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Abstract. Satellite The use of satellite sensors to infer rainfall measurements havase become a widely available used practise 

in the last recent years, but their spatial resolution usually exceeds 10 kilometres, due to technological limitations. This poses 10 

an important constraint on their its use for applications such as water resource management, index insurance evaluation or 

hydrological models, which require more and more detailed information.  

In this work, the algorithm SM2RAIN (Soil Moisture to Rain) for rainfall estimation is applied to a high resolution 2 soil 

moisture products over the Po River basin: a high resolution soil moisture product derived from Sentinel-1, named S1-RT1, 

characterized by 1 km spatial resolution (500 m spacing), and and toa the 25 km ASCAT soil moisture (12.5 km spacing) 15 

product derived from ASCAT, resampled to the same grid of as S1-RT1, to obtain rainfall products with the same spatial and 

temporal resolution over the Po River basin. In order to overcome the need forof calibration and to allow its global application, 

a parameterized version of SM2RAIN algorithm was adopted along with the standard one. The capabilities in estimating 

rainfall of each obtained product were then compared, to assess both the parameterized SM2RAIN performances and the added 

value of Sentinel-1 high spatial resolution. 20 

The results show that good estimates of rainfall are obtainable from Sentinel-1 when considering aggregation time steps greater 

than 1 day, since to the low temporal resolution of this sensor (from 1.5 to 4 days over Europe) prevents its application to infer 

daily rainfall. On average, the ASCAT derived rainfall product performs better than S1-RT1 one, even if the performances are 

equally good when 30 days accumulated rainfall is considered, being the (resulting in a mean Pearson’s correlation for the 

parameterized SM2RAIN product of the rainfall obtained from ASCAT and S1-RT1 equal to 0.74 and 0.73, respectively), 25 

using the parameterized SM2RAIN. Notwithstanding this, the products obtained from Sentinel-1 outperform those from 

ASCAT in specific areas, like in valleys inside mountain regions and most of the plains, confirming the added value of the 

high spatial resolution information in obtaining spatially detailed rainfall. Finally, the performances of the parameterized 

products performances are similar to those obtained with the calibrated SM2RAIN calibration algorithm, confirming the 

reliability of the parameterized algorithm for rainfall estimation in this area and fostering the possibility to apply SM2RAIN 30 

worldwide even without the availability of a rainfall benchmark product.  
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1 Introduction 

Water supplies are not endless. Water consumption has been steadily increased in the last century (Kummu et al., 2016) and 

the current climatic crisis is expected to further increase the water intake: the water availability should is expected to reduce, 

while irrigation demand should increases. Many areas will experience water scarcity due to this phenomenon, as it is already 35 

happening (Rockström et al., 2012). In this framework, water resource management is extremely important to increase 

conservation and use efficiency of this precious resource. Spatially detailed measurements of the various water cycle 

components are therefore needed to by stakeholders and companies involved in water management, in order to increase the 

intervention capacities and to reduce wastage. High resolution information are also required toTo improve the performance of 

hydrological models performances and capabilities, whose need of, high quality input data with sufficient resolution 40 

characteristic is needed whose resolution characteristics satisfy the demand set by increasingly complex modelling 

approachesincreasing along with the models complexity (Silberstein, 2006; Ragettli et al., 2013). Insurance companies are also 

demanding high spatial resolution data, even at monthly temporal scale, with the purpose to develop index-based insurances 

for small-scale agricultures (Enenkel et al., 2019; Black et al., 2016). One of the most important variables for these objectives 

is precipitation, indicated by the Global Observing Systems Information Center (GCOS) as an Essential Climate Variables 45 

(ECV), i.e., a variable whose knowledge is needed in order to understand the evolution of the climate, to assess the related 

risks and to develop mitigation and adaptation strategies. Measurements of rainfall, the liquid fraction of precipitation, are 

traditionally obtained from raingauge sensors, which are characterized by a high degree of precision (La Barbera et al., 2002). 

Notwithstanding this, the rainfall spatial variability of rainfall makes the current raingauge network inappropriate to describe 

in detail its distribution over the full globe. since t The number of gauges is too scarce with respect to Earth surface and they 50 

are unequally distributed, being since the majority of them is located in the most developed countries (Villarini et al., 2008; 

Kidd et al., 2017; Dinku, 2019).  

In this framework, satellite rainfall estimates derived from satellite-based remote sensing measurements have demonstrated 

their potential to support, integrate and in some cases substitute ground-based networks (Barret and Beaumont, 1994; Kidd 

and Levizzani, 2011). Historically, two main approaches are adopted to estimate rainfall from space: the traditional “top-55 

down” approach, where the instantaneous precipitation rate is estimated either from the clouds upwelling radiation emitted by 

clouds or the from the scattering properties of rain drops backscatter sensed by radar and/or radiometers, and the more recent 

“bottom-up” approach, where the rainfall rate over land is inferred by from Soil Moisture (SM) observations. The peculiarity 

of the last “bottom-up” approach lies in its capacity to estimate the accumulated (not instantaneous) rate by using the soil as a 

“natural raingauge” (Brocca et al., 2014). Among the algorithms that use this approach (Crow et al., 2009; 2011; Pellarin et 60 

al., 2013; Wanders et al., 2015), SM2RAIN has distinguished itself for its versatility and simplicity. By inverting the soil water 

balance equation, this algorithm allows to estimate the estimation the amount of the rainfall that occurred between two SM 

measurements. It has already been applied worldwide to both regional (Tarpanelli et al., 2017) and global (Ciabatta et al., 
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2018; Brocca et al., 2019) satellite SM products, obtaining satisfactory results, in particular over regions characterized by 

scarce raingauge density (Massari et al., 2020). 65 

Nevertheless, the major limitation of satellite observations, regardless the adopted approach, is the inherent “technological” 

compromise between temporal and spatial coverage: satellite-based SM and rainfall satellite products are usually characterized 

by a frequent revisit time (<1 day) and a coarse spatial resolution (~10-50 km). It is of primary importance to obtain data with 

high temporal and spatial resolution, in order to enhance the prediction capability of hydrological models requiring high 

resolution input data (Merlin et al., 2008) and to increase the spatial accuracy of the information related to water resource. The 70 

first attempt to accomplish the objective of high spatial resolution was the use of downscaling procedures. Many different 

approaches, from geo-statistical analysis to data fusion, have been developed in the last years in order to obtain sub-pixel 

information from coarse resolution products (Peng et al., 2017) to be used in different applications (e.g. Dari et al., 2020). 

However, their results were often unsatisfactory, because of the limitations of the auxiliary data (e.g., cloud cover for optical 

data and model errors when using model data) and the uncertainties of downscaling algorithms (Peng et al., 2017). 75 

Recently, the new launched Sentinel Missions of the European Earth Observation program Copernicus, has opened new 

possibilities to overcome these issues. Specifically, the Sentinel-1 (S1) mission is composed of two satellites that share the 

same orbit 180° apart and follow a strict acquisition scenario with a 12-days repeat cycle (6-days by considering both satellites), 

each carrying an identical C-band Synthetic-Aperture Radar (SAR) sensor capable to sense high resolution microwave 

backscatter (down to 5 meters). This setup leads to a revisit frequency of 1.5-4 days over Europe, thanks to the overlap of the 80 

orbits. The condition of high spatial and medium temporal resolution is, for the first time, met by the two S1 satellites currently 

in orbit. SM measurements with 1 km spatial resolution can be obtained from this mission (Bauer-Marschallinger et al., 2018).  

The application of SM2RAIN to such data could therefore provideallow to obtain high resolution (1 km) rainfall estimates 

over land. This approach, however, is limited by the need to calibrate the SM2RAIN algorithm against a rainfall product with 

spatio-temporal characteristics similar to those of the input SM. Datasets with such spatio-temporal characteristics are rarely 85 

available, due to the already mentioned scarce density of ground-based networks, thus limiting the calibration and validation 

of high resolution rainfall from SM2RAIN only over few selected areas. This issue can be overcome by exploiting the 

parameterized version of SM2RAIN which allows an estimation ofthat has been found capable to estimate SM2RAIN 

parameters values, by accepting a limited reduction of the in performance, using only from the knowledge ofn SM noise, the 

topographic complexity and each the rainfall climatology, without the need of a calibration procedure (Filippucci et al., 2021). 90 

In this work, both the parameterized and calibrated versions of SM2RAIN algorithm were applied to a SM product derived 

from Sentinel-1 over the Po River basin in northern Italy, with the scope of evaluating their capabilities in reproducing high 

resolution rainfall (1 km). The product, from here on named S1-RT1, was obtained by using a retrieval algorithm based on the 

a first order solution of the Radiative Transfer equation (RT1, Quast et al., 2019)., and  It is characterized by 500 m spatial 

sampling and 1.5-4 days temporal resolution. The Po River basin area was selected as study area because a ground-based 95 

rainfall dataset with 1 km spatial resolution and 1 hour temporal resolution is available over the area, thanks to the fusion of 

raingauges and weather radar measurements through the Modified Conditional Merging (MCM) algorithm (Bruno at al., 2021).  
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Furthermore, the Po River basin comprehends many geographical features, such as mountains, hills, lakes, rivers and plains, 

which make it a good test area for this analysis. Both SM2RAIN versions were applied also to ASCAT-derived SM, after it 

was regridded to S1-RT1 coordinates, in order to assess the benefits derived from the use of high resolution SM by comparing 100 

the performances of the resulting rainfall products performances.  

The paper is structured as follows: the study area and the data collected for this study are presented in Section 2, the two 

SM2RAIN versions and the selected performance scores are descriptbed in Section 3. The obtained results and the spatial 

distribution analysis are shown in Section 4. Finally, the conclusions of the analysis are summarized in Section 5. 

2 Study area & Data 105 

2.1 Study area 

The analysis was conducted over the Po River Basin, located in Northern Italy (Fig. 1). The basin extends from the Western 

Alps to the Adriatic Sea, including Italian and Swiss territories. The region covers an area of around 71000 km2: the Alps 

outline the boundaries of the basin to the North and West, with altitudes up to 4809 m, while the Apennines mark the South 

borders. The Po Plain extends to the central part of the basin, broadly divided into a northern and a southern section: the former 110 

is generally unsuitable for agriculture, while the latter is more fertile and well irrigated. The average annual precipitation goes 

ranges from ~700 to ~1500 mm/year in the analyzed period, 2016-2019, equally distributed during the year, with maximums 

occurring during autumn and spring seasons. The Po basin area is classified as Cfa (Temperate climate, without dry season 

and with hot summer) by the Köppen-Geiger climate classification (Peel et al., 2007). In this study, the Swiss fraction of the 

Po River basin external from the Italian boundaries (red black linearea  in Fig. 1) was excluded from the analysis due to the 115 

unavailability of raingauge data.  

2.2 Data 

Several datasets were collected in this study to analyzse the feasibility of high resolution rainfall estimations from SM2RAIN. 

Specifically, SM products from ASCAT and S1 sensors were analyzesed, alongside with the selected benchmark rainfall 

dataset MCM and the data needed for the parameters estimations within the parameterized SM2RAIN algorithm, i.e., SM noise 120 

from ASCAT, topography and rainfall climatology. 

SM measurements 

SM data at 25 km spatial resolution (12.5 km spacing) were obtained from ASCAT, while the high resolution 1 km estimates 

(500 m spacing) were derived from the application of S1-RT1 algorithm to Sentinel-1 data (Quast et al., 2019). The spatial 

sampling was fixed at one-half of the spatial resolution, according to the Nyquist-Shannon sampling theorem, to maximize the 125 

details of each SM datum (Wagner et al., 2013). 

ASCAT is an active microwave sensor that measures backscatter radiation at 5.255 GHz (C-band) mounted on MetOp-A 

(launched 19/10/2006), MetOp-B (launched 17/09/2012) and MetOp-C (launched 07/11/2018) satellites. The conjunct 
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combined use of multiple satellites allows to achieve sub-daily estimates of relative SM, i.e., the soil moisture saturation 

fraction, over most of Earth (Wagner et al., 2013). The SM data, together with the associated noise, were downloaded from 130 

the EUropean organisation for the exploitation of METeorological SATellites (EUMETSAT) Satellite Application Facility on 

Support to Operational Hydrology and Water Management (H SAF) H115 and H116 products, comprehending data from both 

MetOp-A and MetOp-B, within the period 2016-2019. Surface state information is available with the dataset, therefore data 

marked as “frozen” were discarded from the analysis.  

Sentinel-1 mission is composed by a constellation of two polar-orbiting satellites, Sentinel-1A (launched 03/04/2014) and 135 

Sentinel-1B (launched 25/04/2016), sharing the same orbital plane 180° apart, each carrying a single C-band Synthetic 

Aperture Radar (SAR) instrument operating at a center frequency of 5.405 GHz. S1 sensors can operate in four exclusive 

imaging modes with different spatial resolution (down to 5 m) and swath width (up to 400 km). Particularly, the Interferometric 

Wide (IW) swath mode, the main sensing mode over land, offers a 20 m x 22 m spatial resolution with a 250-km swath. The 

revisit time of a single satellite is 12 days, which reduces down to 6 days when considering both sensors. Nevertheless 140 

However, since, the acquisition strategy prioritizes European landmasses over other regions, therefore the effective temporal 

resolution over Europe is between 1.5 and 4 days by taking advantage of the overlapping ascending and descending orbits. 

SM retrievals at 1 km spatial resolution were obtained by applying a first-order radiative transfer model (RT1) (Quast et al., 

2019) to a 1 km Sentinel-1 backscatter (σ0) dataset sampled at 500 m pixel spacing (Bauer-Marschallinger et al., 2021). RT1 

is based on a parametric (first-order) solution to the radiative transfer equation (Quast and Wagner, 2016) in conjunction with 145 

a timeseries-based non-linear least squares regression to optimize the difference between (incidence-angle dependent) 

measured and modelled σ0.  The scattering characteristics of soil- and vegetation are modelled via parametric distribution 

functions, and the relative SM content (scaled between 0 and 1) is found to be proportional to the nadir hemispherical 

reflectance (N) of the bidirectional reflectance distribution function used to describe bare-soil scattering characteristics. 

To correct for effects induced by seasonal vegetation dynamics, scaled Leaf Area Index (LAI) timeseries provided by 150 

ECMWFs ERA5-Land reanalysis dataset have been used to mimic the temporal variability of the vegetation optical depth, 

accounting for the attenuation of the radiation during propagation through the vegetation layer. Remaining spatial variabilities 

in soil and vegetation characteristics are accounted for by the model-parameters “single scattering albedo” (ω) and soil-

scattering directionality (ts). Within the retrieval-procedure, a unique value for N is obtained for each timestamp, alongside a 

temporally constant estimate for ts and an orbit-specific estimate for ω for each pixel individually based on a 4-year timeseries 155 

from 2016-2019. A comparison of the obtained RT1 soil-moisture retrievals to ERA5-Land top-layer volumetric water content 

(swvl1) for a set of ~138 000 pixels over a 4 year time-period from 2016 to 2019 achieves an overall (median) Pearson 

correlation of 0.55 for areas classified as croplands and 0.65 for areas primarily covered by natural vegetation. 

 A detailed description and performance-analysis of the used soil-moisture dataset will be given in Quast et al., in preparation.  

Due to the presence of systematic differences between Sentinel-1 acquisitions from different orbits, the obtained soil-moisture 160 

timeseries exhibits a periodic disturbance, attributable to unaccounted differences in soil- and vegetation characteristics with 



6 

 

respect to the different viewing-geometries.  To correct these systematic effects, the timeseries are split with respect to the 

Sentinel-1 orbit ID and normalized individually to a range of (0, 1) prior to the incorporation into the SM2RAIN algorithm. 

In order to obtain data with the same time spacing, SM data were linearly interpolated at midday and midnight for both datasets. 

If no data were found within 5 days, each datum in the interval was set to Not a Number (NaN). ASCAT data were resampled 165 

on S1-RT1 grid using a weighted average of the four nearest pixels, to allow the inter-comparison of the data. Finally, all the 

SM products were masked for frozen soil and snow cover conditions, by downloading the Soil Temperature (Tsoil) of the first 

soil layer (0-7 cm) and Snow Depth data from ERA5-Land (see description below), and excluding the SM estimates obtained 

over pixels showing a Tsoil < 2 °C or a snow depth > 0.01 m. 

Rainfall measurements 170 

Two rainfall datasets were considered, to be used as benchmark for the performance assessment and as input for the 

parameterized version of SM2RAIN, respectively. The first one is a product derived from the integration of ground radar and 

raingauge measurements over the Italian territory through the MCM algorithm (Bruno et al., 2021). Indeed, aA dense network 

of raingauges and weather radars is available over the Italian territory, making it possible to obtain hourly measurement of 

rainfall measurements in real-time. While raingauges allow a good estimation of point rainfall, radar measurements give a 175 

good estimation of the general covariance structure of rainfall. MCM uses radar data to condition the spatially limited 

information of raingauges, generating a rainfall field with a realistic spatial structure and constrained to by raingauge values. 

The resulting rainfall product is characterized by high spatial (1 km) and temporal (1 h) resolution. These attributes make it a 

suitable choice for the purpose of comparison with SM2RAIN estimationes from high resolution SM. In this work, the MCM 

hourly information werase resampled to S1 data coordinates. MCM data were temporally accumulated at 12 hours, obtaining 180 

two cumulated rainfall measurements per day, respectively at midday and midnight. Rainfall measurements greater than a 

threshold of 800 mm/day were considered not valid and discarded from the analysis. Even if MCM data were available for the 

full Po River basin, the territories outside the Italian boundaries were excluded from the analysis due to the absence of 

raingauges data. 

In order to apply the parameterized version of SM2RAIN (see section 3.2), the mean daily rainfall of each pixel in the study 185 

area is needed. and Iit was obtained by downloading Total Precipitation and Snowfall daily measurements from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5th Generation Land product (ERA5-Land) for the period 

1981-2021. ERA5-Land provides estimation of various climate components combining models with observations (Hersbach 

et al., 2020). The original ERA5 spatial resolution is around 30 km, resampled on a regular 25 km grid. ERA5-Land was 

produced by regridding the land component of the ECMWF ERA5 climate reanalysis to a finer spatial resolution (0.1-degree). 190 

Daily rainfall data were obtained by subtracting the Snowfall component from ERA5-Land Total Precipitation. The obtained 

rainfall data were then regridded on S1 grid using a weighted average of the four nearest pixels, as done with ASCAT SM 

data. The 30-year averaged mean daily rainfall was then calculated for each pixel. 

Topography measurements 
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Elevation data from Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global Digital 195 

Elevation Model (DEM) Version 3 (ASTGTM) were downloaded. The product provides altitude land data at a spatial 

resolution of 1 arc second (~30 meters resolution at equator). In order to obtain the topographic complexity of each S1 pixel, 

the standard deviation of the DEM values within each 500m pixel was calculated. 

Data interpolation and regridding are expected to introduce small-scale noise in the datasets. Notwithstanding this, the 

interpolation is unavoidable in order to analysze all the products with the same spatial and temporal sampling. 200 

3 Methods 

3.1 SM2RAIN 

The algorithm adopted to estimate the rainfall accumulated between two consecutive SM measurements was SM2RAIN, 

developed by Brocca et al. (2013; 2014) by inverting the soil water balance equation, which is given by. This can be described 

by: 205 

𝑍𝑛
𝑑𝑆𝑀(𝑡)

𝑑𝑡

𝑑𝑆𝑀(𝑡)
𝑑𝑡

⁄ = 𝑝(𝑡) − 𝑟(𝑡) − 𝑒(𝑡) − 𝑔(𝑡)         

 (1) 

where 𝑍 [mm] is the depth of the considered layer, 𝑛 [m3/m3] is the soil porosity, 𝑆𝑀(𝑡) is the relative SM [-], 𝑝(𝑡) is the 

rainfall rate [mm/d], 𝑟(𝑡) is the surface runoff rate [mm/d], 𝑒(𝑡) the evaporation rate [mm/d] and 𝑔(𝑡) the drainage rate 

[mm/d]. During rainfall events evaporation and surface runoff can be considered negligible (Brocca et al., 2015) and Eq. (1) 210 

can be simplified as: 

𝑝(𝑡) = 𝑍∗ 𝑑𝑆𝑀(𝑡)

𝑑𝑡

𝑑𝑆𝑀(𝑡)
𝑑𝑡

⁄  +  𝑔(𝑡)         

  (2) 

during rainfall events, by considering evaporation and surface runoff negligible under this circumstance (Brocca et al., 2015) 

andwith 𝑍∗ = 𝑍𝑛. Finally, by expressing the drainage rate according to Famiglietti and Wood (1994) relationship, SM2RAIN 215 

equation can be obtained: 

𝑝(𝑡) = 𝑍∗ 𝑑𝑆𝑀(𝑡)

𝑑𝑡

𝑑𝑆𝑀(𝑡)
𝑑𝑡

⁄  +  𝑎 𝑆𝑀(𝑡)𝑏         

 (3) 

where 𝑎 [mm/d] is the saturated hydraulic conductivity and 𝑏 [-] is the exponent of the Famiglietti and Wood equation. In 

order to take into account for the low depth sensitivityeness of satellite SM (few centimetres) as well as the inherent signal 220 

noise into accountand the signal noises, an exponential filter (Wagner et al., 1999; Albergel et al., 2008) is applied to the data 

before the application of SM2RAIN algorithm. In this study, we adopted a modified exponential filter in which the filter 
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characteristic time length, 𝑇, varies with SM,  is decreasing withwhen increasing SM increases according to a 2-parameters 

power law (Brocca et al., 2019). These 2 parameters are therefore needed along with 𝑍∗, 𝑎 and 𝑏 to obtain the an estimation 

of the rainfall between two consecutive SM measurements. In the standard SM2RAIN application, the 5 parameters are 225 

obtained through calibration against a reference rainfall dataset with similar spatial and temporal resolution, by minimizing 

the Root Mean Square Error (RMSE) between the estimated and reference data. The calibrated SM2RAIN has already been 

applied to different satellite and in situ SM datasets (Ciabatta et al., 2018; Brocca et al., 2019; Filippucci et al., 2020), showing 

good performance worldwide, particularly over poorly gauged regions in comparison with other rainfall datasets (Massari et 

al., 2020). 230 

3.2 Parameterized SM2RAIN 

Filippucci et al. (2021) developed four parametric relationships that allow to obtain the SM2RAIN parameters along with the 

𝑇 parameter of the original exponential filter (not the modified version above adopted), without calibration. It is therefore 

possible to deduce 𝑇, 𝑍∗, 𝑎 and 𝑏 can be therefore obtained from the knowledge of SM timeseries and its noise, the topographic 

complexity and the mean daily rainfall of the standard year, (obtained by averaging the rainfall in the same Day of Year 235 

(DOY)). In particular: 

  𝑇 = 0.8351 + 1.2585 𝑆𝑀𝑛𝑜𝑖𝑠𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   𝑠𝑡𝑑(|𝑆𝑀𝑑|) + 0.2777  
𝑠𝑡𝑑(|𝑆𝑀𝑑|)

𝑃̅

𝑠𝑡𝑑(|𝑆𝑀𝑑|)
𝑃̅

⁄   𝑡𝑜𝑝𝐶    

 (4) 

where  𝑆𝑀𝑛𝑜𝑖𝑠𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average SM noise in the considered pixel, (|𝑆𝑀𝑑|) is the standard deviation of the absolute values of 

the SM temporal variations, 𝑃̅ is the pixel mean daily rainfall and 𝑡𝑜𝑝𝐶 is the topographic complexity.  240 

After the calculation of 𝑇 and the application of the exponential filter to the SM timeseries, it is possible to calculate the 

remaining SM2RAIN parameters according to: 

𝑍∗ = 10.0678 + 0.5350  
𝑃̅

|𝑆𝑀𝑓𝑑|̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑃̅

|𝑆𝑀𝑓𝑑|̅̅ ̅̅ ̅̅ ̅̅ ̅⁄          

 (5) 

𝑎 = −1.3177 + 13.3579   𝑍∗  |𝑆𝑀𝑓𝑑|̅̅ ̅̅ ̅̅ ̅̅ ̅         (6) 245 

 𝑏 = 3 +
2

0.4118 + 0.324∗log 𝑎
2

0.4118 +  0.324 ∗ log 𝑎⁄        

    (7) 

where |𝑆𝑀𝑓𝑑| is the average of the absolute values of the filtered SM temporal variations. The coefficients of the equations 

above are slightly different from those published on Filippucci et al. (2021), in which the Digital Elevation Model (DEM)  

adopted to obtain the pixels 𝑡𝑜𝑝𝐶 had a spatial resolution of 5 arc minutes, unsuitable for the current analysis. Therefore, the 250 



9 

 

parametric relationships were recalculated by substituting the previous ETOPO5 DEM information with ASTGTM DEM, 

repeating the same steps of Filippucci et al. (2021). 

3.3 Performance scores 

In order to assess the performance of the rainfall estimates obtained from SM2RAIN, different continuous metrics indices were 

calculated in comparison with the reference dataset, MCM. Specifically: 255 

- Linear Pearson’s Correlation (R), that is an index to express the linear relationship between two sets of data. Its value ranges 

between -1 and +1, where -1 indicate perfect negative linear relationship, +1 means perfect positive linear relationship and 0 

means no statistical dependency. 

- BIAS, index that measures the systematic over- or under-estimation of one dataset with respect to the reference data. In this 

paper, it is calculated as the difference between the estimated and the observed rainfall: therefore, negative BIAS values 260 

indicate a systematic rainfall underestimation, while positive BIAS values mean the opposite. 

- Root Mean Square Error (RMSE), that is widely used to measure the differences between two population values because it 

takes into account three different sources of error together: decorrelation, BIAS and random error. It can be obtained by 

calculating the square root of the mean quadratic meandifference  between single measurements of two datasets. 

4 Results 265 

4.1 Rainfall validation 

In order to obtain rainfall measurements from the SM datasets, SM2RAIN algorithm was applied to both ASCAT and S1-RT1 

SM products by using both the calibrated and parameterized versions. In the calibrated SM2RAIN, the algorithm parameters 

were estimated by minimizing the RMSE with respect to MCM rainfall product at daily time scale for both ASCAT and S1-

RT1 SM. For the parameterized SM2RAIN version, the algorithm parameters were obtained through the parametric 270 

relationships developed by Filippucci et al. (2021), as mentioned above. Since no information regarding S1-RT1 SM noise 

was available, ASCAT SM noise characteristics were used to calculate S1-RT1 SM2RAIN parameters, assuming that since 

both ASCAT and S1 sensors operate in C-band, the noises affecting the two SM products are similar. Indeed, the noise level 

of S1-RT1 is expected to be higher than ASCAT one. This sub-optimal configuration can be therefore considered as a first 

step to test the data: better results should be obtained when more accurate noise information will be available. 275 

The obtained rainfall can be then be accumulated at the desired time step. In order to consider the different temporal resolution 

of the selected SM products, (sub-daily for ASCAT and from 1.5 to 4 days for S1), three accumulation time steps were chosen: 

1 day, 10 days and 30 days. The daily rainfall was calculated only for ASCAT product, since the low temporal resolution of 

S1 prevents to obtain significant results at such temporal stepdaily intervals. 

Figure 2 shows the average 30 days rainfall obtained by the application of the parameterized SM2RAIN to ASCAT and S1-280 

RT1 SM products. By comparing the two figures, the improved resolution of the rainfall obtained by applying SM2RAIN to 
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from S1-RT1 SM with respect to its application to ASCAT SM is evident: the higher spatial resolution of S1-RT1 allows the 

generation of detailed features, even if with a granular effect likely due to the uncertainties of the measurements, and with 

patterns related to the spatial variation of S1 temporal resolution (compare with Fig. 4e).  

The results in terms of R, RMSE and BIAS with respect to the selected time-steps are shown in Fig. 3, considering the chosen 285 

time steps.  In order to maximize the reliability of the obtained performances, the rainfall accumulation was carried out by 

summing up only the data that were timestamps available in both the SM2RAIN estimations and the benchmark, for each 

SM2RAIN product separately. In this way S1-RT1 performances can be better assessed, since a direct accumulation would 

penalize this product due to the long period of no-data caused by S1 low temporal resolution. 

The SM2RAIN product obtained from ASCAT allows to well reproduce the rainfall of the Po River basin at daily time scale 290 

thanks to the high temporal resolution of ASCAT (sub-daily frequency), with a median R equal to of 0.61 when for the 

parameterized product is considered and to 0.64 in case o for the  calibratedion product, confirming the good quality of the 

data and the importance of its temporal resolution. At higher aggregation time steps, the median R of the parameterized 

(calibrated) performances of ASCAT-derived rainfall products improve, being the median R by the parameterized (calibrated) 

SM2RAIN equal  to 0 0.71 (0.75) for the 10 days  accumulationted  period rainfall and to 0.74 (0.77) when 30 days 295 

accumulation is considered. Good results are also obtained from the application of SM2RAIN to S1-RT1, with a median R of 

0.61 (0.65) and 0.73 (0.75) at 10 and 30 days timeaccumulation timestep, respectively. Albeit ASCAT-derived rainfall 

performs better than the one from S1-RT1 at 10 days, they are equally good for the 30 days accumulated rainfall. The results 

also confirm the good capabilities of the parameterized SM2RAIN algorithm in rainfall estimation, considering the small 

differences between the performances obtained by the two algorithm versions, in particular when 30 days are considered. The 300 

only exception is the BIAS index, which, as expected, is significantly larger in the parameterized products with respect 

compared to the calibrated ones. The increased BIAS is due to the ERA5-Land data used to obtain the climatology of the area, 

being  since its spatial resolution is much lower than the one adopted for this study (i.e., 1 km) and the average spatial pattern 

of rainfall is quite different from the one measured by MCM. 

4.2 Spatial validation of rainfall products 305 

Even if the ASCAT product (with lower spatial resolution) is on average the best performing, the spatial comparison of the 

performances is important to understand the added value of high resolution SM. In order to better evaluate the differences 

between the rainfall estimated from ASCAT and S1-RT1, the Pearson’s correlation performances of the 30 days accumulated 

rainfall derived from the two SM products are analyszed in this section. This temporal step was selected since it is suited for a 

quality comparison of the two products, being less influenced by the different temporal resolution of the sensors, and because 310 

it is optimal for agricultural application. 

Generally good performances are obtained from both rainfall products, as shown in Fig. 4a and 4b. Some areas with low R 

values are shared by both ASCAT and S1-RT1 derived rainfall products. Over mountain areas the errors are mostly related to 

the lower accuracy of C-band SM data, due to shadowing effects and layover (a distortion that occurs in radar imaging when 
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the signal reflected from the top of a tall feature is received by the emitter before the one of the base, ULABY Ulaby et alET 315 

AL., 1981). The presence of water bodies at the river outlet and over the paddy fields in the western part of the Po basin is also 

affecting SM, and hence rainfall, retrieval accuracy. Finally, the yellow “holes” in the correlation maps resemble the errors 

caused by low quality gauge data, which affect the rainfall estimation of the surrounding of the gauge sensor. It should also be 

noticed that many low performing areas are located close to urban centers, which may affect both the SM retrieval quality and 

the raingauge measurements, as discussed in the following section (see also Appendix-A). Notwithstanding this, it is 320 

impossible to remove the alleged “bad” gauge stations from the benchmark product, being as MCM is an operative product 

and the clear identification of these stations is often challenging. 

The spatial comparison between the performances of the ASCAT and S1-RT1 derived rainfall is instead shown on Fig. 4c, 

displaying the difference between the correlation values of the two products. Red area means that the S1-RT1 product is 

performing better, whereas blue areas highlight where ASCAT is providing more accurate rainfall estimates. First of all, it 325 

should be noted that while ASCAT derived rainfall product shows average correlation values over the mountainous region in 

the North and West of the map (see Fig.1 for comparison with the DEM map), S1-RT1 correlation are alternatively either 

extremely low or extremely high. This important difference is caused by the high spatial resolution of S1-RT1 product: the 

improved resolution permits to clearly distinguish the “good” signal originateding from the valleys and the “bad” signal coming 

from the mountain slopes, affected by the noise generated from the aforementioned shadowing effects and layover effects. 330 

This distinction leads to generating results in areas with respectively very good (valleys) and very bad (mountains) rainfall 

estimations. ASCAT The spatial resolution, instead,  of ASCAT on the other hand does not permit to distinguish the signals 

of the two geographical features that therefore overlap, causing lower performances over the valleys and higher performances 

over the slopes in comparison with S1-RT1. The low performances of the pixels located over the mountain slopes are also 

responsible ofor the long violin plots tails of S1-RT1 performances that can be noticed in Fig. 3. S1-RT1 results are particularly 335 

lower than those from ASCAT due to the fact that S1-RT1 product calibration was carried out without considering any snow 

masking, thus reducing the quality of the solution in the pixels affected by snow cover. 

A smaller difference in performance can be noticed over the plain, in particular in the north-eastern section, where S1-RT1 

rainfall performs overall better than ASCAT. Conversely, in the southern section and specifically over the areas surrounding 

the Po River and its tributaries, ASCAT derived rainfall is better than S1. An explanation of this behaviour can be found in the 340 

intensive irrigation practice over this area. Irrigation events cause an increase of the fields SM (Filippucci et al., 2020) that 

should be sensed by satellites sensors. However, the area surrounding the Po River is composed by many small fields (few 

hectares each) managed by different farmers, where the irrigation timing is not concurrent. The ASCAT sensor is not able to 

distinguish the resulting irrigation signal (Brocca et al., 2018) , because of its low spatial resolution (25 km) that cause the 

signals of each field to overlap and average with each other. S1, instead, is more sensitive to the irrigation signal, thanks to its 345 

higher spatial resolution. 

Considering that the rainfall benchmark product does not contain irrigation information, the drop in Pearson’s correlation of 

the S1-RT1 derived rainfall with respect to ASCAT could be related to the sensitiveness of the former to the aforementioned 
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irrigation events, and not to the SM signal quality. It could be an additional information of great scientific interest but, 

unfortunately, the absence of detailed irrigation data for the Po Valley makes difficult to verify this hypothesis.  350 

Finally, it should be also be noted that this analysis could be biased in the areas characterized by a high presence of missing 

values (NaN) for one product with respect to the other, which hampers the statistical significance of the performance indices. 

Notwithstanding this, the absence of patterns in the maps that resemble the NaN distribution percentage shown in Fig. 4d and 

4e, fosters the validity of the analysis. 

The performance comparison with respect to in terms of RMSE and BIAS indices and the ones related to a comparison of the 355 

calibrated SM2RAIN products is here omitted for the sake of brevity, because no relevant additional information can be 

obtained from it.  

In Fig. 5 and 6, the r rainfall and SM timeseries of two pixels selected in the north-west of the Po basin are shown, as an 

example of the increased capacity of S1-RT1 for rainfall retrieval in the mountainous area. Since these pixels are selected in a 

topographic complex area, they should not be considered representatives of the overall performance and availability of the 360 

satellite rainfall products, rather an example of the improved performance derived from the use of S1-RT1 high resolution SM. 

Winter and early-spring measurements are masked in both pixels, due to frozen condition or snow cover, according to ERA5-

Land information. The pixel in Fig. 5 is selected over one of the mountain valleys of the Italian territory (7.152°E, 45.710°N), 

inside the Italian region Valle d’Aosta, in order to show how S1 spatial resolution increases the capabilities in rainfall 

estimation over such a region. By observing the rainfall timeseries in Fig. 5a and the standard month distribution in Fig. 5b, it 365 

can be noted how S1-RT1 derived rainfall is in better accordance with the observed one, in particular during autumn months. 

During late spring and summer, S1-RT1 and ASCAT estimates are more similar, withile S1-RT1 that  often underestimates 

the observed rainfall, also with respect to ASCAT. In Fig. 5d, the same behaviour can be noted on the averaged SM trends, 

with the SM sensed by S1-RT1 being averagely on average less than the one from ASCAT during late spring-summer and 

greater during the autumn season, probably due to the additional vegetation correction operated within S1-RT1. 370 

Figure 6 shows the timeseries of a pixel selected over the mountain slopes, in the vicinity of the previous one (7.410°E, 

45.824°N). While ASCAT SM estimates (Fig. 6c and 6d) show patterns that are similar to those in Fig. 5, S1-RT1 signal is 

completely different. The SM saturates in the summer period and goes down in autumn, with a strong seasonality that is poorly 

affected by the rainfall events. This is most probably an issue of the vegetation-correction, since it adds a strong seasonality to 

pixels that realistically exhibit little vegetation coverage, also due to the low spatial resolution (with respect to S1-RT1) of the 375 

LAI product used for correcting vegetation-seasonalities. This erroneous vegetation-seasonality is then counteracted by an 

erroneous SM seasonality. As expected, the poor quality of SM estimations, greatly affects SM2RAIN capabilities in 

calculating rainfall in these areas, resulting in very high rainfall rate perceived during summer and very low one during winter, 

in contrast with the observed data.  
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Finally, Fig. 7 shows the timeseries of a pixel selected over the plain (10.684°E, 44.805°N). As can be noted, the period of 380 

unavailability of the rainfall datum is greatly reduced in comparison with Fig.5 and Fig.6, since this area is characterized by 

higher temperature during the winter and by minor snow cover probability. Overall, S1-RT1 SM shows a greater variability 

during the summer season with respect to ASCAT (Fig. 7c-7d), thanks to both the vegetation correction and the higher spatial 

resolution. This leads to a greater accuracy in the peak rainfall detection of summer 2018 and 2019 (Fig. 7a). On the other 

hand, an overestimation of 2017 summer rainfall (potentially due to an error in SM estimation or to an irrigation event) and an 385 

underestimation of winter 2019 (probably due to SM saturation) is found. Overall, the rainfall estimate from S1-RT1 is in good 

accordance with the observed one (Fig. 7b), proving both the validity of the derived rainfall product and its usefulness for 

hydrologic modelling. 

5 Discussion 

The obtained results show that the high resolution information from S1 sensors allows to increase the accuracy of SM (and 390 

thus of rainfall) in areas where coarse resolution data are not able to obtain reliable estimates. Conversely, over some region 

the rainfall obtained from the application of SM2RAIN to S1-RT1 SM shows worse performance with respect to the one 

obtained when the algorithm is applied to ASCAT data, as it happens over many mountainous areas. Finally, the analysis 

highlighted In some areas, in which the accuracy of the rainfall obtained from the application of both the calibrated and 

parameterized SM2RAIN to ASCAT or S1-RT1 SM products is stably low, as discussed in section 4.2. This issue can depend 395 

by multiple factors, as SM signal quality, failure of the modelSM2RAIN algorithm hypothesis or accuracy of the benchmark 

rainfall product. In this appendix, aAn attempt to identify those area is here made, by highlighting the pixels in which the 

Pearson’s correlation between the 30 days accumulated rainfall from MCM and the four SM2RAIN derived products is always 

less than a threshold, fixed at 0.65, as shown in Fig. A-18. Multiple areas of stable low performances can be distinguished in 

the figure, highlighted in blue. Two main reasons of this behaviorbehaviour can be identified: issues with the SM sensing and 400 

issues with the benchmark product.  

In particular, the blue areas located in mountainous region in Fig. A-18, in the North and the West of the map, should be 

affected by both the source of error, since on topoorographically complex areas SM retrieval is difficult and weather radar 

accuracy drops. Notwithstanding this, ASCAT performance are still higher than those of S1-RT1 in these areas (compare with 

Fig. 4). This fact has a threefold explanation: first, S1-RT1 SM estimations are obtained without considering any snow 405 

masking, thus their accuracy over mountain region regularly affected by snow cover is limited; second the low quality of 

ASCAT SM retrieval over topographically complex area is mitigated by the presence in each ASCAT pixel of valleys and/or 

plateau in which SM accuracy is higher; third, SM2RAIN algorithm hypothesis could be not valid over these areas since the 
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runoff rate should be not negligible. Indeed, SM2RAIN conditions states that the runoff rate is negligible during the rainfall 

event, but the low temporal  resolution of S1 overcomes the duration of most of the events, questioning the condition’s validity. 410 

Instead, Tthe areas in Fig.8 within the light blue rectangles, are instead characterized by the presence of paddies and water 

bodies: here the low performance should be caused by low SM quality, due to the impossibility of retrieve SM information 

over flooded areas with active microwave sensors. Finally, the remnainingant blue regions should be affected by low quality 

of the benchmark product. This can be related either to “bad” performing gauge stations, recognizable through the central 

position of a gauge with respect to the low performing area (e.g. the two regions in the Center-East black rectangles), or to 415 

issues with weather radar and raingauges measurements, where the blue patterns are concentrated between two or more 

raingauges (e.g. the region within the black rectangles on the South-West). 

In order to better analyze this aspect, three stations located in within the three black rectangles in Fig. A-18 were selected, 

together with the nearest neighbour stations. The MCM timeseries of the pixels that includes the stations were extracted, in 

order to compare them and assess the quality of the consideredselected raingauges. The qualitative comparison of the stations 420 

is shown in Fig. A-2 9, where the scatter plots for each pair of raingauges is shown together with their position in the map (Fig. 

A-29a). In particular, a clear issue with the raingauge named A1 can be appreciated in Fig. 9A-2b, with this sensor measuring 

rainfall peaks up to 300 mm/day, absent from the nearest gauges. The issue can be confirmed by the low Pearson’s correlation 

between its timeseries and the one of the nearest raingauge, equal to 0.53, that is significantly lower than the mean Pearson’s 

correlation calculated between each couple of nearest stations within the study area, equal to 0.87 (standard deviation equal to 425 

0.1). Also Figure. A-29c shows strange patterns of rainfall: even if there are no large peaks, several rainfall events are sensed 

with different magnitude by the two stations named B1 and B2, as can be noticed by looking at the number of points that tends 

to the x and y axis which indicate severe over- or underestimation. Also in this case, the measured Pearson’s correlation is 

lower than the average, equal to 0.71. Finally, the station C1 (Fig. 9d) measures several peaks of rainfall that are higher than 

those sensedrecorded by the nearest raingauge, C2. Notwithstanding this, in this case the variation between the two sensors 430 

seems to be caused by the natural rainfall spatial variability of the rainfall, as demonstrated by the high Pearson’s correlation 

between the two timeseries, equal to 0.88. This was expected since the low performing region is not located around one of the 

stations, but in between them, over a hilly area that could affect the weather radar r measurements 

measurements.  

Errors in the selected benchmark product are a known limitation of the direct validation of rainfall datasets: . This fact is also 435 

the proof of the need of further research in the rainfall measurement fields, since the merging of different rainfall products, 

each with its limitation often complementary, can be beneficial, allowing to obtain a more reliable estimate. 

65 Conclusion 

Rainfall measurements from space have been lately widely are more and more used to increase the rainfall distribution 

knowledge and allow to improve water resource management capabilities, but their spatial resolution is limited due to 440 
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technological limitations. In this work, the SM2RAIN algorithm was applied to a 1 km spatial resolution Soil Moisture (SM) 

product from Sentinel-1 (S1) obtained through an algorithm based on the a first order solution of the Radiative Transfer 

equation, RT1, over the Italian fraction of the Po River Basin (Fig. 1), to obtain an equal high resolution rainfall product from 

satellite remote sensing. This region was selected due to the availability of a benchmark dataset from radar and raingauge data, 

obtained through the Modified Conditional Merging (MCM) algorithm. Two versions of SM2RAIN were applied in this 445 

analysis to compare the resulting performances: one uncalibrated, to foster the high resolution rainfall estimation in other 

regions where benchmark data are unavailable, and one calibrated against the observed data. In order to assess the 

improvements related to the high spatial resolution of S1, SM2RAIN was also applied to ASCAT SM, resampled to S1-RT1 

grid for comparison. The analysis was carried out at different temporal accumulation steps (1 day, 10 days and 30 days) to 

take into account the different temporal resolutions of the two SM products, 1.5 to 4 days for S1-RT1 and sub-daily for ASCAT, 450 

into accountthus calculating the rainfall accumulated at 1 day, 10 days and 30 days.  

The results (Fig. 3) show that it is indeed possible to obtain high resolution rainfall data from S1, even if the low temporal 

resolution of the data does not allow to calculate daily rainfall. It is instead possible to calculate it with ASCAT data due to 

the higher temporal resolution, with good results (median Pearson’s Correlation, R, of 0.61 and 0.64 for the parameterized and 

calibrated SM2RAIN). When 10 days accumulated rainfall is considered, S1-RT1 derived rainfall from the parameterized 455 

(calibrated) SM2RAIN performs quite well, with a median R of 0.61 (0.65), but ASCAT performances are higher, being the 

median with a median R equal to of 0.71 (0.75). At higher temporal accumulation temporal steps, the performance differences 

reduce, until ASCAT and S1-RT1 derived rainfall reach almost equal R for the 30 days accumulated rainfall (around 0.75). 

Similar conclusion can be deduced by analyszing RMSE index, while for BIAS index the differences between the calibrated 

and the parameterized SM2RAIN results are larger, probably due to the low spatial resolution of the product used to obtain the 460 

Po River Basin climatology, ( ERA5-Land).  

Even if on averagely the rainfall from ASCAT seems to be slightly better performing than the one from S1, the analysis of the 

spatial distribution of R shows instead the true benefits of the high resolution SM (Fig. 4). In the complex mountain regions, 

S1 obtains extremely good performance over the valleys and bad performance over the ridges, unsuited for SM remote sensing, 

whereas ASCAT R is averaged due to the overlaps always represents an average of the two signals forced by ASCAT due to 465 

the lower spatial resolution.  S1 derived rainfall is generally better performing than the one from ASCAT also in the northern 

section of the Po Valley plain, while the latter is better in the southern section, where irrigation is widely practiced. The 

fragmentary nature of the irrigation in this area could be the cause of this phenomena: S1-RT1 should be more sensitive than 

ASCAT to the signal generated by various small fields, where irrigation in not concurrent, thanks to its higher spatial 

resolution, but since irrigation is not considered in the benchmark product, the resulting R is reduced.   470 

Some areas with stable low performance of rainfall estimation were also identified (Fig. 8), caused by the limitations of 

SM2RAIN algorithm (e.g., areas in which runoff rate is not negligible), of the SM remote sensing (areas in which SM 

estimation is impossible, e.g., flooded or snow covered areas) and of the benchmark product (e.g., topographically complex 

areas). 
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Summing up, high resolution rainfall from satellite remote sensing is possible and is able to observe features that are averaged 475 

in products with lower spatial resolution, like the precipitation within mountain valleys and potentially the fields’ irrigation. 

Notwithstanding this, the low temporal resolution is currently a limitation for its application in many fields, even if high spatial 

resolution rainfall at monthly temporal resolution is still useful for fields such as agriculture, water resource management and 

index-based insurances. Future research steps should try to address this issue, e.g., by exploiting the integration of high spatial 

resolution products (characterized by low frequency) with high temporal resolution products (characterized by low spatial 480 

resolution). 

Appendix – A 

In some areas, the accuracy of the rainfall obtained from the application of both the calibrated and parameterized SM2RAIN 

to ASCAT or S1-RT1 SM products is stably low, as discussed in section 4.2. This issue can depend by multiple factors, as SM 

signal quality, failure of the model or accuracy of the benchmark rainfall product. In this appendix, an attempt to identify those 485 

area is made, by highlighting the pixels in which the Pearson’s correlation between the 30 days accumulated rainfall from 

MCM and the four SM2RAIN derived products is always less than a threshold, fixed at 0.65, as shown in Fig. A-1. Multiple 

areas of stable low performances can be distinguished in the figure, highlighted in blue. Two main reasons of this behavior 

can be identified: issues with the SM sensing and issues with the benchmark product.  

In particular, the blue areas located in mountainous region in Fig. A-1, in the North and the West of the map, should be affected 490 

by both the source of error, since on orographically complex areas SM retrieval is difficult and weather radar accuracy drops. 

The areas within the light blue rectangles, are instead characterized by the presence of paddies and water bodies: here the low 

performance should be caused by low SM quality, due to the impossibility of retrieve SM information over flooded areas. 

Finally, the remnant blue regions should be affected by low quality of the benchmark product. This can be related either to 

“bad” performing gauge stations, recognizable through the central position of a gauge with respect to the low performing area 495 

(e.g. the two regions in the Center-East black rectangles), or to issues with weather radar measurements, where the blue patterns 

are concentrated between two or more raingauges (e.g. the region within the black rectangles on the South-West). 

In order to better analyze this aspect, three stations located in within the three black rectangles in Fig. A-1 were selected, 

together with the nearest neighbor stations. The MCM timeseries of the pixels that includes the stations were extracted, in 

order to compare them and assess the quality of the considered raingauges. The qualitative comparison of the stations is shown 500 

in Fig. A-2, where the scatter plots for each pair of raingauges is shown together with their position in the map (Fig. A-2a). In 

particular, a clear issue with the raingauge named A1 can be appreciated in Fig. A-2b, with this sensor measuring rainfall peaks 

up to 300 mm/day, absent from the nearest gauges. The issue can be confirmed by the low Pearson’s correlation between its 

timeseries and the one of the nearest raingauge, equal to 0.53, that is significantly lower than the mean Pearson’s correlation 

calculated between each couple of nearest stations within the study area, equal to 0.87 (standard deviation equal to 0.1). Also 505 

Figure A-2c shows strange patterns of rainfall: even if there are no large peaks, several rainfall events are sensed with different 
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magnitude by the two stations named B1 and B2, as can be noticed by looking at the number of points that tends to the x and 

y axis which indicate severe over- or underestimation. Also in this case, the measured Pearson’s correlation is lower than the 

average, equal to 0.71. Finally, the station C1 measures several peaks of rainfall that are higher than those sensed by the nearest 

raingauge, C2. Notwithstanding this, in this case the variation between the two sensors seems to be caused by the natural 510 

spatial variability of the rainfall, as demonstrated by the high Pearson’s correlation between the two timeseries, equal to 0.88. 

This was expected since the low performing region is not located around one of the stations, but in between them, over a hilly 

area that could affect the weather radar measurements 

Appendix – B 

In this paper, the performance indexes were calculated at three different temporal steps: 1 day, 10 days and 30 days. In order 515 

to obtain them, the timeseries of each estimated product and of the observed one were accumulated according to the selected 

period by considering only the intervals in which the data was available in both the datasets. This choice was made to obtain 

the best accurate assessment of each product, by calculating its potential in estimating rainfall against a concurrent dataset. 

Notwithstanding this, the comparison of ASCAT and S1-RT1 based on such performances could be biased, because in this 

way the analyzed indexes are calculated against two different benchmark datasets, each resulting by representing only the 520 

selected product valid data periodsoverlapping timestamps. In this section, we decided therefore to calculate again the 

performance indexes by accumulating the rainfall of the observed and estimated datasets only over the periods in which the 

three datasets (i.e., MCM, ASCAT and S1-RT1) are available together, and to insert in this appendix the corresponding of 

Ffigures. 4 (Fig. B-1) and 5 (Fig. B-2) with respect to the newly calculated indexes: Fig. 4 (Fig. A-1) and 5 (Fig. A-2). To 

further increase the comparison quality and to avoid the period in which just one Sentinel-1 sensor was in orbit and thus the 525 

associated drop in performance, only the data subsequent to 01/10/2016 were considered for the new indexes calculation. 

In comparison with the paper’s results, here ASCAT performances increase, due evidently due to the removal of some low 

performing data, as confirmed by the appearance of some patterns within the ASCAT correlation maps in Fig. BA-2a that 

resemble the invalid pixel percentage distributions map of Fig. BA-2d. Notwithstanding this, the areas in which S1-RT1 

outperforms ASCAT are almost confirmedidentical, although shrinked, confirming the paper’s results. 530 
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Figure 11: Po River Basin areaelevation map from ASTGTM. The black lineshade  indicates the study Italian boundaries, while the 

red line the Po river basin boundaries.area, inside Italian territory. The Swiss fraction of the basin, excluded from this study, is 

highlighted in red. Map copyright ©2021 GeoBasis-De/BKG (©2009), Google, Inst. Geogr. Nacional Immagini ©2021 TerraMetrics. 
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Figure 2: Estimated average 30 days accumulated rainfall from the parameterized SM2RAIN applied to ASCAT (Panel a) and S1-

RT1 (Panel b) SM product for the period 2016-2019. Map copyright ©2021 GeoBasis-De/BKG (©2009), Google, Inst. Geogr. 

Nacional Immagini ©2021 TerraMetrics. 665 
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Figure 3: Violin plots of Pearson Correlation (R, panel a), Root Mean Square Error (RMSE, panel b) and BIAS (panel c) between 

the rainfall from MCM and from SM2RAIN applied to ASCAT and S1-RT1. ASCAT-derived rainfall was accumulated at 1, 10 and 

30 days, while the rainfall from S1-RT1 was accumulated at 10 and 30 days. Each violin shape is obtained by rotating a smoothed 

kernel density estimator. The green violins are obtained by calibrating SM2RAIN against MCM, while the red violins derived from 670 
the parameterized SM2RAIN procedure. 
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Figure 4: Spatial Pearson’s correlation (R) between the 30 days accumulated rainfall derived from MCM and the application of the 

parameterized SM2RAIN to ASCAT (panel a) and to S1-RT1 (panel b) SM products. Panel c shows the difference between ASCAT 675 
and S1-RT1 correlation maps, while panel d) and e) show the percentage of not valid images per pixel respectively for ASCAT and 

S1-RT1. 

  



27 

 

 

Figure 5: Example of SM and rainfall timeseries over a pixel (7.152°E, 45.710°N) where the parameterized SM2RAIN applied to S1-680 
RT1 outperforms SM2RAIN-ASCAT. In panel a, the timeseries of the observed (blue) and estimated (red SM2RAIN-ASCAT, green 

SM2RAIN-S1-RT1) 10-days accumulated rainfall products are shown, while panel c displays SM timeseries averaged with a 3 days 

window. Finally, panel b and d contain the standard month average of the rainfall and SM products, respectively. The periods 

masked for frozen soil condition or snow cover are highlighted in grey. 
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Figure 6: Example of SM and rainfall timeseries over a pixel (7.410°E, 45.824°N) where the parameterized SM2RAIN-ASCAT 

outperforms SM2RAIN applied to S1-RT1. In panel a, the timeseries of the observed (blue) and estimated (red SM2RAIN-ASCAT, 

green SM2RAIN-S1-RT1) 10-days accumulated rainfall products are shown, while panel c displays SM timeseries averaged with a 

3 days window. Finally, panel b and d contain the standard month average of the rainfall and SM products, respectively. The periods 690 
masked for frozen soil condition or snow cover are highlighted in grey. 
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Figure 7: Example of SM and rainfall timeseries over a pixel (10.684 E° 44.805 N°) selected in the plain. In panel a, the timeseries of 

the observed (blue) and estimated (red SM2RAIN-ASCAT, green SM2RAIN-S1-RT1) 10-days accumulated rainfall products are 695 
shown, while panel c displays SM timeseries averaged with a 3 days window. Finally, panel b and d contain the standard month 

average of the rainfall and SM products, respectively. The periods masked for frozen soil condition or snow cover are highlighted 

in grey. 
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Figure A-18: Map of Po River basin. The blue pixels indicate the areas where Pearson’s correlation between the 30 days accumulated 

rainfall from MCM and the calibrated and parameterized SM2RAIN applied to ASCAT or S1-RT1 is stably less than a threshold 

of 0.65. The light blue rectangles surround the areas with paddy areas or abundant water bodies, while black rectangles outline 705 
areas with alleged “bad” performing gauge station. Finally, the white dots show the gauge stations location and the green dots the 

raingauge selected to be further analyzed. Map copyright ©2021 GeoBasis-De/BKG (©2009), Google, Inst. Geogr. Nacional 

Immagini ©2021 TerraMetrics. 
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Figure A-29: Panel a shows the boundary of the Po River basin, together with the position of three couple of stations (A1-A2, B1-B2 710 
and C1-C2) with alleged “bad” MCM performance. The scatter plots of the daily rainfall measured by each couple of stations is 

then shown in Panel b, c and d. 
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Figure BA-1: Violin plots of Pearson Correlation (R, panel a), Root Mean Square Error (RMSE, panel b) and BIAS (panel c) between 

the rainfall from MCM and from SM2RAIN applied to ASCAT and S1-RT1. ASCAT-derived rainfall was accumulated at 1, 10 and 715 
30 days, while the rainfall from S1-RT1 was accumulated at 10 and 30 days. Only the periods in which all three products are available 

are considered in the accumulation. Each violin shape is obtained by rotating a smoothed kernel density estimator. The green violins 

are obtained by calibrating SM2RAIN against MCM, while the red violins derived from the parameterized SM2RAIN procedure. 
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Figure BA-2: Spatial Pearson correlation (R) between the 30 days accumulated rainfall derived from MCM and the application of 720 
the parameterized SM2RAIN to ASCAT (panel a) and to S1-RT1 (panel b) SM products, considering only for the periods in which 

all three products are available. Panel c shows the difference between ASCAT and S1-RT1 correlation maps, while panel d shows 

the percentage of not valid images per pixel. 

 


