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Response to reviewer #2 
We thank the reviewer for the time and effort and for the detailed review report that 
will help us improve the paper. Below is our response where the reviewer comments 
are in black, the response is in green, and the copied text from the manuscript is in 
blue. 

 

This paper presents ML models that respectively (i) directly predicts the river stage (rather 
than predicting discharge and then translating to stage); (ii) predict wet/dry of pixels 
depending on gauge stage; (iii) and estimate flood inundation depth. Among these, (i) was 
trained based on historical stream gauge data and near-real-time upstream gauges; (ii) was 
trained using historical satellite data and coincident stream gauge height data. (iii) was not 
really a model, per say, but an interpolation procedure. 

I think the paper demonstrated strong performance from a completely data-driven model. It 
highlights the idea of directly simulating stream gauge height, which breaks many barriers. If 
they didn’t do this, they need to simulation discharge and then resolve the highly-variable (in 
space) relationship between discharge and stage height. Most of time we cannot resolve it. 
In the authors’ case, there is no discharge data to begin with. So directly tackling gaging 
height is a good and necessary idea (but it also leads to some issues I will discuss below). 
The paper also demonstrates a very efficient forecasting scheme based on upstream gauge 
data. The whole paper demonstrated how to stack different models together. The authors 
also showed a unique flood inundation component that is accurate. The work is very useful 
for hundreds of millions of people and it takes lots of courage to take on such a 
responsibility. 

We thank the reviewer for highlighting this paper's contributions. 

 

While there are many reasons why I like this paper and I encourage the publication of this 
paper, I also noticed a few major issues. These issues are raised here in the hope to make 
the manuscript more balanced and comprehensive. 

Thank you for pointing out these issues. Your comments are very helpful and helped us to 
improve the paper. Please see below our point-by-point response to each of them. 
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(a1) There should be some discussion of the potential scientific limitations (even if caused 
by practical data availability) of the approach and the conditions under which this approach 
is applicable. As far as I can see, all the models were posed in a highly case-specific way. 
The gauge height LSTM model has weights that are shared across multiple gauges but it 
also needs gauge-specific weights that are tuned to local data with a particular 
configuration. (how much worse will it get if you don’t use those gage-specific weights?) The 
inundation extent model is tied to the gauge and the particular river bathymetry downstream 
from that gauge. In other words, it seems these models can only be applied where gauge 
data is available for training. The trained relationship is not portable anywhere else (if so, it 
poses a requirement on the available data records). Don’t get me wrong. I think the model is 
highly useful operationally. In India there are many places where the model is applicable. It 
just might make sense, if these limitations are true, authors can discuss where and when 
this model formulation is valid so it is easier for the readers to understand if these 
algorithms are sound for their purpose. Maybe they can come up with a more uniform model 
and show its accuracy. 

Thank you for this comment. Indeed, as we already emphasize in the paper, and would be 
better clarified in the revised version, this model is aimed at gauged locations in relatively 
large, slow-responding rivers. Indeed, the LSTM model training has both shared and gauge-
specific weights. Gauge-specific weights are required for incorporating upstream gauge 
data as input, which is a very informative input. Without gauge-specific weights, the LSTM 
performs much worse. It is also true that the inundation model is also gauge-specific. This 
indeed requires having some data for training (past stage data and flood inundation from 
satellite). We do not claim these weights can be transferred to other locations, only that 
adding new locations which meet the above conditions is easy, or in other words, the 
models are scalable. See our response to the next comment concerning scalability. 

We agree the limitations need to be stated clearly and therefore we will add the following 
paragraph to the discussion section in the revised manuscript: 

“The presented system has some limitations that need to be emphasized. First, Google’s 
flood warning system in its present form is designed for flood forecasting in gauged river 
locations. Specifically, this requires, at a minimum, river gauges providing their stage data in 
real-time that have records of historical stage data and a few cases of flood events to be 
used for training and validation of inundation models (here, records of 6-7 years were used). 
Second, the stage forecasting and inundation models would work the best in slow-
responding, large rivers. Apparently, even with these restrictions, such flood warning 
systems can be useful for a large population worldwide. We are currently working on 
extending the system to accomplish two additional goals:...” 

Actually, our plans (which are already underway) include expanding the model to ungauged 
locations, and improving performance on flashier rivers. This is already explained in the 
discussion section in the current version of the paper. 



3 
 

We are not sure we understand what the reviewer means in a “more uniform model”. If the 
meaning is a model with the same configuration for all gauges then our model indeed has 
the same configuration across all gauges, albeit with some parameters that are gauge 
specific. This is similar to any hydrological model that has some watershed-specific 
parameters. If the reviewer meant something else, we would love to better understand and 
address the concern.  

 

(a2) This point also contradicts the authors’ claim that the model is highly scalable. You 
cannot take the model to a new terrain and directly apply it. In addition, the learned 
relationships may not always stand --- what if you have heavy rainfall in the region between 
your upstream gauge and the gauge of interest? It seems your model cannot consider such 
forcings (this may not matter that much for large-scale Indian monsoons, but it could be 
important elsewhere). This means, while the model is fast to run, it is not scalable in the 
sense of expanding to new areas ---- you must spend the time and effort to collect the data 
and train the model in every new area of interest, and that is assuming you are lucky 
enough to have the  data. Hence, it is uncertain how the authors intend to use the model on 
large areas. 

Thanks for raising this point. Please note we did not use the term “highly scalable”. The 
term “scalable” appears two times in the paper, one in the introduction describing the 
findings from previous studies and the second when we explain that the ML inundation 
models were found more scalable than the Hydraulic model. Nevertheless, we do claim the 
ML models described in this paper are generally scalable in the sense explained below. 

We distinguish between scalability in the sense of applicability to different regimes and 
scalability in the sense of how easy it is to deploy the models at enormous scales within the 
applicable regimes. Here we refer to the latter, while for the former we clarified above 
(response to comment a1) what conditions our model is applicable to. When comparing 
scalability of our model to other hydrological and hydraulic models the tradeoff with 
accuracy needs to be remembered. Many hydrological and hydraulic models were 
developed to work with static (e.g., DEM, soils, landuse) and meteorological forcing data 
(e.g., precipitation, temperature) as input. If no calibration is needed, such models in 
principle have high scalability. However, without any calibration the accuracy of those 
models is very low, as was discussed in many hydrological publications. If high accuracy is 
needed, calibration against observed records is required, and this is known to be a 
demanding process. In particular operational frameworks require high accuracy models and 
thus models’ calibration is an essential and important step in their deployment. We compare 
to those models when claiming an improvement to scalability.  

As a measure for scalability, one can assess the time and effort it takes to deploy the 
system to a new large region (e.g., country, with hundreds of gauges), within the applicable 
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regime. Requirements for data collection and quality control are identical for all models 
using gauge data and are therefore not included in the assessment. For the presented flood 
warning system we conservatively estimate that the ML stage forecast and inundation 
models deployment would take for such a new region all together about 6-7 days of CPU 
time and manual work. On the other hand, the deployment and calibration of standard 
hydrological and hydraulic models to hundreds of new gauges would most probably take 
significantly longer. 

It is also important to emphasize that the flood warning system is certainly intended to cover 
large areas. First, the system in its current version already covers 450K sq. kms and a 
population of 360 million, and is being extended to several new countries (in Asia, South 
America and elsewhere), including some that are not in the Indian Monsoon climatic regime. 
In parallel, we are actively developing a modified generalized global model which can be 
deployed both in gauged and in ungauged locations. This effort is mentioned in the paper, 
but we do not yet have results for this model to report.  

Concerning the reviewer’s point of heavy rainfall between the upstream gauge and the 
target gauge: although a situation as the reviewer describes can happen (though not 
commonly), we think the model is set up to be able to handle most of these cases as well. 
The main reason is that, in addition to the input from upstream gauges, the model input 
includes the watershed-averaged precipitation and the target gauge past stages. The 
situation the reviewer describes can typically happen when the upstream gauge is at a 
relatively large distance from the target gauge, which implies the additional watershed area 
between the upstream and the target gauges cannot be too small. For such a rainfall event 
to cause a large rise of the river stage at the target gauge location (especially in the large 
rivers we address) it must produce substantial rain amounts over this downstream 
watershed area. It is therefore probable this rainfall would produce some signal in the 
watershed-averaged precipitation, even though it does not cover the entire watershed. It is 
also probable that the target gauge will start rising due to the rainfall event. The signals in 
both inputs (i.e., precipitation and past target gauge stage) are likely to lead to a forecast of 
a general river rise. It is true such an event would have a shorter response time compared 
to more spread rainfall and it is possible such an event can be forecasted only with shorter 
lead times than the lead time selected for the gauge - yet it’s worth noting that our system 
includes support for automatically shortening lead times in such events. The scenarios 
above are currently speculated and analyses are required to confirm their validity.  

    

(a3) It also exerts some constrain on the eligibility of sites. Because you have to train a site-
specific model, you can only use sites with long-enough records to train the model. The 
model cannot be large, and information from other sites do not help with a particular gauge 
of interest. 
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This is true but the required record length is not large. In this study, the training data set 
included data for 7 years for the stage forecast model and 5 years (i.e., flood events from 
this period) for the inundation model. The cross-validation analysis (presented in Section 3) 
was based on training records of 6 and 4 years for the two models, respectively. We clarify 
this point in the new paragraph we will add to the discussion Section (see text in the 
response to comment a1 above).  

“The model cannot be large”: this is true, ensuring the model does not overfit to the data is a 
key concern. The architecture presented is built specifically to address this concern - the 
shared weights among all locations allow for a much larger and more complex model (since 
it is trained across sites), while the per-gauge weights allow for some site-specific 
customization but are kept small. Our validation and test results show that the models do 
not overfit to the data.  

“information from other sites do not help with a particular gauge of interest”: we do not 
agree with this statement. The LSTMs are shared models, and as such allow the model for 
each target gauge to benefit from the training data of all gauges. This point relates to the 
previous ones - each specific gauge does not have enough historical training data to train a 
model as complex as LSTM - these models aggressively overfit when trained on individual 
gauges. However, the shared LSTM model allows the architecture to model complex 
rainfall-runoff patterns without overfitting. 

 

(a4) If my understanding is incorrect, I stand corrected and the authors can show a test 
case where the model is applied to an “ungauged” location. 

The reviewer is correct. This flood warning system indeed focuses on gauged locations. We 
wrote this in the current version of the paper but will better emphasize this in the revised 
version with the new discussion paragraph presented above.  

 

(b) The training dataset for the models were not clearly described. For the inundation extent 
model, there should be descriptions of how many events were included as training and test 
images. 

Thank you, these details will be added to the revisions as follows: 

In Section 2.2 (Stage forecast modeling) under “Training and validation” we will add: “The 
training and validation data sets are composed of samples where the features are past river 
stages at the target and upstream gauges and past spatially-averaged precipitation (for the 
LSTM model). The labels for training are future river stages at the target gauge for a given 
lead time.” 
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In Section 2.3 (Inundation modeling) under “Training and validation” we will modify the 
present text to clarify the structure of the training and validation data sets: “The training and 
validation data sets for the inundation models are composed of samples representing 
historical flood events where the features are gauge water stage measurements and the 
labels are the corresponding flood inundation extent maps from satellite data.” 

We provided the numbers of flood events used for training the ML inundation models for the 
2021 implementation in Section 2.5 (although they would be corrected in the revised 
manuscript). But we did not provide the numbers for the cross-validation analysis in Section 
3. We will add these details in the revised manuscript: “...in these years there are a total of 
4815 flood events across all the AOIs (on average 34 events were used for training and 10 
for validation per AOI).” 

 

(c) It is not clear if the model accuracy drops as we go further downstream from the gauge. 
Some exploration here will be useful. 

It is not clear if the reviewer refers here to the stage forecast model or to the inundation 
model. The stage forecast is only for the gauge location so we assume that the reviewer’s 
comment refers to inundation modeling. We did not explore this issue, but we visually 
examined numerous flood inundation examples and did not identify such signal within the 
scale of the current AOIs. Nevertheless, we will do a small test to decide whether such 
analysis is worthwhile to pursue and if a trend will be recognized we will present it in the 
revised manuscript. 

 

(d) regarding authors’ criticism on the hydraulic model --- are we sure you feed it the best 
parameters and inputs? There is no description about calibration. Back to point (a), in a 
region without past observations, the hydraulic model may still function but the ML 
inundation model may not --- which means these models have their own use cases. If I’m 
wrong please correct. 

Indeed many efforts were made to calibrate and benchmark the Hydraulic model, especially 
during the first years of the project when it was a part of the operational system (until 2019). 
We have tested our calibrated hydraulic models against standardized benchmarks, and paid 
well established third-party hydraulic engineering companies to set up and manually 
calibrate hydraulic models using standard platforms (e.g. Delft-FEWS) on our areas of 
interest - achieving similar metrics and forecasts to our own hydraulic models. Our analysis 
has also shown that the inundation pattern from the Hydraulic model is most sensitive to the 
upstream discharge and the downstream normal slope, while the effect of roughness 
coefficients on the inundation was much weaker and interacted with the other factors. 
Therefore, we ended up fixing the roughness coefficient per pixel (one of two values, 
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representing either a river-bed or a non-river-bed pixel) and optimized the upstream 
discharge and, if needed, also the downstream slope. We ran about 1000 simulations per 
AOI to optimize those parameters. One cannot guarantee that those are the best 
parameters, as the optimization of such models is a complex process. But given all 
simulations, we assume the optimization is quite good and it is fair to compare the 
optimized Hydraulic model with the ML models. The reviewer is correct that we do not 
elaborate on the Hydraulic model optimization. We do so for the sake of conciseness since 
we are not using it in the operational system.  

The reviewer raises a fair point that the Hydraulic model could be useful for locations 
without data on past flood inundations, while the ML models are not applicable in such 
cases. This would be correct in cases where the gauge input is discharge, rather than the 
stage. However, with stage input data the Hydraulic model must be optimized for the 
relation between stage and inundation pattern and therefore requires records of historical 
flood inundation data and their respective gauge stage measurements, similarly to the ML 
models. As the reviewer points out in this same comment, the Hydraulic model often 
requires some level of calibration, unless some regional parametrization can be used. 
Ideally, if high quality, high resolution DEMs (including bathymetry) and real-time discharge 
data are available and if regional parametrization is applicable, Hydraulic models can 
indeed perform well. But in reality, this is a rare situation, and in most gauged sites the 
reliable application of the Hydraulic model, same as ML models, would require historical 
flood data.    

 

(e) there seemed to be no description of network configurations such as hyperparameters, 
hidden size, minibatch (maybe there is not a minibatch), training epochs, etc.   

Thank you. We will add a new table with all hyperparameters to the revised manuscript.   

 

(g) does it make sense to average precipitation for a drainage area > 100,000 km2? 

This is a good point. As many hydrological studies have shown, there is a tradeoff in 
spatially averaging precipitation data. Surely, floods are sensitive to the spatial patterns of 
precipitation but at the same time errors in this often inaccurate information are dumped out 
with averaging. However, as opposed to standard hydrological models where precipitation 
is the most important input, for the present system the main input signal is from past river 
stages (from the target gauge and its upstream gauges). Precipitation input improves the 
prediction accuracy, on top of the accuracy achieved with past stages, as shown in section 
3.1, but the model is already quite accurate even without precipitation input. In this situation, 
it is better to keep the precipitation spatially averaged rather than adding many precipitation 
features and increasing the model complexity. Even when averaged over such large areas 
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of hundreds of thousands square km, the mean-areal precipitation time series has value as 
it is correlated with the main precipitation systems that lead to an increase of these large 
river stages. It might be that in a very different climatic regime, where precipitation systems 
are substantially smaller (e.g., in the arid regions), or if past river stage data are not used as 
input, such an average would not make sense and another strategy would be taken. Indeed, 
in our efforts towards extending the models to more climatic regimes and to ungauged 
locations we are currently exploring averaging precipitation over sub-basins, but cannot 
report the results yet.   

 

(h) We have no intuitive understanding of what F metrics mean. Do you mind showing some 
observed vs simulated maps for different values of the F metric? 

Below are two maps for the same flood event with two different models. On the left, a trivial 
“model” simply assumes an inundated circular area, while the model on the right is a result 
of one of our inundation models. The colors represent true-positive (hits) in blue, false-
positive (false-alarm) in yellow, false-negative (miss) in red, and true-negative in gray. The 
map on the left has: precision=53.8%, recall=16.4%, F1=25.1%. The map on the right has: 
precision=76.3%, recall=85.4%, F1=80.6%. Note that the map on the right has some gray 
area that was cut out, but true-negatives are not included in the computation of the F1-score 
so it does not affect this metric. We hope this is helpful. We will provide these examples in 
the supplementaries of the revised manuscript.  

       

 

(i) the flooding depth model was never tested and we do not know its accuracy. Can you 
talk about its value in the real world? Also, low-resolution could also give you discontinuity. 
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We agree with this point. In fact, we are putting considerable effort to collect ground truth 
depth data and get feedback from people in the affected regions via surveys in collaboration 
with local organizations. Unfortunately, the data we collected so far is too limited and too 
scattered - due to COVID limitations and other hurdles. Therefore we cannot yet present its 
accuracy, as we emphasize in the paper. We are continually investing in collecting more 
data to validate flood inundation and depth. To better clarify this point we will add the 
following discussion paragraph to the revised manuscript: 

“A few studies examined the effectiveness of flood alerts in operational frameworks. For 
example, Rotach et al. (2009), as a part of an end-to-end operational flood warning system 
in the Alpine region, collected feedback from end-users through questionnaires, interviews, 
and workshops, and some initial insights are given on the utility of the system for the 
decision-makers and how well the information was perceived. It should be noted, however, 
that the current knowledge about effective flood warnings in countries like India and 
Bangladesh is very limited. For example, a literature review by Keller et al. (2021) shows 
that the large majority of the published literature about this topic focused on industrial 
countries while less than 6% focused on Asia and none on South America or Africa; they 
emphasize that little is known about the transferability of findings from industrial to non-
industrial countries. An important input to these investigations is feedback from the 
population and from local aid organizations on whether alerts were received, how accurate 
they were (in terms of flood inundation and flood depth), how useful they were and what 
actions have been taken. Our research efforts are ongoing in this direction and the analysis 
indicates flood alerts being effective. The full details of this research would be reported 
separately and are expected to help both in validating and in improving the flood warning 
system.” 

The reviewer is correct about the possibility of discontinuity in inundation depth due to the 
discretization to 16 meter pixels. This resolution was however found appropriate in providing 
reliable inundation prediction; the pixelated pattern better represents actually the 
information these maps provide. Furthermore, the feedback we received so far from 
governments and NGOs doesn't indicate a need for a higher resolution than that. 

 

(j) can this study be reproduced at all? It seems not much of the study can be reproduced or 
even compared to in terms of data. All the code and data are either proprietary or 
unavailable. We were just told they could do this and do that and there is no possible path 
to trying most of the steps here.  

We agree this is an unfavorable situation. We have no solution for the data, which we are 
not allowed to distribute, and the system code which is proprietary Google code. But we do 
want to make the models reproducible as much as we can, and in particular, the new ML 
inundation model presented in this paper for the first time. Therefore, we plan to do our best 
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to write either a practically equivalent, standalone python code or accurate and reproducible 
pseudo-code for the Thresholding and Manifold models, which will be provided in 
supplementary with the revised manuscript. If one has samples of gauge stage and flood 
inundation maps (and DEM data for the Manifold model), the code can be used for training 
the models and computing flood inundation and potentially their depth.     

 

Some minor points: 

Line 158. What does “State handoff” mean? 

State handoff means transferring the final hidden and cell states of one LSTM, through a 
fully connected layer, to the initial states of the next LSTM. These are represented by the 
chain: h(t), c(t) -> fully connected layer - > h0(t),c0(t) in the middle of Figure 2b. We can add 
this clarification in the paper if the reviewer recommends this.  We can add this clarification 
in the revised paper if the reviewer recommends this.   

 

Line 190. Should be “Quasi steady state” to be more exact 

Thank you. We will modify this term in the revised paper. 

 

Line 196. “Discarded” – see my point above, can you use a more gentle word? 

We agree. The sentence would be changed in the revised paper to: 

“...it was used in the operational framework in previous seasons, but it is currently not in use 
since in the present conditions it was found to be both less accurate and less scalable than 
the ML models…” 

 

Line 198-199. “when the target gauge exceeds a (pixel-specific) threshold water stage. ” A 
bit confused. A gauge is just at one location, then why do you have a pixel-specific 
threshold linked to a gage? If it is pixel-specific, then you end up getting a map of different 
thresholds? Should it be image-specific thresholding? 

The model results in a map of thresholds on the gauge stage. When the gauge data is 
higher than the threshold in a given pixel, this pixel is considered as wet. We do not think 
the term “image-specific” sufficiently clarifies this. To improve clarity, we will modify this text 
to:  
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“The model includes pixel-specific thresholds for each pixel in the AOI. Each pixel for which 
the water stage in the target gauge exceeds its threshold is assumed to be inundated (i.e., 
wet) while the pixels for which the target gauge is below their threshold are dry.” 

 

Line 219. Maybe I’m missing sth, although the thresholding model does not need DEM, it is 
tied to a particular gauge and the particular terrain/floodplain characteristics. It needs to be 
trained for each domain of interest using historical inundation extent and gauge height data, 
so it is not clear to me you can deploy to a new region without effort. 

The sentence says: “Thresholding model requires almost no site-specific data like DEMs, 
and no manual work, making it appealing for large scale deployment across many AOIs in a 
short amount of time.”. We do not claim that no data at all is needed, but the data required 
are satellite data (i.e., SAR images for a few historical floods), which are available globally 
(thanks to Sentinel-1 and others). We indeed also require stage data for the target gauge, 
and have revised to further emphasize our focus on gauged rivers in response to previous 
comments. Nevertheless, we agree that it is inaccurate writing “requires almost no site-
specific data” and we will modify this sentence in the revised manuscript to: 

“Thresholding model requires no DEM data, but only historical flood inundation maps and 
gauge stages for training. This makes it appealing for large scale deployment across many 
AOIs in a short amount of time.” 

 

Line 375 what happened to the flood and the effectiveness of the alert? You get us 
concerned but didn’t say any outcome. 

What we can currently say is that the alerts were sent to the public and to organizations, 
including CWC, which published it on Twitter (shown in Figure 7f). We were in touch with 
several NGOs, including the Yuganter organization, www.yuganter.org.in, that confirmed 
the flood events’ occurrence (and sent us the photos presented in Figure 7d,e). However, 
we do not have yet information, which we agree is important, about actions that were taken 
in response to this specific flood alert. Evaluating actions on the ground requires completely 
distinct tools and methodologies (e.g. randomized controlled trials, field surveys, etc.). We 
are currently pursuing such research and hope to publish its results soon. We can share 
informally that preliminary results from a research collaboration with the Yale Economic 
Growth Center show that in places where our forecasts were distributed (through Yuganter 
volunteers) they have led to a statistically significant increase in protective actions 
compared to control cases. A discussion paragraph, presented in our response to comment 
i above, will be added to the revised manuscript to better clarify this point.     

 

http://www.yuganter.org.in/
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