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 14 

Abstract. Adaptation to future climate change with limited water resources is a major global challenge to sustainable and 15 

sufficient crop production. However, the large-scale responses of crop water footprint and its associated benchmarks under 16 

various irrigation techniques to future climate change scenarios remain unclear. The present study quantified the responses of 17 

maize and wheat water footprint per unit yield (WF, m3 t-1) and corresponding WF benchmarks under two representative 18 

concentration pathways (RCPs) in the 2030s, 2050s, and 2080s at a 5-arc minute grid level in China. The AquaCrop model 19 

with the outputs of six global climate models in Coupled Model Intercomparison Project Phase 5 (CMIP5) as its input data 20 

was used to simulate the WF of maize and wheat. The differences among rain-fed and furrow-, micro-, and sprinkler-irrigated 21 

wheat and maize were identified. Compared with the baseline year (2013), maize WF will increase under both RCP2.6 and 22 

RCP8.5, by 17 % and 13 %, respectively, until the 2080s. Wheat WF will increase under RCP2.6 (by 12 % until the 2080s) 23 

and decrease by 12 % under RCP8.5 until the 2080s, with a higher increase in wheat yield and decrease in wheat WF due to 24 

the higher CO2 concentration in 2080s under RCP8.5. WF will increase the most for rain-fed crops. Relative to rain-fed crops, 25 

micro irrigation and sprinkler irrigation result in the smallest increases in WF for maize and wheat, respectively. These water-26 

saving managements will mitigate the negative impact of climate change more effectively. The WF benchmarks of maize and 27 

wheat in the humid zone are 13–32 % higher than those in the arid zone. The differences in WF benchmarks among various 28 

irrigation techniques are more significant in the arid zone, which can be as high as 57%, for 20th percentile WF benchmarks 29 

of sprinkler-irrigated and micro-irrigated wheat. Nevertheless, WF benchmarks will not respond to climate changes as 30 

dramatically as the WF in the same area, especially in the area with limited agricultural development. The present study 31 

demonstrated that the visible different responses to climate change in terms of crop water consumption, water use efficiency, 32 

and WF benchmarks under different irrigation techniques cannot be ignored. It also lays the foundation for future investigations 33 

into the influences of irrigation methods, RCPs, and crop types on WF and its benchmarks in response to climate change in all 34 

agricultural regions worldwide. 35 
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1 Introduction 36 

The progressive decline in water resource availability is a major impediment to global food production security (Pastor 37 

et al., 2019; Trnka et al., 2019; Konapala et al., 2020). Food crops are the main source of human nutrition (Myers et al., 2017; 38 

Lobell and Gourdji, 2012). Humans depend on food crops for ~47 % of their daily protein intake (FAO, 2021). However, as a 39 

result of human activity, the climate system is changing and global warming is a significant characteristic of this process (IPCC, 40 

2021). Since the 1980s, each successive decade has been warmer than any preceding one after 1850 (Kappelle, 2020). Climate 41 

change affects water consumption and crop yield by altering precipitation, temperature, carbon dioxide (CO2) concentration, 42 

and other factors during crop growth (Hatfield and Dold, 2019). Crop adaptation to future climate change with limited water 43 

resources has become a major challenge in sustainable crop production and supply worldwide. 44 

The water footprint per unit crop (WF, m3 t-1) (Hoekstra, 2003) is the amount of water consumed by the crop per unit 45 

yield during crop growth within a certain region. It includes blue WF (surface and groundwater), green WF (precipitation that 46 

will not become runoff), and grey WF (freshwater that assimilates pollutants from human activities) (Hoekstra et al., 2011). 47 

Blue and green WF are collectively known as consumptive WF, and grey WF is also called degradative WF (Hoekstra, 2013). 48 

Unlike traditional crop water productivity and other agricultural water metrics, WF covers water consumption, sources, and 49 

spatiotemporal dimensions during the crop growth period. Therefore, water consumption intensity and efficiency for irrigated 50 

and rain-fed planting modes may be compared. WF is an effective indicator of the sustainability of regional water use and 51 

optimal water resource allocation (Xu et al., 2019; Mali et al., 2021). The present study focuses exclusively on consumptive 52 

WF, which depends on crop yield and the intensity of water consumption per unit planted area. 53 

Several studies have been conducted on the responses of WF to future climate change. Nevertheless, no consensus has 54 

been reached. Certain scholars believe that future climate change will weaken food crop production security. Ahmadi et al. 55 

(2021) reported that maize WF in the Qazvin Plain of India will increase by 42 % and 147 % under representative concentration 56 

pathways (RCP) 4.5 and RCP8.5, respectively, by 2061–2080. Zheng et al. (2020) found that rice yield in Henan and Jiangsu 57 

Provinces (China) will decrease, while WF will increase under four RCPs at various stages of the 21st century. Other scholars 58 

believe that crop yield may actually benefit from future increases in precipitation and atmospheric CO2 concentration. Jans et 59 

al. (2021) considered the combined effects of changes in climatic factors, such as temperature, precipitation, and rising 60 

atmospheric CO2 concentration, and predicted that between 2011 and 2099, global cotton yield will increase by > 50 % and 61 

WF will decrease by 30 % under RCP8.5. Arunrat et al. (2020) found that in the present century, the yield of individual and 62 

large-scale rice farms in Thailand will increase by 1–30 % and 2–31 %, respectively, while WF will decrease by 10–43 % and 63 

1–67 %, respectively, under RCP4.5. Significant spatiotemporal differences in WF under various irrigation techniques have 64 

been confirmed at the site (Chukalla et al., 2015) and regional (Wang et al., 2019) scales. However, current large-scale studies 65 

on the responses of WF to environmental change are usually based on simulations assuming adequate furrow irrigation. These 66 

studies exclude comparisons between various irrigation techniques and the differences in their influences on crop WFs. 67 
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Although Dai et al. (2020) optimised maize and wheat cropping patterns under RCP4.5 and RCP8.5 with consideration of 68 

various irrigation modes in the Huaihe River Basin in China by 2050, they only considered blue water. 69 

Magnitudes and constitution of crop WF vary widely among regions and areas (Mekonnen and Hoekstra, 2011). To 70 

encourage water users to reduce WF to a reasonable level, Hoekstra (2013, 2014) recommended establishing WF benchmarks 71 

for different products as they facilitate prudent water allocation and fair water resource sharing among sectors and users 72 

(Hoekstra, 2013). On the large-scale, specific WF benchmarks can be set for crops grown on different farms within the same 73 

region (Mekonnen and Hoekstra, 2014). A previous study demonstrated the sensitivity of WF benchmarks to climate zones 74 

(Zhuo et al., 2016a). WF benchmarks significantly differ among irrigation techniques, especially in arid zones (Wang et al., 75 

2019). However, little is known about the responses of WF benchmarks under different irrigation techniques to future climate 76 

change.  77 

To investigate the influence of future climate change on large-scale WF and benchmarks under diverse irrigation 78 

techniques, maize and wheat grown in mainland China were the subjects of this study. We used the outputs of six global 79 

climate models (GCMs) (Table 1), including three models each for relatively wet and dry climate outputs, in Coupled Model 80 

Intercomparison Project Phase 5 (CMIP5). We then used the AquaCrop model to simulate the spatiotemporal responses of 81 

blue and green WF and corresponding WF benchmarks for wheat and maize in the 2030s (2020–2049), 2050s (2040–2069), 82 

and 2080s (2070–2099) under RCP2.6 and RCP8.5 at a 5-arc minute grid resolution. We distinguished between rain-fed and 83 

irrigated planting modes and among furrow, micro, and sprinkler irrigation. 84 

As of 2019, China was the world’s second largest maize and largest wheat producer, accounting for 23 % and 17 % of 85 

total global production, respectively (FAO, 2021). China’s cereal production has helped stabilise global food production and 86 

supply. In 2019, the planted areas of maize and wheat in China were 41 million ha and 24 million ha, respectively, and 87 

accounted for 25 % and 14 % of the national total croplands, respectively (NBSC, 2021). Cereal production consumes 88 

substantial volumes of water in China, and these quantities change over time. Zhuo et al. (2019) reported that maize water 89 

consumption increased by 49 % between 2000 and 2013 as planted areas and feed demand increased. Conversely, Wang et al. 90 

(2019) reported that wheat planted and irrigated areas decreased and water consumption slightly declined (4.4 %) from 2000 91 

to 2014. Other studies reported that maize and wheat consume relatively more water in the North than the South of China (Tian 92 

et al., 2019; Wang et al., 2019). Developing water-saving irrigation has become an important way to alleviate the prominent 93 

contradiction between water resources utilization and grain production in China. According to NBSC (2021), the area of water-94 

saving irrigation projects in China in 2019 was 37 million ha, including 7 million ha for micro irrigation. Therefore, micro 95 

irrigation does apply to food crops in China despite the limited irrigated area. For instance, in Xinjiang province, the area of 96 

micro irrigated maize and wheat was 0.033 million ha in 2009 (CIDDC, 2022), of which the wheat area dominated at up to 97 

0.031 million ha (Wang et al., 2011). Meanwhile, some scholars are conducting research on micro irrigated maize (Bai and 98 

Gao, 2021; Guo et al., 2021) and wheat (Li et al., 2021; Zain et al., 2021) in China, especially in the North. Therefore, the 99 

water consumption rates of these staple crops under future climate change scenarios with different irrigation techniques should 100 

be closely monitored to ensure water supply and food crop production security in China and worldwide. Compared to existing 101 
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literatures, the innovations of the current research are embodied in two points. The present study clarifies large-scale 102 

spatiotemporal responses of WF to future climate change scenarios under different irrigation techniques for the first time. This 103 

analysis is also the first to explore large-scale changes in WF benchmarks under future climate change scenarios. 104 

 105 

Table 1. Inventory of global climate models (GCMs) used in the current study. 106 

GCM Institute Reference Type 

CCCMA-

CanESM2 

Canadian Centre for Climate Modelling and Analysis Arora et al. (2011);  

von Salzen et al. (2013) 

Wet 

CESM1-

CAM5 

National Science Foundation, Department of Energy, National Center for 

Atmospheric Research 
Hurrell et al. (2013) 

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory Delworth et al. (2006); Donner 

et al. (2011) 

FIO-ESM The First Institute of Oceanography, State Oceanic Administration, China Qiao et al. (2013) Dry 

GISS-E2R NASA Goddard Institute for Space Studies USA Schmidt et al. (2006); Schmidt 

et al. (2014) 

IPSL-CM5A-

MR 

Institute Pierre Simon Laplace 
Dufresne et al. (2013) 

 107 

2 Method and data 108 

2.1 Research set-up 109 

We studied the spatiotemporal responses of blue and green WF and corresponding WF benchmarks for two crops (maize 110 

and wheat) to future climate change under two climate change scenarios (RCP2.6 and RCP8.5) using four different planting 111 

modes (rain-fed and furrow-, micro-, and sprinkler-irrigated). First, we determined the baseline year. Second, we considered 112 

different planting modes to quantify WF and corresponding WF benchmarks of two crops in the baseline year and future year 113 

levels under two climate change scenarios. Finally, the spatiotemporal responses of crop WF and corresponding WF 114 

benchmarks to future climate change were analysed (Fig. 1). 115 

 116 
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 117 

Figure 1. Flow chart for the study. 118 

 119 

2.2 Determining the baseline year 120 

To ensure that the simulation results of future climate change scenarios are still reliable and meaningful, the baseline year 121 

was determined. Climate determines the annual variability of WF (Zhuo et al., 2014), and the baseline year should be 122 

determined when there is a relative balance between aridity and moisture. Hence, the aridity index (AI) was used here. Annual 123 

reference evapotranspiration (ET0, mm) and precipitation (PR, mm) in China were calculated (Harris et al., 2014). Then, the 124 

AI was calculated, and climate change trends from 2000 to 2014 were analysed. The year 2013 was designated the baseline as 125 

its drought level was nearest the 15-year national average. The AI was calculated according to the method of Middleton and 126 

Thomas (1997): 127 

AI=
PR

ET0
 , (1) 

2.3 Water footprint per unit crop calculation 128 

WF (m3 t-1) comprises blue WF (WFb, m3 t-1) and green WF (WFg, m3 t-1): 129 

WF=WFb+WFg , (2) 
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where WFb and WFg were calculated as the quotient of the blue (CWUb, m3 ha-1) and green (CWUg, m3 ha-1) components of 130 

crop water use (CWU, m3 ha-1) and crop yield (Y, t ha-1), respectively. CWUb and CWUg were equivalent to the cumulation 131 

of daily evapotranspiration (ET, mm d-1) throughout the whole crop growth period (Hoekstra et al., 2011): 132 

WFb=
CWUb

Y
=

10× ∑ ETb
lgp
d=1

Y
 , (3) 

WFg=
CWUg

Y
=

10× ∑ ETg
lgp
d=1

Y
 , (4) 

where ETb and ETg (mm) refer to the blue and green water evapotranspiration, respectively, and lgp refers to the number of 133 

days of the crop growth period. The coefficient, 10, is a unit conversion factor, transforming the water depth of ET (mm) into 134 

the water amount per unit land area of CWU (m3 ha-1). 135 

The ET and Y per grid for each crop were simulated by the AquaCrop model based on the dynamic daily soil water 136 

balance (Mekonnen and Hoekstra, 2010): 137 

S[t]=S[t-1]+PR[t]+IRR[t]+CR[t]-ET[t]-RO[t]-DP[t] , (5) 

where S[t] and S[t-1] (mm) refer to the water content in soil when the day, t, ends and begins, respectively; PR[t] (mm) is the 138 

amount of precipitation on day, t; IRR[t] (mm) is the amount of water used for irrigation; CR[t] (mm) is the capillary rise to the 139 

crop root zone from the shallow groundwater; RO[t] (mm) is the water lost by surface runoff due to precipitation; and DP[t] 140 

(mm) is the water lost by deep percolation caused by excessive precipitation or irrigation. It was assumed that CR[t] = 0 as the 141 

ground water depth was >> 1 m (Allen et al., 1998). RO[t] was calculated using the Soil Conservation Service curve-number 142 

(CN) equation (USDA, 1964; Rallison, 1980): 143 

RO[t]=
(PR[t]-Ia)

2

PR[t]+S-Ia
 , (6) 

 S=254 (
100

CN
-1) , (7) 

where S (mm) is the potential maximum water storage, and Ia (mm) is the initial amount of water loss before the runoff 144 

formation. 145 

By tracking the daily flow of water in and out of the crop root zone, we separated the daily blue and green soil water 146 

balances (Zhuo et al., 2016b): 147 

Sb[t]=Sb[t-1]+(PR[t]+IRR[t]-RO[t])×
IRR[t]

PR[t]+IRR[t]
-(DP[t]+ET[t])×

Sb[t-1]

S[t-1]
 , (8) 

Sg[t]=Sg[t-1]+(PR[t]+IRR[t]-RO[t])×
PR[t]

PR[t]+IRR[t]
-(DP[t]+ET[t])×

Sg[t-1]

S[t-1]
 , (9) 

where Sb[t] and Sb[t-1] (mm) are the blue water content in soil when the day, t, ends and begins, respectively; and Sg[t] and Sg[t-1] 148 

(mm) are the green water content in soil when the day, t, ends and begins, respectively. It is assumed that the initial soil water 149 

content before the crop growth period is green water. 150 

In AquaCrop, the daily transpiration (Tr[t], mm) calculates the daily shoot biomass production (B, kg) using the normalised 151 

crop biomass water productivity (WP*, kg m-2) (Raes et al., 2017): 152 
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B=WP*×∑
Tr[t]

ET0[t]
 , (10) 

where WP* is normalised to consider CO2 concentration, reference evapotranspiration (ET0), and crop classes (C3 or C4) so 153 

that it is applicable to various locations and seasons. Water productivity remains constant for specific crops. Y, as the 154 

harvestable portion of final B, is calculated by multiplying B with the adjusted reference Harvest Index (HI0, %): 155 

Y=f
HI

×HI0×B , (11) 

where fHI is a correction factor for HI0. It considers the water and temperature stresses during the crop growth period. Being 156 

consistent with the existing widely used calibration method (Mekonnen and Hoekstra, 2011; Zhuo et al., 2016b, 2016c, 2019; 157 

Wang et al., 2019; Mialyk et al., 2022), the simulated Y per grid for each crop in 2013 was validated via scaling model 158 

simulation outputs to correspond with the crop yield statistics data at the provincial level (NBSC, 2021). With the consistent 159 

crop parameters and calibrated scaling factors for the Y simulation which represent the existing agricultural production level, 160 

climate was the only variable for future scenario simulations. 161 

In the simulation, different planting modes, namely rain-fed and three different irrigation techniques (furrow, micro, and 162 

sprinkler irrigation), were considered. The irrigation schedule of three irrigation techniques in the model was the Generation 163 

of Irrigation Schedule, namely the generation of an irrigation schedule by specifying a time and depth criterion for planning 164 

or evaluating a potential irrigation strategy. Table S6 shows the parameters of three irrigation techniques (Raes et al., 2017). 165 

We can adjust the simulated ET and Y according to the performance of the irrigation schedule. 166 

2.4 Benchmarking consumptive WF in crop production 167 

Based on the work of Mekonnen and Hoekstra (2014), we ranked grid-level WF for each crop in ascending order of size 168 

against the corresponding cumulative percentages of the total crop production. The annual WF of 20 % or 25 % of the producers 169 

with the highest water productivity in China was set as the annual WF benchmark. The climate zones should be divided when 170 

WF benchmarks are established (Zhuo et al., 2016a). To this end, the AI partitioned China into arid (< 0.5) and humid (> 0.5) 171 

zones based on the annual ET0 and PR from 2000 to 2014 at a 30-arc minute grid resolution (Harris et al., 2014) (Fig. 2). 172 

 173 
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 174 

Figure 2. Regions and climate zones of mainland China. 175 

 176 

2.5 Data sources 177 

Monthly climate data, such as maximum (Tx), minimum air temperature (Tn), precipitation (PR), and reference 178 

evapotranspiration (ET0), from 2000 to 2014 at a resolution of 30-arc minute were derived from the CRU-TS 3.24 dataset 179 

(Harris et al., 2014; CEDA, 2018). The mean annual atmospheric CO2 concentration (ppm) from 2000 to 2014 was obtained 180 

from the Mauna Loa Observatory, Hawaii, USA (NOAA, 2018). The downscaled outputs of six GCMs at a 5-arc minute grid 181 

resolution in the 2030s, 2050s, and 2080s were obtained from the Climate Change, Agriculture and Food Security (CCAFS) 182 

database (Navarro-Racines et al., 2020; CCAFS, 2015). As the CCAFS database has no ET0 data, we calculated ET0 for each 183 

climate scenario using temperature inputs via the FAO Penman-Monteith method with missing data as described by Allen et 184 

al. (1998). The projected CO2 concentrations under RCP2.6 and RCP8.5 were obtained from van Vuuren et al. (2007) and 185 

Riahi et al. (2007), respectively. To make the model simulation more in line with the actual situation in China, we reset the 186 

maximum root depth (Zx) according to the FAO-56 recommendation (Allan et al., 1998). In addition, we further combined the 187 

literature research on maize and wheat in China to reset the HI0 (Zhuo et al., 2016c). The other parameters used in AquaCrop 188 

were derived from Raes et al. (2017). Soil texture data and soil water capacity data at a 5-arc minute grid resolution were 189 

acquired from the ISRIC Soil and Terrain database (Dijkshoorn et al., 2008) and ISRIC-WISE dataset (Batjes, 2012), 190 

respectively. The planted areas for each irrigated or rain-fed crop at a 5-arc minute grid resolution were acquired from the 191 

MIRCA2000 dataset (Portmann et al., 2010). We divided these planted areas into different parts subjected to various irrigation 192 
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techniques using statistical yearbook data (NBSC, 2021). Provincial-level crop yield statistics data were procured from the 193 

National Bureau of Statistics of China (NBSC, 2021). 194 

3 Results 195 

3.1 Future climate change trends in maize and wheat planted areas 196 

In the baseline year 2013, the average annual reference evapotranspiration (ET0) and precipitation (PR) in the planted 197 

areas of two crops were 941 mm and 727 mm, respectively. Compared with the baseline level of 2013, the average annual ET0 198 

and PR in the planted areas of two crops will both increase under two RCPs, and the increase in ET0 exceeded that of PR. ET0 199 

will increase by 17 % and 29 % under RCP2.6 and RCP8.5, respectively, until the 2080s. However, PR will increase by 8 % 200 

and 14 %, respectively. The increases under RCP8.5 (18–29 % and 3–14 % for ET0 and PR, respectively) were much higher 201 

than those under RCP2.6 (16–17 % and 4–8 % for ET0 and PR, respectively). Climate change will be relatively more intense 202 

under RCP8.5. The increases in ET0 were concentrated from April to August (14–39 mm). The increases in PR were 203 

concentrated between June and August (8–20 mm and 12–28 mm, respectively). However, PR will decline in May, July, 204 

November, and December, and it will decline more in May (≤ 9 mm until the 2030s) (Fig. 3a, b). Water and heat resources 205 

were unevenly distributed in the planted areas of the two crops in 2013. ET0 was relatively higher in East Coast and North 206 

China. PR distribution was comparatively higher in the South and lower in the North (Fig. S4). Compared with 2013, ET0 and 207 

PR for the most heavily planted areas will increase under both scenarios until the 2080s. The areas with a relatively greater 208 

increase in ET0 were distributed mainly in Southwest and Northeast (Fig. 3c, e), and PR increased relatively faster in Northwest 209 

and Jing-Jin (Fig. 3d, f). ET0 decreased mainly in Xinjiang and Inner Mongolia (Fig. 3c, e), and PR decreased mainly in 210 

Xinjiang, Tibet, Northeast, and South Coast (Fig. 3d, f). However, the areas where ET0 decreased were 86–94 % smaller than 211 

those where PR decreased. 212 

 213 
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 214 

Figure 3. Future climate projections for the maize and wheat planted zones in China. 215 

 216 

3.2 WF distribution in the baseline year 2013 217 

The national average WF for wheat (1,008 m3 t-1) was higher than that for maize (813 m3 t-1) in the baseline year 2013. 218 

The corresponding blue WF proportions were 37 % and 20 %, respectively. The reason for this discrepancy is that maize is a 219 

C4 crop while wheat is a C3 crop. C4 crops have a relatively higher CO2 fixation efficiency and faster photosynthetic rate than 220 
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C3 crops. Hence, maize can accumulate comparatively more yield than wheat under the same water consumption condition 221 

(Wang et al., 2012). Figure 4 shows that the high WFg value was mainly distributed in areas with relatively greater precipitation 222 

during crop growth, i.e., abundant green water resources. The main component of WF is WFg; therefore, the high maize WF 223 

was mainly distributed in Northwest (Fig. 4a), while the high wheat WF was mainly distributed in Southwest and South Coast 224 

(Fig. 4b). Elevated ET0 and insufficient precipitation can increase blue water consumption in food production. Thus, the high 225 

WFb value was mainly distributed in areas with uneven water and heat resource distributions during crop growth. The high 226 

maize WFb was mainly distributed in Northwest and East Coast (Fig. 4c), while that of wheat was distributed mainly in North 227 

China (Fig. 4d). In all grids, the proportions of WFb and WFg were up to 68 % (wheat in Xinjiang) (Table S2) and 98 % (maize 228 

in Hainan) (Table S1), respectively. 229 

 230 

 231 

Figure 4. WF of maize and wheat in China in 2013. 232 

 233 
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A comparison of rain-fed and irrigation techniques demonstrated that the WF of maize and wheat under furrow and 234 

sprinkler irrigation was higher than that under rain-fed in 2013. The WF of micro-irrigated crops was lower than that of rain-235 

fed crops. The WF of maize (850 m3 t-1) and wheat (1,170 m3 t-1) was highest under furrow and sprinkler irrigation, respectively. 236 

For wheat under all three irrigation techniques, WFb was dominant (54–65 %). However, WFb for maize was only dominant 237 

under micro irrigation (61 %). Micro-irrigated (9.55 t ha-1 for maize and 5.46 t ha-1 for wheat) and rain-fed (5.76 t ha-1 for 238 

maize and 4.51 t ha-1 for wheat) crops had the highest and lowest yield, respectively, in 2013. The responses of maize yield to 239 

rain-fed and various irrigation techniques were stronger than those of wheat yield (Fig. 4e, f). 240 

3.3 Spatiotemporal responses of WF to future climate change 241 

Compared with the baseline year 2013 and at the national average level, maize WF will increase under both RCP2.6 and 242 

RCP8.5, by 17 % and 13 %, respectively, until the 2080s. The WF of wheat will increase under RCP2.6 (by 12 % until the 243 

2080s) but decrease by 12 % under RCP8.5 until the 2080s (Fig. 5a). The increases in CO2 concentration and, by extension, 244 

yield gain, will be lower under RCP2.6 than RCP8.5. During the same period, the increases in WF under RCP2.6 will be 1–245 

3 % higher for maize and 2–10 % higher for wheat than those under RCP8.5. There will be relatively smaller differences in 246 

CO2 concentration between climate scenarios of the 2030s (431 ppm under RCP2.6 and 449 ppm under RCP8.5). Thus, the 247 

differences in WF between RCPs will be smaller before the 2030s and larger after the 2050s. The WF of irrigated wheat under 248 

RCP8.5 will decline by 3 % until the 2050s and by 15 % until the 2080s. The increase in WF will be highest under rain-fed, 249 

and the WF of rain-fed maize and wheat under RCP2.6 will increase by 19 % and 24 %, respectively, until the 2080s. By 250 

contrast, the WF of irrigated maize and wheat under RCP2.6 will only increase by 13 % and 7 %, respectively, until the 2080s 251 

(Fig. 5a). A comparison of the various irrigation techniques demonstrated that the WFs of wheat and maize respond differently 252 

under the same scenario. The increase in WF amplitude for maize will be highest under furrow irrigation (14 % and 11 % 253 

under RCP2.6 and RCP8.5 until the 2080s, respectively) and lowest under micro irrigation (5 % and 2 % under RCP2.6 and 254 

RCP8.5 until the 2080s, respectively). The WF of sprinkler-irrigated wheat under RCP8.5 will decline by 1 % until the 2030s. 255 

The WF of wheat under micro irrigation had the highest increase (9 % until the 2080s under RCP2.6) and the lowest decrease 256 

(14 % until the 2080s under RCP8.5). The WF of wheat under sprinkler irrigation had the lowest increase (only 2 % until the 257 

2080s under RCP2.6) and the highest decrease (19 % until the 2080s under RCP8.5) (Fig. 5b). 258 

 259 
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 260 

Figure 5. WF of maize and wheat in 2013 and future year levels under various climate change scenarios in China. 261 

 262 

The spatial distribution of the relative changes in maize and wheat WF from 2013 to the 2080s showed regional 263 

differences. The WF will increase for 90–93 % of all areas planted with maize (Fig. 6a, b), and it will increase for 78 % of all 264 

areas planted with wheat under RCP2.6 (Fig. 6c) and decrease for 81 % of all areas planted with wheat under RCP8.5 (Fig. 265 

6d). Increases in ET0 lead to increases in WF, while decreases in PR lead to increases in WFb (Fig. S6). Hence, the regions 266 

with relatively greater increases in WF were mainly distributed where ET0 strongly increased and PR slightly increased or 267 

even decreased. In Yunnan, maize WF increased by 44 % and 38 % under RCP2.6 and RCP8.5, respectively. In Guangxi, 268 

wheat WF increased by 50 % and 16 % under RCP2.6 and RCP8.5, respectively (Table S5). Comparison of rain-fed and 269 

various irrigation techniques revealed that the WF of each crop responded uniquely to latitudinal and longitudinal climate 270 

change under the same scenario. The responses of maize WF to climate change with latitude were relatively consistent. It 271 

increased by 27–43 % at 19–26 °N and ~51 °N latitude and decreased at ~44 °N latitude. By contrast, the responses of WF for 272 

rain-fed maize were more sensitive at ~40 °N and ~52 °N latitude. The responses of maize WF vary widely within 74–100 °E 273 

longitude. The WF of maize under rain-fed and furrow and sprinkler irrigation declined at 74–90 °E longitude. The increase 274 

in WF for maize under rain-fed at 93–98 °E longitude was 3–51 % higher than the increase in WF for maize under furrow and 275 
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sprinkler irrigation. The WF of micro-irrigated maize decreased at 74–95 °E longitude (Fig. 6a, b). The responses of wheat 276 

WF to climate change with latitude and longitude were relatively consistent. However, in certain areas, there were large 277 

differences in wheat WF between rain-fed and the three irrigation techniques. The WF of wheat under rain-fed decreased at 278 

74–80 °E longitude and by more than the WF of wheat under the three irrigation techniques at the same longitude range. The 279 

increases in the WF of wheat under rain-fed at ~93 °E and ~122 °E longitude and ~22 °N latitude were significantly higher 280 

than the increases in WF of wheat under the three irrigation techniques (Fig. 6c, d). 281 

 282 

 283 

Figure 6. Spatial distributions in relative changes ∆ (%) in WF (bottom left panel) with longitudinal (top panel) and latitudinal (right 284 

panel) changes under different irrigation techniques applied to both crops under two scenarios from 2013 to the 2080s. 285 
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 286 

WF is determined by both crop yield (Y) and crop water use (CWU). We compared the relationships between the relative 287 

changes in WF (∆WF) and corresponding Y (∆Y) and CWU (∆CWU) (Fig. 7). The ∆WF of maize and wheat under future 288 

climate change scenarios was inversely proportional to ∆Y and directly proportional to ∆CWU. Nevertheless, ∆WF was 289 

relatively more sensitive to ∆Y. When ∆Y was 25 %, ∆WF of wheat under RCP2.6 and maize was approximately -25 %, while 290 

∆WF of wheat under RCP8.5 was approximately -10 %. When ∆CWU was 25 %, ∆WF of wheat under RCP2.6 and maize 291 

was ~20 %, while ∆WF of wheat under RCP8.5 was approximately -8 % (Fig. 7a, b). The responses of ∆WF of maize were 292 

more sensitive to ∆Y and ∆CWU than those of wheat. The responses of ∆WF of maize and wheat under RCP2.6 were more 293 

sensitive to ∆Y and ∆CWU than those under RCP8.5. Comparison of rain-fed and various irrigation techniques revealed that 294 

the correlation between ∆WF and ∆Y was stronger for rain-fed crops. For rain-fed maize, R2 can reach 0.55 (Fig. 7a). ∆WF 295 

and ∆CWU were strongly correlated for irrigated crops, and ∆WF and ∆CWU were especially strongly correlated for crops 296 

under micro irrigation (R2 can reach 0.98 for wheat) (Fig. 7b). We also determined the relationship between ∆WFb and ∆CWUb 297 

was similar but more significant than that between ∆WF and ∆CWU (Fig. 7c). 298 

 299 
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 300 

Figure 7. Relationships between relative changes ∆ (%) in (a) Y and corresponding WF, (b) CWU and corresponding WF, and (c) CWUb 301 

and corresponding WFb of two crops under RCP2.6 and RCP8.5 from 2013 to the 2080s. 302 

 303 
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3.4 Spatiotemporal WF benchmarks responses to climate change 304 

Table 2 shows the WF benchmarks of maize and wheat among various irrigation techniques and climate zones in 2013 305 

and future year levels. The WF benchmarks of maize and wheat in the humid zone were 13–32 % higher than those in the arid 306 

zone, which is similar to results obtained by Wang et al. (2019). In the same climate zone, WF benchmarks of wheat were 307 

generally 2–35 % higher than those of maize. However, in the humid zone, the WF benchmark for the 25th production 308 

percentile of maize was 3 % higher than that of wheat under RCP8.5 in the 2080s. In the arid zone, WF benchmarks of rain-309 

fed maize were 13–34 % higher than those of irrigated maize. In the humid zone of the future, WF benchmarks of rain-fed 310 

wheat were 2–7 % higher than those of irrigated wheat. In general, WF benchmarks of sprinkler-irrigated crops were higher, 311 

while those of micro-irrigated crops were lower. The differences in WF benchmarks among various irrigation techniques were 312 

more significant in the arid zone. WF benchmarks of the crops under micro irrigation were 30–38 % lower than those under 313 

sprinkler irrigation in the arid zone. The difference in the humid zone was only 8–14 %, which is also consistent with the study 314 

by Wang et al. (2019). In the humid zone, however, WF benchmarks of maize under furrow irrigation were 7–21 % higher 315 

than those under sprinkler irrigation. 316 

 317 

Table 2. WF benchmarks (m3 t-1) of maize and wheat for different climate zones in 2013 and future year levels under two climate change 318 

scenarios in China. 319 

Climate zones Crop Type 

WF (m3 t-1) at different production percentile* 

20th 25th 

2013 RCP2.6 RCP8.5 2013 RCP2.6 RCP8.5 

Arid 

Maize 

Total 601  (577, 576, 580) (589, 584, 566) 623  (661, 658, 655) (655, 652, 634) 

Irrigated 522  (505, 504, 506) (503, 503, 496) 548  (508, 507, 511) (507, 509, 501) 

Furrow 618  (658, 658, 658) (654, 654, 642) 654  (693, 693, 691) (689, 687, 674) 

Micro 466  (455, 454, 456) (456, 454, 440) 477  (459, 458, 460) (458, 460, 446) 

Sprinkler 700  (727, 725, 723) (722, 719, 708) 706  (729, 729, 726) (724, 721, 710) 

Rain-fed 599  (661, 661, 662) (652, 649, 630) 618  (682, 679, 671) (672, 667, 652) 

Wheat 

Total 753  (776, 764, 781) (765, 707, 620) 768  (829, 816, 828) (809, 756, 666) 

Irrigated 754  (776, 764, 781) (765, 707, 620) 768  (830, 816, 829) (810, 757, 666) 

Furrow 830  (850, 840, 850) (830, 774, 680) 940  (885, 875, 887) (868, 809, 712) 

Micro 648  (701, 690, 705) (694, 643, 562) 670  (717, 705, 721) (707, 654, 572) 

Sprinkler 1020  (1003, 998, 1007) (989, 920, 811) 1032  (1034, 1028, 1038) (1019, 948, 837) 

Rain-fed 692  (743, 734, 753) (729, 692, 618) 692  (790, 772, 791) (769, 737, 653) 

Humid 
Maize 

Total 680  (761, 754, 752) (756, 752, 739) 718  (813, 807, 807) (809, 806, 785) 

Irrigated 743  (905, 905, 908) (902, 900, 881) 782  (939, 939, 944) (937, 936, 916) 

Furrow 762  (925, 926, 930) (921, 921, 901) 801  (943, 942, 948) (940, 939, 919) 

Micro 649  (709, 704, 707) (694, 696, 683) 660  (734, 726, 732) (721, 726, 708) 

Sprinkler 713  (770, 771, 768) (764, 762, 750) 737  (813, 814, 812) (808, 806, 793) 

Rain-fed 631  (712, 703, 707) (710, 702, 678) 656  (744, 737, 737) (740, 736, 716) 

Wheat Total 873  (933, 932, 946) (921, 851, 752) 887  (944, 942, 957) (931, 860, 760) 
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Irrigated 887  (914, 914, 924) (900, 841, 744) 897  (925, 926, 937) (912, 849, 752) 

Furrow 887  (914, 914, 925) (901, 841, 744) 896  (925, 927, 937) (913, 849, 752) 

Micro 820  (821, 826, 838) (804, 753, 665) 833  (830, 839, 849) (812, 759, 671) 

Sprinkler 933  (949, 944, 955) (936, 872, 770) 946  (958, 953, 964) (944, 880, 777) 

Rain-fed 812  (973, 958, 984) (950, 863, 757) 831  (989, 973, 998) (964, 877, 763) 

*The three numbers in brackets are the values of 2030s, 2050s and 2080s. 

 320 

Compared with the baseline year, 2013, the changes in maize and wheat WF benchmarks under future climate change 321 

scenarios are similar to the changes in WF. However, the WF benchmark for the 20th production percentile of maize will 322 

decline by 2–6 % in the arid zone. WF benchmarks of wheat under RCP8.5 will decrease by 2–6 % and 13–18 % until the 323 

2050s and the 2080s, respectively. The increasing range of the WF benchmark for the 25th production percentile of maize was 324 

7–8 % higher in the humid zone than that in the arid zone. The increasing range of the WF benchmark for the 20th production 325 

percentile of wheat was 4–5 % higher in the humid zone than that in the arid zone. WF benchmarks of maize and wheat 326 

increased to a greater extent under RCP2.6 but decreased to a greater extent under RCP8.5. WF benchmarks of rain-fed crops 327 

increased more than those of irrigated crops in the same climate zone. Nevertheless, the increase in WF benchmarks was 7–328 

11 % lower for rain-fed than irrigated maize in the humid zone. WF benchmarks of maize and wheat generally increased 329 

relatively more under furrow irrigation and comparatively less under sprinkler irrigation. However, under RCP2.6, the growth 330 

rate of the WF benchmark for the 20th production percentile of wheat was 5–6 % higher under micro irrigation than that under 331 

furrow irrigation in the arid zone. The increase in the WF benchmark for the 20th production percentile of wheat was 0.19–332 

2 % higher under sprinkler irrigation than that under micro irrigation in the humid zone (Table 2). 333 

Figure 8 shows the spatial distribution of the relative changes in the WF of maize and wheat compared with the benchmark 334 

for the 25th production percentile in 2013 and the 2080s. In 2013, the WF for 81 % and 79 % of the maize and wheat planted 335 

areas, respectively, was higher than its benchmark. The maize planted areas with WF below the benchmark were distributed 336 

mainly in Xinjiang in the arid zone and northeast Inner Mongolia in the humid zone (Fig. 8a). The wheat planted areas with 337 

WF below the benchmark were distributed mainly in Xinjiang in the arid zone and Qinghai (Fig. 8d). Under future climate 338 

change scenarios, the maize and wheat planted areas with the WF below the benchmark will slightly decrease in the 2080s. 339 

These areas are mainly distributed in Heilongjiang, Tibet, southern Gansu, and Sichuan in the humid zone for maize; and 340 

Henan and Tibet in the humid zone and Qinghai for wheat. This is because that the annual ET0 will increase relatively faster 341 

in Heilongjiang and Tibet, which will lead to a greater increase in WFb. The annual PR in other regions will significantly 342 

increase, which will result in a greater increase in WFg. Maize and wheat planted areas under RCP8.5 with WF below the 343 

benchmark will decrease by 5 % and 4 %, respectively, until the 2080s. 344 

 345 
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 346 

Figure 8. Relative changes ∆ (%) in the WF of maize and wheat compared with the benchmark for the 25th production percentile in 2013 347 

and the 2080s under RCP2.6 and RCP8.5 in different climate zones of China. 348 

 349 

3.5 Discussion 350 

This study analysed and compared the WF and WF benchmarks responses of wheat and maize under rain-fed and various 351 

irrigation conditions and forecasted their responses to future climate change scenarios in China. Under the background that the 352 

annual ET0 and PR will both increase but ET0 will increase faster, maize WF will increase under both RCP2.6 and RCP8.5. 353 

Wheat WF will increase under RCP2.6 but decrease under RCP8.5 until the 2080s. Rain-fed crops had higher ranges of 354 

increasing WF, which is consistent with Rosa et al. (2020). The increasing ranges of maize and wheat WF were lowest under 355 

micro irrigation and sprinkler irrigation, respectively. Therefore, the implementation of water-saving irrigation techniques 356 

(micro and sprinkler irrigation) may help mitigate the adverse effects of future climate change on agriculture, which is in line 357 

with Dai et al. (2020). Under future climate change, WF benchmarks will be modified in a manner resembling that for WF. 358 

However, the former changes will not be as significant as the latter in the same area. 359 
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In 2013, the WF of maize was lower than that of wheat. Nevertheless, maize WF is expected to increase more rapidly 360 

than wheat WF under future climate change scenarios. C4 crops such as maize have higher photosynthetic rates than C3 crops 361 

such as wheat. However, C4 crops are less sensitive to elevated atmospheric CO2 than C3 crops (Bowes, 1993). Hence, while 362 

maize yield is higher than wheat yield, the former increases less than the latter. We compared current results against those of 363 

previous studies in Table 3. The differences we determined for the relative changes in maize and wheat WF between years and 364 

RCPs resembled those reported by Zhuo et al. (2016d). However, these authors also considered other factors, such as harvested 365 

crop area, technology, diet, and population, that could partially offset the adverse effects of future climate change. Therefore, 366 

maize and wheat WF will decline in the future according to Zhuo et al. (2016d). Fader et al. (2010) studied relative global-367 

scale changes in maize WF for 2050. Their analysis was conducted in the opposite direction of that of the present study on 368 

China. Moreover, the two studies differed in terms of climate scenario, research area, and crop model. Winter wheat WF in 369 

Germany and Italy will decline by 2050 according to Garofalo et al. (2019). Nevertheless, our research showed that winter 370 

wheat WF will increase in China by 2050. The crop water use in Germany and Italy changes more smaller than that in China. 371 

However, our observed differences in the relative changes in WF between RCPs were consistent with those of Garofalo et al. 372 

(2019); namely, under RCP8.5, WF will either decrease more or increase less. 373 

 374 

Table 3. Comparison of the results between current and previous studies. 375 

Reference Year Study case Scenario Relative changes in WF (%) 

Zhuo et al. (2016d) 

2030 
China Maize 

RCP2.6 / RCP8.5 

-38–-32 / -10–0 

China Wheat -25–-17 / -20–-11 

2050 
China Maize -51–-43 / -22–-8 

China Wheat -36–-27 / -38–-27 

Current study 

2030s (2020–2049) 
China Maize 

RCP2.6 / RCP8.5 

17 / 16 

China Wheat 11 / 9 

2050s (2040–2069) 
China Maize 16 / 15 

China Wheat 10 / 0.20 

Fader et al. (2010) 2041–2070 Global Maize SRES A2 -0.44–-0.35 

Current study 2050s (2040–2069) China Maize RCP2.6 / RCP8.5 16 / 15 

Garofalo et al. (2019) 2050 
Germany Winter wheat 

RCP4.5 / RCP8.5 
-24 / -26 

Italy Winter wheat -5 / -6 

Current study 2050s (2040–2069) China Winter wheat RCP2.6 / RCP8.5 10 / 0.60 

 376 

In the future, the spatial distributions of maize and wheat WF will change considerably. By contrast, the spatial 377 

distributions of WF benchmarks will negligibly change. This phenomenon is comparatively more pronounced in the area with 378 

limited agricultural development. In 2013, Guizhou and Guangxi had the highest maize and wheat WF (1,317 m3 t-1 and 3,720 379 

m3 t-1, respectively) (Table S1, S2). In the humid zone, maize WF in Guizhou and wheat WF in Guangxi will increase by 37 % 380 

and 50 %, respectively, under RCP2.6 and by 33 % and 16 %, respectively, under RCP8.5 until the 2080s (Table S5). 381 

Nevertheless, the WF benchmarks for the 25th production percentile of maize and wheat in the humid zone will only increase 382 

by 12 % and 8 %, respectively, under RCP2.6 and increase by 9 % and decrease by 14 %, respectively, under RCP8.5. These 383 
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areas will nonetheless have great potential for agricultural water conservation in the future. If maize and wheat WF in various 384 

regions of China can be reduced to the benchmark for the 25th production percentile, the total CWU can be reduced by 45–66 385 

billion m3 (~14–17 %). Rain-fed agriculture can save 27–40 billion m3 (~18–22 %), water which is more than that conserved 386 

by irrigation. In irrigated agriculture, furrow irrigation has a comparatively high water-saving potential (17–22 billion m3; 387 

~11–12 %). To optimise the agricultural water-saving potential in China, we must either reduce WF or prevent it from 388 

increasing, either by enhancing crop yield or decreasing CWU. However, this goal can only be realised with the support of 389 

relevant policies and management practices. The annual PR is relatively low, and the ET0 is relatively high in North China. 390 

Shortage of water for agriculture is a major bottleneck in the development of local agriculture there. However, furrow irrigation 391 

is mainly applied in these areas (Fig. S3). Hence, irrigation water use efficiency is low and WFb is high. High-efficiency, 392 

water-saving micro irrigation, and sprinkler irrigation could replace furrow irrigation in these areas so that CWU and WF 393 

decrease. The planted areas in the South have abundant precipitation but limited distribution (Fig. S2) and high WF (Fig. 4a, 394 

b). WF can be mitigated by implementing ground cover techniques (ex. straw return, mulch) to reduce soil evaporation and by 395 

improving farmer skills. WF can also be reduced by optimizing the structure of crop planting. Crops and varieties best adapted 396 

to local climate conditions and climate change can lower irrigation requirements and reduce WF. 397 

To make climate models comparable and promote their development, The World Climate Research Program (WCRP) 398 

has developed and promoted the CMIP since 1995 (Meehl et al., 1997, 2000). Its current iteration is CMIP Phase 6 (CMIP6), 399 

which will be used in the forthcoming Intergovernmental Panel on Climate Change’s Sixth Assessment Report (IPCC AR6). 400 

GCMs and their associated research results based on CMIP5 provided vital support for IPCC’s Fifth Assessment Report (IPCC 401 

AR5). CMIP5 proposed four RCP scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) by considering greenhouse gas (GHG) 402 

emissions and concentrations, atmospheric pollutant concentrations, and land use in the 21st century (Moss et al., 2008). 403 

However, no specific socio-economic assumptions were made. The Scenario Model Intercomparison Project (ScenarioMIP), 404 

as the primary activity within CMIP6, will provide a series of new climate scenarios that consider social factors related to 405 

climate change adaptation and impacts. They will be based on the combined application of shared socioeconomic pathways 406 

(SSPs) and RCPs and will compensate for the limitations of the RCPs in CMIP5 (O’Neill et al., 2016). The climate models in 407 

CMIP5 and CMIP6 can both effectively simulate changes in potential evapotranspiration (Liu et al., 2020) and precipitation 408 

(Müller et al., 2021) in most parts of the world. Müller et al. (2021) reported that CMIP5 and CMIP6 simulate increasing trends 409 

in temperature in a similar fashion. Nevertheless, the simulation generated by CMIP6 is higher than that by CMIP5. 410 

Notwithstanding, CMIP5 and CMIP6 are reasonably consistent and similar in terms of their abilities to predict future climate 411 

changes. This study focused on the responses of crop production to future climate change. It mainly considered the influences 412 

of GHG emission- and concentration-driven climate change and excluded the influences of alterations in socioeconomic 413 

development. Therefore, we implemented CMIP5 in our current research. 414 

Three are two methods of establishing WF benchmarks (Hoekstra, 2013). Method 1 is based on yield accumulation 415 

statistical analysis. Due to the variability of WFs found across regions and among producers within a region, for each crop, we 416 

can select the WF of 20 % or 25 % of the producers with the highest water productivity as the WF benchmark (Mekonnen and 417 
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Hoekstra, 2014). Method 2 is based on the available optimal technique analysis. We can compare the WFs at each location 418 

under different agricultural management practices and take the WF associated with optimal practice, which results in the 419 

smallest WF, as the WF benchmark (Chukalla et al., 2015). Both methods establish WF benchmarks based on the maximum 420 

reasonable water consumption in each step of the product’s supply chain (Hoekstra, 2014). Method 1 is suitable for large-scale 421 

application. The differences in environmental conditions (such as climate) and development conditions should be considered 422 

comprehensively (Mekonnen and Hoekstra, 2014; Zhuo et al., 2016a). The drawback of Method 1 is that no matter what spatial 423 

scope one takes in grouping producers, within that scope there will still be variability from place to place even if the differences 424 

in regional environmental and development conditions are taken into account (Schyns et al., 2022). Method 2 is suitable for 425 

smaller scale and overcomes this drawback of Method 1 to some extent. The Method 2’s drawback is that it has the higher 426 

requirements on the setting and simulation of different agricultural management practices. We mainly want to explore the 427 

response of large-scale WF to future climate change under specific irrigation technique, that is, each irrigation technique has 428 

its corresponding WF benchmarks. And only one agricultural management practice, that is irrigation, is considered here. 429 

Therefore, we choose Method 1. A combination of methods should be established. If conditions permit, we strongly 430 

recommend that Method 1 and Method 2 are combined to establish small-scale WF benchmarks. Different agricultural 431 

management practices, such as irrigation, mulching techniques and so on, can be combined to further determine WF 432 

benchmarks. 433 

The sources of uncertainty in research on the responses of crop production to climate change include GCMs, climate 434 

scenarios, crop models, and their interactions (Wang et al., 2020). Semenov and Stratonovitch (2010) proposed that the use of 435 

multiple GCMs can reduce the uncertainty associated with them. We selected three GCMs each for wet and dry climate outputs 436 

to encompass a broad climate prediction scenario. To objectively and comprehensively project the future climate change trends 437 

of China, we selected two extreme RCPs, namely, RCP2.6 and RCP8.5. Wang et al. (2020) suggested that crop models are the 438 

main source of uncertainty in predicting wheat yield in China under future climate change. The application of various crop 439 

models and parameter settings inevitably lead to different yield forecasts (Asseng et al., 2013). Hence, the use of AquaCrop 440 

alone may introduce uncertainty into WF forecasting. 441 

The present study had certain limitations in terms of the assumptions it made for the simulation. First, we assumed that 442 

the crop parameters (such as planting calendar, HI, and Zx) for each crop under the identical planting mode (irrigated or rain-443 

fed) were constant on a spatiotemporal scale. Yoon and Choi (2020) proposed that future increases in temperature and 444 

precipitation might shorten the crop growth period. Xiao et al. (2020) indicated that the winter wheat and summer maize 445 

growing periods will be lengthened and shortened, respectively, under future climate change. However, we did not consider 446 

future changes in the crop growth period. Second, we assumed a constant soil surface moisture rate for each grid under the 447 

various irrigation techniques. Third, it was assumed that the observed changes in the planted areas in 2013 were based on the 448 

2000 raster database, and we ignored the migration of planted areas. Finally, we assumed that the maize and wheat planted 449 

areas will not change in the future and would remain consistent with baseline year 2013. Thus, we did not consider future 450 

development of cultivated lands. 451 
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The core content of this study was to quantify the responses of maize and wheat WF and WF benchmarks to future climate 452 

change under various irrigation techniques. Future research must improve the accuracy of the crop model simulation and 453 

reduce the uncertainty of climate prediction associated with using different GCMs. Moreover, this study only considered future 454 

climate change scenarios. Future investigations should also consider the influence of changes in technological development, 455 

land use, planting modes, and so on. 456 

4 Conclusions 457 

This study explored the responses of maize and wheat WF accounting and benchmarking to future climate change in 458 

China. The crops were subjected to various irrigation techniques. The year 2013 was the baseline, and WF and its benchmarks 459 

were quantified for each crop under rain-fed and irrigation (furrow, micro, and sprinkler) management techniques in the 2030s, 460 

2050s, and 2080s under RCP2.6 and RCP8.5 at a 5-arc grid scale. The AquaCrop model with the outputs of six GCMs in 461 

CMIP5 as its input data was used to simulate the WF of maize and wheat. The results show that: (1) Compared with 2013, the 462 

annual ET0 and PR in the maize and wheat planted areas of China will both increase; however, the former will increase faster 463 

than the latter. (2) Maize WF will increase under both RCP2.6 and RCP8.5 by 17 % and 13 %, respectively, until the 2080s. 464 

Wheat WF will increase under RCP2.6 (by 12 % until the 2080s) but decrease by 12 % under RCP8.5 until the 2080s. Rain-465 

fed crops were more vulnerable to the adverse impacts of future climate change, and their WF increased to a greater extent 466 

than that of irrigated crops. Micro irrigation and sprinkler irrigation resulted in the lowest increases in WF for maize and wheat, 467 

respectively. Hence, these water-saving irrigation practices effectively mitigated the negative impact of climate change. (3) 468 

Within different climate zones and under various irrigation techniques, there will be significant differences in the responses of 469 

WF benchmarks to future climate change. The changes in WF and its benchmarks will be similar in response to future climate 470 

change. The rate of increase in WF benchmarks for sprinkler-irrigated crops will generally be lower than those for rain-fed, 471 

micro-irrigated, and furrow-irrigated crops within the same climate zone. However, the change in the spatial distribution of 472 

WF benchmarks will not be as significant as that of WF itself. Moreover, this difference will be more pronounced in the region 473 

with low agricultural development. Additionally, this study also demonstrated that the agricultural water in China still has 474 

substantial water-saving potential and can be effectively conserved. 475 
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