
The Technical Note "Flood frequency study using partial duration series coupled with entropy principle" 

by Swetapadma and Ojha discusses methods to use partial duration series type of data to carry out flood 

frequency estimation. The topic is interesting and appropriate for the journal, but I somehow fail to see 

what the main contributions of the note, which I think does not provide a clear overview of the new 

developments, significant advances, and novel aspects of experimental and theoretical methods and 

techniques which are relevant for scientific investigations within the journal scope (this is a quote from 

the description of HESS technical notes).  

The paper is fairly well organized and the references mostly suitable, giving an overview of what is the 

current understanding of the question. It presents the modelling framework using a case study in New 

Zealand.   

My understanding is that the novel contribution proposed by the authors is to use entropy as a way to 

choice the PDS threshold, but I am not entirely sure this innovation is presented in a clear and convincing 

way. In particular, there are a few points that I find quite unclear or that I believe undermine the strength 

of the authors' argument: I'll try to outline them below.  

1. I feel their note is somewhat lacking a discussion of the consequences connected to the many choices 

which are done in the modelling pipe-line: the more obvious one to me is the choice of estimating the 

distribution parameters with L-moments rather than with other methods. Would the threshold/distribution 

choice be different if we used standard moments or maximum likelihood to estimate the parameters?  

In the present study, parameters of the distributions are estimated using L moments, and the reason for the same is 

described in the manuscript. However, other estimation methods, such as maximum likehood, probability-weighted 

moments, or method of moments, may be used. Different parameter estimation methods might lead to the selection 

of different thresholds and distribution choices as the value of entropy may vary accordingly. A similar analysis was 

carried out by Bezak et al. (2014) where they observed the better performance for the method of L-moments (ML) 

when compared with the conventional moments and maximum likelihood estimation. 

But, all these choices available in the modelling pipe-line will not affect the core of the methodology described in 

section 3, i.e., the optimum threshold is selected as the one where the total entropy of a PDS model is the maximum. 

So for any particular parameter estimation technique, the entropy-based methodology proposed in the study will 

work in the same way, leading to selecting an optimum threshold and the respective distribution models.  

2. The choice of distributions used to model the number and magnitude of exceedances could be better 

motivated. The "traditional" framework uses the Poisson and the Generalized Pareto distribution 

respectively: these are motivated by some well-known theoretical results. The Negative binomial extends 

the Poisson distribution, allowing for over dispersion. I do not quite understand how the Binomial 

distribution is instead fitted here, as we would need to have a k value of exceedances over N "trials" but 



the N value should be different from year to year since we only focus on independent peaks. Is this what 

the authors do? Further the use of the GEV, P3 and LP3 surprised me here as these are typically employed 

to describe annual maxima and have little theoretical or practical justification in the context of threshold 

exceedances: they can of course be used, but I'd mention the fact that the GP has a somewhat stronger 

theoretical grounding.  

The Poisson assumption for modeling the number of exceedances above a threshold is the traditional one; however 

other studies have proposed suitability of Binomial and Negative binomial distributions for the same (Lang et al., 

1999; Önöz and Bayazit, 2001; Nagy et al., 2017). As per the Dispersion index (DI) test proposed by Cunnane( 

1979) if the value of dispersion index (i) falls within the lower and upper critical DI value (Iα/2. I1-α/2), at a particular 

significance level α, Poisson process is accepted. If i < Iα/2, Binomial could be an alternative, and for i > I1-α/2, 

Negative binomial could be used. In the present study, DI at a 5% significance level was calculated at different 

thresholds and plotted in Figure 5 of the main manuscript. From the plot, it is clear that different distribution models 

are suitable for different thresholds based on DI value. For the range of thresholds selected from test 1 and test 2 

proposed by Lang et al. (1999) (as shown in Figure 3 and Figure 4 of the main manuscript), suitable distribution 

models such as Poisson and Binomial are chosen from the DI plot. The authors agree with the reviewer that the 

negative binomial (NB) extends the Poisson distribution, allowing for over-dispersion, and for the study area at 

some lower value of thresholds, NB was the suitable candidate. However, this range of thresholds was dropped in 

the further analysis based on Figure 3. 

 GEV, LP3, P3, and GP distributions are applied to model the magnitude of exceedances in the present study, 

whereas GP has a more theoretical background. Nagy et al. (2017) carried out PDS modeling of the same study area 

using similar distributions. So for a better comparison of threshold and distribution models obtained from the present 

study with their findings, probability distributions from extreme value and Pearson family are also considered in the 

study along with traditional GP distribution.  

3. The definition of AIC and BIC is not correct in Table 3: the definition is, for AIC, n*log-lik(model) + 

2k. For the Gaussian case it can be shown that the log-lik of the model reduces to the RSS, but that is a 

special case of a more general definition. In the caption of the table oi and pi should be written using 

capital letters for consistency with the table content. 

For a statistical model with ‘k’ parameters, AIC developed by (Akaike, 1974) is applied to find suitable probability 

distribution. It represents the model's lack of fit and unreliability due to the number of parameters. AIC is expressed 

as, AIC = -2(log maximum likehood for the model) + 2(number of fitted parameters) = -2lnL + 2k 

For ‘n’ data points assuming the error to be independent identical normally distributed, AIC = 2k + n ln(RSS/n); 

where RSS is the residual sum of squares. BIC can be expressed as BIC = n ln(RSS/n) + k ln(n) with the same 

assumption of errors obeying Gaussian distribution. 

These expressions of metrics have been applied in some previous studies, such as (Karmakar and Simonovic, 2008; 

Karmakar and Simonovic, 2009; Zhang and Singh, 2007). Based on this literature survey, these definitions of AIC 

and BIC (Table 3) of the manuscript are applied in the present study. 



The necessary corrections are made in the caption of the table. 

4. Although the case study is quite interesting I find it is fairly hard to generalize anything from this. How 

do we know that this approach to PDS modelling is any more suitable than the other currently employed 

approaches? How could we evaluate that? How does this work in other places? How does this perform 

under different scenarios of true underlying processes? Overall I think the study does not give enough 

details about how generalizable the findings are (and actually it is not very clear what the main findings 

are). The note presents a modelling framework and applies it, but I feel it fails to convince the reader that 

this modelling approach is somehow better or worth adding to the currently available modelling tools. In 

particular, I feel the modelling approach as presented is still very much needing the analyst to make some 

a-priori choices: something that is one of the main issues which make the widespread use of PDS harder 

to implement.  

The present research attempts to propose an alternate method for selecting the optimum threshold in PDS modeling 

of flood frequency analysis. This method is applied to the daily discharge for the Waimakariri River at the Old 

Highway Bridge site. The reason being, (i) this is one of the frequently flooded watersheds, and (ii) a recent FFA on 

this area using the same data series was conducted by Nagy et al. (2017) which provides a base for comparing the 

results. However, the proposed methodology can also be explored at other sites, which is out of the scope of the 

recent work. From the literature survey, it’s observed that the significant uncertainty in the application of the PDS 

model in FFA lies in the fact that there is no single method that performs the best for threshold detection in PDS. So 

the applicability of this proposed entropy-based approach is analyzed only by comparing the value of optimum 

threshold obtained from some existing guidelines and previous studies.  

The authors represent entropy as an alternate tool for threshold selection in the PDS model and found that the 

threshold obtained from this is close to the other techniques. This is the first study of its kind, where the concept of 

entropy is applied in PDS modeling of FFA, and also it helps to locate the optimum threshold and the dual models 

appropriate to model the respective PDS. 

Some other small minor points in the presentation:  

Line 22: interference -> inference 

The correction is applied in the revised manuscript. 

Line 29: the average number of events can be hardly be larger than the total number of annual maxima. It 

is often the case that the total number of PDS observations are more than the AMS observations, but this 

depends on the threshold: a very high threshold might result in PDS which have less observations than 

AMS.  

The required changes are made in line 29. 

Line 52: "gave the best results": in what sense? using what metrics? (This is a fundamental question 



which might also be addressed in the note: how do we evaluate what methods work well?) 

The authors have discussed in detail in the main manuscript (Page number 2) based on which metrics best results 

were obtained by (Nagy et al., 2017). They analyzed the degree of fitting of PDS samples to the magnitude of 

exceedances at various thresholds using three statistics such as Chi-square, Kolmogorov-Smirnov (KS), and Filliben 

Correlation (FCC). They compared the results to find the value of threshold at which PDS has lower χ2 and KS with 

higher FCC value.  

In the recent work, total entropy at each threshold is compared to find the maximum value. The various error 

statistics listed in Table 3 are used to evaluate the degree of fitting of the magnitude of exceedances. However, 

different methods existing in the literature for threshold identification in PDS are compared based on the value of 

optimum threshold only.  

Line 174: "To justify" sounds like an odd wording, maybe "to verify"? Further I would provide some 

more description of the test (very briefly) specifying the null and alternative hypothesis being tested and 

how to interpret the result (since these are not really commented on in the text around Figure 2)  

The details of these statistical tests are included in Appendix A of the revised manuscript. 

Section 5: I would expect somewhere a plot showing the data series  

Figure 2 of the revised manuscript represents the daily and annual maximum data series of the study area. 

 

 

 

 

 

 

 

 

 

 

 

Line 379: the threshold is much higher than 2.47 or 3.22: the threshold which is exceeded on average 

between 2.47 and 3.22 times per year. 

The corresponding changes are made in the revised manuscript.  
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