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 14 

Abstract. Adaptation to future climate change with limited water resources is a major global challenge to sustainable and 15 

sufficient crop production. However, the large-scale responses of crop water footprint and its associated benchmarks under 16 

various irrigation techniques to future climate change scenarios remain unclear. The present study quantified the responses of 17 

maize and wheat water footprint per unit yield (WF, m3 t-1) and corresponding WF benchmarks under two representative 18 

concentration pathways (RCPs) in the 2030s, 2050s, and 2080s at a 5-arc minute grid level in China. The AquaCrop model 19 

with the outputs of six global climate models in Coupled Model Intercomparison Project Phase 5 (CMIP5) as its input data 20 

was used to simulate the WF of maize and wheat. The differences among rain-fed and furrow-, micro-, and sprinkler-irrigated 21 

wheat and maize were identified. Compared with the baseline year (2013), maize WF will increase under both RCP2.6 and 22 

RCP8.5, by 17 % and 13 %, respectively, until the 2080s. Wheat WF will increase under RCP2.6 (by 12 % until the 2080s) 23 

and decrease by 12 % under RCP8.5 until the 2080s, with a higher increase in wheat yield and decrease in wheat WF due to 24 

the higher CO2 concentration in 2080s under RCP8.5. WF will increase the most for rain-fed crops. Relative to rain-fed crops, 25 

micro irrigation and sprinkler irrigation result in the smallest increases in WF for maize and wheat, respectively. These water-26 

saving managements will mitigate the negative impact of climate change more effectively. The WF benchmarks of maize and 27 

wheat in the humid zone (~overall average at 680 m3 t-1 for maize and 873 m3 t-1 for wheat at 20th percentile) are 13–32 % 28 

higher than those in the arid zone (~ overall average at 601 m3 t-1 for maize and 753 m3 t-1 for wheat). The differences in WF 29 

benchmarks among various irrigation techniques are more significant in the arid zone, which can be as high as 57%, for 20th 30 

percentile WF benchmarks of 1020 m3 t-1 for sprinkler-irrigated wheat and 648 m3 t-1 for micro-irrigated wheat. Nevertheless, 31 

WF benchmarks will not respond to climate changes as dramatically as the WF in the same area, especially in the area with 32 

limited agricultural development. The present study demonstrated that the visible different responses to climate change in 33 

terms of crop water consumption, water use efficiency, and WF benchmarks under different irrigation techniques cannot be 34 
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ignored. It also lays the foundation for future investigations into the influences of irrigation methods, RCPs, and crop types on 35 

WF and its benchmarks in response to climate change in all agricultural regions worldwide. 36 

1 Introduction 37 

The progressive decline in water resource availability is a major impediment to global food production security (Pastor 38 

et al., 2019; Trnka et al., 2019; Konapala et al., 2020). Food crops are the main source of human nutrition (Myers et al., 2017; 39 

Lobell and Gourdji, 2012). Humans depend on food crops for ~47 % of their daily protein intake (FAO, 2021). However, as a 40 

result of human activity, the climate system is changing and global warming is a significant characteristic of this process (IPCC, 41 

2021). Since the 1980s, each successive decade has been warmer than any preceding one after 1850 (Kappelle, 2020). Climate 42 

change affects water consumption and crop yield by altering precipitation, temperature, carbon dioxide (CO2) concentration, 43 

and other factors during crop growth (Hatfield and Dold, 2019). Crop adaptation to future climate change with limited water 44 

resources has become a major challenge in sustainable crop production and supply worldwide. 45 

The water footprint per unit crop (WF, m3 t-1) (Hoekstra, 2003) is the amount of water consumed by the crop per unit 46 

yield during crop growth within a certain region. It includes blue WF (surface and groundwater), green WF (precipitation that 47 

will not become runoff), and grey WF (freshwater that assimilates pollutants from human activities) (Hoekstra et al., 2011). 48 

Blue and green WF are collectively known as consumptive WF, and grey WF is also called degradative WF (Hoekstra, 2013). 49 

Unlike traditional crop water productivity and other agricultural water metrics, WF covers water consumption, sources, and 50 

spatiotemporal dimensions during the crop growth period. Therefore, water consumption intensity and efficiency for irrigated 51 

and rain-fed growing modes may be compared. WF is an effective indicator of the sustainability of regional water use and 52 

optimal water resource allocation (Xu et al., 2019; Mali et al., 2021). The present study focuses exclusively on consumptive 53 

WF, which depends on crop yield and the intensity of water consumption per unit planted area. 54 

Several studies have been conducted on the responses of WF to future climate change. Nevertheless, no consensus has 55 

been reached. Certain scholars believe that future climate change will weaken food crop production security. Ahmadi et al. 56 

(2021) reported that maize WF in the Qazvin Plain of India will increase by 42 % and 147 % under representative concentration 57 

pathways (RCP) 4.5 and RCP8.5, respectively, by 2061–2080. Zheng et al. (2020) found that rice yield in Henan and Jiangsu 58 

Provinces (China) will decrease, while WF will increase under four RCPs at various stages of the 21st century. Other scholars 59 

believe that crop yield may actually benefit from future increases in precipitation and atmospheric CO2 concentration. Jans et 60 

al. (2021) considered the combined effects of changes in climatic factors, such as temperature, precipitation, and rising 61 

atmospheric CO2 concentration, and predicted that between 2011 and 2099, global cotton yield will increase by > 50 % and 62 

WF will decrease by 30 % under RCP8.5. Arunrat et al. (2020) found that in the present century, the yield of individual and 63 

large-scale rice farms in Thailand will increase by 1–30 % and 2–31 %, respectively, while WF will decrease by 10–43 % and 64 

1–67 %, respectively, under RCP4.5. Significant spatiotemporal differences in WF under various irrigation techniques have 65 

been confirmed at the site (Chukalla et al., 2015) and regional (Wang et al., 2019) scales. However, current large-scale studies 66 
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on the responses of WF to environmental change are usually based on simulations assuming adequate furrow irrigation. These 67 

studies exclude comparisons between various irrigation techniques and the differences in their influences on crop WFs. 68 

Although Dai et al. (2020) optimised maize and wheat cropping patterns under RCP4.5 and RCP8.5 with consideration of 69 

various irrigation modes in the Huaihe River Basin in China by 2050, they only considered blue water. 70 

Magnitudes and constitution of crop WF vary widely among regions and areas (Mekonnen and Hoekstra, 2011). To 71 

encourage water users to reduce WF to a reasonable level, Hoekstra (2013, 2014) recommended establishing WF benchmarks 72 

for different products as they facilitate prudent water allocation and fair water resource sharing among sectors and users 73 

(Hoekstra, 2013). On the large-scale, specific WF benchmarks can be set for crops grown on different farms within the same 74 

region (Mekonnen and Hoekstra, 2014). A previous study demonstrated the sensitivity of WF benchmarks to climate zones 75 

(Zhuo et al., 2016a). WF benchmarks significantly differ among irrigation techniques, especially in arid zones (Wang et al., 76 

2019). However, little is known about the responses of WF benchmarks under different irrigation techniques to future climate 77 

change.  78 

To investigate the influence of future climate change on large-scale WF and benchmarks under diverse irrigation 79 

techniques, maize and wheat grown in mainland China were the subjects of this study. We used the outputs of six global 80 

climate models (GCMs) (Table 1), including three models each for relatively wet and dry climate outputs, in Coupled Model 81 

Intercomparison Project Phase 5 (CMIP5). We then used the AquaCrop model to simulate the spatiotemporal responses of 82 

blue and green WF and corresponding WF benchmarks for wheat and maize in the 2030s (2020–2049), 2050s (2040–2069), 83 

and 2080s (2070–2099) under RCP2.6 and RCP8.5 at a 5-arc minute grid resolution. We distinguished between rain-fed and 84 

irrigated growing modes and among furrow, micro, and sprinkler irrigation. 85 

As of 2019, China was the world’s second largest maize and largest wheat producer, accounting for 23 % and 17 % of 86 

total global production, respectively (FAO, 2021). China’s cereal production has helped stabilise global food production and 87 

supply. In 2019, the planted areas of maize and wheat in China were 41 million ha and 24 million ha, respectively, and 88 

accounted for 25 % and 14 % of the national total croplands, respectively (NBSC, 2021). Cereal production consumes 89 

substantial volumes of water in China, and these quantities change over time. Zhuo et al. (2019) reported that maize water 90 

consumption increased by 49 % between 2000 and 2013 as planted areas and feed demand increased. Conversely, Wang et al. 91 

(2019) reported that wheat planted and irrigated areas decreased and water consumption slightly declined (4.4 %) from 2000 92 

to 2014. Other studies reported that maize and wheat consume relatively more water in the North than the South of China (Tian 93 

et al., 2019; Wang et al., 2019). Developing water-saving irrigation has become an important way to alleviate the prominent 94 

contradiction between water resources utilization and grain production in China. According to NBSC (2021), the area of water-95 

saving irrigation projects in China in 2019 was 37 million ha, including 7 million ha for micro irrigation. Therefore, micro 96 

irrigation does apply to food crops in China despite the limited irrigated area. For instance, in Xinjiang province, the area of 97 

micro irrigated maize and wheat was 0.033 million ha in 2009 (CIDDC, 2022), of which the wheat area dominated at up to 98 

0.031 million ha (Wang et al., 2011). Meanwhile, some scholars are conducting research on micro irrigated maize (Bai and 99 

Gao, 2021; Guo et al., 2021) and wheat (Li et al., 2021; Zain et al., 2021) in China, especially in the North. Therefore, the 100 
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water consumption rates of these staple crops under future climate change scenarios with different irrigation techniques should 101 

be closely monitored to ensure water supply and food crop production security in China and worldwide. Compared to existing 102 

literatures on evaluation of WFs of crop production under climate change scenarios (e.g., Karandish et al., 2022), the 103 

innovations of the current research are embodied in two points. The present study clarifies large-scale spatiotemporal responses 104 

of WF to future climate change scenarios under different irrigation techniques for the first time. This analysis is also the first 105 

to explore the large-scale future changes in WF benchmarks under different irrigation techniques. 106 

 107 

Table 1. Inventory of global climate models (GCMs) used in the current study. 108 

GCM Institute Reference Type 

CCCMA-

CanESM2 

Canadian Centre for Climate Modelling and Analysis Arora et al. (2011);  

von Salzen et al. (2013) 

Wet 

CESM1-

CAM5 

National Science Foundation, Department of Energy, National Center for 

Atmospheric Research 
Hurrell et al. (2013) 

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory Delworth et al. (2006); Donner 

et al. (2011) 

FIO-ESM The First Institute of Oceanography, State Oceanic Administration, China Qiao et al. (2013) Dry 

GISS-E2R NASA Goddard Institute for Space Studies USA Schmidt et al. (2006); Schmidt 

et al. (2014) 

IPSL-CM5A-

MR 

Institute Pierre Simon Laplace 
Dufresne et al. (2013) 

 109 

2 Method and data 110 

2.1 Research set-up 111 

We studied the spatiotemporal responses of blue and green WF and corresponding WF benchmarks for two crops (maize 112 

and wheat) to future climate change under two climate change scenarios (RCP2.6 and RCP8.5) using four different growing 113 

modes (rain-fed and furrow-, micro-, and sprinkler-irrigated). First, we determined the baseline year. Second, we considered 114 

different growing modes to quantify WF and corresponding WF benchmarks of two crops in the baseline year and future year 115 

levels under two climate change scenarios. Finally, the spatiotemporal responses of crop WF and corresponding WF 116 

benchmarks to future climate change were analysed (Fig. 1). 117 

 118 

 119 
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 120 

Figure 1. Flow chart for the study. 121 

 122 

2.2 Determining the baseline year 123 

Determining the baseline year is needed for a comparison between future and current conditions. Climate determines the 124 

annual variability of WF (Zhuo et al., 2014), and the baseline year should be determined when there is a relative balance 125 

between aridity and moisture. Hence, the aridity index (AI) was used here. Annual reference evapotranspiration (ET0, mm) 126 

and precipitation (PR, mm) in China were calculated (Harris et al., 2014). Then, the AI was calculated, and climate change 127 

trends from 2000 to 2014 were analysed. The year 2013 was designated the baseline as its drought level was nearest the 15-128 

year national average. The AI was calculated according to the method of Middleton and Thomas (1997): 129 

AI=
PR

ET0
 , (1) 

2.3 Water footprint per unit crop calculation 130 

WF (m3 t-1) comprises blue WF (WFb, m3 t-1) and green WF (WFg, m3 t-1): 131 

WF=WFb+WFg , (2) 
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where WFb and WFg were calculated as the quotient of the blue (CWUb, m3 ha-1) and green (CWUg, m3 ha-1) components of 132 

crop water use (CWU, m3 ha-1) and crop yield (Y, t ha-1), respectively. CWUb and CWUg were equivalent to the cumulation 133 

of daily evapotranspiration (ET, mm d-1) throughout the whole crop growth period (Hoekstra et al., 2011): 134 

WFb=
CWUb

Y
=

10× ∑ ETb
lgp
d=1

Y
 , (3) 

WFg=
CWUg

Y
=

10× ∑ ETg
lgp
d=1

Y
 , (4) 

where ETb and ETg (mm) refer to the blue and green water evapotranspiration, respectively, and lgp refers to the number of 135 

days of the crop growth period. The coefficient, 10, is a unit conversion factor, transforming the water depth of ET (mm) into 136 

the water amount per unit land area of CWU (m3 ha-1). 137 

The ET and Y per grid for each crop were simulated by the AquaCrop model based on the dynamic daily soil water 138 

balance (Mekonnen and Hoekstra, 2010): 139 

S[t]=S[t-1]+PR[t]+IRR[t]+CR[t]-ET[t]-RO[t]-DP[t] , (5) 

where S[t] and S[t-1] (mm) refer to the water content in soil when the day, t, ends and begins, respectively; PR[t] (mm) is the 140 

amount of precipitation on day, t; IRR[t] (mm) is the amount of water used for irrigation; CR[t] (mm) is the capillary rise to the 141 

crop root zone from the shallow groundwater; RO[t] (mm) is the water lost by surface runoff due to precipitation; and DP[t] 142 

(mm) is the water lost by deep percolation caused by excessive precipitation or irrigation. It was assumed that CR[t] = 0 as the 143 

ground water depth was > 1 m (Allen et al., 1998). RO[t] was calculated using the Soil Conservation Service curve-number 144 

(CN) equation (USDA, 1964; Rallison, 1980): 145 

RO[t]=
(PR[t]-Ia)

2

PR[t]+S-Ia
 , (6) 

 S=254 (
100

CN
-1) , (7) 

where S (mm) is the potential maximum water storage, and Ia (mm) is the initial amount of water loss before the runoff 146 

formation. 147 

By tracking the daily flow of water in and out of the crop root zone, we separated the daily blue and green soil water 148 

balances (Zhuo et al., 2016b): 149 

Sb[t]=Sb[t-1]+(PR[t]+IRR[t]-RO[t])×
IRR[t]

PR[t]+IRR[t]
-(DP[t]+ET[t])×

Sb[t-1]

S[t-1]
 , (8) 

Sg[t]=Sg[t-1]+(PR[t]+IRR[t]-RO[t])×
PR[t]

PR[t]+IRR[t]
-(DP[t]+ET[t])×

Sg[t-1]

S[t-1]
 , (9) 

where Sb[t] and Sb[t-1] (mm) are the blue water content in soil when the day, t, ends and begins, respectively; and Sg[t] and Sg[t-1] 150 

(mm) are the green water content in soil when the day, t, ends and begins, respectively. It is assumed that the initial soil water 151 

content before the crop growth period is green water. 152 

In AquaCrop, the daily transpiration (Tr[t], mm) calculates the daily shoot biomass production (B, kg) using the normalised 153 

crop biomass water productivity (WP*, kg m-2) (Raes et al., 2017): 154 
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B=WP*×∑
Tr[t]

ET0[t]
 , (10) 

where WP* is normalised to consider CO2 concentration, reference evapotranspiration (ET0), and crop classes (C3 or C4) so 155 

that it is applicable to various locations and seasons. Water productivity remains constant for specific crops. Y, as the 156 

harvestable portion of final B, is calculated by multiplying B with the adjusted reference Harvest Index (HI0, %): 157 

Y=f
HI

×HI0×B , (11) 

where fHI is a correction factor for HI0. It considers the water and temperature stresses during the crop growth period. Being 158 

consistent with the existing widely used scaling method (Mekonnen and Hoekstra, 2011; Zhuo et al., 2016b, 2016c, 2019; 159 

Wang et al., 2019; Mialyk et al., 2022), the simulated Y per grid for each crop in 2013 was validated via scaling model 160 

simulation outputs to correspond with the crop yield statistics data at the provincial level (NBSC, 2021). With the consistent 161 

scaling factors for the Y simulation and crop parameters including the crop calendar, WP*, HI0, and the maximum root depth 162 

which represent the existing agricultural production level, climate was the only variable for future scenario simulations. 163 

In the simulation, different growing modes, namely rain-fed and three different irrigation techniques (furrow, micro, and 164 

sprinkler irrigation), were considered. The irrigation schedule of three irrigation techniques in the model was the Generation 165 

of Irrigation Schedule, namely the generation of an irrigation schedule by specifying a time and depth criterion for planning 166 

or evaluating a potential irrigation strategy. The time criterion we used was Allowable depletion (%), namely the percentage 167 

of the Readily Available soil Water (RAW) that can be depleted before irrigation water has to be applied. The depth criterion 168 

we used was the Back to field capacity as the extra water on top of the amount of irrigation water required to bring the root 169 

zone back to field capacity. The water quality was expressed by the Electrical conductivity (dS m-1) of the irrigation water. 170 

The soil surface wetted (%), an indicative value for the fraction of soil surface wetted, was used to select irrigation techniques. 171 

Table 2 shows the parameters of three irrigation techniques (Raes et al., 2017). We can adjust the simulated ET and Y according 172 

to the performance of the irrigation schedule. 173 

 174 

Table 2. Parameters of three irrigation techniques. 175 

Irrigation technique From day 

Time criterion Depth criterion Water quality 
Soil surface wetted 

Allowable depletion Back to field capacity Electrical conductivity 

(%) (+/- mm) (dS m-1) (%) 

Furrow 1 50 10 1.5 80 

Micro 1 20 10 0 40 

Sprinkler 1 50 10 1.5 100 

 176 

2.4 Benchmarking consumptive WF in crop production 177 

Based on the work of Mekonnen and Hoekstra (2014), we ranked grid-level WF for each crop in ascending order of size 178 

against the corresponding cumulative percentages of the total crop production. The annual WF of 20 % or 25 % of the producers 179 
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with the highest water productivity in China was set as the annual WF benchmark. The climate zones should be divided when 180 

WF benchmarks are established (Zhuo et al., 2016a). To this end, the AI partitioned China into arid (< 0.5) and humid (> 0.5) 181 

zones based on the annual ET0 and PR from 2000 to 2014 at a 30-arc minute grid resolution (Harris et al., 2014) (Fig. 2). 182 

 183 

 184 

Figure 2. Regions and climate zones of mainland China. 185 

 186 

2.5 Data sources 187 

Monthly climate data, such as maximum (Tx), minimum air temperature (Tn), precipitation (PR), and reference 188 

evapotranspiration (ET0), from 2000 to 2014 at a resolution of 30-arc minute were derived from the CRU-TS 3.24 dataset 189 

(Harris et al., 2014; CEDA, 2018). The mean annual atmospheric CO2 concentration (ppm) from 2000 to 2014 was obtained 190 

from the Mauna Loa Observatory, Hawaii, USA (NOAA, 2018). The downscaled outputs of six GCMs at a 5-arc minute grid 191 

resolution in the 2030s, 2050s, and 2080s were obtained from the Climate Change, Agriculture and Food Security (CCAFS) 192 

database (Navarro-Racines et al., 2020; CCAFS, 2015). As the CCAFS database has no ET0 data, we calculated ET0 for each 193 

climate scenario using temperature inputs via the FAO Penman-Monteith method with missing data as described by Allen et 194 

al. (1998). The projected CO2 concentrations under RCP2.6 and RCP8.5 were obtained from van Vuuren et al. (2007) and 195 

Riahi et al. (2007), respectively. To make the model simulation more in line with the actual situation in China, we reset the 196 

maximum root depth (Zx) according to the FAO-56 recommendation (Allan et al., 1998). The FAO-56 recommended values 197 

provide clear range of the Zx for each type of crops for typical climatic zones. In addition, we further combined the literature 198 

research on maize and wheat in China to reset the HI0 (Zhuo et al., 2016c). The other parameters used in AquaCrop were 199 



9 

 

derived from Raes et al. (2017). Soil texture data and soil water capacity data at a 5-arc minute grid resolution were acquired 200 

from the ISRIC Soil and Terrain database (Dijkshoorn et al., 2008) and ISRIC-WISE dataset (Batjes, 2012), respectively. The 201 

planted areas for each irrigated or rain-fed crop at a 5-arc minute grid resolution were acquired from the MIRCA2000 dataset 202 

(Portmann et al., 2010). We divided these planted areas into different parts subjected to various irrigation techniques using 203 

statistical yearbook data (NBSC, 2021). Provincial-level crop yield statistics data were procured from the National Bureau of 204 

Statistics of China (NBSC, 2021). 205 

3 Results 206 

3.1 Future climate change trends in maize and wheat planted areas 207 

In the baseline year 2013, the average annual reference evapotranspiration (ET0) and precipitation (PR) in the planted 208 

areas of two crops were 941 mm and 727 mm, respectively. Compared with the baseline level of 2013, the average annual ET0 209 

and PR in the planted areas of two crops will both increase under two RCPs, and the increase in ET0 exceeded that of PR. ET0 210 

will increase by 17 % and 29 % under RCP2.6 and RCP8.5, respectively, until the 2080s. However, PR will increase by 8 % 211 

and 14 %, respectively. The increases under RCP8.5 (18–29 % and 3–14 % for ET0 and PR, respectively) were much higher 212 

than those under RCP2.6 (16–17 % and 4–8 % for ET0 and PR, respectively). Climate change will be relatively more intense 213 

under RCP8.5. The increases in ET0 were concentrated from April to August (14–39 mm). The increases in PR were 214 

concentrated between June and August (8–20 mm and 12–28 mm, respectively). However, PR will decline in May, July, 215 

November, and December, and it will decline more in May (≤ 9 mm until the 2030s) (Fig. 3a, b). Water and heat resources 216 

were unevenly distributed in the planted areas of the two crops in 2013. ET0 was relatively higher in East Coast and North 217 

China. PR distribution was comparatively higher in the South and lower in the North (Fig. S4). Compared with 2013, ET0 and 218 

PR for the most heavily planted areas will increase under both scenarios until the 2080s. The areas with a relatively greater 219 

increase in ET0 were distributed mainly in Southwest and Northeast (Fig. 3c, e), and PR increased relatively faster in Northwest 220 

and Jing-Jin (Fig. 3d, f). ET0 decreased mainly in Xinjiang and Inner Mongolia (Fig. 3c, e), and PR decreased mainly in 221 

Xinjiang, Tibet, Northeast, and South Coast (Fig. 3d, f). However, the areas where ET0 decreased were 86–94 % smaller than 222 

those where PR decreased. 223 

 224 
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 225 

Figure 3. Future climate projections for the maize and wheat planted zones in China. 226 

 227 

3.2 WF distribution in the baseline year 2013 228 

The national average WF for wheat (1,008 m3 t-1) was higher than that for maize (813 m3 t-1) in the baseline year 2013. 229 

The corresponding blue WF proportions were 37 % and 20 %, respectively. The reason for this discrepancy is that maize is a 230 

C4 crop while wheat is a C3 crop. C4 crops have a relatively higher CO2 fixation efficiency and faster photosynthetic rate than 231 
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C3 crops. Hence, maize can accumulate comparatively more yield than wheat under the same water consumption condition 232 

(Wang et al., 2012). Figure 4 shows that the high WFg value was mainly distributed in areas with relatively greater precipitation 233 

during crop growth, i.e., abundant green water resources. The main component of WF is WFg; therefore, the high maize WF 234 

was mainly distributed in Northwest (Fig. 4a), while the high wheat WF was mainly distributed in Southwest and South Coast 235 

(Fig. 4b). Elevated ET0 and insufficient precipitation can increase blue water consumption in food production. Thus, the high 236 

WFb value was mainly distributed in areas with uneven water and heat resource distributions during crop growth. The high 237 

maize WFb was mainly distributed in Northwest and East Coast (Fig. 4c), while that of wheat was distributed mainly in North 238 

China (Fig. 4d). In all grids, the proportions of WFb and WFg were up to 68 % (wheat in Xinjiang) (Table S2) and 98 % (maize 239 

in Hainan) (Table S1), respectively. 240 

 241 

 242 

Figure 4. WF of maize and wheat in China in 2013. 243 

 244 
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A comparison of rain-fed and irrigation techniques demonstrated that the WF of maize and wheat under furrow and 245 

sprinkler irrigation was higher than that under rain-fed in 2013. The WF of micro-irrigated crops was lower than that of rain-246 

fed crops. The WF of maize (850 m3 t-1) and wheat (1,170 m3 t-1) was highest under furrow and sprinkler irrigation, respectively. 247 

For wheat under all three irrigation techniques, WFb was dominant (54–65 %). However, WFb for maize was only dominant 248 

under micro irrigation (61 %). Micro-irrigated (9.55 t ha-1 for maize and 5.46 t ha-1 for wheat) and rain-fed (5.76 t ha-1 for 249 

maize and 4.51 t ha-1 for wheat) crops had the highest and lowest yield, respectively, in 2013. The responses of maize yield to 250 

rain-fed and various irrigation techniques were stronger than those of wheat yield (Fig. 4e, f). 251 

3.3 Spatiotemporal responses of WF to future climate change 252 

Compared with the baseline year 2013 and at the national average level, maize WF will increase under both RCP2.6 and 253 

RCP8.5, by 17 % and 13 %, respectively, until the 2080s. The WF of wheat will increase under RCP2.6 (by 12 % until the 254 

2080s) but decrease by 12 % under RCP8.5 until the 2080s (Fig. 5a). The increases in CO2 concentration and, by extension, 255 

yield gain, will be lower under RCP2.6 than RCP8.5. During the same period, the increases in WF under RCP2.6 will be 1–256 

3 % higher for maize and 2–10 % higher for wheat than those under RCP8.5. There will be relatively smaller differences in 257 

CO2 concentration between climate scenarios of the 2030s (431 ppm under RCP2.6 and 449 ppm under RCP8.5). Thus, the 258 

differences in WF between RCPs will be smaller before the 2030s and larger after the 2050s. The WF of irrigated wheat under 259 

RCP8.5 will decline by 3 % until the 2050s and by 15 % until the 2080s. The increase in WF will be highest under rain-fed, 260 

and the WF of rain-fed maize and wheat under RCP2.6 will increase by 19 % and 24 %, respectively, until the 2080s. By 261 

contrast, the WF of irrigated maize and wheat under RCP2.6 will only increase by 13 % and 7 %, respectively, until the 2080s 262 

(Fig. 5a). A comparison of the various irrigation techniques demonstrated that the WFs of wheat and maize respond differently 263 

under the same scenario. The increase in WF amplitude for maize will be highest under furrow irrigation (14 % and 11 % 264 

under RCP2.6 and RCP8.5 until the 2080s, respectively) and lowest under micro irrigation (5 % and 2 % under RCP2.6 and 265 

RCP8.5 until the 2080s, respectively). The WF of sprinkler-irrigated wheat under RCP8.5 will decline by 1 % until the 2030s. 266 

The WF of wheat under micro irrigation had the highest increase (9 % until the 2080s under RCP2.6) and the lowest decrease 267 

(14 % until the 2080s under RCP8.5). The WF of wheat under sprinkler irrigation had the lowest increase (only 2 % until the 268 

2080s under RCP2.6) and the highest decrease (19 % until the 2080s under RCP8.5) (Fig. 5b). 269 

 270 
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 271 

Figure 5. WF of maize and wheat in 2013 and future year levels under various climate change scenarios in China. 272 

 273 

The spatial distribution of the relative changes in maize and wheat WF from 2013 to the 2080s showed regional 274 

differences. The WF will increase for 90–93 % of all areas planted with maize (Fig. 6a, b), and it will increase for 78 % of all 275 

areas planted with wheat under RCP2.6 (Fig. 6c) and decrease for 81 % of all areas planted with wheat under RCP8.5 (Fig. 276 

6d). Increases in ET0 lead to increases in WF, while decreases in PR lead to increases in WFb (Fig. S6). Hence, the regions 277 

with relatively greater increases in WF were mainly distributed where ET0 strongly increased and PR slightly increased or 278 

even decreased. In Yunnan, maize WF increased by 44 % and 38 % under RCP2.6 and RCP8.5, respectively. In Guangxi, 279 

wheat WF increased by 50 % and 16 % under RCP2.6 and RCP8.5, respectively (Table S5). Comparison of rain-fed and 280 

various irrigation techniques revealed that the WF of each crop responded uniquely to latitudinal and longitudinal climate 281 

change under the same scenario. The responses of maize WF to climate change with latitude were relatively consistent. It 282 

increased by 27–43 % at 19–26 °N and ~51 °N latitude and decreased at ~44 °N latitude. By contrast, the responses of WF for 283 

rain-fed maize were more sensitive at ~40 °N and ~52 °N latitude. The responses of maize WF vary widely within 74–100 °E 284 

longitude. The WF of maize under rain-fed and furrow and sprinkler irrigation declined at 74–90 °E longitude. The increase 285 

in WF for maize under rain-fed at 93–98 °E longitude was 3–51 % higher than the increase in WF for maize under furrow and 286 
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sprinkler irrigation. The WF of micro-irrigated maize decreased at 74–95 °E longitude (Fig. 6a, b). The responses of wheat 287 

WF to climate change with latitude and longitude were relatively consistent. However, in certain areas, there were large 288 

differences in wheat WF between rain-fed and the three irrigation techniques. The WF of wheat under rain-fed decreased at 289 

74–80 °E longitude and by more than the WF of wheat under the three irrigation techniques at the same longitude range. The 290 

increases in the WF of wheat under rain-fed at ~93 °E and ~122 °E longitude and ~22 °N latitude were significantly higher 291 

than the increases in WF of wheat under the three irrigation techniques (Fig. 6c, d). 292 

 293 

 294 

Figure 6. Spatial distributions in relative changes ∆ (%) in WF (bottom left panel) with longitudinal (top panel) and latitudinal (right 295 

panel) changes under different irrigation techniques applied to both crops under two scenarios from 2013 to the 2080s. 296 
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 297 

WF is determined by both crop yield (Y) and crop water use (CWU). We compared the relationships between the relative 298 

changes in WF (∆WF) and corresponding Y (∆Y) and CWU (∆CWU) (Fig. 7). The ∆WF of maize and wheat under future 299 

climate change scenarios was inversely proportional to ∆Y and directly proportional to ∆CWU. Nevertheless, ∆WF was 300 

relatively more sensitive to ∆Y. When ∆Y was 25 %, ∆WF of wheat under RCP2.6 and maize was approximately -25 %, while 301 

∆WF of wheat under RCP8.5 was approximately -10 %. When ∆CWU was 25 %, ∆WF of wheat under RCP2.6 and maize 302 

was ~20 %, while ∆WF of wheat under RCP8.5 was approximately -8 % (Fig. 7a, b). The responses of ∆WF of maize were 303 

more sensitive to ∆Y and ∆CWU than those of wheat. The responses of ∆WF of maize and wheat under RCP2.6 were more 304 

sensitive to ∆Y and ∆CWU than those under RCP8.5. Comparison of rain-fed and various irrigation techniques revealed that 305 

the correlation between ∆WF and ∆Y was stronger for rain-fed crops. For rain-fed maize, R2 can reach 0.55 (Fig. 7a). ∆WF 306 

and ∆CWU were strongly correlated for irrigated crops, and ∆WF and ∆CWU were especially strongly correlated for crops 307 

under micro irrigation (R2 can reach 0.98 for wheat) (Fig. 7b). We also determined the relationship between ∆WFb and ∆CWUb 308 

was similar but more significant than that between ∆WF and ∆CWU (Fig. 7c). 309 

 310 
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 311 

Figure 7. Relationships between relative changes ∆ (%) in (a) Y and corresponding WF, (b) CWU and corresponding WF, and (c) CWUb 312 

and corresponding WFb of two crops under RCP2.6 and RCP8.5 from 2013 to the 2080s. 313 

 314 
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3.4 Spatiotemporal WF benchmarks responses to climate change 315 

Table 3 shows the WF benchmarks of maize and wheat among various irrigation techniques and climate zones in 2013 316 

and future year levels. The WF benchmarks of maize and wheat in the humid zone were 13–32 % higher than those in the arid 317 

zone, which is similar to results obtained by Wang et al. (2019). In the same climate zone, WF benchmarks of wheat were 318 

generally 2–35 % higher than those of maize. However, in the humid zone, the WF benchmark for the 25th production 319 

percentile of maize was 3 % higher than that of wheat under RCP8.5 in the 2080s. In the arid zone, WF benchmarks of rain-320 

fed maize were 13–34 % higher than those of irrigated maize. In the humid zone of the future, WF benchmarks of rain-fed 321 

wheat were 2–7 % higher than those of irrigated wheat. In general, WF benchmarks of sprinkler-irrigated crops were higher, 322 

while those of micro-irrigated crops were lower. The differences in WF benchmarks among various irrigation techniques were 323 

more significant in the arid zone. WF benchmarks of the crops under micro irrigation were 30–38 % lower than those under 324 

sprinkler irrigation in the arid zone. The difference in the humid zone was only 8–14 %, which is also consistent with the study 325 

by Wang et al. (2019). In the humid zone, however, WF benchmarks of maize under furrow irrigation were 7–21 % higher 326 

than those under sprinkler irrigation. 327 

 328 

Table 3. WF benchmarks (m3 t-1) of maize and wheat for different climate zones in 2013 and future year levels under two climate change 329 

scenarios in China. 330 

Climate zones Crop Type 

WF (m3 t-1) at different production percentile* 

20th 25th 

2013 RCP2.6 RCP8.5 2013 RCP2.6 RCP8.5 

Arid 

Maize 

Total 601  (577, 576, 580) (589, 584, 566) 623  (661, 658, 655) (655, 652, 634) 

Irrigated 522  (505, 504, 506) (503, 503, 496) 548  (508, 507, 511) (507, 509, 501) 

Furrow 618  (658, 658, 658) (654, 654, 642) 654  (693, 693, 691) (689, 687, 674) 

Micro 466  (455, 454, 456) (456, 454, 440) 477  (459, 458, 460) (458, 460, 446) 

Sprinkler 700  (727, 725, 723) (722, 719, 708) 706  (729, 729, 726) (724, 721, 710) 

Rain-fed 599  (661, 661, 662) (652, 649, 630) 618  (682, 679, 671) (672, 667, 652) 

Wheat 

Total 753  (776, 764, 781) (765, 707, 620) 768  (829, 816, 828) (809, 756, 666) 

Irrigated 754  (776, 764, 781) (765, 707, 620) 768  (830, 816, 829) (810, 757, 666) 

Furrow 830  (850, 840, 850) (830, 774, 680) 940  (885, 875, 887) (868, 809, 712) 

Micro 648  (701, 690, 705) (694, 643, 562) 670  (717, 705, 721) (707, 654, 572) 

Sprinkler 1020  (1003, 998, 1007) (989, 920, 811) 1032  (1034, 1028, 1038) (1019, 948, 837) 

Rain-fed 692  (743, 734, 753) (729, 692, 618) 692  (790, 772, 791) (769, 737, 653) 

Humid 
Maize 

Total 680  (761, 754, 752) (756, 752, 739) 718  (813, 807, 807) (809, 806, 785) 

Irrigated 743  (905, 905, 908) (902, 900, 881) 782  (939, 939, 944) (937, 936, 916) 

Furrow 762  (925, 926, 930) (921, 921, 901) 801  (943, 942, 948) (940, 939, 919) 

Micro 649  (709, 704, 707) (694, 696, 683) 660  (734, 726, 732) (721, 726, 708) 

Sprinkler 713  (770, 771, 768) (764, 762, 750) 737  (813, 814, 812) (808, 806, 793) 

Rain-fed 631  (712, 703, 707) (710, 702, 678) 656  (744, 737, 737) (740, 736, 716) 

Wheat Total 873  (933, 932, 946) (921, 851, 752) 887  (944, 942, 957) (931, 860, 760) 
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Irrigated 887  (914, 914, 924) (900, 841, 744) 897  (925, 926, 937) (912, 849, 752) 

Furrow 887  (914, 914, 925) (901, 841, 744) 896  (925, 927, 937) (913, 849, 752) 

Micro 820  (821, 826, 838) (804, 753, 665) 833  (830, 839, 849) (812, 759, 671) 

Sprinkler 933  (949, 944, 955) (936, 872, 770) 946  (958, 953, 964) (944, 880, 777) 

Rain-fed 812  (973, 958, 984) (950, 863, 757) 831  (989, 973, 998) (964, 877, 763) 

*The three numbers in brackets are the values of 2030s, 2050s and 2080s. 

 331 

Compared with the baseline year, 2013, the changes in maize and wheat WF benchmarks under future climate change 332 

scenarios are similar to the changes in WF. However, the WF benchmark for the 20th production percentile of maize will 333 

decline by 2–6 % in the arid zone. WF benchmarks of wheat under RCP8.5 will decrease by 2–6 % and 13–18 % until the 334 

2050s and the 2080s, respectively. The increasing range of the WF benchmark for the 25th production percentile of maize was 335 

7–8 % higher in the humid zone than that in the arid zone. The increasing range of the WF benchmark for the 20th production 336 

percentile of wheat was 4–5 % higher in the humid zone than that in the arid zone. WF benchmarks of maize and wheat 337 

increased to a greater extent under RCP2.6 but decreased to a greater extent under RCP8.5. WF benchmarks of rain-fed crops 338 

increased more than those of irrigated crops in the same climate zone. Nevertheless, the increase in WF benchmarks was 7–339 

11 % lower for rain-fed than irrigated maize in the humid zone. WF benchmarks of maize and wheat generally increased 340 

relatively more under furrow irrigation and comparatively less under sprinkler irrigation. However, under RCP2.6, the growth 341 

rate of the WF benchmark for the 20th production percentile of wheat was 5–6 % higher under micro irrigation than that under 342 

furrow irrigation in the arid zone. The increase in the WF benchmark for the 20th production percentile of wheat was 0.19–343 

2 % higher under sprinkler irrigation than that under micro irrigation in the humid zone (Table 3). 344 

Figure 8 shows the spatial distribution of the relative changes in the WF of maize and wheat compared with the benchmark 345 

for the 25th production percentile in 2013 and the 2080s. In 2013, the WF for 81 % and 79 % of the maize and wheat planted 346 

areas, respectively, was higher than its benchmark. The maize planted areas with WF below the benchmark were distributed 347 

mainly in Xinjiang in the arid zone and northeast Inner Mongolia in the humid zone (Fig. 8a). The wheat planted areas with 348 

WF below the benchmark were distributed mainly in Xinjiang in the arid zone and Qinghai (Fig. 8d). Under future climate 349 

change scenarios, the maize and wheat planted areas with the WF below the benchmark will slightly decrease in the 2080s. 350 

These areas are mainly distributed in Heilongjiang, Tibet, southern Gansu, and Sichuan in the humid zone for maize; and 351 

Henan and Tibet in the humid zone and Qinghai for wheat. This is because that the annual ET0 will increase relatively faster 352 

in Heilongjiang and Tibet, which will lead to a greater increase in WFb. The annual PR in other regions will significantly 353 

increase, which will result in a greater increase in WFg. Maize and wheat planted areas under RCP8.5 with WF below the 354 

benchmark will decrease by 5 % and 4 %, respectively, until the 2080s. 355 

 356 
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 357 

Figure 8. Relative changes ∆ (%) in the WF of maize and wheat compared with the benchmark for the 25th production percentile in 2013 358 

and the 2080s under RCP2.6 and RCP8.5 in different climate zones of China. 359 

 360 

3.5 Discussion 361 

This study analysed and compared the WF and WF benchmarks responses of wheat and maize under rain-fed and various 362 

irrigation conditions and forecasted their responses to future climate change scenarios in China. Under the background that the 363 

annual ET0 and PR will both increase but ET0 will increase faster, maize WF will increase under both RCP2.6 and RCP8.5. 364 

Wheat WF will increase under RCP2.6 but decrease under RCP8.5 until the 2080s. Rain-fed crops had higher ranges of 365 

increasing WF, which is consistent with Rosa et al. (2020). The increasing ranges of maize and wheat WF were lowest under 366 

micro irrigation and sprinkler irrigation, respectively. Therefore, the implementation of water-saving irrigation techniques 367 

(micro and sprinkler irrigation) may help mitigate the adverse effects of future climate change on agriculture, which is in line 368 

with Dai et al. (2020). Under future climate change, WF benchmarks will be modified in a manner resembling that for WF. 369 

However, the former changes will not be as significant as the latter in the same area. 370 
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In 2013, the WF of maize was lower than that of wheat. Nevertheless, maize WF is expected to increase more rapidly 371 

than wheat WF under future climate change scenarios. C4 crops such as maize have higher photosynthetic rates than C3 crops 372 

such as wheat. However, C4 crops are less sensitive to elevated atmospheric CO2 than C3 crops (Bowes, 1993). Hence, while 373 

maize yield is higher than wheat yield, the former increases less than the latter. We compared current results against those of 374 

previous studies in Table 4. The differences we determined for the relative changes in maize and wheat WF between years and 375 

RCPs resembled those reported by Zhuo et al. (2016d). However, these authors also considered other factors, such as harvested 376 

crop area, technology, diet, and population, that could partially offset the adverse effects of future climate change. Therefore, 377 

maize and wheat WF will decline in the future according to Zhuo et al. (2016d). Fader et al. (2010) studied relative global-378 

scale changes in maize WF for 2050. Their analysis was conducted in the opposite direction of that of the present study on 379 

China. Moreover, the two studies differed in terms of climate scenario, research area, and crop model. Winter wheat WF in 380 

Germany and Italy will decline by 2050 according to Garofalo et al. (2019). Nevertheless, our research showed that winter 381 

wheat WF will increase in China by 2050. The crop water use in Germany and Italy changes more smaller than that in China. 382 

However, our observed differences in the relative changes in WF between RCPs were consistent with those of Garofalo et al. 383 

(2019); namely, under RCP8.5, WF will either decrease more or increase less. 384 

 385 

Table 4. Comparison of the results between current and previous studies. 386 

Reference Year Study case Scenario Relative changes in WF (%) 

Zhuo et al. (2016d) 

2030 
China Maize 

RCP2.6 / RCP8.5 

-38–-32 / -10–0 

China Wheat -25–-17 / -20–-11 

2050 
China Maize -51–-43 / -22–-8 

China Wheat -36–-27 / -38–-27 

Current study 

2030s (2020–2049) 
China Maize 

RCP2.6 / RCP8.5 

17 / 16 

China Wheat 11 / 9 

2050s (2040–2069) 
China Maize 16 / 15 

China Wheat 10 / 0.20 

Fader et al. (2010) 2041–2070 Global Maize SRES A2 -0.44–-0.35 

Current study 2050s (2040–2069) China Maize RCP2.6 / RCP8.5 16 / 15 

Garofalo et al. (2019) 2050 
Germany Winter wheat 

RCP4.5 / RCP8.5 
-24 / -26 

Italy Winter wheat -5 / -6 

Current study 2050s (2040–2069) China Winter wheat RCP2.6 / RCP8.5 10 / 0.60 

 387 

In the future, the spatial distributions of maize and wheat WF will change considerably. By contrast, the spatial 388 

distributions of WF benchmarks will negligibly change. This phenomenon is comparatively more pronounced in the area with 389 

limited agricultural development. In 2013, Guizhou and Guangxi had the highest maize and wheat WF (1,317 m3 t-1 and 3,720 390 

m3 t-1, respectively) (Table S1, S2). In the humid zone, maize WF in Guizhou and wheat WF in Guangxi will increase by 37 % 391 

and 50 %, respectively, under RCP2.6 and by 33 % and 16 %, respectively, under RCP8.5 until the 2080s (Table S5). 392 

Nevertheless, the WF benchmarks for the 25th production percentile of maize and wheat in the humid zone will only increase 393 

by 12 % and 8 %, respectively, under RCP2.6 and increase by 9 % and decrease by 14 %, respectively, under RCP8.5. These 394 
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areas will nonetheless have great potential for agricultural water conservation in the future. If maize and wheat WF in various 395 

regions of China can be reduced to the benchmark for the 25th production percentile, the total CWU can be reduced by 45–66 396 

billion m3 (~14–17 %). Rain-fed agriculture can save 27–40 billion m3 (~18–22 %), water which is more than that conserved 397 

by irrigation. In irrigated agriculture, furrow irrigation has a comparatively high water-saving potential (17–22 billion m3; 398 

~11–12 %). To optimise the agricultural water-saving potential in China, we must either reduce WF or prevent it from 399 

increasing, either by enhancing crop yield or decreasing CWU. However, this goal can only be realised with the support of 400 

relevant policies and management practices. The annual PR is relatively low, and the ET0 is relatively high in North China. 401 

Shortage of water for agriculture is a major bottleneck in the development of local agriculture there. However, furrow irrigation 402 

is mainly applied in these areas (Fig. S3). Hence, irrigation water use efficiency is low and WFb is high. High-efficiency, 403 

water-saving micro irrigation, and sprinkler irrigation could replace furrow irrigation in these areas so that CWU and WF 404 

decrease. The planted areas in the South have abundant precipitation but limited distribution (Fig. S2) and high WF (Fig. 4a, 405 

b). WF can be mitigated by implementing ground cover techniques (ex. straw return, mulch) to reduce soil evaporation and by 406 

improving farmer skills. WF can also be reduced by optimizing the structure of crop planting. Crops and varieties best adapted 407 

to local climate conditions and climate change can lower irrigation requirements and reduce WF. 408 

To make climate models comparable and promote their development, The World Climate Research Program (WCRP) 409 

has developed and promoted the CMIP since 1995 (Meehl et al., 1997, 2000). Its current iteration is CMIP Phase 6 (CMIP6), 410 

which will be used in the forthcoming Intergovernmental Panel on Climate Change’s Sixth Assessment Report (IPCC AR6). 411 

GCMs and their associated research results based on CMIP5 provided vital support for IPCC’s Fifth Assessment Report (IPCC 412 

AR5). CMIP5 proposed four RCP scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) by considering greenhouse gas (GHG) 413 

emissions and concentrations, atmospheric pollutant concentrations, and land use in the 21st century (Moss et al., 2008). 414 

However, no specific socio-economic assumptions were made. The Scenario Model Intercomparison Project (ScenarioMIP), 415 

as the primary activity within CMIP6, will provide a series of new climate scenarios that consider social factors related to 416 

climate change adaptation and impacts. They will be based on the combined application of shared socioeconomic pathways 417 

(SSPs) and RCPs and will compensate for the limitations of the RCPs in CMIP5 (O’Neill et al., 2016). The climate models in 418 

CMIP5 and CMIP6 can both effectively simulate changes in potential evapotranspiration (Liu et al., 2020) and precipitation 419 

(Müller et al., 2021) in most parts of the world. Müller et al. (2021) reported that CMIP5 and CMIP6 simulate increasing trends 420 

in temperature in a similar fashion. Nevertheless, the simulation generated by CMIP6 is higher than that by CMIP5. 421 

Notwithstanding, CMIP5 and CMIP6 are reasonably consistent and similar in terms of their abilities to predict future climate 422 

changes. This study focused on the responses of crop production to future climate change. It mainly considered the influences 423 

of GHG emission- and concentration-driven climate change and excluded the influences of alterations in socioeconomic 424 

development. Therefore, we implemented CMIP5 in our current research. 425 

Three are two methods of establishing WF benchmarks (Hoekstra, 2013). Method 1 is based on yield accumulation 426 

statistical analysis. Due to the variability of WFs found across regions and among producers within a region, for each crop, we 427 

can select the WF of 20 % or 25 % of the producers with the highest water productivity as the WF benchmark (Mekonnen and 428 
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Hoekstra, 2014). Method 2 is based on the available optimal technique analysis. We can compare the WFs at each location 429 

under different agricultural management practices and take the WF associated with optimal practice, which results in the 430 

smallest WF, as the WF benchmark (Chukalla et al., 2015). Both methods establish WF benchmarks based on the maximum 431 

reasonable water consumption in each step of the product’s supply chain (Hoekstra, 2014). Method 1 is suitable for large-scale 432 

application. The differences in environmental conditions (such as climate) and development conditions should be considered 433 

comprehensively (Mekonnen and Hoekstra, 2014; Zhuo et al., 2016a). The drawback of Method 1 is that no matter what spatial 434 

scope one takes in grouping producers, within that scope there will still be variability from place to place even if the differences 435 

in regional environmental and development conditions are taken into account (Schyns et al., 2022). Method 2 is suitable for 436 

smaller scale and overcomes this drawback of Method 1 to some extent. The Method 2’s drawback is that it has the higher 437 

requirements on the setting and simulation of different agricultural management practices. We mainly want to explore the 438 

response of large-scale WF to future climate change under specific irrigation technique, that is, each irrigation technique has 439 

its corresponding WF benchmarks. And only one agricultural management practice, that is irrigation, is considered here. 440 

Therefore, we choose Method 1. A combination of methods should be established. If conditions permit, we strongly 441 

recommend that Method 1 and Method 2 are combined to establish small-scale WF benchmarks. Different agricultural 442 

management practices, such as irrigation, mulching techniques and so on, can be combined to further determine WF 443 

benchmarks. 444 

The sources of uncertainty in research on the responses of crop production to climate change include GCMs, climate 445 

scenarios, crop models, and their interactions (Wang et al., 2020). Semenov and Stratonovitch (2010) proposed that the use of 446 

multiple GCMs can reduce the uncertainty associated with them. We selected three GCMs each for wet and dry climate outputs 447 

to encompass a broad climate prediction scenario. To objectively and comprehensively project the future climate change trends 448 

of China, we selected two extreme RCPs, namely, RCP2.6 and RCP8.5. Wang et al. (2020) suggested that crop models are the 449 

main source of uncertainty in predicting wheat yield in China under future climate change. The application of various crop 450 

models and parameter settings inevitably lead to different yield forecasts (Asseng et al., 2013). Hence, the use of AquaCrop 451 

alone may introduce uncertainty into WF forecasting. 452 

The present study had certain limitations in terms of the assumptions it made for the simulation. First, we assumed that 453 

the crop parameters (such as planting calendar, HI0, and Zx) for each crop under the identical growing mode (irrigated or rain-454 

fed) were constant on a spatiotemporal scale. Yoon and Choi (2020) proposed that future increases in temperature and 455 

precipitation might shorten the crop growth period. Xiao et al. (2020) indicated that the winter wheat and summer maize 456 

growing periods will be lengthened and shortened, respectively, under future climate change. However, we did not consider 457 

future changes in the crop growth period. Second, we assumed a constant soil surface moisture rate for each grid under the 458 

various irrigation techniques. Third, it was assumed that the observed changes in the planted areas in 2013 were based on the 459 

2000 raster database, and we ignored the migration of planted areas. Finally, we assumed that the maize and wheat planted 460 

areas will not change in the future and would remain consistent with baseline year 2013. Thus, we did not consider future 461 

development of cultivated lands. 462 
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The core content of this study was to quantify the responses of maize and wheat WF and WF benchmarks to future climate 463 

change under various irrigation techniques. Future research must improve the accuracy of the crop model simulation and 464 

reduce the uncertainty of climate prediction associated with using different GCMs. Moreover, this study only considered future 465 

climate change scenarios. Future investigations should also consider the influence of changes in technological development, 466 

land use, growing modes, and so on. 467 

4 Conclusions 468 

This study explored the responses of maize and wheat WF accounting and benchmarking to future climate change in 469 

China. The crops were subjected to various irrigation techniques. The year 2013 was the baseline, and WF and its benchmarks 470 

were quantified for each crop under rain-fed and irrigation (furrow, micro, and sprinkler) management techniques in the 2030s, 471 

2050s, and 2080s under RCP2.6 and RCP8.5 at a 5-arc grid scale. The AquaCrop model with the outputs of six GCMs in 472 

CMIP5 as its input data was used to simulate the WF of maize and wheat. The results show that: (1) Compared with 2013, the 473 

annual ET0 and PR in the maize and wheat planted areas of China will both increase; however, the former will increase faster 474 

than the latter. (2) Maize WF will increase under both RCP2.6 and RCP8.5 by 17 % and 13 %, respectively, until the 2080s. 475 

Wheat WF will increase under RCP2.6 (by 12 % until the 2080s) but decrease by 12 % under RCP8.5 until the 2080s. Rain-476 

fed crops were more vulnerable to the adverse impacts of future climate change, and their WF increased to a greater extent 477 

than that of irrigated crops. Micro irrigation and sprinkler irrigation resulted in the lowest increases in WF for maize and wheat, 478 

respectively. Hence, these water-saving irrigation practices effectively mitigated the negative impact of climate change. (3) 479 

Within different climate zones and under various irrigation techniques, there will be significant differences in the responses of 480 

WF benchmarks to future climate change. The changes in WF and its benchmarks will be similar in response to future climate 481 

change. The rate of increase in WF benchmarks for sprinkler-irrigated crops will generally be lower than those for rain-fed, 482 

micro-irrigated, and furrow-irrigated crops within the same climate zone. However, the change in the spatial distribution of 483 

WF benchmarks will not be as significant as that of WF itself. Moreover, this difference will be more pronounced in the region 484 

with low agricultural development. Additionally, this study also demonstrated that the agricultural water in China still has 485 

substantial water-saving potential and can be effectively conserved. 486 
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