
1 

 

Technical Note: Flood frequency study using partial duration series 

coupled with entropy principle 
Sonali Swetapadma1, Chandra Shekhar Prasad Ojha2 

1 Research Scholar, Department of Civil Engineering, IIT Roorkee, Roorkee – 247667, Uttarakhand, India 
2 Professor, Department of Civil Engineering, IIT Roorkee, Roorkee – 247667, Uttarakhand, India 5 

Correspondence to: Sonali Swetapadma (sonaliswetapadma1992@gmail.com) 

Abstract. Quality discharge measurements and frequency analysis are two major prerequisites for defining a design flood. 

Flood frequency analysis (FFA) utilizes a comprehensive understanding of the probabilistic behavior of extreme events but 

has certain limitations regarding the sampling method and choice of distribution models. Entropy as a modern-day tool has 

found several applications in FFA, mainly in the derivation of probability distributions and their parameter estimation as per 10 

the principle of maximum entropy (POME) theory.  The present study explores a new dimension to this area of research, where 

POME theory is applied in the partial duration series (PDS) modeling of FFA to locate the optimum threshold and the 

respective distribution models. The proposed methodology is applied to the Waimakariri River at the Old Highway Bridge site 

in New Zealand, as it has one of the best quality discharge data. The catchment also has a history of significant flood events 

in the last few decades. The degree of fitness of models to the exceedances is compared with the standardized statistical 15 

approach followed in literature. Also, the threshold estimated from this study is matched with some previous findings. Various 

return period quantiles are calculated, and their predictive ability is tested by bootstrap sampling. An overall analysis of results 

shows that entropy can be also be used as an effective tool for threshold identification in PDS modeling of flood frequency 

studies.  

 20 

1 Introduction                                                                       

Frequency analysis of hydrologic events extracts some significant statistical interference from the data that helps in deriving 

frequency distribution. This distribution becomes a function of the probability of exceedance or return period unique for each 

gauging site. The at-site flood frequency analysis is suitable for reliably predicting the design discharge of various hydraulic 

structures to ensure their safety planning and management (Meng et al., 2007; Stedinger et al., 1992). Flood frequency analysis 25 

(FFA) comprises two types of sampling approaches: Annual Maximum Series (AMS) and Partial Duration Series (PDS). An 

annual maximum series includes the largest flow of each year, thereby having one event per year while the partial duration 

series is derived by extracting all the independent peaks exceeding a particular discharge, called threshold. The average number 

of events per year (λ) of a PDS is always greater than the number of years for which data is available (N). So this is beneficial 

where data are scarce (Lang et al., 1999; Madsen et al., 1997; Önöz & Bayazit, 2001), as it mainly deals with many extreme 30 

values comprising primary information about any flood event. A PDS represents the complete flood generating process by 
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dual modeling of peaks above a threshold, where one is used to model the arrival of peaks and the other for fitting distribution 

to their magnitude. The application of PDS has some statistical constraints in selecting thresholds and appropriate probability 

distributions (Guru & Jha, 2016; Adamowski, 2000; Beguería, 2005; Claps & Laio, 2003; Cunnane, 1973; Pham et al., 2014).  

Previously, some researchers proposed the identification of thresholds in PDS based on the average number of peaks per year 35 

(λ). Langbein (1949) suggested threshold as the lowest annual maximum event of the series, thereby making the value of λ at 

least one. Similarly, the better performance of PDS with λ of 1.65 over the AMS model was observed by Cunnane, 1973; 

Stedinger et al., 1992; Madsen et al., 1997, etc. Some other studies proposed the choice of threshold depending upon the 

Poisson arrival of peaks. Cunnane (1979) derived a dispersion index test to check the suitability of the Poisson process in 

modeling the arrival rate of peaks. Ashkar and Rousselle (1987) also reported that thresholds should be selected in such a way 40 

to make the flood exceedances fit the Poisson process. Following this, Lang et al. (1999) suggested operational guidelines for 

choosing a threshold where an initial region is identified from the graphical analysis of dispersion index test and the variation 

of mean exceedances above a threshold and the largest threshold within this region with λ > 2 or 3 becomes the optimum 

threshold. Other threshold selection techniques were also proposed; for example, Beguería (2005) applied threshold censoring 

with Generalized Pareto and Poisson distribution of PDS modeling. Solari et al. (2017) developed a framework for automatic 45 

threshold selection using the Anderson-Darling EDF statistic. Northrop et al. (2017) used the Bayesian cross-validation method 

to derive inferences from several thresholds instead of finalizing a single threshold value. Some conventional graphical tools 

also found applications in threshold selection, such as; mean residual life plot (MRLP) and parameter stability plot (Ghosh and 

Resnick, 2010). Various pieces of literature exist on comparing the performance of PDS with AMS models in flood frequency 

analysis. The relatively better performance of PDS compared to AMS even when λ =1 was observed by Bezak et al. (2014). 50 

Nagy et al. (2017) also carried out a flood frequency study for the Waimakariri River catchment in New Zealand. Statistical 

results indicated the better accuracy of PDS over AMS, where the PDS with λ = 3.98 gave the best results. They suggested the 

use of PDS is more applicable in those areas where the historical data is unavailable. A detailed review of these threshold 

estimation techniques and their uncertainty analysis is given by Scarrott and Macdonald (2012). Langousis et al. (2016) also 

presented a review of all usual methods available for threshold identification where they classified these approaches into three 55 

categories: nonparametric methods, graphical tools, and goodness of fit tests that include statistical metrics and the hill- 

assumption-based process. They observed that the automation of the mean residual life plot performed better with less 

sensitivity to the length of the sample and low levels of data quantization.  

Besides all these, entropy has emerged as an effective modern-day tool in recent years. It has found a vast application in the 

derivation of probability distributions and their parameter estimation based on the principle of maximum entropy theory 60 

(POME). For example, Xiong et al. (2018) proposed Halpen distribution with POME for flood frequency study and applied 

the same to the annual maximum flow series at 12 gauging sites. A Monte Carlo simulation tested the predictive and descriptive 

ability of the approach. The results suggested that the proposed methodology can be applied as an alternative in FFA. Deng 

(2019) presented a distribution free method for FFA combining maximum entropy and Akaike’s information criterion. Zhang 

et al. (2020) applied an entropy based model selection technique in flood frequency analysis with the AMS sampling approach. 65 
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Monte Carlo simulation analyzed the performance of the proposed method, which confirmed its better accuracy when the 

sample size is small with a positive skewness coefficient and bell shaped density function. Even though there exist various 

threshold identification techniques, there are a very few applications of entropy in PDS sampling of flood frequency analysis. 

So, the present work augments a new dimension to this field, where an entropy-based approach is proposed to choose the 

threshold in PDS as well as the underlying dual models. A new approach based on POME is suggested as a threshold selection 70 

criterion. This proposed methodology is applied to the daily discharge data of the Waimakariri River at Old highway bridge 

site in New Zealand. 

2 Theoretical background 

This section describes the background of the methodology proposed in the present research, which includes (i) probability 

distributions for dual modeling of PDS, (ii) the potential of the entropy approach, (iii) entropy functions of probability 75 

distributions, (iv) independence criteria and Poisson’s hypothesis test, and (v) model selection criteria. 

2.1 Probability distributions for the dual modeling of PDS 

In the present study, four probability distributions are used to model the magnitude of exceedances above a particular threshold: 

Generalized Pareto distribution (GP), Generalized Extreme Value (GEV) distribution, Pearson type III (P 3), and Log Pearson 

3 distribution (LP 3) because of their widespread applications in flood frequency study (Cunnane, 1988; Stedinger et al., 1993, 80 

Karim and Chowdhury 1995;  Rao and Hamed 2000; Ghorbani et al. 2010; Chen et al. 2015; Benumar et al. 2017; Drissia et 

al. 2019; Swetapadma and Ojha, 2020). The shape parameter of such three-parameter distributions considers the effect of 

skewness present in most hydrologic data series. The Generalized Pareto (GP) distribution is usually known as the ‘Peaks Over 

Thresholds’ (POT) model in hydrology as it models the exceedances over the threshold because of its underlying properties 

(Davison and Smith 1990; Guru and Jha 2016; Hosking and Wallis 1987; Pham et al. 2014; Smith 1989; and Solari et al. 2017).  85 

Generalized extreme value distribution is mainly used to model extreme statistical events. Similarly, various hydrological 

processes are effectively modeled using the gamma family distributions like P 3 and LP 3 (Bobee and Ashkar, 1991). LP3 

distribution is proposed as a standard distribution for design flood estimation in England and Europe (England, 2011; Bezak 

et al., 2014). The parameters of these distributions are estimated using the L moment method. L-moments are the linear 

combination of rank statistics, thereby more robust to outliers in the data than ordinary moments. Also, while estimating 90 

quantiles from a small sample, less unbiased inferences can be made using the L-moments (Hosking, 1990; Hosking and 

Wallis, 1997; Sankarasubramanian and Srinivasan, 1999; Bezak et al., 2014). For a sorted sample of length n (such as x1≤ x2 

≤x3 ≤x4 ≤……. ≤xn-1 ≤xn), the three L moments i.e. l1, l2, and l3 can be expressed as, 

l1 = β0; l2 = 2β1 - β0 ; and l3 = 6β2 – β1+β0 ; where βr =  n−1  ∑
(i−1)(i−2)……….(i−r)

(n−1)(n−2)……..(n−r)
xi

n
i=r+1 . L skewness (t3) equals to l3 / l2.  

Details of all these distributions, such as their cumulative distribution function (CDF), parameters, and the respective L moment 95 

equations, are given in Table 1. 
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Table 1. Continuous probability distributions used to model the exceedances in PDS (Source: Swetapadma and Ojha, 2020) 

Distribution 

Models 

Cumulative Distribution Function 

(CDF) 

 L moment expressions for parameters 

Generalized 

Extreme Value 

(GEV) 

))(1(exp()( /1 kkzxF   
C = 2/(3+t3)  

k = 7.8590c + 2.9554c2 ; 𝜎 =  
𝑘𝜆2

𝛤(1+𝑘)(1−2−𝑘)
; µ =

 𝜆1 +
𝜎(𝛤(1+𝑘)−1)

𝑘
 

Generalized Pareto 

(GP) kkz
xF

/1)1(1

1
)(




 

k = (3t3 – 1) / (1+ t3); σ = λ2 (1-k) (2-k); μ = λ1 – σ / 

(1-k) 

Pearson Type III 

(P 3) 
)(

)(
)(

/)(










x
xF

 

For  0 < |𝑡3| < 1/3;  

z = 3πt3
2; 𝛼 =  

1+0.2906𝑧

𝑧+0.1882𝑧2+0.0442𝑧3 

For  
1

3
< |𝑡3| < 1;  

z = 1 - |𝑡3|; 𝛼 =  
0.36067𝑧−0.59567𝑧2+0.25361𝑧3

1−2.78861𝑧+2.5609𝑧2−0.77045𝑧3 

For all t3 values; β = sign(t3) π1/2λ2(Γ(α)/Γ(α+0.5)), 

and ϒ = λ1-(α×β) 

Log Pearson 3 (LP 

3) 
)(

)(
)(

/))(ln(










x
xF

 

Same equations as per P 3 distribution 

for GEV and GPA, z = (x-µ)/σ; where k, µ, and σ are the shape, location, and scale parameter respectively. Similarly, α, ϒ and 

β represent the shape, location, and scale parameters of P 3 and LP 3 distributions. 

Based on the dispersion index value, Poisson distribution, Binomial or Negative Binomial distribution is used to represent the 100 

arrival of peaks above any threshold (Lang et al., 1999). Table 2 gives details of these distributions, like their probability mass 

functions and expressions for mean and variance.  

Table 2. Discrete distributions used to model the arrival of peaks in the PDS 

Distribution Models Parameters Probability Mass 

Function (PMF) 

Mean and Variance 

Poisson λ P =( λk e-λ)/k!, k =0,1,2… E[X] = Var[X] = λ 

Binomial n = 0,1,2…number of 

trials 

p ϵ [0,1], i.e., success 

probability of each trial 

q = 1-p 

 

(
𝑛

𝑘
) 𝑝𝑘𝑞𝑛−𝑘 

E[X] = np 

Var[X] = npq 
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Negative Binomial r > 0; the number of 

failures until the 

experiment is stopped 

p ϵ [0,1], i.e., the success 

probability of each trial 

(
𝑘 + 𝑟 − 1

𝑘
) 𝑝𝑘𝑞𝑟 

E[X] = pr/(1-p) 

Var[X] = pr/(1-p)2 

The exceedance probabilities of a PDS and AMS, i.e., (P(X) = 1 – F(X) = 1 / T) are not comparable if λ > 1. The statistical 

relationship proposed by Langbein (1949) based on Poissonian assumption is most commonly used to convert the recurrence 105 

intervals from PDS to the annual domain. However, Poisson distribution is not the only choice for modeling the arrival of 

peaks. So in the present study, the following expression is used (Mohssen, 2009; Nagy et al., 2017). 

  
1

𝑇𝑎
=  𝜆 (

1

𝑇𝑃
) (1 −

1

𝑇𝑃
)

𝜆−1

           (1) 

where TP is the return period in the PDS context and Ta is the annual return period, 1 – F(X) = 1/Ta.  

2.2 The potential of the entropy approach 110 

Entropy best describes the unpredictability associated with a system by signifying the amount of disorderness. It is a better 

measure of information than variance as it relates to higher-order distribution moments (Ebrahimi et al., 1999). C.E. Shannon 

gave a quantitative measure of entropy for a particular distribution. For ‘n’ number of discrete random variables such as 

Y={y1… ….yn}, Shannon’s entropy is given by (Shannon, 1948), 

H(y) = E [I(y)] = E [-ln (P(y))]          (2) 115 

E represents the expected value function, I(y) is a random variable signifying the information contained in the dataset, and P(y) 

is the probability mass function. The above expression of entropy can be expressed as, 

H(y) = ∑ 𝑃(𝑦𝑖)𝐼(𝑦𝑖)𝑛
𝑖=1   = − ∑ 𝑃(𝑦𝑖)𝑙𝑜𝑔𝑏(𝑃(𝑦𝑖))𝑛

𝑖=1          (3) 

Here ‘b’ is the base of the logarithm, which defines the units of entropy. In this paper, ‘e’ will be used as the logarithm base, 

i.e., the unit of H becomes ‘Nats’. Similarly, the expression of entropy for a continuous random variable is given below. 120 

𝐻 =  − ∫ 𝑓(𝑦) ln(𝑓(𝑦)) 𝑑𝑥
∞

−∞
          (4) 

H is the amount of uncertainty represented by a probability distribution, and f(y) is the probability density function of the 

continuous random variable ‘Y’. The above form of entropy is known as ‘Continuous entropy’ or ‘Differential entropy.’ 

Expressions for continuous entropy for various probability distributions can be derived from Eqn. 4. 

The principle of maximum entropy given by (Jaynes, 1957) states that while making inferences from limited available data, 125 

the probability distribution with the maximum entropy is the best to represent the data. Entropy derives more information from 

a probability distribution to characterize the input data effectively. So, the minimally biased distribution will have the 

maximum entropy subject to the available limited data. It will be more probable or less predictable than other distributions 

with lower entropy values. Therefore, while characterizing unknown events or some limited data with any statistical model, 
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one should prefer the maximum entropy distribution (Lee et al., 2011). POME has been applied to derive several probability 130 

distributions frequently used in hydrology and their respective parameters (Singh, 1998). Apart from POME, the concept of 

entropy has found numerous applications in many areas of research, such as clustering of the homogeneous region ( Basu & 

Srinivas, 2013; Yao et al., 2000), thresholding for image edge detection, image grey level thresholding (Chang et al., 1994; 

Pal, 1989; Pun, 1981). Some remarkable research in the application of entropy includes (Singh, 1997; Alfonso et al., 2010; 

Krstanovic & Singh, 1992; Atieh et al., 2015; Moramarco and Singh, 2010; Hao and Singh, 2011; Rajsekhar et al., 2015;  Li 135 

and Zheng, 2016; Zhang et al., 2020). 

2.3 Entropy functions of probability distributions 

The expression for the entropy of the three-parameter GP distribution is derived here. The probability density function (PDF) 

of three-parameter GP distribution is; 

𝑓(𝑥) =  
1

𝜎
(1 +

𝑘(𝑥−µ)

𝜎
)−1−

1

𝑘 ; for k ≠ 0         (5) 140 

Entropy for this GP distribution can be derived by putting Eq. (5) in Eq. (4); 

𝐼(𝑓) = 𝑙𝑛(𝜎) ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑜
− (−1 −

1

𝑘
) ∫ 𝑙𝑛 (1 +

𝑘(𝑥−µ)

𝜎

∞

𝑜
)𝑓(𝑥)𝑑𝑥        (6) 

Constraints of the equation can be expressed as; 

∫ f(x)dx=1
∞

0
            

∫ 𝑙𝑛 [1 + 𝑘
𝑥−µ

𝜎

∞

0
]𝑓(𝑥)𝑑𝑥 = 𝐸[𝑙𝑛 (1 + 𝑘

𝑥−µ

𝜎
)]          (7) 145 

So the final interpretation of entropy becomes, 

𝐼𝐺𝑃3(𝑓) = 𝑙𝑛(𝜎) − (−1 −
1

𝑘
) 𝐸 [𝑙𝑛 (1 +

𝑘(𝑥−µ)

𝜎
)]        (8) 

Similarly, the expressions for entropy functions for the other three continuous distributions used in this study can be derived.  

For the Generalized extreme value distribution with PDF given as, 

𝑓(𝑥) =  
1

𝜎
(1 −

𝑘(𝑥−µ)

𝜎
)

(1−𝑘)

𝑘 𝑒𝑥𝑝 [− (1 −
𝑘(𝑥−µ)

𝜎
)]1/𝑘        (9),  150 

the expression for entropy is derived as, 

𝐼𝐺𝐸𝑉(𝑓) = 𝑙𝑛(𝜎) + 𝐸 [
𝑘−1

𝑘
𝑙𝑛 (1 −

𝑘(𝑥−µ)

𝜎
)] + 𝐸[1 −

𝑘(𝑥−µ)

𝜎
]1/𝑘           (10) 

Similarly, the continuous entropy functions for P 3 and LP 3 distribution are, 

𝑰𝑷 𝟑(𝒇) = 𝒍𝒏(𝜶𝜷𝜞(𝜷) ) −
ϒ

𝜶
+

𝒙

𝜶

̅ − (𝜷 − 𝟏)𝑬[𝒍𝒏 (𝒙 − ϒ)]        (11) 

𝐼𝐿𝑃 3(𝑓) = 𝑙𝑛(𝛼𝛽𝛤(𝛽) ) −
ϒ

𝛼
+ (

𝛼+1

𝛼
)𝑦̅̅ ̅ − (𝛽 − 1)𝐸[𝑙𝑛 (𝑦) − ϒ)], y = ln(x)     (12) 155 

The entropy functions for discrete distributions (Poisson, Binomial, and Negative binomial) can be calculated by simply putting 

their probability mass function from Table 2 in Eq. (3). 
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2.4 Independence and Poisson’s hypothesis test 

One of the basic assumptions of FFA is that the data series to be analyzed is independent or random. If a PDS is not free from 

dependent values, it underestimates the variability of the quantiles (Fawcett & Walshaw, 2012). So before conducting any 160 

statistical analysis on a partial duration series, it is essential to justify this independence criterion, which is quite a complex 

task. Ashkar and Rousselle (1987) stated that the exceedances above a particular threshold level are independent if the average 

return period between successive events is relatively longer. Such a statistical phenomenon cannot merely affect the 

independence criteria as the peak discharge values also depend upon various catchment dynamics concerning space and time, 

such as catchment area, the frequency of rainfall and their magnitude, etc. (Lang et al., 1999). In the present study, the criteria 165 

given by the United States Water Resources Council (USWRC) are used to select independent peaks above a particular 

threshold level. According to which two successive events are independent if they are separated by as many as days as five 

plus the natural logarithm of the square miles of drainage area, with the requirement that intermediate flows must drop below 

75% of the lower of the two consecutive values (USWRC, 1982). Therefore, two successive flood peaks will be dependent, 

which causes rejection of the second peak if they satisfy the following expression. 170 

ɵ < 5days + ln (A) OR qmin > (3/4) min [q1, q2]         (13) 

where ɵ is the number of days between occurrences of two successive events, A is the catchment area in square miles, qmin is 

the minimum intermediate discharge between two peaks q1 and q2. The present study applies this independence criterion to 

remove all the dependent flood peaks from the PDS derived at each threshold. To justify the independence of these PDS, 

modified Kendall’s test (Claps and Laio, 2003) is performed at each gauging site. Ferguson et al. (2000) proposed Kendall’s 175 

tau test for serial dependence. Visual observation of autocorrelation plots also gives an idea about the independence of peaks. 

The Partial Duration Series (PDS) at each threshold is then checked for Poisson’s hypothesis by applying the dispersion index 

test (Cunnane, 1979), which helps identify the best fit discrete distribution suitable for modeling the arrival rate of peaks per 

year. A more detailed description of this test is given by (Lang et al., 1999).  

2.5 Exceedance model selection criteria 180 

In the present study, different model selection criteria assessed the degree of fitting of continuous distributions to the 

exceedances above a threshold. It includes three goodness of fit (GOF) statistics, i.e., Anderson-Darling (AD), modified 

Anderson-Darling statistics (ADC), and Kolmogorov-Smirnov test (KS), which measure the fitting of cumulative distribution 

functions. However, AD and ADC give more weightage to higher quantiles. Information-based criteria such as modified 

Akaike Information Criterion (AICC) and Schwarz Bayesian Criterion (BIC) were also applied as the combination of these 185 

with ADC helps evaluate flood frequency models. Along with this, root mean square error (RMSE), relative root mean square 

error (RRMSE), correlation coefficient (CC) were used to measure the error between the observed and predicted quantiles 

(Swetapadma and Ojha, 2020). The four candidate distributions were fitted to the magnitude of peaks to measure these 
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statistical parameters. Based on a statistical ranking method (Olofintoye et al. 2009), these models were ranked between one 

to four based on the value of these model selection parameters listed in Table 3. The distribution with the minimum RMSE, 190 

RRMSE, AICC, BIC, KS, AD, ADC, or the maximum CC gets the rank one. The ranks assigned from each of these test 

statistics were added, and the distribution with the lowest total rank became the best fit distribution for the exceedances above 

a threshold.  

Table 3. Model selection criteria for the choice of best fit exceedance distribution (Source: Swetapadma and Ojha, 2020) 

Criteria Equations Reference 

Kolmogorov-Smirnov 

test (KS) 
))(,

1
)((max

1
ii

ni
xF

n

i

n

i
xFD 





 

(Frank and 

Massey 1951) 

Anderson-Darling test 

(AD) 
)]}(1ln()(()[ln12{(

1
1

1

2





  ini

n

i

xFxFi
n

nA

 

(Anderson and 

Darling 1952) 

Akaike Information 

Criterion – second-order 

variant (AICC) 

1

)1)((2






mn

mm
AICAICc

; 

Where knRSSnAIC 2)/ln(   

(Burnham and 

Anderson 2002) 

Schwarz Bayesian 

Information Criterion 

(BIC) 

))/ln(())(ln( nRSSnknBIC   

Root Mean Square Error 

(RMSE) 
2/1

2

]
)(

[





mn

PO
RMSE ii

 

(Hyndman and 

Koehler 2006) 

Relative Root Mean 

Square Error (RRMSE) 

2/12 ]}{
1

[ 





i

ii

O

PO

mn
RRMSE

 

(Yu et al., 1994) 

Correlation Coefficient 

(CC) 2/122 })()({

)})({(

 







PPOO

PPOO
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Modified Anderson-

Darling statistics (ADC) 






n

i

ii xFxF
n

in
ADC

1

)](2)(1log()
12

2[(
2

 

(Sinclair et al., 

1990) 

f(xi) is the cumulative distribution function; i represents the rank of an observation; n is the length of the sample; m is the 195 

number of distribution parameters; RSS stands for the residual sum of squares;  oi and pi represent the observed and predicted 

peak discharge values respectively; �̅� and �̅� are the mean of the observed and predicted series.  

3 Methodology 
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There is dual modeling of extreme values in the partial duration series of FFA; one model is used for the arrival of peaks per 

year (M1), and the other is to fit the magnitude of these peak values (M2). The present study suggests the optimum threshold 200 

for PDS analysis is the one where the combined entropy of both these models is the maximum. After removing dependent 

peaks from the PDS, the variation of the average number of peaks per year and the mean residual life plot are analyzed 

graphically to identify a suitable range of thresholds. The Dispersion index test gives the appropriate distribution to model the 

arrival of peaks, and the respective entropy (HM1) is calculated from their probability mass functions. Four candidate 

distributions are fitted to the magnitude of exceedances to derive the entropy values. The degree of fitting of these continuous 205 

distributions to the exceedance series is compared with the conventional statistical approach using eight different model 

selection criteria described in the previous section. Finally, the total entropy (Htotal) at each threshold is calculated as the sum 

of these two entropy components. The threshold with the maximum Htotal is selected as the optimum threshold for PDS 

modeling of the study area. The optimum threshold derived from the proposed methodology is compared with some existing 

literature. 210 

The T year event is expressed as the (1-1/λT) quantile in the PDS perspective. For example, return period estimates (XT, predicted) 

are from the GP/PDS model using the following expression (Rosbjerg, 1985) 

𝐹(𝑥) = 1 − [1 +
𝑘(𝑥−µ)

𝜎
]

−
1

𝑘
= 1 −  

1

𝜆𝑇
         (14)  

where λ is the average number of exceedances per year, T is the return period (years), and k, µ, and σ represent the three 

parameters of the GP distribution obtained from the PDS extracted at a threshold. Similarly, various return period quantiles 215 

are computed, and the bootstrap sampling approach helps plot the respective 95% confidence interval.  

Figure 1  depicts the detailed methodology followed in this research. 
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Figure 1: Flowchart showing the detailed methodology followed in this study. 220 

4 Study area 

The proposed methodology is applied to the discharge data series obtained for the Waimakariri River at the Old Highway 

Bridge (OHB) site. The Waimakariri River is one of the largest rivers with 150 km in length and a catchment area of 3654 km2 

which flows eastwards from the Southern Alps. It is a large and steep river with a braded gravel-bed river. The upper region 

Preliminary analysis of discharge series 

Plot t vs λ to identify the region where further increase in thresholds cause decrease in λ 

Plot mean of exceedance above threshold and identify the region where this mean of 

exceedances varies linearly with the threshold 

Extract PDS at those thresholds and apply USWRC independence criteria; check for independence 

using Modified Mann Kendal’s Tau test and auto correlation plots 

Based on these graphical analysis, identify the range of peak values and apply dispersion index test to 

find the suitable distribution for modeling the arrival of peaks above that threshold 

Calculate entropy of Model 1 (HM1) (Section 2.3) 

Fit selected continuous probability distributions to the value of exceedances and estimate entropy of 

all the models (HM2) (Section 2.3) 

Calculate the total entropy at each threshold; identify the optimum threshold as the one with 

the maximum total entropy (Htotal) 

Return period flood flow estimation at the optimum threshold considering the underlying distribution 

models and check for predictive ability through bootstrap sampling 

Comparison of degree of fitness of exceedances with conventional statistical approach using 

suitable model selection criteria  
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of this catchment is mountainous and glaciated. Flood management is one of the significant issues with the river because of its 225 

natural tendency to flow into multiple courses. The major flood in this river is due to heavy rainfall on the Main Divide (Nagy 

et al., 2017). 30% of the flow is because of snow melting in the spring season (Gray et al., 2006). The Canterbury Regional’s 

Council (Environment Canterbury [ECan] has placed a gauging station on the river at the Old Highway Bridge (OHB). This 

gauging site has one of the country's excellence and oldest discharge data set. So the quality of data sets available for this site, 

along with various studies on the river's flood problem, motivated the authors to apply the proposed methodology here. Hourly 230 

data from 1 January 1967 to 31 December 2015 were obtained from Environment Canterbury Regional’s Council, and the 

maximum daily discharge series was extracted to carry out the frequency analysis.  

Table 4. Some major flow properties of the data series 

5 Results and discussion 

The proposed methodology for the choice of threshold in partial duration series was applied to the daily maximum discharge 235 

data for the Waimakariri River at the Old Highway bridge site. The annual maximum series having 49 events was extracted, 

and initially, some thresholds were applied to derive the respective PDS. Satisfying the independent criteria of the peaks is a 

prerequisite in any statistical frequency analysis. So, the dependent peaks from those extracted PDS were dropped by following 

USWRC independence criteria as described in Sect. 2.4 Visual observation of autocorrelation plots confirmed the absence of 

serial dependence in the PDS samples. Also, Kendall’s Tau test verified the independence of these series, and the PDS at some 240 

thresholds were omitted from frequency analysis due to the presence of a significant positive trend at a 95% confidence level. 
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Figure 2: Test for the independence of flood peaks above the thresholds, (a) Modified Mann-Kendall’s Tau test, (b) – (d) 

autocorrelation plot at a threshold of 300 m3s-1, 500 m3s-1,  and 700 m3s-1, respectively. 

For a PDS, an extremely low threshold makes the whole series lie above it, and then with an increase in threshold, more peaks 255 

are retained, and the value of λ rises. After reaching a peak value, λ gradually decreases until no peaks are included when the 

threshold is greater than the largest discharge in the record. So this gradual variation of the average number of peaks per year 

divides the entire range of thresholds into four domains, as described by Lang et al. (1999). Figure 3 depicts the variation of the 

average number of peaks per year (λ) with threshold level for the study area, and domain 3 was identified.  

 260 
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Figure 3: Variation of the average number of peaks per year with the threshold. 
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Residual Life Plot (MRLP). Figure 4 demonstrates the variation of the mean of exceedances above threshold (𝑋𝑡
̅̅ ̅ – t) with the 

threshold (t) along with the 95% confidence interval of MRLP. 

 275 

Figure 4: (a) Variation of the mean of exceedances above the threshold, i.e., MRLP with 95% confidence interval, and (b) A zoomed-

in figure of a selected range of thresholds. 

As per MRLP, a threshold should be selected from a region where it shows linear behavior. For the present study area, the 

PDS extracted between 550 m3/s to 1000 m3/s threshold had a slightly linear pattern, and beyond this, the plot starts to shift. 

This change in the graph's linearity with an increase in threshold occurs as the variance of a few extreme values might cause a 280 

sudden jump in the plot. So setting an optimal threshold merely based on such graphical observation becomes subjective, but 

it gives an idea about a range of thresholds where the optimum one may lie. Based on this, thresholds within the range 550 to 

1000 m3/s at which PDS satisfied with independence criteria are selected for further analysis.  

For the choice of distribution to model the arrival of peaks above any threshold, the dispersion index test proposed by Cunnane 

(1979) was applied. Figure 5 displays the value of the dispersion index at a 5% significance level for the study area. The PDS 285 

at most of the thresholds follows Poisson’s process, with DI lying between the upper and lower limit. The binomial distribution 

also showed a better fit at some thresholds. Based on this, the entropy of model 1 (HM1) was calculated at each truncation 

level as described in Sect. 2.3  
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Figure 5: Dispersion Index test at 5% significance level. 

The four candidate distributions (GEV, GP, P 3, and LP 3) were then fitted to the magnitude of exceedances to compute their 300 

entropy function (HM2) as described in Sect. 2.3  The combined entropy of both the models (Htotal = HM1 + HM2) was calculated 

at the chosen thresholds. The threshold with the maximum total entropy was selected as the optimum one for each distribution. 

Figure 6 demonstrates the variation of entropy functions with the threshold. Figure 6(a-d) compares the total entropy function 

of individual distributions with the entropy of model 2, i.e. when the distributions were fitted to the magnitude of exceedances. 

It’s observed that for a particular distribution model, the threshold at which HM2 becomes maximum is different than the 305 

threshold at which Htotal is maximum. For example, GEV has the highest HM2 at 1100 m3/s, while its total entropy reaches the 

highest at a threshold of 700 m3/s.  So consideration of the entropy of model 1 changes the choice of optimum threshold for 

each distribution.   
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 310 

Figure 6: Variation of entropy with the threshold. 

Figure 6(f) shows the variation of total entropy with thresholds for all four distributions. LP 3 has the maximum entropy at 

most thresholds, where P 3, GP, and GEV had second, third, and fourth, respectively. LP 3 is recommended as the standard 

distribution for FFA in the United States by federal agencies (England, 2011). However, the logarithmic conversion of small 

events in the series may affect the results while using LP 3 distribution. LP 3/PD at a threshold of 710 m3/s was the most 315 

suitable choice for PDS modeling of the study area. GP and GEV performed better at 700 m3/s, whereas the PDS at 830 m3/s 

had the highest total entropy for the P3 distribution. Table 5 summarizes the final results. Poisson’s distribution was found to 

be suitable for the arrival of peaks at these thresholds. The average number of peaks per year varied between 2.5 to 3.2.   
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Table 5 Summary of optimum threshold and the underlying models 

Distribution 

models 

Topt (m3/s) λ Htotal (Nats) 

GEV/PD 700 3.22 7.812 

GP/PD 700 3.22 8.510 

P 3/PD 830 2.47 8.523 

LP 3/PD 710 3.18 8.756 

Various test statistics were calculated to check the degree of fitting of these continuous probability distributions at different 320 

thresholds for comparing the results of this proposed method to the conventional goodness of fit approaches. So a numerical 

assessment based on a statistical ranking method was applied using eight model selection criteria described in Sect. 2.5  The 

distributions were ranked according to these test statistics, and the final rank was computed. Figure 7 represents the rank of 

these models and their total rank at some thresholds, as an example. A similar analysis was performed at other thresholds also. 

GP and LP 3 distribution had better GOF statistics values, i.e., KS and AD at a maximum number of thresholds, implying a 325 

better fit of empirical and predicted cumulative distribution function of exceedances. LP 3 distribution had a better combination 

of modified AD statistics with the information criteria at majority thresholds, which is helpful in flood frequency analysis.  

Also, the squared error metrics and the correlation coefficient of the exceedance series were better while modeled with LP 3 

distribution for most thresholds. Overall, LP 3 distribution performed better for the thresholds lying within 600 m3/s to 1050 

m3/s. LP 3 best described the exceedances extracted at 700 and 710 m3/s as per all the test statistics. GP was the second-best 330 

model for the exceedances at the majority of thresholds. The results thus obtained agreed with the ones obtained by applying 

the modified principle of maximum entropy in this research.  
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Figure 7: Ranking of distributions based on eight model selection criteria at a threshold of, (a) 600 m3/s, (b) 700 m3/s, (c) 850 m3/s, 335 

and (d) 1100 m3/s. 

10, 50, 100, and 500 year return period estimates were calculated and plotted in Figure 8. GEV and LP 3 distribution models 

gave higher design flood discharge for T ≥ 50 years. However, for a lower return period of 10 years, all four distribution models 

predicted similar design flow values. So the choice of threshold and the respective distribution models don’t significantly 

influence the lower return period estimates. However, for larger quantiles, it plays a vital role. Nagy et al. (2017) also arrived 340 

at similar conclusions. 

 

Figure 8: Quantile estimates of PDS at the optimum threshold. 

A bootstrap sampling was performed with 1000 samples and data length the same as the main PDS to check the predictive 

ability of these distribution models. The 95% confidence interval (CI) of quantile estimates were plotted and analyzed for 345 
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uncertainty. Figure 9 illustrates 95% CI for GP distribution where the estimated flood quantile values lie within the upper and 

lower limits, thereby justifying the predictive ability of the models. 

 

 

 350 

 

 

 

 

 355 

 

Figure 9: 95% CI for 50 and 100 year return period quantiles from GP distribution. 

According to the operational guidelines proposed by Lang et al. (1999), the optimum threshold for this study area was identified 

as 730 m3/s. As per Rosbjerg and Madsen (1992), the threshold from a daily discharge series should be Topt = E(Q) + 

3(Var(Q))0.5, following this, a threshold of 666 m3/s was obtained for the study area. Langbein (1949) stated the threshold as 360 

the lowest annual maximum discharge leading to a value of 716 m3/s for the Waimakariri record at OHB. Nagy et al. (2017) 

calculated a threshold of 700 m3/s for LP 3 and 750 m3/s for GP distribution. It is observed that the optimum threshold value 

obtained from this present study was close to the findings from some existing threshold selection techniques. Considering the 

entropy of model 1, i.e., the arrival of peaks instead of taking only the entropy of distributions used for modeling exceedances, 

gives more accurate optimum threshold values. The conventional statistical approach ensures only the fitness of models to 365 

exceedances; however, the modified POME method helps identify the optimum threshold along with both the models required 

for describing the PDS. So this new approach of calculating total entropy of dual models of PDS can be used as an alternative 

to locating the optimum threshold and the respective distribution models.  

6 Conclusions 

Several schools of thought exist regarding the choice of threshold in partial duration series of flood frequency analysis. The 370 

present study adds another new domain where the principle of maximum entropy theory is applied to locate the optimum 

threshold and the underlying distribution models of the PDS. The methodology was applied to the Waimakariri River at OH 

bridge, New Zealand. After extracting dependent peaks from the PDS, a region of threshold was identified based on the 

operational guideline proposed by Lang et al. (1999). The dispersion index gave the distribution model for the arrival of peaks 

above a threshold, and the corresponding entropy was estimated. All the four candidate distributions were fitted to the 375 
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magnitude of peaks to calculate the respective entropy function. The threshold with the maximum total entropy of both these 

models became the optimum threshold. The fitness of candidate distributions to the exceedances was also compared with the 

conventional statistical approach, where eight suitable model selection criteria were applied. The results obtained by using 

POME were similar to the standardized procedure. For all the candidate distributions, the optimum threshold lay between 2.47 

to 3.22. The PDS sample with the average number of peaks per year of 3.2 with Log Pearson type 3 and Poisson model 380 

performed better. The formula used for converting return periods into annual domain also helped in simplifying the use of PDS 

by eliminating the compulsory consideration of Poisson’s distribution for the occurrence of peaks. Various return period 

quantiles were estimated, and a bootstrap sampling with 1000 samples resulted in the 95% confidence interval. The results 

justified the predictive ability of these models derived by applying POME in the PDS context. The threshold obtained in the 

present research was close with some previous research. It has an advantage over other existing methods considering both the 385 

models while identifying the optimum threshold, i.e., considering the entropy of model 1, i.e., the arrival of peaks instead of 

taking only the entropy of distributions used for modeling exceedances, gives more accurate optimum threshold values. 

Overall, the current research suggests this method based on POME in the PDS context as an alternative to the existing 

conventional approach of threshold selection. 
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