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Abstract. Along rivers, where local insitu gauges are unavailable, estimation of river discharge are undirectly derived from the

Manning formula that relate discharge to geomorphological characteristics of the rivers and flow conditions. Most components

of the Manning formula can currently be derived from spaceborne products except for two features: the unobserved always-wet

bathymetry and the roughness coefficient. Global-scale applications use simplified equivalent riverbed shapes and empirical pa-

rameters while local-scale applications rely on finer model dynamics, field survey and expert knowledge. Within the framework5

of the incoming Surface Water and Ocean Topography (SWOT) mission, scheduled for a launch in 2022, and more particularly,

the development of the SWOT-based discharge product, fine-resolution but global discharge estimates should be produced.

Currently implemented SWOT-based discharge algorithms require prior information on bathymetry and roughness and their

performances highly depend on the quality of such priors. Here we introduce an automatic and spaceborne-data-based-only

methodology to derive physically-based roughness coefficients to use in one-dimensional hydrological models. The evaluation10

of those friction coefficients showed that they allow model performances comparable to calibrated models. Finally, we illutrate

two cases of application where our roughness coefficients are used as-is to initiate the experiment: a data assimilation exper-

iment designed to correct the roughness parameters and an application around the HiVDI SWOT-based discharge algorithm.

In both cases, the roughness coefficients showed promising perspectives by reproducing, for the data assimilation application,

and sometimes improving, in the SWOT discharge algorithm case, the calibrated-parameter-based performances.15

1 Introduction

At the interface with the atmosphere and the oceans, continental water is at the core of the water cycle. It is therefore crucial to

study the dynamics of continental waters to understand the Earth climatic system and close the water budget. More particularly,

continental waters are freshwaters, essential to life form and human activities. Freshwaters represent only 2.5% of the total

amount of water and an even smaller part is directly accessible, e.g in rivers and lakes. Nevertheless, the continental part of20

the water cycle is particularly active as freshwaters are continuously moving and renewed. Therefore, Oki and Kanae (2006)

stated that freshwater availability is better measured through the estimation of water fluxes, and notably river discharge.
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Nevertheless, river discharge remains a quantity particularly complicated to assess. Insitu stream gauges still stand as the

most reliable measuring technique but the number of available and maintained insitu stations has always been limited and is

steadily decreasing worldwide (Fekete and Vörösmarty, 2007; Hannah et al., 2011). Thankfully, for the past three decades,25

hydrology-related remotely-sensed data has considerably increased (Lettenmaier et al., 2015) and numerous studies have fo-

cused on ways to estimate discharge from remotely-sensed products. Among them, Tarpanelli et al. (2013) used the different

water and land surface response from MODIS images near river bank to derive variations of river flow velocity and hence river

discharge. Also using MODIS images, Van Dijk et al. (2016) examined the feasibility of relating observed inundated area to

insitu discharge records in order to expand such statistical laws to ungauged basin while Paris et al. (2016) replicated traditional30

insitu techniques to measure discharge by deriving rating curves parameters relating pointlike water surface elevations from

nadir altimetry and simulated discharges from a large-scale hydrological model over the Amazon basin.

Most recently, the incoming Surface Water and Ocean Topography (SWOT) mission, scheduled for a launch in 2022, and

its expected river discharge product has pushed forward researches allowing to derive river discharge from satellite products

(Durand et al., 2014, 2016; Hagemann et al., 2017; Bjerklie et al., 2018; Brinkerhoff et al., 2019; Tuozzolo et al., 2019; Larnier35

et al., 2021; Andreadis et al., 2020). Although all current 5 algorithms being developed relies on their own physical laws and/or

mathematical/statistical models, they all plan to use SWOT river observations of water surface elevation (Z), river surface width

(W ) and slope (S) to derive an estimation of the river discharge. Moreover, they all rely, more or less directly, on the Manning-

Strickler equation (Manning, 1891). Hence, the unobserved bathymetry, denoted A0, and the friction coefficient, modeled

either as the Manning coefficient n or the Strickler coefficient Ks, remain unknown parameters. Therefore, SWOT discharge40

algorithm working groups agreed on simultaneously infer A0 and n with the discharge (Durand et al., 2016). Mathematically

speaking, the discharge inversion problem turns to be ill-posed but previous studies showed that if, among A0 and n, one of

them can be accurately estimated, the remaining parameter can be inferred together with the discharge (Larnier et al., 2021).

Therefore, a set of a priori parameters is preliminarily required to initialize the Manning-Strickler inversion problem. These

parameters comprise direct priors values of the missing parameters or at least a prior distribution, e.g a mean value and a45

standard deviation. Henceforth, there is an emerging literature focusing on developing reliable priors (Peirong et al., 2017;

Andreadis et al., 2020; Brinkerhoff et al., 2020; Larnier and Monnier, 2020). At first, it seems easier to get an accurate knowl-

edge of the unobserved bathymetry A0 as it a physically measurable variable. However, this measure appears complicated to

apply at large scale. Indeed, current instruments on board of satellite can not "see" through water and measurements have to be

obtained locally.50

Even more, friction coefficients remain conceptual parameters that are not directly measurable on the field. Roughness

coefficients are indispensable parameters or river-based modeling applications for both large-scale hydrology models such

as ISBA-CTRIP (Decharme et al., 2019), MGB-IPH (Pontes et al., 2017) of CaMa-Flood (Yamazaki et al., 2011); and finer

hydraulic models such as DassFlow-1D (Brisset et al., 2018), Mascaret (Goutal et al., 2012) and Telemac-2D (Zaoui et al.,

2018). Those models need friction parameters to run and such parameters are issued from empirical laws and/or reference55

tables. But, above all, such parameters require a calibration step, prior to any application, to fix their value such that the model

is able to reproduce an observed event. Other recurring applications use Data Assimilation (DA) to constrain input parameters,
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such as roughness parameters, alone or along with the model state variables, such as discharge and water surface elevations.

The drawback of the above approaches is that the roughness coefficents become model-dependent and can not be used outside

of the scope of the model.60

Nevertheless, it is still possible to infer physically-based friction properties by inversion of the river flow velocity profiles.

Number of studies based on this concept can be found in the literature. Working with a very controlled experiment, under

completely known vegetation and flow velocities and/or discharges conditions, they assert the value of friction parameters

for different types of vegetation, i.e. submerged (Jarvela, 2005; Ebrahimi et al., 2008; Pu et al., 2019) or not (Nepf, 1999;

Fathi-Moghadam et al., 2011), flexible (Jarvela, 2005; Pu et al., 2019) or rigid (Tanino and Nepf, 2008; Hamidifar et al.,65

2020) and even wood (Hygelund and Manga, 2003), in either the river channel (Kean and Smith, 2006; Ebrahimi et al., 2008;

Fathi-Moghadam et al., 2011) or floodplains (Galema, 2009; Jung et al., 2011; Whittaker, 2014; Walczak et al., 2015). Such

environments are difficult to reproduce outside of the experiment scope while also relying on fine-scale parameters that are not

obtainable with remote-sensing techniques. Even Chaulagain (2018) tried to derive friction laws using remote-sensing airborne

LiDAR data but such products are unavailable at global-scale. In a more general way, these methods are hardly applyable to70

remote-sensing since there is no acceptable methodology to estimate flow velocities via remote-sensing.

From another perspective, founding works in hydrology established reference tables for the value of the friction coefficients

given the soil composition, the surrounding vegetation, the shape of the river bed, the nature of the flow (Chow, 1964; Arcement

and Schneider, 1989); and are still widely used. Most of this information can be found in global-scale products issued from

automatic chains using remotely-sensed data. Among them, the processing chain IOTA2 (Inglada et al., 2017) allows the fully75

automatic generation of land cover maps at country scale. Using any existing soil-related databases in a supervised classification

context, high resolution satellite optical images can be treated to produce corresponding land cover maps. Such global-scale

information could be derived into global-scale friction information.

Therefore, the objective of the present study is to introduce an automatic methodology to derive physically-based, model-

free prior values of friction coefficients, using, among others, land cover maps produced with the IOTA2 chain. Such products80

would therefore be usable globally. First, we describe the whole processing chain and emphasize on how it can exported on any

study domain given some reference data to train the IOTA2 chain. Then, the quality of such priors is first compared to friction

coefficients obtained from model calibration, via hydraulic simulations using the 1D-hydraulic Mascaret model (Goutal et al.,

2012) applied over a portion of the upstream Garonne river in France and a portion of the Po river in Italy. Subsequently, we

validate our products through two application cases: a real-data DA experiment around the Mascaret model applied to the Po85

river domain and a discharge inference experiment with the HiVDI SWOT-discharge algorithm (Larnier et al., 2021) over both

the Garonne and the Po, along with an additional application domain – namely a portion of the Brahmaputra river – to test our

approch over another, less-gauged domain.
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2 Methods and Materials

The present study aims at automatically derive friction parameters such as the Manning coefficient n or Strickler coefficient90

Ks = 1
n used for empirical estimation of free-surface flow discharge based on the Manning formula (Manning, 1891):

Q=
1
n
AR

2
3
h I

1
2 =KsAR

2
3
h I

1
2 , (1)

whereQ is the free-surface flow discharge,A is the wetted area,Rh is the hydraulic radius and I the linear hydraulic head loss.

2.1 Method

2.1.1 Principle95

Manning’s n roughness coefficients depend on various factors, including among others, the shape of the channel or floodplain,

the type of materials that compose the ground, the level of obstruction, etc. (Cowan, 1956) suggested a formula to determine

the value of n in both the river channel and the surrounding floodplain. This formula assumes a base value for n (nb) which is

adjusted by several coefficients to account for different channel’s properties:

n= (nb +n1 +n2 +n3 +n4)×m, (2)100

where nb [s.m−
1
3 ] is a base value of n for a straight, uniform and smooth channel in natural materials. Then, n1 [s.m−

1
3 ]

is a correction coefficient that accounts for surface irregularities, n2 [s.m−
1
3 ] is a value for variations in shape and size of

the channel cross-section, n3 [s.m−
1
3 ] represents the effects of obstructions, n4 [s.m−

1
3 ] is a value for vegetation and flow

conditions, and m [-] is the meandering ratio of the channel.

Arcement and Schneider (1989) developed a practical guide for selecting Manning’s n roughness coefficients in both the105

river channel and the adjacent floodplain following the Cowan’s formula. For both the channel and the floodplain, the Guide

presents a series of tables that map characteristics of the rivers with values of each parameter for the Cowan’s formula. Then,

it suggests a range of adjustment values given some qualitative conditions (e.g. "severe irregularity" or "minor obstruction").

While, in some cases, numerical values are provided to distinguish between two different classes (e.g. “minor obstruction in

a floodplain can be assumed if the obstructions occupy less than 15% of the total cross-sectional area”), the classification is110

mostly based on observational data (what an operator would actually observe on field).

The method developed in this paper adapts this procedure. Its novelty lies in relying on information from remote global

datasets rather than on local observational data to compute each indicator. The approach allows to compute each element of

the Cowan’s formula and therefore estimate the value of n. While land cover maps are extensively used to derive most of those

terms, other sources of data are also used when more appropriate.115

The general output format for our roughness coefficients would be 2-dimensional maps for roughness coefficients in the

floodplain and 1-dimensionnal along-centerline data point for roughness coefficients in the main channel. Indeed, while only

raster-based products are used to derive roughness coefficients in the floodplain, vector-based products are also employed to
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Dataset
Availability

Reference
Product available Processing chain

Land cover maps
Yes, France only Yes Inglada et al. (2017)

from IOTA2 chain

SoilGrids Yes – Poggio et al. (2019)

GRWL Yes – Allen and Pavelsky (2018)

WorldDatabaseRivers Yes – Frasson et al. (2019)
Table 1. Detail of global-scale datasets used to derive roughness.

derive roughness coefficients in the main channel. The next section details the global-scale remotely-sensed dataset used in our

methodology.120

2.1.2 Global remotely-sensed products used to derive friction coefficients

Table 1 sums up all global-scale products used for our approach and their availability.

Land cover maps The processing chain IOTA2 (Inglada et al., 2017) allows the fully automatic generation of land cover

maps at country scale and high resolution. The chain relies on satellite optical imagery (e.g. Landsat-8, Sentinel-2) and on

existing land cover databases (e.g. Corine Land Cover, Randolph Glacier Inventory). Satellite imagery is collected over a125

complete year and pre-processed with temporal gapfilling and resampling techniques. Three spectral indices (NDVI, NDWI,

brightness) are computed at every date to build the feature vector. The land cover databases are cleansed, filtered and merged

to generate a reference dataset, that is defined with the targeted number of land cover classes. A first part of the reference

dataset is used to train a supervised classifier, namely a Random Forest, while the second part is used to validate the land cover

maps obtained with the trained classifier. The chain has been successfully applied over France to generate land cover maps for130

multiple years already.

Given the reference database used to train the IOTA2 chain, the land cover map nomenclature will be different. Our method-

ology relies on 8 broader classes detailed in Table 2. In future applications, land cover maps should be aggregated to this

reduced nomenclature to be later used in our chain.

SoilGrids (Poggio et al., 2019) is a system for global soil mapping. SoilGrids250m, its main product, provides, for 6 different135

depth-levels, global maps of soil properties at a resolution of 250 m. It allows to access at the pixel-level an estimation of the

fraction of silt, sand and clay that constitutes the soil.

The Global River Widths from Landsat or GRWL (Allen and Pavelsky, 2018) was built to characterize the global coverage

of rivers and streams wider than 30 m. One of the products offers a vector-based dataset of river centerlines, each segment being

characterized by several properties including an estimation of the river width at the mean annual discharge.140
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Class key Broad land cover classes

1 Artificial surfaces

2 High-height agricultural areas

3 Low-height agricultural areas

4 Forest

5 Mixed natural areas

6 Natural bare ground

7 Glaciers and perpetual snow

8 Water bodies
Table 2. Aggregated land cover classes considered in our methodology.

Indicator: SoilGrids soil type Bed material (range/value [s.m−
1
3 ]) Adopted value [s.m−

1
3 ]

Sand Coarse sand (0.026 - 0.035) 0.0310

Clay Firm soil (0.020 - 0.025) 0.0225

Silt Silty soil (0.020) 0.0200
Table 3. Indicators and values of nb (bed material) for both the main channel and the floodplain.

GlobalDatasetForRivers (Frasson et al., 2019) took advantage of GRWL and the Shuttle Radar Topography Mission

(SRTM) digital elevation model to create a global database of river width, slope, catchment area, meander wavelength, sinuos-

ity, and discharge and is also distributed as a vector-based dataset of river centerlines.

The next sections detail how the above products are used to derive each term of the Cowan formula.

2.1.3 Computation of nb145

nb represents the friction only due to the surface onto which water flows, for both the channel and the floodplain. Arcement and

Schneider (1989) directly relates the value of nb to the materials that constitute the soil surface or soil type, e.g. sand, concrete,

firm soil, gravel, cobble, etc. Since SoilGrids250m provides the fraction of sand, silt and clay that composes the ground at the

surface level, nb is derived from this database. The value of nb for each type of soil are then given in Table 3, taken from

Arcement and Schneider (1989).150

The value of nb at any given location is computed as the weighted average of the adopted values of nb given the fraction of

corresponding soil type. There are a few locations where SoilGrids provide no data. In this case nb is computed as the average

of the three adopted values of nb values, equal to 0.0245 s.m−
1
3 .

2.1.4 Computation of n1

n1 represents the effect of surface irregularities.155
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Indicator: Land cover map from IOTA2 Degree of irregularity (range/value [s.m−
1
3 ]) Adopted value [s.m−

1
3 ]

Artificial surfaces Smooth (0.000) 0.000

High height agricultural areas Moderate (0.006-0.010) 0.008

Low height agricultural areas Minor (0.001-0.005) 0.003

Forests Severe (0.011-0.020) 0.016

Mixed natural areas Moderate (0.006-0.010) 0.008

Natural bare ground Smooth (0.000) 0.000

Glaciers and perpetual snow Smooth (0.000) 000
Table 4. Indicators and values of n1 (degree of irregularity) for the floodplain.

Indicator: Lsmooth/Lraw Degree of irregularity (range/value [s.m−
1
3 ]) Adopted value [s.m−

1
3 ]

| 1-Indicator | < 0.005 Smooth (0.000) 0.000

0.005 < | Indicator-1 | < 0.01 Minor (0.001-0.005) 0.003

0.01 < | Indicator-1 | < 0.015 Moderate (0.006-0.010) 0.008

(Indicator-1) > 0.015 Severe (0.011-0.020) 0.016
Table 5. Indicators and values of n1 (degree of irregularity) for the main channel

For the floodplain it is computed based on the land cover type. Arcement and Schneider (1989) relates the value of n1 to

the degree of irregularity of the floodplain surface specified as smooth, minor, moderate or severe. Table 4 shows how these

four categories are mapped to the aggregated land cover classes derived from the IOTA2 chain. Note that the mapping between

Arcement and Schneider (1989) categories and the land cover classes suggested here (between column 1 and 2 of Table 4) was

set according to our hydrology expertise.160

Note that the "water bodies" class from Table 2 is ignored here as we are interested in the surface below the water to derive

roughness. Therefore, the nomenclature from Table 4 can not be used for the main channel.

For the main channel, the method relies on cross-sectionnal profiles information. To evaluate the irregularity of the cross-

sectionnal shape, each cross-sectionnal profile is first smoothed using an univariate cubic spline between the edges of the

profile. Illustrations of the smoothing procedure are given in Appendix B. Then, a ratio between the original cross-section165

length and the smoothed profile length is calculated. Finally, Table 5 shows how this ratio is mapped against the categories

suggested by Arcement and Schneider (1989) to estimate the value of n1 in the main channel. Note that, currently, the threshold

values were picked to match our knowledge of the study domains.

2.1.5 Computation of n2

n2 represents the effect of longitudinal variations in cross-section shape and size in the main channel. Note that n2 is assumed170

to be equal to 0.0 s.m−
1
3 in the floodplain as suggested in Arcement and Schneider (1989).
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Indicator: σ
(

∂W
∂xs

)
Variations in channel cross-section (range/value [s.m−

1
3 ]) Adopted value [s.m−

1
3 ]

Indicator < 0.025 Gradual (0.000) 0.000

0.025 < Indicator < 0.05 Alternating occasionally (0.001-0.005) 0.003

Indicator > 0.05 Alternating frequently (0.010-0.015) 0.013
Table 6. Indicators and values of n2 (variations in cross-section shape and size) for the main channel.

Indicator: Land cover map from IOTA2 Effect of obstruction (range/value [s.m−
1
3 ]) Adopted value [s.m−

1
3 ]

Artificial surfaces Appreciable (0.020-0.030) 0.025

High height agricultural areas Minor (0.005-0.019) 0.012

Low height agricultural areas Negligible (0.000-0.004) 0.002

Forests Minor (0.005-0.019) 0.012

Mixed natural areas Minor (0.005-0.019) 0.012

Natural bare ground - 0.000

Glaciers and perpetual snow - 0.000
Table 7. Indicators and values of n3 (degree of irregularity) for the floodplain.

The value of n2 in the channel is determined based on how frequently the channel shape and size alternates between large

and small cross sections. The channel widths sequence, extracted from GRWL along the study domain, is used as a proxy

to evaluate this feature. More specifically, the first derivative of the width signal is derived to measure the range of width

variations. In the end, the value of n2 is determined according to the standard deviation of the width first derivative value.175

Table 6 shows the categories created with this indicator that map with the categories suggested by Arcement and Schneider

(1989) to estimate the value of n2. Additionnal illustrations of GRWL width variations and its first derivative along the study

domains are given in Appendix B. Similarly to the thresholds used for n1, note that the threshold values are currently also

picked according to match our knowledge of the study domains.

2.1.6 Computation of n3180

n3 represents the effect of obstructions.

Since the scope of the proposed method is framed by the SWOT mission, its goal is to estimate the value of n for large rivers

(width>30m) for which obstructions within the channel are rare and can be neglected. The value of n3 is therefore assumed to

be equal to 0.0 s.m−
1
3 in the channel.

The value of n3 in the floodplain is derived from land use maps. Table 7 shows how the land cover nomenclature is associated185

with the categories suggested by Arcement and Schneider (1989) to estimate the value of n3.
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Indicator: Land cover map from IOTA2 Amount of vegetation (range/value [s.m−
1
3 ]) Adopted value [s.m−

1
3 ]

Artificial surfaces Small (0.001-0.010) 0.006

High height agricultural areas Large (0.025-0.050) 0.038

Low height agricultural areas Small (0.001-0.010) 0.006

Forests Very large (0.050-0.100) 0.075

Mixed natural areas Medium (0.011-0.025) 0.018

Natural bare ground - 0.000

Glaciers and perpetual snow - 0.000
Table 8. Indicators and values of n4 (amount of vegetation) for the floodplain.

Indicator: Sinusoity Degree of meandering (value [-]) Adopted value [-]

Indicator < 1.2 Minor (1.00) 1.00

1.2 < Indicator < 1.5 Appreciable (1.15) 1.15

Indicator > 1.5 Severe (1.30) 1.30
Table 9. Indicators and values of m (degree of meandering) for the main channel.

2.1.7 Computation of n4

n4 represents the effect of vegetation.

As for the estimation of n3, the effect of vegetation in the main channel is assumed to be negligible and set to 0.0 s.m−
1
3 .

The value of n4 in the floodplain is derived from land use maps. Table 8 shows how the IOTA2 classification can be mapped190

with the categories suggested by Arcement and Schneider (1989) to estimate the value of n4.

2.1.8 Computation of m

m is a coefficient that accounts for the effect of meandering. According to the Guide the value ofm can be assumed to be equal

to 1.0 in the floodplain.

The sinuosity parameter calculated globally by Frasson et al. (2019) is used as a proxy to infer the value of m in the main195

channel, see Table 9.

2.1.9 Method applicability at global scale

This method aims at being appliable globally. This may be possible as most of the required data are publicly available and have

global coverage, see Table 1.

However we should first point out that the IOTA2 products are currently only available over France. Thus generating land200

cover maps from the IOTA2 chain on its own is mandatory for study areas outside France. Runnning the IOTA2 chain is man-

ageable but requires both training and availability of the required inputs. From our experiments (e.g. Po river, see Section 2.2.2
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and Brahmaputra river, see Section 3.2), it may be difficult to find cloud-free Sentinel 2 images which are required to compute

Land-cover maps using the IOTA2 chain. Still, cloud-free Sentinel 2 images can be produced using, for example, the MAJA

software (Baetens et al., 2019).205

The methodology also requires cross-sectionnal profiles to compute n1 in the main channel. Such profiles are generally ob-

tained locally from field surveys. Still, one could reconstruct profiles down to the lowest observed water level from remotely-

sensed products; by combining, for example, measurements of elevations – from nadir altimetry – simultaneously with wa-

termasks – from optical imagery or even watermask processing chains such as SURFWater (Peña Luque et al., 2021) – from

which river widths can be extracted, similarly to approaches used in Hostache et al. (2010); Desrochers et al. (2020). Others210

approaches are possible, see the application over the Brahmaputra river in Section 3.2

2.2 Study Domain and Data

Our method was first tested over two European study domains: a portion of the upstream Garonne river in France and a portion

of the Po river in Italy.

2.2.1 Garonne domain215

The study area consists in a 75-km-long reach of the Garonne river, from Toulouse to Castelsarrasin, see Figure 1. The Garonne

river is the largest river in South-West of France, it drains an area of about 10,000 km2 in Toulouse. The studied segment has

an average slope of 0.9 m/km, the main channel width ranges from 100 to 300 m and the floodplain width can reach 4 km.

The topography of the reach is described by a set of 145 cross-sections. Each cross-section is the compound product of a

local topographic survey achieved during the early 2000s (main channel) and an extraction from the French national Digital220

Elevation Model (DEM) RGE ALTI (floodplain).

Discharge data has been collected over the year 2019 at multiple gauges, located either directly on the Garonne or on its

main tributaries. Water level data has also been collected over the same time period at a single gauge located in the middle of

the reach (Verdun-sur-Garonne).

Land cover maps of France obtained from the IOTA2 chain are already freely available. The map latest version classifies land225

use in 23 different categories. This native nomenclature was deemed too high for developing the quasi-automatic procedure to

estimate roughness coefficients. A new land cover map was therefore created by aggregating the original 23 classes down to

the 8 macro-classes introduced in Tab 2. Table 10 shows how the original classes were mapped to the aggregated classes while

Figure 2 displays the resulting land cover map.

The resulting roughness coefficients - defined as Strickler coefficients (the inverse of the Manning coefficient) - are illustrated230

in Figure 3 for the floodplain and in Figure 4 for the main channel. Moreover, general statistics on the Strickler coefficient values

are displayed in Table C2 of Appendix C.
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Land use (CES OSO version 2019) Aggregated classes

Continuous urban fabric

Artificial surfaces
Discontinuous urban fabric

Industrial and commercial units

Road surfaces

Rapeseed fields

High-height agricultural areas

Small-grain fields

Sunflower fields

Soybean fields

Corn fields

Rice fields

Protein crops

Low-height agricultural areas
Tubers/roots

Intensive grasslands

Natural grasslands

Orchards

Forests
Vineyards

Broad-leaved forests

Coniferous forests

Woody moorlands Mixed natural areas

Beaches and dunes
Natural bare ground

Bare rock

Glaciers and perpetual snow Glaciers and perpetual snow

Water bodies Water bodies
Table 10. Mapping between the 23 original land use classes obtained from the IOTA2 chain (CES OSO version 2019) and the 8 newly

aggregated classes
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Figure 1. Map of the Garonne study domain.

2.2.2 Po domain

The study area consists of a 96-km-long reach, from Cremona to Borgoforte, see Figure 5. The Po river is the largest river in

Italy, it drains an area of about 50,000 km2 in Cremona. The studied segment has an average slope of 0.15 m/km and the main235

channel width ranges from 150 to 500 m. The floodplain is marked by the presence of two continuous dike systems, whose

width ranges from 400 m to 4 km. The topography of the reach is described by a set of 91 cross-sections whose data points

have been extracted from a 2005 2m-resolution DEM that was made available by the Po River Basin Authority (AdBPo). This

DEM was obtained by a fusion of Lidar data for the floodplain and underwater sonar and ground survey data for the main

channel.240

Discharge and water level data has been collected over the period 2016-2019 at multiple in situ gauges from https://simc.

arpae.it/dext3r/. Water level data has also been collected over the same time period at three virtual stations located on or very

close to the Po river. This data has been downloaded from the online platform Hydroweb that makes available water level time

series of continental waters (large lakes, reservoirs, major rivers) obtained after processing nadir altimetry measurements.

Land cover maps generated by the IOTA2 chain were not available for this study domain. The chain was therefore directly245

run to create a land cover map, using Corine Land Cover (CLC) 2018 as reference data for training. CLC was however not used
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Figure 2. Land cover map from the IOTA2 chain with 8 classes over the Garonne domain.

as is, its classes were aggregated into the 8 meta-classes described in Table 2 (see the details of the aggregation in Appendix A).

This resulted in the creation of a land cover map consistent with the one available for the Garonne study domain, see Figure 6.

The resulting roughness coefficients - defined as Strickler coefficients (the inverse of the Manning coefficient) - are illustrated

in Figure 7 for the floodplain and in Figure 8 for the main channel. Moreover, general statistics on the Strickler coefficient values250

are displayed in Table C3 of Appendix C.

2.3 Validation

2.3.1 Approach

The roughness coefficient of a river portion is not a quantity that can be measured on the field. Because of that, the results

generated by the method developed in this paper cannot be compared to any existing dataset. The method, however, generates255

roughness coefficients that can be used as input to design a hydraulic model, whose river-related outputs can be compared to

observed data.

The approach adopted to validate the method consists of two steps. First, a hydraulic model is required over a study domain

whose characteristics are within the scope of SWOT. This model, either constructed for the sake of validation or obtained

from another source, serves as a reference model. Its roughness coefficients must be set after a calibration procedure, whose260

complexity should be limited to reflect the global scope of the method. The results obtained from this model are compared to

observed data, which allows to compute a reference level of performance achievable over the study domain, using metrics such

as the Nash-Sutcliffe Efficiency (NSE). Second, a hydraulic model is constructed based on the roughness coefficients estimated

13

https://doi.org/10.5194/hess-2021-551
Preprint. Discussion started: 3 December 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 3. Map of inferred Strickler coefficients over the Garonne domain floodplain. The legend is set to mark down roughness decile values.

Figure 4. Curve of inferred Strickler coefficients over the Garonne domain along the main channel.
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Figure 5. Map of the Po study domain.

Figure 6. Land cover map from the IOTA2 chain with 8 classes over the Po domain.

from the method developed in this paper, this model is referred to as the estimation model. Its results are compared to the same

observed data and the method is deemed validated if the estimation performance is close to the reference performance.265

The method described previously is first applied to the two study segments of the Garonne and Po rivers. For the channel n1,

n2 and m are directly determined for each cross-section. The values of nb, n1, n3 and n4 for the floodplain, and nb, n3 and n4

for the channel, are determined at each cross-section vertex, and then aggregated over their length with a weighted average to

obtain a pair of values per cross-section. The Cowan’s formula (2) is finally used to calculate the value of n per cross-section

for both the channel and the floodplain.270
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Figure 7. Map of inferred Strickler coefficients over the Po domain floodplain. The legend is set to mark down roughness decile values.

Figure 8. Curve of inferred Strickler coefficients over the Po domain along the main channel.

2.3.2 Models implementation over the study domains

1D hydraulic models for both the Garonne and Po study domains are constructed with Mascaret, set up to solve the shallow

water equations with the finite difference Preissman scheme.

For the Garonne river, the upstream boundary condition is the discharge time series collected from the gauge Portet-sur-

Garonne (only 10 km upstream of the actual model boundary). The downstream boundary is a rating curve built on the as-275

sumption of a normal flow. Input discharge from the 4 largest tributaries of the reach are integrated as point source discharge.

The collected cross-sections are used to represent the river topography. For the reference model, the roughness coefficient was
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Figure 9. Comparison of the simulated and observed water levels for the reference model of the Garonne at Verdun-sur-Garonne.

assumed to be spatially homogeneous within the reach while differentiated between the main channel and the floodplain. The

model was calibrated with data collected in 2019. The calibration procedure consisted in finding the pair of main channel and

floodplain roughness coefficients that optimize the NSE value computed at the in situ gauge Verdun-sur-Garonne. The calibra-280

tion led to set the main channel Strickler coefficient to 24 m1/3.s−1 and the floodplain one to 16 m1/3.s−1, corresponding to a

NSE of 0.90.

For the Po river, the upstream boundary condition is set to the discharge time series observed at Cremona and the downstream

condition to the water level time series observed at Borgoforte. Input discharge from the tributaries are considered as negligible.

The cross-sections that were manually delineated are used to represent the river topography, their width has been limited to the285

first system of dikes to prevent the model from inundating areas normally protected behind this system. Again, for the reference

model, the roughness coefficient was assumed to be spatially homogeneous within the reach and still differentiated between

the main channel and the floodplain. The model was calibrated over the period 2016-2018, by finding the pair of main channel

and floodplain roughness coefficients that optimizes the value of a mean NSE computed over water level time series at 4 in

situ gauges (Cremona, Isola Pescaroli SIAP, Casalmaggiore, Boretto). The calibration procedure led to set the main channel290

Strickler coefficient to 34 m1/3.s−1 and the floodplain one to 8 m1/3.s−1, corresponding to a mean NSE of 0.94. It also showed

that the model was far less sensitive to the floodplain roughness coefficient value than the main channel one.

2.3.3 Results

Simulations are conducted with the constructed models based on data from 2019. Their results are compared to water level time

series obtained at in situ gauges. The following metrics are used for comparison: NSE, Mean Relative Error (MRE), Standard295

Deviation (SD), Root Mean Squared Error (RMSE) and Percentage Biais (PBIAS).

Figure 9 and Figure 10 show a comparison of the simulated and observed water levels for the reference and estimation

models of the Garonne at Verdun-sur-Garonne. The MRE is close to 0 (-0.04) for the reference model, which is expected since
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Figure 10. Comparison of the simulated and observed water levels for the estimation model of the Garonne at Verdun-sur-Garonne.

RMSE PBIAS NSE

Reference Estimation Reference Estimation Reference Estimation

Verdun-sur-Garonne 0.22 0.24 0.04 0.14 0.90 0.89
Table 11. Metrics of the simulated and observed water levels for the reference and the estimation model of the Garonne at the Verdun-sur-

Garonne gauge.

it was calibrated to better fit the water level time series collected at Verdun-sur-Garonne. A bias of -0.12 m is obtained with the

estimation model and the SD has slightly decreased, going from 0.22 m to 0.21 m.300

Table 11 shows statistics obtained at Verdun-sur-Garonne. The bias previously noted is found again in the PBIAS value of

0.14% for the estimation model compared to a value of 0.04% for the reference model (a positive PBIAS indicates a model

underestimation). Both the RMSE and the NSE are deteriorated, although just slightly. These statistics demonstrate that the

results obtained with the estimation model are very close to those obtained with the reference model.

Similarly, Figures 11 and 12 show a comparison of the simulated and observed water levels for the reference model of the Po,305

aggregated among 4 gauges (Cremona, Isola Pescaroli SIAP, Casalmaggiore, Borreto). The MRE is close to 0 for the reference

model, which is expected since it was calibrated to better fit these water level time series. A global bias of -0.33 m is obtained

with the estimation model and the SD is slightly increased from 0.40 m to 0.48 m.

Table 12 shows the results obtained at each gauge location. The global bias already noted is found in each PBIAS value

(a positive PBIAS indicates a model underestimation). There is however no clear pattern that emerges from the results, while310

the RMSE and NSE are deteriorated at the gauges Cremona, Casalmaggiore and Boretto, they are improved at the gauge Isola

Pescaroli SIAP. The NSE values are all above 0.94 for the reference model, and stay above 0.84 for the estimation model. This

shows that despite the deterioration observed between the reference and the estimation models, the results obtained with the

estimation model still have a good performance level.
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Figure 11. Comparison of the simulated and observed water levels for the reference model of the Po aggregated over 4 in situ gauges.

Figure 12. Comparison of the simulated and observed water levels for the estimation model of the Po aggregated over 4 in situ gauges.

RMSE PBIAS NSE

Reference Estimation Reference Estimation Reference Estimation

Cremona 0.13 0.59 0.26 1.97 1.00 0.91

Isla Pescaroli 0.52 0.32 -1.96 -0.97 0.94 0.98

Casalmaggiore 0.34 0.42 -0.53 0.88 0.97 0.96

Boretto 0.50 0.85 2.22 4.20 0.94 0.84
Table 12. Metrics of the simulated and observed water levels for the reference and the estimation model of the Po at 4 in situ gauges.
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It is not surprising that our estimated model performs sligthly worse than the calibrated model, as our approach to define315

roughness coefficient is purely physically-based and the calibrated model encompasses model structural errors to match the

observations. Still, our estimated model performs fairly well and allows us to serenely use those roughness coefficients in our

applications.

3 Applications

These new remote-data-fusion-based friction can serve various applications in hydrology. A first and obvious field of appli-320

cation would be to use these friction coefficients in one-dimensional shallow water models (such as HEC-RAS, Mascaret or

DassFlow-1D amont others). A second field of application could be fine-scale 2D shallow water models for surveys or research

on flood prediction. Indeed our chain does not only provide friction coefficients in the main channel and in the near floodplain,

but could also be extended to the entire floodplain using the 2D maps of IOTA2 and ancillary data (SoilGrids, etc.). In this

case the values computed by our chain could be used as-is or would require a small tuning. One must recall that the friction325

coefficients in shallow water models encompass the modeling errors and so may vary from on model to another and also to

take into account modeling differences between one-dimensionnal and two-dimensional models. But having a good starting

point for a calibration reduces the computational cost.

Finally these coefficients could also be used as-is or as good first guess for DA in other models that are based on shallow

water equations or their simplification (Manning equation, Kinematic wave, etc.). For instance they could be used in the large330

scale model MGB-IPH (Diffusive wave equations) or in some of the SWOT discharge algorithms, such as MetroMan (Durand

et al., 2014), geoBAM (Brinkerhoff et al., 2019) or HiVDI (Larnier et al., 2021). Here we present two applications. The first

application is a DA experiment in the one-dimensional shallow water model Mascaret while the second application shows the

benefits of using the computed friction coefficients as a first guess for the HiVDI SWOT discharge algorithm.

3.1 Data Assimilation experiment335

A first case of application for the remote-data-fusion-based friction coefficients will consist in a Data Assimilation (DA)

experiment around the Mascaret 1D-hydraulic model (Goutal et al., 2012).

DA consists in correcting parameters and/or state variables of a numerical physical model from external observations to

improve its forecasting capabilities. DA can be tackled with two main approaches: "state" estimation or "parameter" estimation.

For the first configuration, model state variables are directly constrained and updated. For the second configuration, model340

inputs are corrected, i.e. parameters defining model’s equations, e.g. Strickler coefficients, or even boundary conditions,

e.g. upstream discharge forcing 1D-hydraulic model. When applied as parameter estimation, DA approaches can be related to

a calibration procedure. In hydraulics, such applications are mostly focused on friction coefficients (Habert et al., 2016; Goeury

et al., 2017; Zaoui et al., 2018; Mirouze et al., 2020) as little is known on the value of these parameters.

The SMURF package – i.e. System for Modeling with Uncertainty Reduction, and Forecasting – is an open source Python345

modular system developed at CERFACS set for running and cycling DA systems. It is currently mainly used for hydraulic
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applications, more precisely within the preparation to the SWOT mission. For more details, the reader should read Mirouze

and Ricci (2021). Note that SMURF can orchestrate both kind of assimilation introduced above. Here, SMURF is used to

orchestrate the application of the Ensemble Kalman filter (EnKF) DA algorithm around the Mascaret model.

The EnKF (Evensen, 2003) is a widely-spread extension of the classical Kalman filter (Kalman, 1960) developed for numeri-350

cal models with nonlinear dynamics. Error covariance matrices are stochastically estimated directly from an ensemble of model

runs so they do not rely on a linearity assumption. For more details on the EnKF implementation, please see Appendix D.

Here, we realized two DA experiments around the Po model over the period from Oct, 01 2019 to Dec, 31 2019, as this

period covers three flooding events. Both experiment assimilates real-data from insitu and altimetry gauges. The difference

between the two relies on the friction coefficients used as first guess to initiate the experiment: first, the uniform calibrated355

values and second, the roughness from our methodology.

Water levels measurements from 4 insitu stations and 3 virtual stations from Sentinal-3A are assimilated. All observations

were converted into equivalent water surface elevations referenced to the same geoid as the Mascaret model. The observation

error for the EnKF is modeled as a white noise with a given standard deviation depending on the gauge type. A dispersion of 10

cm was taken for the insitu gauges and the averaged error provided by Hydroweb (http://hydroweb.theia-land.fr/) was used for360

the virtual gauges, see Table 13 for the detailed observation error value. Insitu measurements are delivered between every 15

or 30 minutes with possible missing data within the entire timeseries while virtual gauges have a revisit period of 27 days, with

possibly missing data. We set an assimilation window of 1 day for the EnKF. During a given assimilation cycle, all available

measurements for the current day are assimilated and compared to the closest simulated timestep.

For both experiments, the spatial distribution of Strickler coefficients in both the main channel – Ksmin variable – and the365

floodplain – Ksmaj variable – are simultaneously updated. Note that Mascaret does not differentiate a right and left floodplain

so only one overall value of Strickler coefficient is required for the floodplain. Given the spatial coverage of the observations

to be assimilated, the Strickler coefficients are set uniform over 7 zones delimited by the gauges position on the 1D domain.

Therefore, the control vector to update through data assimilation contains 14 elements: 7 Strickler coefficients for the main

channel and 7 Strickler coefficients for the flooplain. The control error is set as a uniform law which range is initialized as ±370

30% of the prior value in the river channel and as ± 50% of the prior value for the floodplain. Table 13 sums up all control and

observation variables configuration for both experiments.

DA performances for the real-data experiment can only be evaluated at the observation gauges, see Table 14 and Figures 13-

14. Overall, the second experiment performs slightly better than the first one, which validates more our infered roughness

coefficient. After the assimilation in the first experiment, water level RMSE are little or not reduced compared to the free run375

while the contribution of the DA is clearer with the second experiment. Moreover, in the second experiment, DA displays

interesting results with mostly improved RMSE but decreasing enhancement the more downstream the observation gauge.

This could be easily explained by the downstream control imposed by the model where a water level timeseries is used as

downstream boundary condition and constrains simulated water surface elevations including the two most downstream gauges.

The physically-based roughness coefficients are here used as initial prior values for DA experiments. It is true that part of380

the fine-resolution information was lost by aggregating over 7 larger areas but this decision was based on the availability of
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Zone
Obs error Ksmin Ksmaj

[m] bounds Exp #1 Exp #2 bounds Exp #1 Exp #2

1 0.1 25.0-60.0 34.0 40.546 2.0-25.0 8.0 9.833

2 0.1 25.0-60.0 34.0 36.478 2.0-25.0 8.0 10.172

3 0.18 25.0-60.0 34.0 36.085 2.0-25.0 8.0 9.598

4 0.1 25.0-60.0 34.0 39.04 2.0-25.0 8.0 9.693

5 0.1 25.0-60.0 34.0 35.136 2.0-25.0 8.0 10.088

6 0.13 25.0-60.0 34.0 41.702 2.0-25.0 8.0 10.067

7 0.36 25.0-60.0 34.0 39.616 2.0-25.0 8.0 9.408
Table 13. For each zone ordered from upstream to downstream along the Po model (rows), observation error standard deviation for the

associated gauge located at the upstream on the zone (column 2); allowed values range for Ksmin (column 3); first experiment initial mean

prior value for Ksmin (column 4); second experiment initial mean prior value for Ksmin (column 5); allowed values range for Ksmaj (column

6); first experiment initial mean prior value for Ksmaj (column 7); second experiment initial mean prior value for Ksmaj (column 8).

Zone

RMSE Z [m]

Exp #1 Exp #2

calibrated roughness estimated roughness

1 0.199 / 0.152 0.687 / 0.150

2 0.442 / 0.230 0.303 / 0.213

3 0.819 / 0.518 0.692 / 0.256

4 0.451 / 0.243 0.836 / 0.237

5 0.616 / 0.262 1.069 / 0.259

6 0.225 / 0.521 0.239 / 0.442

7 0.008 / 0.088 0.223 / 0.174
Table 14. Real-data experiment results before (left-hand side of the slash character) and after (right-hand side of the slash character) assimi-

lation per zone. Performances are evaluated by RMSE for Z at observation gauges: free run RMSE (left-hand side of the slash character) are

compared to analysis run RMSE (right-hand side of the slash character).
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Figure 13. Model performances over simulated water surface elevation Z at observation gauges before (blue "prior" bars) and after (red

"analysis" bars) assimilation for the Experiment #1 that uses uniform calibrated roughness coefficients.

the observations, as it would be complicated to assess the quality of updated roughness coefficient over unobserved part of

the study domain. Better performances could be surely obtained by better tunning and setting the DA framework but such

setup is out of the scope of the present study. Despite these conditions, the physically-based roughness coefficients present as

interesting priors parameters to initialize such DA experiments.385

3.2 SWOT Discharge Algorithm

A second case of application will consist in assessing the benefits of using the remote-data-fusion-based friction coefficients as

a first guess for the assimilation of synthetic SWOT observations in the HiVDI discharge algorithm (Larnier et al., 2021; Larnier

and Monnier, 2020). The performance of such applications will be compared to the current implementation that uses a rough

estimation of friction coefficients from the river width. As SWOT has not been launched yet, the discharge algorithms have been390

benchmarked so far on synthetic SWOT observations, namely the PEPSI challenges’ datasets (Durand et al., 2016; Frasson

et al., 2021). These datasets consist in synthetic SWOT observations of river portions with various flow regimes, computed

using calibrated shallow water models. Some of the algorithms were also tested on observations from the SWOT Science

simulator that simulates the full error budget of the Karin instrument or from AirSWOT data (airborne similar instrument).
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Figure 14. Model performances over simulated water surface elevation Z at observation gauges before (blue "prior" bars) and after (red

"analysis" bars) assimilation for the Experiment #2 that uses roughness coefficients from our method.

The analyses of these benchmarks have highlighted the strong dependency on the accuracy of the estimated discharges to the395

priors, namely bathymetry, friction coefficients and mean discharge value. So it is mandatory to find new solutions to estimate

good priors. The application of our chain to estimate the priors of friction coefficients is in line with this objective.

Usually the first guess of friction coefficients are computed from the mean width of the considered river portion. It may vary

from 20 (small rivers) to 40 (very large rivers). This rough estimation plus the fact that it provides a uniform value for the first

guess can lead to wrong estimations of discharge after the assimilation of the synthetic SWOT observations.400

Here we realized the comparison on three cases of the PEPSI challenges. The first two cases are the Garonne river and the

Po river cases. These cases were selected as the friction coefficients for these rivers have already been estimated in this study.

The third case is the Brahmaputra case (India). This last case has been selected based on the availability of input data for

running the IOTA2 chain. For this case, the Copernicus land-cover at 100m resolution (Buchhorn et al., 2020) was used for the

calibration of the IOTA2 classifier.405

The PEPSI dataset does not contain any information about the separation between main channel and the floodplain. But as

the objective of these datasets was to benchmark algorithms on "nominal conditions", namely natural rivers with no or very

little flooding, we conducted our experiments under the asumption that the flow is restricted to the main channel. Thus we only

used friction coefficients estimated for the main channel. Moreover, no cross-sectional profiles were previously available. As

introduced in Section 2.1.9, we combined simultaneous observations of width and water surface elevations, provided by the410
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Table 15. Statistics on the estimated values of friction coefficients for the three PEPSI cases.

This method (m1/3.s−1) Former Value (m1/3.s−1))

Case Min Mean Max

Garonne river 22.24 25.53 27.05 25.0

Po river 34.28 38.96 42.37 30.0

Brahmaputra river 40.25 40.90 41.85 50.0

Figure 15. Estimated discharge for the Garonne river, using the former constant friction coefficient (left) and the new method (right)

PEPSI dataset, to reconstruct each cross-sectionnal profile individual shape. Using a handcrafted routine, we then draw the

profiles along the riverline such that they remain quasi-orthogonal to the riverline while never crossing each other.

For the Garonne River and Po river cases, friction coefficients already computed in our study were spatially interpolated

using curvilinear abscissae in the PEPSI 1 datasets. For the Brahmaputra river, the friction coefficients were directly computed

at the location of the cross-sections in the PEPSI 2 dataset using our new method. The statistics on the values estimated using415

our method are listed in Table 15 with comparison to the constant values formerly estimated.

The results obtained for the three cases with comparison with previous results are displayed in Figure 15 for the Garonne

river, in Figure 16 for the Po river and in Figure 17 for the Brahmaputra river. Two usual metrics for the benchmarks of SWOT

discharge algorithms were computed on these results, namely the Nash-Sutcliffe Efficiency (NSE) and the Normalized Root

Mean Squared Error (NRMSE). The values obtained are listed in Table 16.420

These results show that using the friction coefficients estimated by our method as a prior looks very promising. Indeed for

the Garonne and Po rivers cases the results outperform those obtained with the former method with a 47 % reduction of errors

(in terms of NRMSE) for the Garonne river and 13 % for the Po River. For the Brahmaputra river, the results obtained with

the new method slightly underperform those obtained with the former method with an 3 % increase of errors. However the

results are comparable. These results show the potential benefits of this new method to better constrain the SWOT discharge425

algorithms.
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Figure 16. Estimated discharge for the Po river, using the former constant friction coefficient (left) and the new method (right)

Figure 17. Estimated discharge for the Brahmaputra river, using the former constant friction coefficient (left) and the new method (right)

4 Conclusions

The present study introduces an automatic methodology to derive physically-based roughness coefficients for hydrology appli-

cations. The methodology is applied via a processing chain based on the Cowan’s formula and can infer roughness coefficients

in both the floodplain and the riverbed at different format. A two-dimensional raster image gathers the roughness coefficient in430

the floodplain while a node-based shapefile contains the roughness coefficients along the main channel centerline. The inter-

esting aspect of such a chain is that it only uses remotely-sensed, publically available datasets and/or existing pre-processing

chains. It can therefore be applied at global-scale for a wide range of applications.

Among the input data, land cover maps generated by the IOTA2 chain are at the core of the methodology to derive roughness

coefficients in the floodplain. Such maps are currently only available yearly over France but the IOTA2 chain itself can be435

run over different region given any adapted training data. During the present project, we used the already-available French

land cover maps over a 75-km-long reach of the upstream Garonne river near Toulouse in France and we run by ourselves the

IOTA2 chain over two additional domain: a 96-km-long reach along the middle Po river in Italy and a 250-km-long portion

of the Brahmaputra river. The method was first tested over the Garonne and Po domains and the third one was only used in

applications. The interesting aspect with using successively these three domains is the diminution of available local – and field440
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Table 16. Efficiency metrics computed on the HiVDI results using former and new method.

Former method New method

Case NRMSE (%) NSE (-) NRMSE (%) NSE (-)

Garonne river 20.59 0.91 10.83 0.98

Po river 60.64 0.57 52.57 0.68

Brahmaputra river 45.57 0.89 47.07 0.88

– data to be used. Namely, land cover maps from the IOTA2 chain are only available over France; local DEM and insitu data

were acquired only for the Garonne and Po domain while profiles had to be reconstructed and simulated data had to used for

the Brahmaputra river. Therefore, we were able to apply our methodology over both well-gauged and ungauged domains.

Our chain aims at estimating physically-based roughness coefficients, therefore, for specific modeling applications, our

coefficients still require some further tuning and calibration to match the model physics. Still, we evaluated the quality of445

such parameters against calibrated ones via hydraulic simulations using the Mascaret 1D-hydraulic model and by comparing

the simulated water levels to observed water levels obtained with insitu data. For both testing domains, namely the Garonne

and Po domain, neither the simulations using the calibrated coefficients nor the simulations using the estimated coefficients

performed clearly better than the other. These encouraging results allow us to serenely use those roughness coefficients as-is

as first guess to initialize different kinds of applications for hydrology. One should keep in mind though that the produced450

roughness coefficients are better suited for one-dimensional applications.

Finally, the roughness coefficients generated with our method were used as first guess in two applications: first, a real-data

DA experiment and second, an execution of one of the SWOT discharge algorithm, here HiVDI. The DA experiment purpose

was to correct simultaneously the model’s roughness coefficients in both the main channel and the floodplain, for the Mascaret

model applied over the Po domain by assimilating insitu and altimetry observations of water levels (for a total of 7 observing455

gauges). The experiment showed the capacity of neatly reducing the water level RMSE. Performances were less obvious

downstream but could be explained by the model implentation forcing the water level as downstream boundary condition.

Thus, the roughness coefficients generated by our method can be easily used in DA applications.

The second application is more related to SWOT-based applications. Indeed, one of the purposes of generating global scale

"good" priors of roughness coefficients is to later on use them within SWOT discharge algorithms. The HiVDI algorithm, one460

of the official in-development SWOT dicharge algorithm, is applied over the Brahmaputra domain, one of the PEPSI dataset

domains, using our coefficients as first guess for the friction parameters. To evaluate the benefits of our roughness ceofficients,

the performances of the experiment were compared to the usual implementation using the mean width to estimate the roughness

coefficients. Results were very promising as experiments using our roughness coefficients performed better or slightly worse

(for the Brahmaputra only) than the classical implementation. Given that it has been shown that the overall performances of465

SWOT discharge algorithms highly depend on the quality of the priors, such results show the potential benefits of this new

methodology to infer roughness coefficients and better constrain SWOT discharge algorithm.
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The study offer several perspectives. First, given training data and cloud-free Sentinel 2 images are gathered at global scale,

one could aim at extend the methodology to build global scale maps of roughness coefficients. Riverlines from Frasson et al.

(2019) or the SWOT a priori river database could be used to set the spatial coverage and resolution of the resulting product.470

Roughness would be easily derived in the floodplain given that only global-scale raster products are used. The main challenge

would lie in deriving cross-sectional profiles at global scale. Meanwhile, we are aware that several features of our methodology

were parameterized according to our own knowledge in general hydrology and on the study domains we chose. To adjust our

choices and/or assert them more, it would interesting to lead a full sensitivity analysis of the roughness coefficients estimated

by our methodology to the different terms of the Cowan formula and to the inputs.475

Code and data availability. The IOTA2 chain is available through the framagit platform at https://framagit.org/iota2-project/iota2. The

toolbox used to build cross-sectionnal profiles over the Brahmaputra river domain are hosted on Kevin Larnier’s private github account,

please directly contact Kevin Larnier’s (kevin.larnier@csgroup.eu). To access the roughness coefficient extraction chain, please directly

contact co-authors Santiago Pena Luque (santiago.penaluque@cnes.fr) or Charlotte Emery. All ancillary databases used for this study

are freely available online. The GRWL vector product in available at https://zenodo.org/record/1297434#.YJOrbSY68UE. The World-480

DatabaseRivers database is available at https://zenodo.org/record/2582500#.YNismTo69hF. The RGE ALTI French DEM is available at

https://geoservices.ign.fr/documentation/diffusion/telechargement-donnees-libres.html. French land cover maps are available yearly at https:

//www.theia-land.fr/ceslist/ces-occupation-des-sols/. Insitu river data were downloaded from the French Banque Hydro website (http://www.

hydro.eaufrance.fr/). The Po basin DEM has been downloaded from https://adbpo.gov.it/carta-del-po-e-dtm/. Finally, when available, altime-

try water surface elevations from virtual stations were downloaded from the Theia-Hydroweb website at http://hydroweb.theia-land.fr/.485

Appendix A: Corine Land Cover classes aggregation

The following tables detail how Corine Land Cover classes were aggregated to match our 8 meta-classes.

Appendix B: Illustration of n1 and n2 Cowan’s formula terms over the study domains

B1 Garonne domain

B1.1 Term n1490

Figures B1-B2 illustrate some raw profiles and their smoothed version that give different range of the n1 term.

B1.2 Term n2

Figure B3 displays the widths value from GRWL along the domain and the associated first derivative used to estimate n2.
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CLC classes code Aggregated class

Continuous urban fabric 111

Artificial surfaces

Discontinuous urban fabric 112

Industrial and commercial areas 121

Road and rail network with associated areas 122

Port areas 123

Airports 124

Dump sites 132

Construction sites 133

Green urban areas 141

Sport and leisure facilities 142
Table A1. Aggregation of CLC land cover classes related to artificial surfaces

CLC classes code Aggregated class

Non-irrigated arable land 211

High-height agricultural areas

Permanently irrigated land 212

Rice fields 213

Vineyards 221

Fruit trees and berry plantations 222

Olive groves 223

Annual crops associated with permanent crops 241

Complex cultivation patterns 242

Land principally occupied by agriculture
243

, with significant areas of natural vegetation

Sparsely vegetated areas 333

Natural grasslands 321

Low-height agricultural areas
Moors and heathland 322

Sclerophyllous vegetation 323

Burnt areas 334
Table A2. Aggregation of CLC land cover classes related to agricultural areas
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CLC classes code Aggregated class

Agro-forestry areas 244

Forests

Broad-leaved forest 311

Coniferous forest 312

Mixed forest 313

Transitional woodland-shrub 324

Inland marshes 411
Mixed natual areas

Peatbogs 412

Mineral extraction sites 131

Natural bare groundsBeaches, dunes, sands 331

Bare rocks 332
Table A3. Aggregation of CLC land cover classes related to natural surfaces.

CLC classes code Aggregated class

Glaciers and perpetual snow 335 Glaciers and perpetual snow

Salt marshes 421
–

Salines 422

Intertidal flats 423

Water bodies

Water courses 511

Water bodies 512

Coastal lagoons 521

Estuaries 522

Sea and ocean 523
Table A4. Aggregation of CLC remaining land cover classes.

B2 Po domain

B2.1 Term n1495

Figures B4-B5 illustrate some raw profiles and their smoothed version that give different range of the n1 term.

B2.2 Term n2

Figure B6 displays the widths value from GRWL along the domain and the associated first derivative used to estimate n2.
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Figure B1. Comparison of the 6th raw and smoothed cross section profiles over the Garonne domain. The length ratio is of 0.9904 giving

n1 = 0.003.

Figure B2. Comparison of the 12th raw and smoothed cross section profiles over the Garonne domain. The length ratio is of 0.9997 giving

n1 = 0.0.

Appendix C: Descriptive statistics on estimated roughness coefficients

C1 Garonne domain500

C2 Po domain

Appendix D: Ensemble Kalman filter implementation with SMURF

This appendix details EnKF implementation choices specific to SMURF and the DA experiments presented in Section 3.1.
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Land type mean std min 25% 50% 75% max

Artifical surfaces 17.89 0.143 16.58 17.79 17.88 17.99 19.14

High-height agricultural areas 12.13 0.052 11.47 12.10 12.13 12.16 12.62

Low-height agricultural areas 28.05 0.329 24.83 27.88 28.07 28.24 31.01

Forest 7.82 0.034 7.56 7.81 7.82 7.84 8.05

Mixed natural areas 15.95 0.192 14.87 15.85 15.91 16.01 16.85

Natural bare soils 39.97 1.40 34.11 39.63 39.90 40.44 46.19

Ice and snow - - - - - - -

Water - Main channel 24.89 1.91 18.90 23.40 25.98 26.30 27.59
Table C1. Descriptive statistics of estimated Strickler coefficients over the Garonne domain over the floodplain per land cover land type

(rows 1-7) and over the main channel (row 8): mean (column 1), standard deviation (column 2), minimum (column 3), first quartile (column

4), median (column 5), third quartile (column 6) and maximum (column 7). Note that the "Water" land type refers to the main channel.

Table C2. Descriptive statistics of estimated Strickler coefficients over the Garonne domain over the floodplain per land cover land type

(rows 1-7) and over the main channel (row 8): mean (column 1), standard deviation (column 2), minimum (column 3), first quartile (column

4), median (column 5), third quartile (column 6) and maximum (column 7). Note that the "Water" land type refers to the main channel. Note

also that there is no occurence of the "low-height agricultural areas" over this domain.

Land type mean std min 25% 50% 75% max

Artifical surfaces 18.02 0.139 16.61 17.95 18.02 18.10 19.17

High-height agricultural areas 12.14 0.046 11.46 12.09 12.13 12.19 12.64

Low-height agricultural areas - - - - - - -

Forest 7.82 0.049 7.56 7.81 7.82 7.84 8.06

Mixed natural areas 15.92 0.129 14.90 15.87 15.90 15.95 16.84

Natural bare soils 40.86 1.908 34.21 40.44 40.81 41.04 47.18

Ice and snow - - - - - - -

Water - Main channel 33.05 4.338 21.67 30.82 32.79 36.36 41.02
Table C3. Descriptive statistics of estimated Strickler coefficients over the Po domain over the floodplain per land cover land type (rows 1-7)

and over the main channel (row 8): mean (column 1), standard deviation (column 2), minimum (column 3), first quartile (column 4), median

(column 5), third quartile (column 6) and maximum (column 7). Note that the "Water" land type refers to the main channel. Note also that

there is no occurence of the "low-height agricultural areas" over this domain.
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Figure B3. (Top) Mirror river width (centered around 0) with respect to the curvilinear absissa over the upstream Garonne domain. (Bottom)

First derivative with respect to the curvilinear abscissa of the above river width.

Figure B4. Comparison of the 6th raw and smoothed cross section profiles over the Po domain. The length ratio is of 0.9896 giving

n1 = 0.008.

The control vector x contains the 7 Strickler coefficients for the main channel and the 7 Strickler coefficients for the flood-

plain used in Mascaret for a hydraulic simulation. It is initialized with the friction coefficients issued from the methodology505

presented in Section 2.1 averaged over the 7 zones between observation gauges. At a given assimilation cycle k, the prior

version of the control vector, before assimilation, is denoted xb
k, with b standing for "background".

As for any Kalman-type DA algorithm, the EnKF comprises two steps per assimilation cycle k:

1. A prediction step, during which the control vector is propagated from time tk to tk+1 using the numerical modelMk,k+1

– here Mascaret.510
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Figure B5. Comparison of the 11th raw and smoothed cross section profiles over the Po domain. The length ratio is of 0.9954 giving

n1 = 0.003.

Figure B6. (Top) Mirror river width (centered around 0) with respect to the curvilinear absissa over the Po domain. (Bottom) First derivative

with respect to the curvilinear abscissa of the above river width.

2. An analysis step, generating the analysis control vector denoted xa
k, with a standing for "analysis", updated given the

prior control vector, the available observations yo
k and their associated uncertainies, gathered in matrices Bk for the

control vector and Rk for the observations. Moreover, when the control variables are of a different nature of the obser-

vations, as in our current experiment where control varaibles are Strickler coefficients and the observations are water

surface elevations, an observation operator denotedHk (and Hk for its matrix form) is used to map the control variables515

in the observation space, giving, the Kalman-type analysis equation:

xa
k = xb

k +BkHT
k

(
HkBkHT

k +Rk

)−1 (
yo

k −Hk(xb
k)
)
, (D1)
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Now, the EnKF specificities state that the control-variable-related error covariance matrices can be stochastically estimated

from an ensemble of simulations. Instead of working with a single instance of the control vector, the EnKF works with a control

ensemble Xb
e,k containing ne instances of the control vector, each drawn from a chosen random distribution characterizing the520

uncertainty model:

Xb
e,k =

[
x[1],b

k x[2],b
k . . . x[ne],b

k

]
. (D2)

Note that in our application, we chose ne = 100 to ensure an large-enough ensemble regarding sample errors but still reasonable

to avoid long execution time. In SMURF, a uniform law is used to perturb the control vector such as:

∀ l = 1 . . .ne : x[l],b
k ∼ U

(
xb

k ± p%
)
, (D3)525

where xb
k is the mean prior control vector from the previous-cycle control ensemble and p is the range around the mean values.

Recall that p was set to 50 for Ksmaj and 30 for Ksmin. Note that this implementation implies that each control variable in the

control vector is natively independent from all other variables.

Along with the control ensemble Xb
e,k, its counterpart in the observation space is then generated giving:

H(Xb
e,k) =

[
H(x[1],b

k ) H(x[2],b
k ) . . . H(x[ne],b

k )
]
. (D4)530

Using these two ensembles, control-variable-related error covariance matrices are directly estimated as:

[BHT]e,k =
1

ne− 1

ne∑

l=1

(
x[l],b

k −Xb
e,k

)(
H(x[l],b

k )−H(Xb
.,k))

)T
(D5)

and

[HBHT]e,k =
1

ne− 1

ne∑

l=1

(
H(x[l],b

k )−H(Xb
.,k))

)(
H(x[l],b

k )−H(Xb
.,k))

)T
(D6)

SMURF then apply the principle of observation randomization (Burgers et al., 1998) where the observation vector is also535

randomized such that:

Yo
e,k =

[
y[1],o

k y[2],o
k . . . y[ne],o

k

]
, with ∀ l = 1 . . .ne : y[l],o

k = yo
k + ε

[l],o
k , ε

[l],o
k ∼N (0,Rk). (D7)

In the litterature, there are two ways to apply Equation D1. One can apply it individually to each member to generate an

analysis control ensemble or one can apply it to the mean of the background control ensemble. In SMURF the second option

is implemented.540

Finally, note that, in the classical definition of the Kalman filter, there exists an analysis equation to also update the back-

ground error covariance matrix Bk from one assimilation cycle to another. In SMURF original implementation, decision was

made not to use this equation and keep the initial definition of the control variable errors. This implementation allows to

maintain enough dispersion in the control ensemble and ensure EnKF efficiency. However, for our application, we decided to

propagate the analysis control error matrix from one assimilation cycle to another.545
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