑞𝑡,𝜍. 258 

 259 

This study considers the basin-wide average of streamflow as a pivot variable. To do so, vine 260 

copulas are constructed by the non-exceedance probability of the simulated vector of 261 

𝑞𝑡,1:𝜍,𝑎𝑣𝑔 = [𝑞𝑡,1, … , 𝑞𝑡,𝜍,𝑞𝑡,𝑎𝑣𝑔]  that contains all 𝜍  sites as well as the basin-wide average of 262 

streamflow. Conditional streamflow values for all 𝜍  sites are then estimated with the pivot 263 

variable 𝑢𝑡,𝑎𝑣𝑔 by using the inverse form of the conditional distribution function (i.e., Eq. 4). 264 

https://doi.org/10.5194/hess-2021-576
Preprint. Discussion started: 17 January 2022
c© Author(s) 2022. CC BY 4.0 License.



12 

 

This conditional simulation is substantially attractive since it enables the modeling of a wide 265 

range of complex dependencies from the pivot variable (Joe, 2014).  266 

 267 

The final non-exceedance probability between the values of 𝑢𝑡 and 𝑢𝑡
∗ is determined using the 268 

following conditional probabilities (Steinschneider et al., 2019): 269 

 270 

𝜋 =  {
Pr (𝑄 > 𝑞𝑡,𝜍

∗ |𝑄 > 𝑞𝑡,𝜍)  =
Pr(𝑄>𝑞𝑡,𝜍

∗ )

Pr(𝑄>𝑞𝑡,𝜍)
=

1−𝑢𝑡,𝜍
∗

1−𝑢𝑡,𝜍
,    𝑞𝑡,𝜍

∗ > 𝑞𝑡,𝜍

     Pr (𝑄 ≤ 𝑞𝑡,𝜍
∗ |𝑄 ≤ 𝑞𝑡,𝜍)  =  

𝑃𝑟 (𝑄≤𝑞𝑡,𝜍
∗ )

𝑃𝑟 (𝑄≤𝑞𝑡,𝜍)
=

𝑢𝑡,𝜍
∗

𝑢𝑡,𝜍
,        𝑞𝑡,𝜍

∗ ≤ 𝑞𝑡,𝜍

       Eq. (5) 271 

 272 

𝑢𝑡
𝐹𝑖𝑛𝑎𝑙 = {

𝑢𝑡,𝜍
∗    𝜋 ≤ 𝑟

𝑢𝑡,𝜍   𝜋 ≤ 𝑟
          Eq. (6) 273 

 274 

where 𝑄  is the daily streamflow variable and 𝑟  is a random sampling from a uniform 275 

distribution between 0 and 1. Finally, the simulated daily streamflow value is back-transformed 276 

to 𝐹−1(𝑢𝑡
𝐹𝑖𝑛𝑎𝑙|𝜗). 277 

 278 

2.3 Module III: Coupling annual and daily simulations 279 

To rearrange the daily streamflow simulations conditioned on the annual scale, annual regional-280 

averaged streamflow simulation is employed to generate new daily simulation data for each 281 

simulation year that is comprised of the resampling of the generated daily simulation. Daily 282 

simulation is iteratively fit to each annual simulation and rearranged for a given simulation 283 

year. This procedure follows four steps: [1] Simulate a time series of annual, regional-averaged 284 

streamflow for the desirable length of year 𝑁𝑎𝑛𝑛𝑢𝑎𝑙 using Module I; [2] Simulate a time series 285 

of daily multisite streamflow for the desirable length of year 𝑁𝑑𝑎𝑖𝑙𝑦 using Module II. Here, 286 
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𝑁𝑑𝑎𝑖𝑙𝑦 is set to be sufficiently greater than 𝑁𝑎𝑛𝑛𝑢𝑎𝑙 to ensure diversity in the final simulation 287 

set; [3] For a simulation year, determine the Euclidean distances 𝐷𝑡𝑎𝑛𝑛𝑢𝑎𝑙
=288 

√(�̃�𝑡𝑎𝑛𝑛𝑢𝑎𝑙
− 𝑞𝑡𝑎𝑛𝑛𝑢𝑎𝑙

)2  between the annual simulation �̃�  and the vector of annual regional-289 

averaged 𝑞  acquired by the multisite daily simulation; [4] Determine the 1-year daily 290 

sequences corresponding to the smallest distance for the target simulation year and exclude the 291 

1-year daily simulation sequences from the daily streamflow data set (simulated in step [2]); 292 

[5] Repeat steps [3]-[5] for all simulation years of length 𝑁𝑎𝑛𝑛𝑢𝑎𝑙. 293 

 294 

3. Application to multiple watersheds over South Korea 295 

3.1 Study area and data  296 

The proposed nonstationary stochastic model for streamflow simulations is applied to the 297 

twelve basins in South Korea (Figure 2). The basins have four distinct seasons with a climate 298 

that is affected by the northeastern Asian and the western Pacific Ocean (Alcantara and Ahn, 299 

2021). The basins receive two-thirds of their annual precipitation during summer (June-300 

September) and occasionally experience water deficits during the remaining seasons (Cha et 301 

al., 2011). Flooding events in summer are often generated by extraordinarily high rainfall 302 

induced by typhoons passing close to or penetrating the regions in South Korea (Alcantara and 303 

Ahn, 2020). Although the basins have sufficient annual rainfall similar to other regions over 304 

South Korea, variability in intra- and interannual rainfall periodically causes floods and 305 

droughts. Thus, the long-term-based streamflow records to analyze hydrologic extremes are 306 

required for reliable hydrological decision making (e.g., reservoir operation policy), leading to 307 

the pursuit of the objective of this study.  308 

 309 
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Approximately 65% of the South Korean territory consists of mountainous regions, mainly 310 

located in the eastern and northern parts while the southern and western parts of the country 311 

have well-developed plains. The heterogeneous and asymmetrical topographic features provide 312 

nontrivial impacts on the study basins. For example, the river reaches of the five basins (BS1, 313 

BS2, BS10, BS11, and BS12) are short and have steep slopes. In addition, the precipitation 314 

varies substantially from north to south. For instance, B1 receives more than 1,100 mm 315 

annually, while B7, located in the southwestern part of the country receives a mere 1,550 mm 316 

of precipitation per year. 317 

 318 

Historic maximum temperatures were gathered from the 0.15° × 0.15° K-Hidra version 2021 319 

product (Noh and Ahn, 2021). K-Hidra properly describes the spatial- and temporal 320 

variabilities, particularly in areas consisting of complex mountainous topography through the 321 

utilization of a massive bias correction procedure (Noh and Ahn, 2021). We used watershed 322 

boundaries (see Figure 2) to identify the K-Hidra grid cells that overlap with each watershed. 323 

If multiple grid cells were found in a watershed, their average was employed as the climate 324 

data for that watershed. For our study, the climate products from 1 January 1998 to 31 325 

December 2020 were used, while the original K-Hidra data was 48 years long (1973~2020). 326 

Daily streamflow data of the twelve basins were obtained from the Water Resources 327 

Management Information System webpage (http://www.wamis.go.kr/) from 1 January 1998 to 328 

31 December 2020. Note that the streamflow data for the basins (BS5 and BS9) are only 329 

available starting from 1998.   330 

 331 

3.2 Annual daily maximum temperature as a climate covariate  332 
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Previous work has found that annual daily maximum temperature represents well the annual 333 

streamflow variability in Australia (Kiem et al., 2021). Similar to their findings, this study 334 

identified that annual daily maximum temperature has a strong relationship with regional-335 

averaged streamflow (�̃�) over South Korea. Figure 3a shows scatter plots of regional-averaged 336 

streamflow and transformed annual daily maximum temperature while figure 3b presents 337 

correlations between transformed annual daily maximum temperature and at-site annual 338 

streamflow. For this analysis, the Box-Cox transformation is applied to the annual daily 339 

maximum temperature so that the distribution of the transformed temperature approximately 340 

follows Gaussian. The figures show a strong negative correlation (rho = -0.53 for regional-341 

averaged streamflow with p-value < 0.001) although one basin (i.e., BS 8) exhibits insignificant 342 

positive correlation (rho = 0.18). This different relationship for BS8 may be due to the small 343 

size of its basin area, hence it is substantially affected by local factors. However, the 344 

relationship is also manageable in our model since the model is developed based on a multiple-345 

dependence structure (see Section 2.2). Overall, the analysis supports that the annual 346 

relationship between streamflow and maximum temperature is significant over South Korea, 347 

and confirms the usefulness of temperature as a climate covariate in the proposed model. 348 

 349 

3.3 Performance evaluation  350 

To evaluate the performance of the stochastic simulations, we compare the observed and 351 

simulated distributional statistics, as well as the temporal and spatial characteristics. For the 352 

distributional statistics, we consider the average, standard deviation, skewness, and maximum 353 

based on daily, seasonal (winter: December-February, spring: March-May, summer: June-354 

August, fall: September-November), regional-averaged values. For the temporal and spatial 355 

characteristics, the autocorrelation, and cross-correlation functions, and Hurst coefficient are 356 
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employed to measure short- and long-term dependence for different time scales. Moreover, 357 

spatial dependencies in extremes are investigated using the F-madogram (Cooley et al., 2006). 358 

The F-madogram (𝐹) compares the ordering of extreme events between two-time series and is 359 

expressed as follows: 360 

 361 

𝐹(𝑑) =  
1

2
𝛦|𝐹(𝑍(𝜍 + 𝑑)) − 𝐹(𝑍(𝜍))|      Eq. (7) 362 

 363 

where 𝑍(𝜍) are transformed to have 𝐹𝑟𝑒 ́𝑐ℎ𝑒𝑡 margins so that 𝐹(𝜍) = 𝑒𝑥𝑝 (−
1

𝜍
), and 𝑑 is the 364 

distance between a pair of basins (Ribatet, 2008). 365 

 366 

4. Results 367 

The stochastic model is used to simulate 200 simulations of a 23-year time series to match the 368 

length of the historical time series over the study area. We examine the model particularly 369 

focusing on (1) the recognized spatial patterns, including their transition probabilities and 370 

interannual variability; (2) the reproduced statistical characteristics for individual sites as well 371 

as regional consistencies; (3) confirming the usefulness of coupling annual and daily 372 

simulations; and (4) Exploring future climate change-informed streamflow simulations. Here, 373 

the third analysis is based on the two separate models, one using the full model (i.e., module I, 374 

II, and III) and one conditioned on the partial model with daily streamflow generation (i.e., 375 

module II) to better isolate the strengths of coupling simulations with a regional covariate.  376 

 377 

4.1 Identified spatial patterns of streamflow  378 

Figure 4 presents composites of daily streamflow for all days classified into each node. While 379 

Figure S1 shows the assigned node for all days, Table 1 shows the transition probability matrix 380 
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between nodes. Node (1,1) represents relatively dry conditions (i.e., base flow conditions) 381 

across the study area that is the most common and persistent node (see Table 1). Node (1,3) 382 

illustrates a moderate amount of streamflow along the northern part (e.g., BS1, BS2, and BS10) 383 

of South Korea, with intensive streamflow from the southwestern (e.g., BS5 and BS6). Node 384 

(2,2) shows a similar pattern, but with intensive streamflow from the southern part (e.g., BS7 385 

and BS8). Node (2,1) is associated with streamflow that occurred moderately across the entire 386 

study area. The transition probability from node (1,3) or node (2,2) to node (2,1) is much higher 387 

than the persistence in their nodes, indicating that substantial cases in node (1,3) or node (2,2) 388 

represents flood occurrence at the forward end of a flood event under node (2,1). On the other 389 

hand, node (2,3) is associated with a flood event that is oriented farther along the coast, 390 

particularly in the northern region. It may be related to local mesoscale convective systems 391 

developed toward the southern region. Thus, it has high probabilities to transfer into node (2,1), 392 

otherwise, it persists by itself. Overall, the nodes represent two possible mechanisms (i.e., 393 

southern- and northern-oriented storm events) for flood occurrence over South Korea.  394 

 395 

The interannual variability of node frequency is shown in Figure 5. A trend line is also 396 

presented if the p value of the slope is significant (< 0.10) based on student’s t-test. South Korea 397 

has experienced a multiyear drought in 2014-2016 (Bae et al., 2019; Myoung et al., 2020). The 398 

dry period is properly represented in variations in the frequencies of the node (1,1), but is also 399 

manifested in other frequencies. Moreover, while other nodes exhibit no clear linear trend in 400 

their frequencies, node (1,1) shows a significant upward trend over the application period that 401 

is mirrored by a downward trend in nodes (1,2) and (2,1). These results indicate that 402 

streamflows in South Korea have significantly changed over time and the dry condition is 403 

expected to be more prevalent in the near future, implying that stochastic simulations over the 404 
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study area are only adequate for exploring current and future hydrologic risks if nonstationary 405 

in the simulation is accounted for. 406 

 407 

4.2 Assessing the performance of the stochastic simulations  408 

To evaluate the performance of the stochastic simulations, the historical temperature time series 409 

is firstly employed based on the full model (i.e., module I, II, and III). Figure 6 presents 410 

observed and simulated streamflow statistics for all twelve basins, as well as for the regional-411 

averaged performance. The 45° line indicates perfect model performance for figures in the first 412 

two rows. Overall, the results describe that the stochastic simulations properly represent the 413 

historic daily and seasonal characteristics for individual sites, including daily average and 414 

standard deviation although there are some underestimations (e.g., daily maximum and 415 

skewness) the majority of them are still within the acceptable range (i.e., 95% confidence level). 416 

Similarly, the regional-averaged daily statistics are also compared. In general, the results 417 

suggest good performance for the regional statistics but the simulations slightly underestimate 418 

the skewness in October. The model exhibits bias with regards to maximum streamflow for 419 

August, which can be seen in the at-site statistics.  420 

 421 

Statistical comparisons for the annual streamflows are presented in Figure 7. The average and 422 

skewness fields are well preserved on the annual scale. The standard deviation is slightly 423 

underestimated by our simulations, although we note that there is significant uncertainty in the 424 

observed values due to the small number of available annual observations. The standard 425 

deviation is underestimated for those basins with larger values. This particular discrepancy may 426 

be due to the fact that regionally-averaged streamflows are being used to drive the model over 427 

the entire country and somewhat heterogeneous study area. Also, the spread of lag-1 428 
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autocorrelation and Hurst coefficients are compared for individual sites as well as the regional-429 

averaged streamflow. There is a negative bias in some cases (e.g., BS9 and BS12) but most 430 

biases are within the acceptable range. 431 

 432 

We further examine the reproduction of spatial dependence across all twelve basins. Figure S2 433 

shows the shape and magnitude of observed and simulated cross-correlation functions for daily 434 

streamflow across the six basins. We note that the results of cross-correlation functions for all 435 

twelve basins are almost identical but are not shown due to the space limitation. Also, spatial 436 

dependencies in extremes are explored using the F-madogram (Figure 8). Both results suggest 437 

that spatial dependencies are properly preserved. To be specific, Figure S2 confirms that our 438 

simulations properly capture the shape and magnitude of spatial correlations at the daily scale. 439 

Figure 8 suggests that the simulated spatial dependences in extremes suitably capture observed 440 

dependences, even though a slight overestimation is observed in the stochastic simulations. 441 

Overall, the results show that our simulations are suitable for reproducing observed temporal 442 

and spatial characteristics. 443 

 444 

4.3 Evaluating the usefulness of coupling annual and daily simulations  445 

To assess the usefulness of utilizing historic temperature by coupling annual and daily 446 

simulations, stochastic simulations are additionally developed conditioned on the partial model 447 

with daily streamflow generation (i.e., module II). In other words, the simulations from the 448 

partial model only contain the historical fluctuations, assuming there is no temporal changing 449 

signal. Figure 9 presents the absolute differences between the observed and simulated median 450 

results obtained by annual time series from the two separate models (the full model and partial 451 

model) for the lag-1 autocorrelation and Hurst coefficients. Smaller difference in each 452 
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coefficient indicates more a realistic simulation of historical variability. Although a large 453 

difference from the full model is also observed (i.e., BS6), the differences for the full model 454 

are much smaller in most cases than those for the partial model. In particular, it is true for 455 

regional-averaged streamflows (see the rightmost boxes in Figure 9a), indicating that coupling 456 

annual and daily simulations effectively replicates short- and long-term persistence in the 457 

observed time series.   458 

 459 

The usefulness of utilizing temperature as a covariate is also investigated using the simulations 460 

in the sub-periods. Figure 10 shows annual average streamflow simulations for the first 8 years 461 

and last 8 years, respectively, using the two separate models (the full model and partial model). 462 

The first (last) period is comparable to the period of 1998 ~ 2005 (2013 ~ 2020) in the observed 463 

time series. While the full model produces results similar to the observations for each sub-464 

period, the partial model does not properly represent the recent decreases in streamflows. To 465 

be specific, the observed annual streamflow for the last period is expected to decrease by 16.3% 466 

from the first period. While the median decrease is represented from the full model by 14.1%, 467 

no decrease is found from the partial model. Rather, an insignificant increase is found from the 468 

partial model due to sampling uncertainty. This analysis may be critical for the utility of 469 

streamflow simulations in regional water management. In particular, the recent multi-year 470 

(2014-2016) drought drew water managers’ attention in South Korea because it was an 471 

exceptional event considering the regularly recurring flood season (June to August) every year. 472 

Our results inform that even though the partial model (i.e., stationary-based model) also 473 

employs the recent water deficit years when the model is calibrated, the drought shortage 474 

condition is not significantly dealt with since the event was a substantially exceptional case, 475 

supporting the usefulness of coupling annual and daily simulations. 476 
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 477 

4.4 Exploring climate change-informed streamflow scenarios  478 

The streamflow simulations proposed in this study are designed directly conditioned on annual 479 

daily maximum temperature scenarios. This section illustrates future streamflow projections 480 

based on a  2.0 ℃ increase in projected annual daily maximum temperature for 30 years in the 481 

future. For this analysis, the historical annual daily maximum temperature from 1991 to 2020 482 

is employed as the baseline temperature. The streamflow projection is compared against at-site 483 

observed streamflow with differences in observation expressed as a percent change in the 484 

empirical quantiles of the data from both scenarios (see Figure 11). Also, Figure S3 shows the 485 

streamflow projections on the annual and two seasonal scales across the 200-ensemble 486 

simulations. Here, the wet season includes four months (June-September) whereas the dry 487 

season covers the other months. 488 

 489 

In the warming scenario, annual precipitations are decreased as expected in Figure 3a. However, 490 

when we closely analyze the results on a daily scale, the upper quantiles are notably increased 491 

whereas the remaining lower quantiles are decreased. It indicates the streamflow distributions 492 

to stretch, implying that extreme events, particularly for drought, will occur more frequently. 493 

The inference is consistent with previous studies demonstrating how the rainfall events will be 494 

altered in a warming condition (Fischer and Knutti, 2016; Lenderink and Attema, 2015). In 495 

addition, the projected changes considerably vary by basins. For example, the streamflows in 496 

BS3 and BS8 are less sensitive than others, so that the streamflows for the basins may not be 497 

significantly changed in a warming condition. On the other hand, BS1, BS2, BS10, and BS11, 498 

located in the northern parts of the country, are significantly affected by temperature changes.  499 

 500 
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The non-trivial changes in streamflows can affect the water security of the regional water 501 

supply system. The water supply system in South Korea consists of a network of reservoirs and 502 

weirs. Our study basins also have major reservoirs with an operating capacity of 2800 MCM 503 

(1 MCM is equal to 106 m3) in total, while their streamflows are utilized as inflows for the 504 

reservoirs. To evaluate the reservoirs’ performance under the projected streamflows, four 505 

reservoir systems (Daecheong, Boryeong, Buan, and Hapcheon reservoirs) in BS3, BS4, BS5, 506 

and BS9 are modeled (see Text S1 in the supporting information). 507 

 508 

For this analysis, the common drought security metric, reliability, is used to assess the reservoir 509 

system performance using the 200 ensembles of 30 year-length future simulations (Figure 12). 510 

The reliability metric is simply defined as the success probability of the system by counting 511 

the days that the reservoir is in a “safety zone” compared to the total period. The Daecheong 512 

reservoir may expect a minimal loss in the projected performance when compared to the 513 

historical performance. This is because the reservoir is located in BS3, of which streamflow is 514 

projected to be less sensitive to warming conditions (see Figure 11). However, other reservoirs 515 

are substantially affected by warming conditions. For example, the reliability for the Hapcheon 516 

reservoir decrease from 98.51% to 95.01. To sum up, this analysis informs that future water 517 

security for many regions over our study area is considerably vulnerable in a warming 518 

condition and may need some remedies to augment water supply sources or reduce demand. 519 

 520 

5. Conclusions 521 

This study presents a new approach for generating multisite synthetic streamflows for water 522 

resources vulnerability assessment in the current and near-future climate change-informed 523 

conditions. The nonstationary simulation is achieved with an identified regional covariate by 524 
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coupling annual and daily simulation models. The model has a hierarchical structure, including 525 

clustering-based spatial pattern simulation, block bootstrapping, and vine copula-based 526 

jittering to simulate multisite streamflows. In order to confirm the usefulness of our 527 

nonstationary-based model, we first used the historical temperature time series, and the results 528 

illustrated that our simulations were proper to reproduce statistical characteristics for individual 529 

sites as well as for the regional performance. The analyses were further extended for future 530 

streamflow projections by employing future temperature scenarios and we confirmed 531 

substantial reductions in streamflow, which could be critical in regional water security. 532 

 533 

While the approach builds on some previously proposed methods in the stochastic hydrology 534 

field, it also has several significant contributions to the existing approaches. First, our approach 535 

enables the modeling of a wide range of complex multisite dependencies by adopting the spatial 536 

pattern recognition-based modeling and vine-copula-based jittering approach. To our best 537 

knowledge, this is the first streamflow simulation approach emphasizing multiple spatial 538 

dependence using those techniques. Second, compared to climate model-based projections, our 539 

simulated streamflows properly reproduce the primary characteristics observed in historical 540 

records. The validity is essential, particularly in evaluating the risk of water supply under water 541 

deficit conditions (Ahn, 2020; Johnson and Sharma, 2009). Third, our simulation can account 542 

for nonstationary alterations (e.g., periodic oscillation and monotonic trend) in the historical 543 

record. It is strongly beneficial since streamflow records are often limited to the recent period 544 

in many regions over the world including our study area. This limited period can be extended 545 

to the historic period in which climate records were measured. In many regions, the climate-546 

recorded period is much longer than the period for streamflow records. Accordingly, the 547 

simulation is useful to reconstruct historical streamflow scenarios for the climate-recorded 548 
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period. Lastly, our simulation can take advantage of the high reliability of temperature change 549 

for future projection when compared to projected precipitation in climate models (Perez et al., 550 

2014). 551 

 552 

While the proposed nonstationary-based model has many benefits to simulate future 553 

streamflows, several relevant limitations need to be further addressed. Most importantly, 554 

embedded in the underlying model structure is the assumption that the historical association 555 

between the identified climate covariate (i.e., annual daily maximum temperature in this study) 556 

and regional streamflows will remain unchanged in the future. Further analysis would be 557 

required for the proper relationship under climate change. If nonlinear change were identified 558 

for the relationship, the nonlinear-based regressive model would be useful when future 559 

streamflows are generated. Our model is then limited in regions with insufficient historical 560 

records because the streamflow generations are ultimately rooted in historical sequences from 561 

the bootstrapping technique. Insufficient historical records make it difficult to fully represent 562 

the distribution of streamflows (Alcantara and Ahn, 2021). In addition, we modeled the non-563 

exceedance probability for the jitters by using a Gamma distribution, often leading to an 564 

underestimation of extreme precipitation events (Papalexiou and Koutsoyiannis, 2013). 565 

Alternatively, the “heavy-tailed” distribution such as extended generalized Pareto distribution 566 

could be employed in future studies. 567 

 568 

There are several opportunities to improve the simulation model. For example, this study only 569 

uses a daily scale, which is a time scale widely used but could neglect detail processes occurring 570 

over shorter time scales particularly relevant to the evolution of flooding events. Flooding in 571 

many basins over South Korea is sensitive to rainfall characteristics occurring on sub-daily 572 

https://doi.org/10.5194/hess-2021-576
Preprint. Discussion started: 17 January 2022
c© Author(s) 2022. CC BY 4.0 License.



25 

 

scales (Lee et al., 2021). The recognized spatial pattern in this work may have less effect on 573 

sub-daily extremes, which are often driven by localized rainfall events. It is worth expanding 574 

the scope of our model to consider 6-hourly to hourly data to determine if additional streamflow 575 

patterns can be found at those time scales. Also, our analysis demonstrates two possible 576 

pathways for flood occurrence over South Korea, but the mechanisms may suffer from 577 

insufficient historical records of past events. Further, increasing the number of SOM nodes 578 

could more accurately represent localized spatial patterns of streamflow and extremes but prior 579 

to the analysis, streamflow data with long-term records from the diverse basins than the twelve 580 

basins are preferentially required, which is an obstacle for the current analysis over the study 581 

area. Lastly, this study explores future streamflow simulations based on changes in a regional 582 

climate covariate. However, exploration of other changes is also feasible from our model. For 583 

example, a certain type of flooding-induced mechanism could change under a warming climate. 584 

Given the expected alteration, decision-makers may take a certain action that could emphasize 585 

the effects of the mechanism to make plans that are more robust. After assigning appropriate 586 

changes for the transition probability matrix to reflect the effects of the mechanism, the newly 587 

generated sequences of spatial patterns can be generated and then evaluated similar to the 588 

methodology in Alcantara and Ahn (2021). 589 
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Figure 1. Schematic flowchart of the future multisite streamflow simulation. 933 
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Figure 2. Map of the selected twelve basins in South Korea. 958 
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 984 
Figure 3. (a) Scatter plot between scaled annual daily maximum temperature and regional-985 

averaged annual streamflow (mm), and (b) Pearson correlation coefficient between annual 986 

daily maximum temperature and at-site annual streamflow.  987 
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Figure 4. Map of the average daily streamflow (mm) for each of the six nodes. 1019 
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 1045 
Figure 5. The number of node occurrences for each year. The trend line is shown if a Student's 1046 

t-test has a p value < 0.10. 1047 
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 1072 

 1073 
Figure 6. Observed and simulated statistics of (top) daily streamflow for all basins and months, 1074 

(middle) seasonal streamflow for all basins and months, and (bottom) regional-averaged daily 1075 

streamflow for each month. Here, the 95% range and the median value for simulated statistics 1076 

across the 200 members are represented by whiskers and a black dot, respectively. For regional-1077 

averaged statistics, observed statistics are shown as red dots. 1078 
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 1097 

 1098 
Figure 7. Observed and simulated annual statistics for all basins and regional-averaged 1099 

streamflow, including the mean, standard deviation, and skewness. Also, in the bottom, lag-1 1100 

correlation (solid line) and Hurst coefficients (dotted line) are presented. The 95% range and 1101 

median value for simulated statistics across the 200 members are represented by whiskers and 1102 

a black dot, respectively. 1103 
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 1127 

 1128 
Figure 8. Observed (black) and simulated (red) F-madograms based on distances. The 1129 

simulated results are obtained by using 200 different ensemble members. The lower value 1130 

indicates higher dependence between a pair of basins. 1131 
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 1162 

 1163 
Figure 9. Absolute differences between the observed and simulated median results obtained by 1164 

annually integrating time series from the two separate models (the full model and partial model) 1165 

for (a) lag-1 autocorrelation and (b) Hurst coefficients. 1166 
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 1191 
Figure 10. Distribution of regional-averaged annual streamflow for (left) the first years (1998 1192 

~ 2005) (right) the last 8 years (2013 ~ 2020) to replicate historical simulations from the two 1193 

models (the full model and partial model). The dotted line indicates the historical average for 1194 

each period. 1195 
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 1225 
Figure 11. The change in daily streamflow distributions between projected scenarios for 2℃ 1226 

increase in maximum temperature and historic streamflow, presented as a percent difference 1227 

from historic streamflow for each study basin. The median change (black) is illustrated along 1228 

with 95% confidence intervals (red) using the 200-ensemble members. 1229 
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 1250 
Figure 12. Results of the reservoir system performance based on the historical (dotted line) and 1251 

projected (solid line) scenarios. For the projected scenario, the median performance across the 1252 

200 members is presented for each reservoir. 1253 
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Table 1. Transition probabilities for the six nodes in the SOM. The self-transitions are presented 1279 

in bold. 1280 

 To node 

 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) 

From node       

(1,1) 0.975 0.001 0.001 0.02 0.002 0.001 

(1,2) 0.029 0.265 0.089 0.559 0.029 0.029 

(1,3) 0.000 0.111 0.200 0.556 0.089 0.044 

(2,1) 0.369 0.012 0.039 0.527 0.016 0.037 

(2,2) 0.026 0.154 0.077 0.564 0.179 0.000 

(2,3) 0.063 0.063 0.063 0.416 0.020 0.375 
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