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Abstract. Accurate representation of channel properties is important for forecasting in hydrologic models, as it affects height, 10 

celerity, and attenuation of flood waves. Yet, considerable uncertainty in the parameterization of channel geometry and 

hydraulic roughness (Manning’s n) exists within the NOAA National Water Model (NWM), due largely to data scarcity: only 

~2,800 out of the 2.7 million river reach segments in the NWM have measured channel properties. In this study, we seek to 

improve channel representativeness by updating channel geometry and roughness parameters using a large, previously 

unpublished hydraulic geometry (HyG) dataset of approximately 48,000 gages. We begin with a Sobol’ sensitivity analysis of 15 

channel geometry parameters for 12 small semi-natural basins across the continental U.S., which reveals an outsized sensitivity 

of simulated flow to Manning’s n relative to channel geometry parameters. We then develop and evaluate a set of regression-

based regionalizations of channel parameters estimated using the HyG dataset. Finally, we compare the model output generated 

from updated channel parameter sets to observations and the current NWM v2.1 parameterization. We find that, while the 

NWM land surface model holds the most influence over flow given its control over total volume, the updated channel 20 

parameterization leads to improvements in simulated streamflow performance relative to observed flows, with a modest mean 

R2 increase from 0.479 to 0.494 across approximately 7,400 gage locations. HyG-based channel geometry and roughness 

provide a substantial overall improvement in channel representation over the default parameterization, updating the previous 

set value for most reaches of Manning’s n = 0.060 to a new range between 0.006 and 0.537 (median 0.077). This research 

provides a more representative, observationally based channel parameter dataset for the NWM routing module, as well as new 25 

insight into the influence of the routing module within the overall modeling framework. 

 

1 Introduction 

In the continental United States (CONUS), flood events are among the most significant natural disasters in terms of damage 

to life and property. Direct losses from flooding rank a close second to hurricanes and represent a quarter of nationwide total 30 

damages stemming from natural hazards at $144 billion in losses from 1960 to 2009 (Gall et al., 2011). Flood waves generated 

from extreme precipitation events or infrastructure failure propagate from the origin along a channel network and are 

influenced by the geometric and physical properties of the channels along its path. Forecast centers simulate hydrologic 

processes using a framework of atmospheric and hydrologic models coupled with routing models to simulate flood wave 

propagation, and parameterization of channel properties within these models is necessary for forecasting of flood waves and 35 

thus mitigation of potential damage. Sparse observational data availability renders the adequate characterization of channel 

properties a challenging task and typically requires some form of parameter regionalization. In this study, we seek to improve 

flood simulation accuracy of the NWM by replacing its current channel parameters with those based on a regionalization of 

an extensive observational database. This research is focused on the NWM channel routing module, and therefore does not 

investigate parameterization of the Land Surface Model (LSM), the gridded routing module, or any other component of the 40 

NWM framework.  
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Agencies such as the National Oceanic and Atmospheric Administration (NOAA) supply much of the actionable flood 

forecasting data for informed policymaking and emergency management decisions. In many cases, these data are produced by 

LSMs continuously forced by weather forecast data. This framework allows for the simulation of hydrologic processes 

occurring at individual watersheds forecast into the near future to produce actionable, time-sensitive hydrologic information. 45 

One emerging hydrologic modeling framework is the NOAA National Water Model (NWM). Launched in 2016, the NWM 

continuously simulates observed and forecast streamflow for approximately 2.7 million river reaches over CONUS. The basis 

of the NWM is the Weather Research and Forecasting Hydrologic Model (WRF-Hydro; Gochis et al., 2020), which accepts 

forcing data from a number of different sources to generate short- (18 hour), medium- (~10 day), and long-range (30 day) 

forecasts, as well as analysis of current streamflow. WRF-Hydro is one-way or two-way coupled (depending on configuration) 50 

with the Noah Multi-Parameterization (Noah-MP; Niu et al., 2011) LSM to simulate land surface processes at 1 km resolution, 

and separate two-part channel routing system . The first part routes flow on a 250 m grid using both diffusive wave surface 

and saturated subsurface flow routing. The second routes flow along the National Hydrography Dataset (NHD)-Plus medium 

resolution channel network using the Muskingum-Cunge method  (Cunge, 1969) of flow routing. 

The two-part routing system (gridded and NHD network-based) employed by the NWM represents a higher degree of 55 

sophistication compared to most other mainstream operational models. For example, the Sacramento Soil Moisture Accounting 

Model (SAC-SMA; Burnash et al., 1973) does not implicitly route flow between conceptual reservoirs, and the Hydrology 

Laboratory’s Research Distributed Hydrologic Model (HL-RDHM; Koren et al., 2004) assumes uniform, conceptual hillslopes 

within a relatively coarse 4 km x 4 km grid within its hillslope and channel routing module (Fares et al., 2014). Additionally, 

the channel routing component in HL-RDHM relies on a unique relationship between discharge and cross-sectional area for 60 

each cell dependent on just four parameters (slope, a roughness coefficient, a shape parameter, and a top width parameter). To 

contrast, channels within the NWM NHD network-based routing module are conceptualized using a trapezoidal geometry 

described by 11 parameters such as top width, bottom width, side slope, and Manning’s n. These parameters are required for 

all 2.7 million modeled reaches across CONUS, and therefore necessitate a significant amount of data for accurate channel 

representation. Currently, there is likely significant uncertainty in channel parameters due to a sparsity of data available for 65 

inferring them. Approximately 2,800 reaches containing physical measurements are used to inform routing module parameters. 

Additional observational data may enhance representation of the routing module, thereby improving flood forecasts. The 

hydraulic geometry (HyG) dataset is a new, unpublished collection of approximately 2.8 million field discharge measurements 

from roughly 48,000 gages well-distributed across CONUS, comprising discharge measurements from both active and inactive 

gages, as well as eight state-wide datasets. HyG was a result of development originating from the smaller USGS ‘HydroSWOT’ 70 

database (Canova et al., 2016), a stream bathymetry and hydraulic properties database from acoustic Doppler current profiler 

data compiled for hydrologic modeling by the NASA Surface Water and Ocean Topography (SWOT) mission. While HyG is 

gage-based and thus spatially discontinuous, the HyG collection is a significant source of large-scale stream bathymetry and 

hydraulic data, representing a 20-fold increase in observations compared to other databases. This catalog is likely to only be 
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surpassed after remote sensing platforms are capable of achieving higher precisions, such as the NASA SWOT mission 75 

(Biancamaria et al., 2016), still a year or more away. 

While HyG may be a significant improvement over the current observational database used by the NWM, the utilization of 

HyG across CONUS requires the estimation of channel properties where observations are not available. This form of parameter 

transfer is often termed ‘regionalization’. Regionalization is defined here as the transfer of parameters estimated at observed 

spatial units to unobserved units under the assumption of hydrologic similarity. Largely due to the diversity of contexts in 80 

which regionalization techniques are typically applied, there is no consensus on which technique is “best” (Ayzel et al., 2017). 

A wide variety of regionalization techniques have historically been developed to make estimates at ungaged locations, though 

most may be broadly categorized into one of two main forms: distance-based and regression-based (He and Wilkerson, 2011; 

Livneh et al., 2013).  

The first group of regionalization methods is based on distance, premised on the notion that parameters are continuously 85 

distributed through space, and similarity between two arbitrary points is correlated with spatial proximity. The spatial structure 

of this correlation is modeled with varying types of interpolation, and the underlying statistical basis of these models varies 

widely. Typical regionalization methods which fall under this category include the method of inverse distance weighting 

(IDW), the nearest-neighbor (NN) method, and the method of Kriging, with the latter two generally considered the most widely 

used (Ayzel et al., 2017). For the specific application to the NWM channel network, grid-based spatial interpolations of channel 90 

parameters may be inapplicable. While one routing module in the NWM framework does route flow on a 250 m grid, the river 

network within the routing module of interest is not represented as a spatially continuous grid, but rather a dendritic network 

of features overlaid on a spatially continuous land surface. In this case, two seemingly proximal channels may instead be 

distant from the perspective of the network, and consequently have dissimilar properties due to natural variations in geology 

and terrain, vegetation, and development-related disturbances (e.g., urban drainage systems).  95 

The second group of regionalization methods is not constrained by spatial proximity, and instead seeks to transfer parameters 

on the basis of similarity in physiographic features (land cover, soil, slope, etc.). Rather than spatial interpolation, similar 

catchment features can be found across long distances, such that the regionalization proceeds along dimensions of similar 

hydrologic features rather than distance. Regression-based approaches are examples of this category, and are typically of linear 

form (e.g., Gitau and Chaubey, 2010; Heuvelmans et al., 2006), though non-linear, weighted, and sequential forms have also 100 

been applied (e.g., Abdulla and Lettenmaier, 1997; Kay et al., 2006; Li et al., 2010). Regional scale regression curves for 

channel geometry, first developed by Dunne and Leopold, (1978), operate on the assumption of similarity in geology, soil, 

climate, and hydrology within the region (Bieger et al., 2015). The current implementation of the NWM routing module 

parameterizes channel geometry through regression-based regional curves relating channel top width with NHD-Plus drainage 

area following the method of Blackburn-Lynch et al. (2017). Hydraulic roughness (Manning’s n) is currently based on expert 105 

opinion and a function of Strahler stream order. Updating these relatively simplistic regionalization approaches using new 

relationships across variable spatial scales may serve to improve estimation at ungaged reaches. 



5 

 

In this study, we hypothesize that enhancements in simulated streamflow goodness-of-fit (GOF) metrics performance are 

possible through an update to the NWM channel routing geometry and hydraulic roughness parameters. Therefore, the 

objectives are to 1) better characterize the influence of channel parameters on NWM simulated streamflow, 2) develop a 110 

regionalization strategy for the HyG dataset such that a spatially complete and representative parameter dataset may be 

developed, and 3) examine the effects of this regionalized dataset on model flow GOF metrics performance. A greatly 

expanded database of channel geometry and hydraulic roughness regionalized to unobserved reaches may represent a 

substantial improvement to channel parameters in the NWM. Furthermore, assessing the degree of improvement attainable 

from updating channel routing parameters addresses a knowledge gap relevant to future model calibration efforts. 115 

2 Methods 

2.1 Overview 

 The analysis begins with a description of selected NWM channel parameters and transformations where applicable (Sec 2.2). 

A sensitivity analysis of these channel parameters is then conducted to determine influence of channel parameters on simulated 

streamflow (Sec 2.3). Following this, channel parameters are developed from HyG data at observed locations (Sec 2.4) and 120 

regionalized through multi-scale regression-based approaches to all 2.7 million reaches CONUS-wide (Sec 2.5). Finally, we 

update the NWM routing model with the regionalized parameter sets and evaluate differences in model performance via 

streamflow simulations and direct errors at gaging stations in the representative basins (Sec. 2.6). 

2.2 Channel Parameters 

 Channels within the NWM routing module are represented by a compound trapezoidal geometry (Figure 1), consisting of a 125 

main channel that carries base flow and runoff up to bank-full flow conditions, and a conceptual floodplain which carries 

overbank flow in times of flooding. For examination in the sensitivity analysis, six parameters from the routing module that 

describe the channel dimensions were selected—bottom width (BW), top width (TW), floodplain top width (TWcc), and 

channel side slope (m)—along with the Manning’s n roughness coefficient for both the main channel (n) and floodplain (ncc), 

which tends to increase as the river expands and encounters rougher terrain and vegetation. Within this parameter set, there is 130 

a physically based, ascending relationship between BW, TW, and TWcc (i.e., BW < TW < TWcc). This presents an issue for 

the sensitivity analysis, which is most effective when sampling variables independently. Therefore, two new parameters, 

channel depth (d) and flo?|odplain change in width (dxcc), were created, such that TW and TWcc are calculated as a function 

of these new parameters: 

 
𝑑𝑥𝑐𝑐 =

𝑇𝑊𝑐𝑐 − 𝑇𝑊

2
 (1) 

 
𝑑 =

𝑇𝑊 − 𝐵𝑊

2
× 𝑚 (2) 
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Thus, a final set of independent parameters including BW, d, dxcc, m, n, and ncc was established for examination in the 135 

sensitivity analysis.  

 

 

Figure 1: Cross-sectional diagram of the trapezoidal channel schematic used in the channel routing module of the NWM. This 

compound channel representation consists of a main channel (dark gray) and a floodplain (light gray) which becomes inundated in 140 
times of overbank flooding in the main channel. Parameters in blue were used to compute the parameters in orange for consistency 

among inputs for the sensitivity analysis. Parameters in black remained unchanged. 

 

2.3 Sensitivity Analysis 

A sensitivity analysis was conducted to establish the influence of channel parameters on model streamflow output (Pianosi et 145 

al., 2016). To generate combinations of values within the parameter set, a Latin Hypercube Sampling (LHS) method was used 

to systematically sample across a hyperdimensional space. LHS is based on the “Latin square” design, which contains a single 

sample in each row and column of a hypothetical square with edges representing the ranges of two parameters (McKay et al., 

1979).  In this method, cumulative density functions (CDFs) for each parameter are divided into equal partitions, and data 

points within each partition are selected and randomly combined with other selected parameter values. LHS was chosen as it 150 

offers an advantage over random sampling techniques by ensuring representativeness of the real variability among parameters 

of each randomly selected combination. 

Given a lack of strict boundary conditions for the parameter values, inputs were instead varied as a function of their 

nominal values developed from regional curve relationships with drainage area (for estimating geometry parameters) following 

Blackburn-Lynch et al., (2017), and expert opinion scaled by Strahler stream order (for estimating Manning’s n parameters). 155 

These were compared to the resulting variation in model output expressed as a fraction of the output under the default 

parameterization. Parameters were modified between a factor of 0.1 and 10 of their nominal values in an effort to encompass 

the range of possible error in parameter values. Uniform distributions of parameter scalars in the [0.1, 10] space were generated 
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and combined using the ‘randomLHS’ function of the ‘lhs’ R package (Carnell, 2020) and subsequently multiplied with the 

relevant default parameters. Here, d and dxcc were calculated from the original data using Eqns. 1-2, combined with multipliers, 160 

and transformed back to the original parameter space. 

We employ the variance-based method of Sobol' (Sobol′, 2001) for analysis of the NWM channel routing module 

parameter sensitivity following the precedent set by many prior sensitivity analyses of hydrologic models (e.g., Abebe et al., 

2010; Baroni and Tarantola, 2014; Cibin et al., 2010; Herman et al., 2013; Massmann and Holzmann, 2012; Nossent et al., 

2011; Pappenberger et al., 2008; Reusser et al., 2011; Song et al., 2012; Tang et al., 2007; Wagener et al., 2009; Yang, 2011; 165 

Zelelew and Alfredsen, 2013). Specifically, we follow the method of Saltelli (2002) using the ‘sobolSalt’ function within the 

‘sensitivity’ R module (Iooss et al., 2021) to estimate first order (the influence of each parameter alone) and total effect (first 

order plus all interactive effects) indices, which implements a Monte Carlo estimation of the Sobol’ indices at a cost of n*(p + 

2) evaluations, where n is sample size and p is the number of parameters.  

A total of n = 3,360 unique channel parameter sets (70 groups of 48 members each) for p = 6 parameters were tested 170 

in each of 12 basins distributed across CONUS over an eight year period from 2010-10-01 to 2018-09-30 (Figure 2). Because 

running the analysis over all of CONUS is computationally prohibitive, these basins were selected to represent variability of 

NWM calibration basins over CONUS. The calibration basins have historically been used as testbeds for model improvements 

and were selected based on such criteria as: 1) basin size maximum of 10,000 km2, 2) availability of streamflow observational 

data, 3) a minimal basin disturbance index, and 4) presence of lakes in the basin (Rafieei Nasab, 2020). The selected basins 175 

minimize volume errors while spanning a wide range of climate, land cover, and terrain conditions. 
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Figure 2: Map of study domains, with red points showing locations for 12 representative basins dispersed across CONUS used for 

the channel routing module sensitivity analysis. These numbers correspond to the USGS gage IDs listed in the table. Numbers and 180 
boundaries on the map correspond to the 18 designations and extents of HUC2 regions. 

 

A collection of output metrics describing model fit to observed data including normalized mean bias (NMB; Yu et 

al., 2006), Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970), and Richards-Baker flashiness index (R-B index; Baker 

et al., 2004) were used to reduce the model output time series to scalar values more readily comparable to the input parameter 185 

set. Equations for these metrics are provided below, as: 

 

𝑁𝑀𝐵 =
∑ (𝑀𝑖 − 𝑂𝑖)

𝑁
𝑖=1

𝑂𝑖

× 100% (3) 

 

𝑁𝑆𝐸 = 1 −
∑ (𝑀𝑖 − 𝑂𝑖)2𝑁

𝑖=1

∑ (𝑀𝑖 − 𝑂�̅�)
2𝑁

𝑖=1

 (4) 

 

𝑅 − 𝐵 𝐼𝑛𝑑𝑒𝑥 =
∑ |𝑀𝑖 − 𝑀𝑖−1|𝑁

𝑖=1

∑ 𝑀𝑖
𝑁
𝑖=1

 (5) 

where M is the model streamflow, O is observed streamflow, i is the time-step, and N is the total number of time-steps. The 

optimal value for NMB is 0%, the optimal value for NSE is 1, and the optimal R-B Index is one which matches observations. 

Normalized mean bias provides an unbiased, symmetric measure of tendency to overpredict or underpredict scaled by the 

output flow values, NSE is a widely used measure of model goodness-of-fit to the overall observational time series, and R-B 190 

flashiness evaluates how short-term changes in streamflow are affected by the channel routing parameterization. These metrics 

were selected as they each provide unique insights into model performance and have previously been effectively used for 

evaluation of hydrologic models in similar applications (e.g., Avellaneda and Jefferson, 2020; McInerney et al., 2018; Wu et 

al., 2012; Yeste et al., 2020). 

2.4 Channel Parameter Development 195 

Channel parameters were first estimated at HyG-associated NHD reach segments, then subsequently estimated at all CONUS 

river reaches, through a regression-based regionalization approach. The at-a-station hydraulic geometry of a channel (AHG) 

was calculated by relating the cross-sectional variation of stream discharge with width, depth, and velocity using power law 

relationships (Leopold and Maddock Jr., 1953), i.e., 

 𝑤 = 𝑎𝑄𝑏  (6) 

 𝑑 = 𝑐𝑄𝑓  (7) 

 𝑣 = 𝑘𝑄𝑚  (8) 
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where w is width, d is depth, v is velocity, Q is discharge (equal to the product of w, d, and v), a, c, and k are fitted coefficients 200 

which must multiply to 1, and b, f, and m are fitted exponents which must sum to 1. Using the field measurements of Q 

available in HyG, we first estimated the fitted coefficients (a, c, and k) and exponents (b, f , and m) at each HyG location. For 

a given flow percentile, variables w, d, and v were then calculated using the fitted values in Eqns. 6-8.  

Manning’s n was estimated using w, d, v, and longitudinal slope (S) via Equations 9 and 10, below: 

 

𝑅 =
𝑤 × 𝑑

𝑤 + 2𝑑
 (9) 

 

𝑛 =
𝑅2/3 × 𝑆1/2

𝑣
 (10) 

where R is the hydraulic radius. Equation 10 is a version of the Manning’s equation. Generally, longitudinal water surface 205 

slope is not measured at USGS and state stream gaging locations. Instead, values for slope were obtained from the NHDPlus 

dataset attribute “ElevSlope”, a longitudinally smoothed slope product produced from topographic data (USGS, 2001). Implicit 

in this methodology are two assumptions: longitudinal slope is an adequate approximation of channel bed slope, and flow 

conditions are uniform causing water surface slope and channel bed slope to be equal. 

For estimating the channel geometry parameters BW and m used in the NWM routing model, a ‘half-channel’ 210 

conceptualization was used. For a given gage, field measurements of ½(w) and d together allow for calculation of the channel 

side slope. This was fit through a linear regression, e.g., 

 𝑑 = 𝛽1 × 𝑤 + 𝛽0 (11) 

and the point where d = 0 along this fitted line is taken to be ½(BW). The slope of this fit is the channel side slope (m). TW 

was estimated as the width of the channel at a high percentile flow (e.g. 99th or 99.9th), which was analyzed through the model 

validation described in Sec. 2.6.  215 

2.5 Regionalization Analysis 

We conducted an analysis of the regionalization method using the Manning’s n parameter as a representative for the full suite 

of channel parameters described in Figure 1 given the importance of roughness defined in prior studies. Manning’s n was 

regionalized to unobserved channels in the stream network using a regression-based method. We fit linear regressions between 

log-transformed Manning’s n and S at a flow percentile, i, as: 220 

 𝑙𝑜𝑔 (𝑛𝑖)  = 𝛽1 × 𝑙𝑜𝑔 (𝑆𝑖)  + 𝛽0 (12) 

where m is the slope of the regression line, and b is the intercept.  

Training of the regionalization regression equations for Manning’s n was performed at three spatial scales: HUC4, 

HUC2, and the full CONUS-wide domain. For each scale, only the observed data available within each spatial unit of that 

scale were used to estimate at reaches within that unit. The purpose of this multi-scale analysis was to attribute error in 

estimated Manning’s n to variation in scale. In other words, maximization of available observations to fit the Eqn. 9 regression 225 
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and minimization of regression error are competing objectives, such that the scale which results in the least error may vary by 

location. Similarly, because Manning’s n may vary based on the flow percentile used to estimate them (e.g., Eqn. 8), the 

regionalization was conducted using a range of flow percentiles at HyG locations, including the 50th, 75th, 90th, 95th, and 

99th percentile flow values. The variation across three spatial scales and five flow percentiles results in a 3x5 matrix of 

estimated Manning’s n values at HyG locations.  230 

To facilitate a standardized method for evaluating the regionalization, a k-fold cross validation (CV) was performed 

using a value of k = 10 folds. In this approach, training data were randomly divided into ten equal-sized groups and 

systematically withheld one group at a time while training the model with the remaining nine. We then predicted Manning’s n 

for the withheld group and compared regression-predicted values with the HyG-derived estimates. 

 235 

2.6 CONUS-wide Evaluation Experiments 

To understand regional- and national-scale implications of new channel parameters, the NWM routing module was run across 

the entirety of the 2.7 million CONUS reaches, over a period of 8 years from 2010-10-01 to 2018-09-30. As only the routing 

module was run (i.e., not the LSM), total channel inflow volumes remained fixed across experiments, such that any variation 

may be attributable to routing parameterization. Here, nine channel parameter set configurations were used in addition to the 240 

v2.1 default configuration, for a total of ten experimental trials. These configurations included parameter sets with Manning’s 

n regionalized at HUC4, HUC2, and full CONUS-wide domain spatial scales using 95th percentile flows. Channel geometry 

sets included default parameter values along with HUC4-scale regionalized estimates, with TW calculated using either the 

99th (“TW99”) or 99.9th (“TW99.9”) percentile flows. In the absence of observed top width data, the 99th and 99.9th percentile 

flows provide an estimate of TW such that the effects of perturbing the main channel geometry may be more consistently 245 

compared across flow volumes without the complex additional effects of overbank flooding that introduce uncertainty. This 

creates a 3x3 matrix of Manning’s n and geometry combinations in addition to the default parameterization (Figure 3). 

 



11 

 

 

Figure 3: Summary of Manning’s n and channel geometry configurations used for the routing module simulations conducted across 250 
CONUS. Dark gray boxes indicate configurations where only Manning’s n or channel geometry were updated from the default 

parameterization, and light gray boxes indicate configurations where both were modified. 

 

The experimental trials were evaluated with the objective of identifying whether errors affecting GOF metrics 

performance were reduced relative to the default configuration. This evaluative approach was used because the routing module 255 

only controls the flow routing through the system, rather than total flow volume. We compared the hourly streamflow output 

of each trial at observed reaches CONUS-wide using available gage observations, and also conducted a closer examination of 

simulated flows for a selection of individual gages from the 12 representative basins (Figure 2). For the CONUS-wide analysis, 

GOF metrics such as percent bias (Eqn. 3), NSE (Eqn. 4), and R2 were calculated at each stream gage. The difference between 

median experimental trial output metrics and default output metrics was used to quantify where and how updates to channel 260 

parameterization resulted in the greatest differences. The variance among experimental trial output metrics was also examined 

to further characterize agreement among trials.  
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3 Results 

3.1 Sensitivity Analysis 

Across all calculated metrics and domains, Manning’s n was shown to hold the highest first order and total effect sensitivity 265 

indices, indicating a higher sensitivity of model output to Manning’s n (Figure 4). The difference between Manning’s n and 

other channel parameter sensitivities varied considerably across these dimensions, however. Normalized bias in comparison 

to gage observations showed increased sensitivity for other parameters relative to Manning’s n across all basins, particularly 

BW and ncc, for total effect sensitivity.  

 270 

 

Figure 4: Sensitivity analysis results for the NWM channel routing module in 12 representative basins (Figure 1). Estimated first 

order indices are listed in the left column, and total effect indices are in the right column. Indices closer to 1 indicate higher 

sensitivity, and values less than zero occur due to numerical instabilities within insensitive variables. Rows represent each of three 

metrics used to reduce flow time series to scalar values. Bar plot colors correspond to the domains for which the indices to apply. 275 
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3.2 Channel Geometry Regionalization 

The regression fit between log(S) and log(ni) varied by location and scale (Figure 5). The CONUS-wide log-transformed 

regression fit with 5,777 observation points yielded an R2 = 0.29. At the HUC2 regionalization level, R2 varied from 0.12 in 

the Texas-Gulf region (12) to 0.66 in the Great Basin region (16), with an overall median R2 = 0.37 and median observation 280 

count of 290 points in each HUC2. At the HUC4 level, variance was even greater, with R2 falling between 4 x 10-5 and 0.9 for 

subregions 0302 and 0704, respectively. Overall, the median R2 = 0.45 and median observation count was 26 points per spatial 

unit. At this scale, there is also an apparent east to west gradient of decreasing error, largely due to the presence of low R2 

HUC4 basins in the Texas-Gulf (12) and South Atlantic-Gulf (03) regions. Kernel density plots for error in Manning’s n 

subdivided by regionalization scale and HUC2 region are shown in supplementary materials (Figure A1). 285 

 

 

Figure 5: Summaries of R2 values resulting from the regression fit of Manning’s n as a function of channel longitudinal slope at 

HUC4, HUC2, and full CONUS domain regionalization scales. Panel (a) shows a spatial breakdown of R2 values at units within each 

scale, and Panel (b) shows kernel density plots for regressions made at the HUC4 and HUC2 scales, with vertical lines denoting the 290 
R2 from the full CONUS-wide fit, and the median values for the HUC4 and HUC2 scales. 

 

Cross validation results from the 3x5 matrix of regionalization scale and flow percentile combinations are summarized 

in Figure 6. General patterns of decreasing error with increasing flow percentile and finer scale were evident, with some 

exceptions. For example, the regression determined from 75th percentile flow yielded the smallest Manning’s n error in the 295 
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California region (18), whereas the smallest error in the Mid Atlantic region (02) was achieved at the full CONUS-wide 

regionalization scale. However, channels in mountain west HUC2 regions (e.g., 13-17) were poorly represented by the 

regression made at the full CONUS-wide scale, as evident by the relatively strong underestimation of Manning’s n. 

 

 300 

Figure 6: A summary of median error in Manning’s n resulting from a k-fold cross validation (k=10) across the matrix of tested 

regionalization scale and flow percentile combinations. HUC2 regions are shown in each facet, and boxes with text indicate the 

combination that resulted in the lowest error, which is shown within the box. 

 

Overall, nearly half of the HUC2 regions (8 of 18) showed the 99th percentile as the optimal flow percentile. However, 305 

the optimal regression fit was relatively balanced between the HUC2 and HUC4 regionalization scales, with eight regions 

minimizing error at HUC2 scale, and nine regions minimizing error at the HUC4 scale. Variability in error was highest in the 

Lower Mississippi region (08) where the ratio between slope and Manning’s n varied greatly among observed locations, and 

there were fewer observations (Figure A2).  In western regions (e.g., 13-17), a strong positive bias in estimated Manning’s n 

at the full CONUS-wide regionalization scale was evident. 310 

 

3.3 CONUS-Wide Channel Parameters 

In comparison to the default parameterization, the experimental parameter combinations described in Figure 3 resulted in 

substantial differences to both estimated Manning’s n and channel cross-sectional area (Figure 7), with the HUC4 

regionalization and TW99.9 geometry configuration presenting the greatest differences from default. The majority of channels 315 

(76%) are represented in the default NWM version by a Manning’s n value of 0.06. The regionalized Manning’s n updated 

these values to a new range between 0.006 and 0.537 (median = 0.077), most noticeably in mountainous headwaters regions, 

where roughness increased by approximately 200% under the HUC4 regionalization scheme. Similar changes were also 
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apparent under the HUC2 (0.007 to 0.436, median = 0.076) and full regionalizations (0.012 to 0.436, median = 0.072), albeit 

to a lesser extent. Overall, the variance of Manning’s n across CONUS increased with smaller regionalization spatial scales. 320 

Similar magnitudes of change were evident in channel cross-sectional area. Compared to the default geometry parameterization 

cross-sectional area (0.018 m2 to 1990 m2, median = 2.03 m2), the TW99 configuration (8.53 x 10-7 m2 to 8610 m2, median = 

0.927 m2) and TW99.9 configuration (1.62 x 10-4 m2 to 7150 m2, median = 2.08 m2) both resulted in wider ranges, though 

median area for TW99 was reduced by an order of magnitude, and this reduction was largely observable at reaches located 

across the West. However, in the Lower Mississippi region (08), the cross-sectional area of the channel increased by 325 

approximately 200% under the new regionalization schemes. 

 

 

Figure 7: Spatial maps illustrating default parameterizations, updated parameterizations, and their percent differences across 

CONUS for Manning’s n and channel geometry-derived cross-sectional area at a random subsample of 1% of the 2.7 million NHD-330 
derived reaches across CONUS. Panels (a) and (b) describe the default and HUC4-regionalized Manning’s n parameter, panels (d) 

and (e) describe the default and TW99.9 configuration cross-sectional area, and panels (c) and (f) show the percent differences 

between default and updated parameterizations for Manning’s n and cross-sectional area, respectively. 

 

Across the 6,841 USGS gage locations with continuous information across the experimental period, the median 335 

percent difference between default Manning’s n and the HUC4-regionalized Manning’s n was approximately -9% with a 

standard deviation 𝝈 = 61% (HUC2: median = -8%, 𝝈 = 52%; full: median = -10%,  𝝈 = 49%). For the channel cross-sectional 

area using 99th percentile flow to estimate top width (TW99), this difference was -32% with a standard deviation 𝝈 = 47% 
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(TW99.9: median = 17%, 𝝈 = 88%). Generally, median channel size was reduced in the TW99 configuration and increased in 

the TW99.9 configuration (Figure 8). 340 

 

 

Figure 8: Density plots of percent changes in cross-sectional area and Manning’s n from default parameter values across CONUS 

under experimental trial configurations. 

 345 

3.4 CONUS-Wide Evaluation Experiments 

Among the experimental trials, variance was generally low (approx. 1 x 10-5) in the bulk goodness-of-fit metrics calculated 

from the model output at gage locations, indicating little difference in model output among the updated channel parameter sets 

resulting from modifying routing module parameterization alone. Yet, differences between median experimental trial output 

metrics and the default output metrics yielded some measurable differences, particularly for the R-squared (𝝈 = 4.5 x 10-2) 350 

metric. Effects on performance were negligible across most gages, with the median value for each metric approximately zero 

in all cases (Figure 9). Spatial maps for other metrics are provided in Figure A3. 
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Figure 9: Summary metrics at 4,655 USGS gage locations for the HUC4 regression scale, TW99.9 combination experimental trial 355 
calculated across gage locations CONUS-wide. Panel (a) shows faceted density plots for each difference in that metric from the 

default parameterization, and panel (b) shows the Pearson correlation among metrics. 

 

Overall, mean R2 across gages increased from the default parameterization (mean R2 = 0.479) for all experimental 

trials (from a mean R2 = 0.489 for the Full TW99 configuration to a mean R2 = 0.494 for the HUC4 TW99.9 configuration). 360 

The HUC4 TW99.9 configuration also resulted in the largest overall influence on model output overall (i.e., regardless of 

whether performance improved or worsened), which is consistent with the degree of perturbation made to the channel 

parameters relative to other configurations.  

3.5 Analysis at Selected Gages 

Of the 12 representative basins (Figure 2), two gages at outlets were selected for further examination based on the relatively 365 

high degree and opposing directions of change made to the parameterization of Manning’s n and channel geometry relative to 

the default parameterization, as well as differences in basin physiography and climate. The first is USGS gage 09064600 at 

Eagle River near Minturn, CO. This gage is located in the mountainous headwaters region of the Colorado River basin 

(elevation 2,467m), and monitors flow over a drainage area of 482 km2. From a default value of 0.055, Manning’s n was 

increased for this gaged reach to 0.078, 0.073, and 0.097 for HUC4, HUC2, and full regionalization scales, respectively. The 370 

cross-sectional area was reduced from a default of 19.9 m2 to 4.9 m2 and 6.4 m2 for TW99 and TW99.9 configurations, 

respectively. The second is USGS gage 01664000 at Rappahannock River near Remington, VA. This gage is located at a lower 

elevation (92m) and monitors flow over a greater drainage area of 1,603 km2. In contrast to the Colorado gage, the default 

value of 0.050 for Manning’s n was decreased for this channel to 0.017, 0.015, and 0.015 for HUC4, HUC2, and full 
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regionalization scales, respectively. The cross-sectional area was altered from a default of 37.5 m2 to 35.4 m2 and 65.7 m2 for 375 

TW99 and TW99.9 configurations, respectively. 

 Noticeable differences in the behavior across experimental scenario results exist between the two selected gages 

(Figure 10). While NSE, R2, and RMSE were relatively consistent across experimental trials for gage 09064600, there is a 

noticeable trend of decreasing performance from the default parameterization run and updated Manning’s n runs when channel 

geometry is updated. The highest differences across experiments were those where channel geometry alone was perturbed: 380 

NSE was 0.50 for the default parameterization, and 0.51, 0.44, and 0.41 for the default geometry with updated Manning’s n 

only, the TW99 channel geometry parameterization, and the TW99.9 channel geometry parameterization, respectively. By 

contrast, experimental performance among trial where only Manning’s n was perturbed were relatively consistent and higher 

than default parameterization for both gages. For gage 09064600, R2 increased from the default parameterization (R2 = 0.77) 

for all runs, with the highest increase for the HUC4 TW99.9 run (R2 = 0.81). 385 

 

 

Figure 10: A summary of experimental results at two gage locations. Panels (a) and (b) describe hydrographs for USGS Gage 

09064600 and USGS Gage 01664000, respectively, for one example month in June 2018, and panel (c) shows metric results computed 

across the entire hydrograph at each gage location for NSE, percent bias, R2, and RMSE. 390 
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4 Discussion 

Results from the sensitivity analysis showed that channel roughness (Manning’s n) holds a stronger influence on modeled 

streamflow than channel dimensions in the routing module. This finding is supported by prior literature suggesting that 

Manning’s n is a significant determinant of flood wave celerity (Anderson et al., 2006) and serves to attenuate and delay the 

arrival of peak discharge at the catchment outlet (Wolff and Burges, 1994; Woltemade and Potter, 1994). In the NWM, 395 

attenuation is modeled through the Muskingum-Cunge method of flood routing (Cunge, 1969), which uses a diffusion wave 

representation subject to attenuation as it propagates through a channel network. The relative sensitivity of model output 

variance to Manning’s n suggests that the most efficient optimization strategy for improving representation in the channel 

routing module is one that is focused on updating Manning’s n. However, the overall results from the experimental simulations 

showed that runs where channel geometry was varied in isolation generally yielded a higher variance in model output than 400 

runs where Manning’s n was varied in isolation. Such results show that combinatory effects among the channel geometry 

parameters may result in a stronger influence over the model hydrograph in comparison with varying the Manning’s n 

parameter alone. The case for updating all geometry parameters is strengthened by the fact that the HUC4 TW99.9 

configuration, containing the most extreme perturbations of all parameters, was found to increase R2 by the largest degree. 

Though the results were largely conclusive, several aspects of the sensitivity analysis may be modified in potential 405 

future studies. For example, the selected boundary conditions ranged from 0.1 to 10 times the nominal parameter values, which 

may not be reflective of the true uncertainty in these parameter values. The possibility also exists that parameter sensitivity is 

flow dependent, which may be most obvious in the case of the parameters TWcc and ncc, as flow depth is often too low to reach 

the floodplain. Consideration for observational error in channel parameters and/or running the model in data assimilation mode 

may address this possibility and provide added value in future analyses. 410 

The regionalization of channel parameters was performed using a HUC-based approach, where discrete regions were 

used to define the regression curves used to estimate channel parameters within those regions. The principal finding in 

comparing regionalization scales was that a smaller scale typically results in the lowest error (e.g. the larger errors at the 

CONUS-wide regionalization scale relative to the HUC2 and HUC4 scales shown in Figure 6), and the magnitude of this 

difference is likely dependent on the inherent spatial variability of the region in which the regressions were developed. For 415 

example, the relatively poor performance of the full regression in the topographically variable, mountainous HUC2 regions 

demonstrate the non-representativeness of regressions developed using all measurements across CONUS for these unique and 

topographically complex areas. Overall, these findings underscore the importance of taking into account the spatial variability 

of the Manning’s n and longitudinal slope relationship. Additional variables which demonstrate strong relationships with 

channel properties may also be viable for future regressions. For example, height above nearest drainage (HAND) has been 420 

used to derive hydraulic properties for reaches along a river network and generate synthetic rating curves relating flow to water 

level (Zheng et al., 2018). 
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The HUC-based discretization method, coupled with differences in observational data uncertainty and availability, 

naturally creates discontinuities at HUC boundaries in the regression parameters. Alternative regionalization approaches may 

help to alleviate or even remove the errors arising from these discontinuities. For example, a downstream hydraulic geometry 425 

(DHG) based regionalization approach that takes into account observational data from nested gages within the network to 

generate channel parameters along a flow path is one possibility that has seen previous success (Allen et al., 2018; Neal et al., 

2015).  

The estimation of regional regression curves for Manning’s n was performed across multiple flow percentiles, as it 

was found that the regression parameters varied depending on flow. Here, the objective was to identify a singular optimal flow 430 

percentile that resulted in the lowest error in the regionalized Manning’s n parameter. However, in nature, the celerity and 

attenuation of a flood wave varies nonlinearly with flow, despite standard engineering practice typically involving the use of 

the Muskingum-Cunge flood wave representation due to ease of implementation (i.e., a constant Manning’s n), which is the 

case for the NWM. Future improvements to the NWM may consider allowing Manning’s n to vary with flow, as this may 

achieve better representation of channel hydraulics.  435 

With only a modest sensitivity of model output to channels parameters, results from both the sensitivity analysis and 

simulations demonstrate the limited influence of the channel routing module to improve goodness-of-fits metrics within the 

overall NWM framework. In most cases, low variability in GOF metrics among trials is evident, though in some instances, 

such as at USGS gage 09064600, there is some identifiable improvement from the default parameterization. Yet, even here, 

model hydrographs were unable to match observations. This is expected, as total volume is unaffected by the routing module, 440 

and thus mass is conserved regardless of channel parameterization. However, in the course of model improvement, an 

appropriate philosophy is to ‘do no harm’, which largely characterizes the outcome of these experiments. 

Parameters within the Noah-MP LSM not included in the sensitivity analysis or regionalization are likely the source 

of a large percentage of error, with meteorology and physics representation representing other potential sources. A previous 

sensitivity analysis conducted on the Noah-MP model indicated high sensitivities for output states and fluxes such as sensible 445 

and latent heat, soil moisture, and net ecosystem exchange derived from soil and vegetation parameters (Arsenault et al., 2018). 

Another showed sensitivity for latent heat and total runoff attributable to two-thirds of applicable standard parameters, and the 

highest sensitivity derived from a hard-coded parameter value in the model used in the formulation of soil surface resistance 

for direct evaporation (Cuntz et al., 2016). Given these results, future efforts focused on joint calibration of the Noah-MP LSM 

and channel routing module may result in noticeable GOF metrics improvements. 450 

5 Conclusion 

This analysis explored the effects of modifying channel routing parameters in the National Water Model streamflow 

simulations using a regionalized hydraulic geometry and Manning’s n dataset. Based on a sensitivity analysis conducted on a 

selection of channel parameters in the routing module, it can be concluded that the Manning’s n roughness coefficient holds 
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an outsized effect on modeled flow relative to parameters which describe the channel geometry. Yet, results from experimental 455 

simulations of nine alternative parameter configurations showed the interactive effects among geometry parameters in some 

geographic regions may be greater than the Manning’s n parameter alone. 

New estimates of NWM channel parameters following a regression-based regionalization approach generally results 

in a larger distribution of channel characteristics over the NWM v2.1 default parameterization. Overall, variance in both 

Manning’s n and cross-sectional area among channels CONUS-wide increased from the default parameterization, which also 460 

accompanied a modest increase to median R2 across gage locations as well, from 0.479 to 0.494 for the HUC4 TW99.9 

configuration. 

For Manning’s n, approximately 76% of channels in the default parameterization are currently represented by the 

same nominal value of 0.06 (18% with a value of 0.055, and lesser percentages at further intervals of 0.005), and based not on 

observations but rather expert opinion, scaled by Strahler stream order. A new HyG-based Manning’s n representation provides 465 

an observational foundation for Manning’s n, which consequently increases roughness across mountainous headwaters regions 

and decreases roughness in lowlands and coastal areas to a new range between 0.006 and 0.537 (median 0.077), qualitatively 

changing the distribution. 

Channel geometry updates resulted in a longitudinal gradient in percent change in cross-sectional area. In the East, 

and particularly in the Lower Mississippi region, cross-sectional area increased, while a decrease in area is visible throughout 470 

smaller streams in the more arid West. 

The influence of the routing module over modeled streamflow GOF metric performance is limited compared to other 

components of the NWM framework, such as the land surface model and meteorological input data. Future approaches towards 

calibration of the NWM may yield the largest benefits through a more holistic approach to calibrating the overall framework, 

i.e., comprehensive evaluation and calibration of all model components. Towards this objective, our characterization of the 475 

overall effects of strengthening channel routing module parameter representativeness may serve as an important foundation 

for further improvement of the NWM and hydrologic modeling in CONUS. In turn, the NWM becomes better positioned to 

meet the stated goal of providing quality, actionable guidance for mitigation of flood-related damages. 
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Appendix A 

 

 

Figure A1: Kernel density plots showing the range of Manning’s n error resulting from each regression-based regionalization scale 615 
at gage locations, including full CONUS-wide (blue), HUC2 (green), and HUC4 (red). Facets indicate the HUC2 region in which the 

gages are located. 
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Figure A2: Scatterplots of log-transformed longitudinal slope (S) and Manning’s n (n) estimated at 99th percentile flows for HyG 620 
locations in each HUC2 region are shown. Size of the points indicate the magnitude of error in the regression, and color indicates an 

underestimate (blue) or overestimate (red). 
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Figure A3: Spatial maps describing change in Agreement Index, NSE, bias, and percent bias from default parameterization 625 
performance at USGS gage locations across CONUS. 

 


