Response to Reviewers for Manuscript: Hydrological
Concept Formation inside Long Short-Term Memory
(LSTM) networks

Comments/Text of Referee posted in black, our text in purple.

Reviewer 1: Lukas Gudmundsson

Comments/Text of Referee posted in black, our text in purple.

The paper submitted by Lees et al. aims at advancing the interpretability of neural networks
used for rainfall-runoff modelling, focussing in particular on Long Short Term Memory (LSTM)
architectures. LSTMs (a special type of neural network) have in recent years been popularized
for rainfall-runoff modelling. The resulting models perform very well but lack a stringent physical
interpretation. An interesting property of LSTMs is that they contain internal states — similar to
internal states (storages) in classical hydrological models. Lees et al use statistical “probes” to
link these LSTM states to independent estimates of soil moisture and snow storage. The
analysis shows that LSTM states mimic soil moisture and snow storage dynamics although
these quantities were not used for model calibration.

This paper is to my knowledge the first systematic attempt to interpret the internals of an LSTM
used for rainfall-runoff modelling in a systematic manner, although un-systematic examples
have been emerging in the literature. The application of LSTMs for rainfall-runoff modelling is
state of the art and the use of “probes” based on linear regression makes intuitively sense.

Beside this, | personally value the authors effort to assess the robustness of their results by (i)
applying the “probes” to both re-analysis based and remote-sensing based soil moisture
estimates and (ii) by randomization based statistical testing.

The objective of the study is clearly stated: |.e., to test if internal states of an LSTM used for
rainfall-runoff modelling at many catchments at once can be linked to independent estimates of
soil moisture and snow. The paper is well structured to meet this objective and the data and
methods are chosen accordingly.

We thank the reviewer for the summary of the manuscript. We are pleased that you found the
methods intuitive and the robustness experiments useful. By addressing the reviewers’
suggestions, we have revised our manuscript, and we believe our manuscript has significantly
improved



Nonetheless the study leaves some open questions which the authors may want to further
explore:

An obvious limitation of the proposed approach is that it relies on independent estimates of
soil-moisture and snow (or other variables). Therefore, it does not allow for a self-contained
interpretation of LSTM states.

This is correct. We are aware of this limitation and had the following sentence in our description
of methods:

“Since these probes are trained in a supervised way, we are currently limited to looking for
known hydrological processes. Trained in this way, probes cannot be used to extract unknown
information, since we require a target variable to fit the probe. This means that in the present
study we are not looking for new hydrological understanding, or seeking to uncover as-of-yet
undiscovered hydrological patterns, but explicitly looking for known physical processes in the
learned LSTM representation.”.

In order to address the point that our approach does not allow us to diagnose unknown
processes without prior estimates of those processes (e.g. soil moisture time series), we need to
consider the LSTM architecture more closely. Except for a perhaps innate bias towards simpler
solutions, the LSTM is not restricted in how it stores information in the internal representation.
That is, the trained LSTM has no intrinsic reason to encode its representation in a manner that
is directly accessible to humans or can be directly mapped to environmental variables. A lot of
information can be stored within the cell states and it is not trivial to reverse engineer how it is
used. Using probing allows us to isolate different functional groups in the cell state and trace
their behaviour, by considering the probe outputs and how closely they relate to our time series
of interest. Alternative approaches that use unsupervised methods can, and should, be
considered. We discuss one of these approaches (principal components analysis - PCA) below.

We will also include a sentence in our Conclusion in order to make it clearer that this is a
limitation of our approach:

“One obvious limitation of this approach is that we rely on pre-existing estimates of our concepts
of interest. Therefore, as proposed, this method cannot be used to identify unknown processes,
due to the fact that we need a target variable to fit the probe”.

It would be interesting to know how much of the variance of the internal state vectors is
captured in the resulting soil moisture estimates. How many independent signals are present in
the 64 states? (e.g. estimated as the number of dominant principal components)

We thank the reviewer for this comment. It is an interesting line of enquiry and we present some
preliminary analysis here. If we have interpreted the reviewer correctly there are two aspects:

e How important is the soil moisture signal for discharge estimates?

e How many signals are present in the cell states?



In conclusion to the relatively long response that follows: we believe that probes with the elastic
weights are the closest we have come to answering these questions thus far, since we try to
extract the soil moisture signal from the least amount of cell-states in a linear (naive) way. Even
with this approach we miss potential information, because we do not want to risk overfitting or
loss of interpretability of the output model.

a) How important is the soil moisture signal for discharge estimates?

This is an interesting question and one that we spoke about in the discussion of our manuscript
in two locations outlined below:

L278: “Alternatively, we can employ feature importance metrics, such as the integrated
gradients method, to identify the signals that are most informative, and then reason about what
these signals might represent.”

L319-322: “Future work could consider how we might use feature attribution approaches (such
as the integrated gradients method) to identify the most informative cell state values, or else
examine the information contained within the states that do not correlate with snow or soil
moisture processes.”

We agree that this is an important component of cell state interpretability, and there has been
work done by some of the authorship team that have explored this using the integrated gradient
method discussed above (Kratzert et al 2020). This is a different approach to the one outlined
by the reviewer, that uses the automatic differentiation capabilities of the Pytorch LSTM to
measure the sensitivity of the output with respect to each input feature. Ultimately, we chose to
focus the paper on extracting intermediate signals of snow and soil moisture processes.

Ultimately, it is worth noting that the LSTM is not forced to learn anything about soil moisture or
snow processes. The very fact that these signals exist in the cell state suggests that a
representation of soil moisture was useful for the LSTM when modelling discharge.

b) How many signals are present in the cell states?

The principal aim of this paper was to examine the internal functioning of the LSTM and
determine if the LSTM learns a physically realistic mapping from inputs to outputs.
Unsupervised methods could be an alternative approach to the probe analysis for detecting
signals contained in the LSTM cell state. There is additional work to be done in this area and we
leave this for future papers, however, we present an initial exploration of this approach here.

PCA represents an unsupervised method for reducing a multidimensional dataset into “principal
components" which are linear combinations of the original features that capture the most
variance. It is a form of dimensionality reduction, since we can distil our 64 cell state dimensions
into n principal components. We complete a preliminary analysis of the cell states using PCA
below.
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Figure 1: The ratio of variance explained by the dominant principal components, shown as a raw
total (blue bar) and as a cumulative sum (blue line).

Analysis of the percent of variance explained by the leading principal components (Figure 1)
shows that there is no clear cutoff defining the number of “dominant principal components”. We
could set a threshold for the amount of variance that must be described (e.g. 80% would leave
22 principal components), but the choice of this threshold is not clear a priori. That being said,
we have here an estimate of the number of independent signals in the cell state, and it appears
to be significantly less than the chosen hidden size of 64. This is expected, because the dropout
regularisation during LSTM training incentivises redundant representations. A word of caution
however, since PCA assumes variance as the proxy for “importance”, yet the LSTM can easily
learn a switching process that communicates which cell state is worth listening to in a particular
hydrological context.
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Figure 2: Visualising the 4 principal components that explain the most variance (coloured),
plotted over the top of the discharge time series (black dotted line) for a single basin (10002).

In Figure 2 we observe the four principal components that explain the most variance in the
original cell states matrix. In the previous comment, it was mentioned that a limitation of our
supervised approach is that we require a target timeseries to extract these signals from the cell
states. This is true, however, it is hard to see how we can escape this even after using an
unsupervised method. Once we have extracted these linearly independent signals, we still
require a target timeseries to determine whether our signal corresponds to the concepts we are
looking for. This could be done, for example, by finding the principal components with the
largest correlations to our intermediate storage variables, which is very similar to the probe
approach taken in the manuscript.

A point that we want to emphasise is that the LSTM is not restricted to store linearly separable
information in the cell state, it is itself a nonlinear regression model. The cell states can interact
with one another and can display small variance but still be important for the LSTM
computations. This makes using a method like principal component analysis difficult since the
underlying state vector that we use as input to the PCA analysis violates the assumptions of the
method (such as the assumption that variance describes the important axes of information).

We want to caution that not all of the processes captured by the LSTM cell state can be directly
related to hydrological concepts, for example, in our experiments we have observed that the
LSTM often contains something like a counter, a linearly increasing value that counts the
number of timesteps from the first input time. This is useful for the LSTM computation but is not
interpretable as a physically meaningful hydrological signature.

PCA is one of many methods in blind signal separation (closely related to unsupervised
learning). Other established methods that would warrant further exploration include independent
component analysis (ICA), non-negative matrix factorization and SVD. Ultimately, the use of
unsupervised methods for distilling the LSTM cell state into human-interpretable signals is an
interesting research question worthy of analysis in future publications.



Minor issues:

Inconsistency: Equation 1-2 use i_t as input. Equations 3-4 use x_t
We will update this as proposed. (Thanks!)

The paper somehow requires that the reader is familiar with how LSTMs work. | acknowledge
the authors choice not to repeat the LSTM definition, also since it is available in many other
publications. Nonetheless, this made it a bit more difficult to fully understand the paper.

We do understand this concern, and it can indeed be very difficult to find the balance between
providing the right amount of information and repeating information from elsewhere. We thus
added the following sentences for readers that are not too familiar with the LSTM:

We will update our manuscript to include a sentence that reads: “For a more detailed description
of the LSTM we refer to \citet{kratzert2019 _ealstm}, particularly Figure 1 and Equations 1-12,
both found in Section 2 Methods.”

Furthermore, the description outlined L90-L109 gives an overview of the salient aspects of the
LSTM for a hydrologist, making it clear that the state of the LSTM is conceptually similar to state
variables in other hydrological models.

Elastic net: | assume that the description of the elastic net regularisation might be quite cryptic
to readers who are not familiar with this tool (I am).
We agree and propose to update our explanation to a more informative explanation:

“Our linear model, $f {\beta}$, is a penalised linear regression model. We use the elastic-net
regularisation that combines the $\ell_1$ penalty of lasso regression with the $\ell_2$ penalty of
ridge regression. The reason for choosing the elastic-net reqularisation is that when we have
correlated features in $c_t$, The lasso ($\ell_1$ penalty) shrinks non-informative weights to
zero, whereas the ridge ($\ell_2$ penalty) shrinks weights for correlated variables towards each
other, thereby averaging these correlated variables \citep{friedman2010}. The elastic net is a
compromise between these two penalties, where a higher $\alpha$ parameter encourages a
sparser regression equation, and a lower $\alpha$ parameter encourages averaging correlated
features \citep{friedman2010}.”

Also: Given the large number of samples (# catchments x # time steps) and the relatively low
number of predictors | wondered if a linear regression would perform equally well.

We tested the linear regression fit using ordinary least squares (specifically using
scipy.linalg.Istsq via the sklearn.linear_model.LinearRegression) and the performances were
poor. The highly correlated input features tended to cause the model to produce weights very
close to zero for every cell state, which led to a flat prediction (at zero). The elastic net seemed
to solve this problem by introducing a penalty term and shrinking a number of features towards
zero while maintaining other weights above zero.


http://scipy.linalg.lstsq
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

