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Abstract. Despite the Variable Infiltration Capacity (VIC) model being used for decades in the hydrology community, there 

are still model parameters whose sensitivities remain unknown. Additionally, understanding the factors that control spatial 

variations in parameter sensitivities is crucial given the increasing interest to obtain spatially coherent parameter fields over 10 

large domains. In this study, we investigate the sensitivities of 43 soil, vegetation and snow parameters in the VIC model for 

101 catchments spanning the diverse hydroclimates of continental Chile. We implement a hybrid local-global sensitivity 

analysis approach, using eight model evaluation metrics to quantify sensitivities, with four of them formulated from runoff 

time series; two characterizing snow processes, and the remaining two based on evaporation processes. Our results confirm an 

over-parameterization for the processes analysed here, with only 12 (i.e., 28%) parameters found as sensitive, distributed 15 

among soil (7), vegetation (2) and snow (3) model components. Correlation analyses show that climate variables – in particular, 

mean annual precipitation and aridity index – are the main controls on parameter sensitivities. Additionally, our results 

highlight the influence of the leaf area index on simulated hydrologic processes – regardless on the dominant climate types – 

and the relevance of hard-coded snow parameters. Based on correlation results and the interpretation of spatial sensitivity 

patterns, we provide guidance on the most relevant parameters for model calibration according to the target processes and the 20 

prevailing climate type. Overall, the results presented here contribute to improved understanding of model behaviour across 

watersheds with diverse physical characteristics that encompass a wide hydroclimatic gradient from hyper-arid to humid 

systems. 

1. Introduction 

Over the past four decades, the increasing demand for more realistic spatial representations of water storages and fluxes across 25 

large domains has motivated the development of more complex physics-based models (e.g., Niu et al., 2011; Clark et al., 2015; 

Lawrence et al., 2019). The progress in this field has been partly facilitated by new observational datasets (e.g., McCabe et al., 

2017; Berg et al., 2018) and advances in computing (see discussion on tradeoffs in Clark et al., 2017), enabling hydrological 

characterizations at national (e.g., Tian et al., 2017; Zink et al., 2017), continental (e.g., Xia et al., 2012; Abbaspour et al., 

2015) and global (e.g., Schmied et al., 2014; Arheimer et al., 2020) domains. 30 
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Although spatially constant parameters can be used for large domain applications, improving model realism requires the 

specification of parameter values that reflect spatial heterogeneities in landscape properties. Because increasing model 

complexity is often associated with a larger number of parameters, many models rely on lookup tables to assign soil thermal 

and hydraulic parameters, and vegetation optical and physiological parameters for each modelling unit (e.g., Mitchell et al., 

2004; Yang et al., 2011). However, parameter uncertainties may be considerable (Rosero et al., 2010; Hou et al., 2012), and 35 

such problem is exacerbated by the existence of parameters that, despite being “adjustable” (e.g., runoff generation 

parameters), remain fixed and hard-coded (Mendoza et al., 2015a; Cuntz et al., 2016). 

To address overparameterization problems that are typical in environmental models, sensitivity analysis has become a key tool 

that provides information on which parameter values are the most influential for the dynamics of specific model responses 

(Razavi and Gupta, 2015). The outcomes of sensitivity analysis not only help to improve understanding of model functioning, 40 

but also to inform decisions regarding parameter estimation problems. The literature provides many examples of sensitivity 

analysis studies with process-based hydrological models, including the Biosphere-Atmosphere Transfer Scheme, BATS 

(Bastidas et al., 1999); TOPKAPI (Foglia et al., 2009); PRMS (Mendoza et al., 2015b), the Noah land surface model (Bastidas 

et al., 2006; Rosero et al., 2010); Noah-MP (Mendoza et al., 2015a; Cuntz et al., 2016), the Simple Biosphere model, SiB3 

(Prihodko et al., 2008; Rosolem et al., 2012); the MESH modelling system (Razavi and Gupta, 2016), the Community Land 45 

Model, CLM (Göhler et al., 2013; Massoud et al., 2019) and the Variable Infiltration Capacity (VIC) model (e.g., Demaria et 

al., 2007; Melsen et al., 2016), which is one of most popular modelling platforms in the hydrology community (Addor and 

Melsen, 2019). 

The VIC model (Liang et al., 1994; Hamman et al., 2018) has been used for myriad applications all over the world, including 

snow modeling (Andreadis et al., 2009; Chen et al., 2014), streamflow forecasting (Wood et al., 2005; DeChant and 50 

Moradkhani, 2014), water balance studies (Mizukami et al., 2016; Vásquez et al., 2021), extreme event characterization 

(Melsen et al., 2019); land use change impacts (Chawla and Mujumdar, 2015) and climate change impact assessments (e.g., 

Vano and Lettenmaier, 2014; Chegwidden et al., 2019). Despite the large number of parameters contained in VIC – either 

‘free’ (e.g., the infiltration shape parameter ‘INFILT’, the exponent in baseflow curve) or ‘observable’ (e.g., leaf area index) –

, many studies have relied on the calibration of only two or three soil-related parameters (Huang and Liang, 2006; Chawla and 55 

Mujumdar, 2015). Conversely, other authors have advocated for characterizing parameter sensitivities using different 

approaches, sensitivity metrics, and including different parameters. For example, Liang & Guo (2003) assessed the sensitivity 

of annual runoff, annual evapotranspiration (ET), annual mean soil moisture, and annual mean sensible heat flux to variations 

in five soil and vegetation parameters at three experimental locations (i.e., point scale), finding that sensitivities varied with 

climatic and physiographic site characteristics. Demaria et al. (2007) examined sensitivities in simulated catchment-scale 60 

runoff responses using lumped VIC configurations, a Monte Carlo method, and five objective functions computed for four 

basins with varying hydroclimates. They concluded that (i) three (out of ten) soil parameters dominated the simulated runoff 

response; (ii) the INFILT parameter and the drainage parameter (Expti) depended strongly on local hydroclimatology, and (iii) 

that the baseflow model formulation is overparameterized. 
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Subsequent studies aiming at calibrating the VIC model to simulate observed catchment-scale responses have revisited its 65 

parametric sensitivity. Mendoza et al. (2015b) applied the Distributed Evaluation of Local Sensitivity Analysis method 

(DELSA, Rakovec et al., 2014) to find the parameters that provided the largest sensitivities in root mean squared errors 

(RMSE) between simulated and observed streamflow; they showed that 9 (out of 34) parameters provided the largest 

sensitivities in three subcatchments from the Upper Colorado River basin. Melsen et al. (2016) also used the DELSA method 

to find influential parameters in three catchments located in Switzerland, identifying four (out of 28) very sensitive parameters 70 

for three calibration metrics. Wi et al. (2017) applied the method of Morris (1991) to quantify parameter sensitivities on the 

Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970) with daily flows, finding 6 soil parameters and two temperature 

threshold parameters as the most influential (out of 15). Gou et al. (2020) characterized the sensitivities provided by 13 soil 

parameters across 14 catchments in China, finding that INFILT, Depth1 and Depth2 dominated streamflow responses. Lilhare 

et al. (2020) applied the Variogram Analysis of Response Surfaces (VARS) method (Razavi and Gupta, 2016) to examine the 75 

sensitivities of three streamflow performance metrics to variations in six soil parameters across 10 catchments in Canada, 

finding that INFILT and Depth2 parameters dominated streamflow responses. Yeste et al. (2020) quantified relative 

sensitivities provided by five soil parameters to water balance components across 31 basins in the Iberian Peninsula, concluding 

that INFILT and Depth2 control runoff components and evapotranspiration (ET). Finally, Melsen and Guse (2021) 

characterized VIC parameter sensitivities for a historical (1985-2008) and future (2070-2093) period in 605 catchments of the 80 

conterminous United States finding that, in the historical period, Rmin, Depth2 and Expt2 controlled average streamflow, while 

Ds, DsMAX, and many more parameters influenced streamflow timing. Melsen and Guse (2021) also projected increased 

(decreased) sensitivities to Depth2 (snow parameters) for the future period when examining average streamflow and increased 

(decreased) future sensitivities to deep soil (snow) parameters when looking at discharge timing. 

Table 1 summarizes the main characteristics of parameter sensitivity studies with VIC. Note that we have excluded a recent 85 

study conducted by Sheikholeslami et al. (2021), who quantified parameter sensitivities in modified version of VIC – 

specifically, using a slow linear reservoir (Gharari et al., 2019) model instead of the traditional ARNO formulation. Most 

studies listed in Table 1 focused on streamflow responses, attributing the largest sensitivities to a few soil parameters (Demaria 

et al., 2007; Gou et al., 2020; Lilhare et al., 2020). Only two studies – also characterizing streamflow responses – have included 

a large number of soil, vegetation and snow related parameters (Melsen et al., 2016; Mendoza et al., 2015b). Additionally, 90 

only two studies (Chaney et al., 2015; Bennett et al., 2018) aimed to characterize sensitivities across model grid cells. Chaney 

et al. (2015) quantified the effects of 9 parameters on annual flow biases, runoff seasonality and daily flow extremes at 1 

resolution grid cells across the globe. Bennett et al. (2018) examined sensitivities of projected changes in water balance 

components to variations in 46 VIC parameters, across a suite of ~7-km grid cells in the Colorado River basin. Sensitivity 

analyses at higher resolutions are particularly relevant for the hydrology community, considering recent developments in 95 

meteorological datasets (Tang et al., 2021), global, gridded runoff datasets (e.g., Do et al., 2018; Ghiggi et al., 2019) and the 

increasing interest to improve the calibration density – i.e., use high resolution data in the calibration process –  in distributed 

hydrology and land surface models (Yang et al., 2019).  
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In this paper, we quantify VIC parameter sensitivities across 5,574 grid cells (0.05°×0.05°) covering 101 catchments located 

in continental Chile, including a suite of 43 standard and hard-coded parameters, and a set of metrics that span different runoff, 100 

ET and snow processes. The results presented here contribute to improved understanding of model behaviour across 

watersheds with diverse physical characteristics, spanning from hyper-arid to humid hydroclimates. With this, we seek to 

answer the following research questions: 

1. Are there other vegetation and snow parameters, either standard or hard-coded, affecting simulated runoff responses 

in VIC? 105 

2. What are the effects of standard and hard-coded parameters on other simulated processes? 

3. How do parameter sensitivities relate with local climatic and physiographic characteristics? 

2. Study domain and data 

In this work, we select 101 catchments with near-natural hydrological regimes from the CAMELS-CL data set (Alvarez-

Garreton et al., 2018). The selected basins span a total area of 139,350 km2 – i.e., 19% of the territory of continental Chile –, 110 

and meet the following criteria: (i) a maximum threshold value of 5% for the relationship between the annual volume of water 

assigned as permanent consumptive rights and the average annual flow (Table 3 in Alvarez-Garreton et al., 2018), and (ii) 

absence of large reservoirs within each catchment. The location, hydroclimatic and land cover characteristics across the domain 

are shown in Figure 1, and the descriptors used to characterize the grid cells are listed in Table 2. These catchments cover a 

wide range of physiographic attributes, with drainage areas spanning 100-7,500 km2, mean elevations ranging 119 - 4824 m 115 

above sea level, mean slopes varying from 52 to 306 m km-1, and markedly different land cover types, ranging from completely 

covered by native forest or grassland to fully covered by impermeable land. Moreover, the selected basins represent the 

diversity in hydroclimatological conditions across the country. Figure 2 illustrates this by showing the aridity indices and 

seasonal cycles of rainfall, snowfall, runoff and temperature for a sample of six basins with very different hydroclimatic 

regimes. The hydrology of catchment 2101001 (Rio Loa before Lequena dam, Figure 2a) is influenced by arid conditions 120 

between March and November, and Altiplanic winter events triggering runoff increases between December and March; 

towards the south, there is a transition from arid to semi-arid conditions (see progression in Figure 2b-c), with precipitation 

events occurring mostly during fall and winter (especially May-August), favoring the accumulation of snow in the headwaters 

of Andean catchments, and thus snowmelt-driven regimes. Catchments 7115001 (Palos River at junction with Colorado River; 

Figure 2d) and 8317001 (Biobio River at Rucalhue; Figure 2e) reflect the transition towards mixed regimes, with larger 125 

contributions of winter rainfall events to runoff. Finally, catchment 9129002 (Cautin River at Cajon; Figure 2f) has a rainfall-

dominated hydrological regime, with the largest runoff volumes during the winter season (i.e., June-September). 

In this study, meteorological forcing data is obtained from various sources. Time series of daily precipitation and maximum, 

average, and minimum daily temperature are obtained from the CR2MET meteorological dataset, introduced in DGA (2017), 

which provides data for continental Chile at a horizontal resolution of 0.05°×0.05° (~5 km) for the period 1979-2016. The 130 
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precipitation product builds upon a statistical post-processing technique that uses topographic descriptors and simulated 

meteorological variables from ERA-Interim (Dee et al., 2011) and ERA5 (C3S and Copernicus Climate Change Service (C3S), 

2017) as predictors, and daily precipitation records as the predictand. A similar approach is used to generate time series of 

daily maximum and minimum temperatures, including additional predictors from MODIS land surface products. Daily 

precipitation and temperature variables are disaggregated into 3-hourly time steps using the sub-daily distribution provided by 135 

ERA-Interim. Finally, relative humidity and wind speed were obtained from a blend between ERA-Interim and ERA5, which 

was subsequently rescaled at the CR2MET horizontal grid through spatial interpolation. It is important to note that this product 

combination was created because ERA5 was not available during the entire study period (1985-2015) at the time of data 

acquisition (early 2018, where only 2010-2016 data was available). However, the updated reanalysis information, despite the 

short time coverage, was included due to various developmental improvements. 140 

3. Methods 

3.1 Hydrological model 

The Variable Infiltration Capacity (VIC; Liang et al., 1994) model is a semi-distributed, physically-based hydrological model 

that simulates snow accumulation and melt, evapotranspiration (ET), canopy interception, surface runoff, baseflow, and other 

hydrological processes at daily or sub-daily time steps. While the model was originally designed as a land surface scheme for 145 

coupled simulations within earth system models (Liang et al., 1994), most applications have involved uncoupled simulations 

for hydrological characterizations and, accordingly, the literature reports many attempts to improve process representations 

(e.g., Liang et al., 1996, 1999; Cherkauer et al., 2003; Andreadis et al., 2009). VIC is predominantly used in the United States 

(Addor and Melsen, 2019), with many studies focused on water and energy balances (e.g., Andreadis and Lettenmaier, 2006; 

Cayan et al., 2010); however, its use has expanded to other geographical domains, including China (e.g., Zhao et al., 2013; 150 

Gou et al., 2021), Chile (e.g., Vásquez et al., 2021; Vicuña et al., 2021), Europe (e.g., Lohmann et al., 1998; Roudier et al., 

2016) and globally (e.g., Shukla et al., 2013; Yang et al., 2021). Ongoing community efforts using the VIC model include the 

NASA Land Information System (LIS; https://lis.gsfc.nasa.gov/, last access: 25 January 2022), NASA’s Land Data 

Assimilation System (LDAS; https://ldas.gsfc.nasa.gov/, last access: 25 January 2022), and the Regional Arctic System Model 

(RASM; https://www.oc.nps.edu/NAME/RASM.htm, last access: 25 January 2022). This study uses VIC version 4.1.2.g, 155 

which can be downloaded from https://github.com/UW-Hydro/VIC/releases, along with other versions. 

In VIC, the domain of interest can be spatially discretized into grid cells. Sub-grid land-use type variability is accounted for 

by providing vegetation tiles and the fractional areas, for which water and energy balance equations are solved separately; 

then, model states and fluxes are spatially averaged to provide results at the pixel scale. In VIC, each grid cell can have up to 

three soil layers: the two top layers represent the interaction between moisture and vegetation, and the bottom soil layer is used 160 

to simulate baseflow processes. VIC does not incorporate an aquifer at the bottom of the soil column, nor lateral exchange of 

fluxes between grid cells. Finally, snowpack dynamics are simulated by a two-layer mass and energy balance model (Cherkauer 

https://github.com/UW-Hydro/VIC/releases
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et al., 2003; Andreadis et al., 2009), where the surface layer solves the energy exchange between the snowpack and the 

atmosphere, and the lower layer stores the excess snow mass from the upper surface layer. 

3.2 Parameters considered for sensitivity analysis  165 

We considered a suite of 43 parameters (Table 3) to incorporate most of soil, vegetation, and snow processes simulated by 

VIC. It should be noted that three of the snow parameters are not exposed to model users (NEW ALB, ALB AA and ALB THA), 

although the associated relationships and default values were proposed decades ago (USACE, 1956). For parameters with 

monthly variations, we examined sensitivities using regularization “superparameters” (Tonkin and Doherty, 2005), also called 

multipliers (Pokhrel and Gupta, 2010), which are uniformly applied over all monthly values. Hence, multipliers are used for 170 

the leaf area index (LAI); vegetation albedo (ALB); vegetation roughness length (ROU) and vegetation displacement (DIS). 

Despite some of these parameters are considered observable, a non-negligible degree of uncertainty may be involved in their 

determination; an example is the LAI parameter (Tian et al., 2002; Fang et al., 2012, 2013), whose implementation in many 

hydrology and land surface models is simplified through static monthly values. Assumptions like this motivate us to explore 

the sensitivity of this type of parameters, which may have the potential to be included in the calibration process. 175 

Despite the aim to include the largest possible number of parameters, some of them were discarded for different reasons. For 

example, a few soil parameters (e.g., soil bubbling pressure) are not active unless the frozen soil algorithm is turned on. We 

also excluded the parameter trunk ratio – i.e., the ratio of total tree height that is trunk (no branches) – because it is activated 

only in those grid cells with forest (i.e., vegetation class with overstory, spanning 22% of our study domain) as land cover 

type. Finally, we found five mutually related soil parameters that do not allow independent variations: soil bulk density (bd); 180 

soil particle density (sd); fractional soil moisture content at the critical point (𝜃𝑐𝑟), fractional soil moisture content at the wilting 

point (θwp) and residual soil moisture (𝜃𝑟). These parameters are related following: 

𝜃𝑐𝑟 ≥ 𝜃𝑤𝑝 ≥
𝜃𝑟

(1−
𝑏𝑑

𝑠𝑑
)
 ,           (1) 

From these five parameters, we only include 𝜃𝑟 and bd  because (1) perturbing 𝜃𝑟 and bd values did not affect numerical 

solutions, and (2) Bennett et al. (2018) showed that 𝜃𝑐𝑟 , 𝜃𝑤𝑝, bd and sd  did not have substantial effects on model simulations. 185 

Finally, those parameters that showed little or no sensitivity in the initial phases of the study were purposely discarded. 

3.3 Sensitivity analysis approach  

We used the Distributed Evaluation of Local Sensitivity Analysis (DELSA; Rakovec et al., 2014) method, which is a 

derivative-based, hybrid local-global approach. DELSA combines elements from the method of Morris (Morris, 1991), the 

Sobol’ method (Sobol’, 2001) and regional sensitivity analysis (Hornberger and Spear, 1981), and provides robust results with 190 

a fewer number of model simulations compared to variance-based global methods such as Sobol’. Although DELSA only 

examines first-order sensitivities, it has unexplored potential to be expanded with the aim to quantify parameter interactions 



7 

 

(Zegers et al., 2020), which could be achieved by including additional terms in the local total variance (Sobol’ and Kucherenko, 

2010). 

Consider a transformation 𝑓 and a vector 𝜃 with k parameters, which provides a metric Ψ describing model output: 195 

Ψ = 𝑓(𝜃),     𝑓: 𝑅𝑘 → 𝑅,           (2) 

Given a sample point 𝜃∗ in the parameter space, the gradient for metric Ψ and parameter 𝜃𝑗 around this point – i.e., 
𝜕Ψ

𝜕𝜃𝑗
|𝜃∗ – is 

considered a measure of local sensitivity. In this work, we follow Rakovec et al. (2014) and compute such gradient using a 

forward, finite difference approach with 1% change in the parameter value:  

𝜕Ψ

𝜕𝜃𝑗
|𝜃∗ =

Ψ(𝜃𝑗
∗+0.01𝜃𝑗

∗)−Ψ(𝜃𝑗
∗)

0.01𝜃𝑗
∗           (3) 200 

In equation (3), Ψ(𝜃∗) is a signature measure of hydrologic behavior, formulated by contrasting model output at the point 𝜃∗ 

with that obtained from a reference parameter set 𝜃𝑟𝑒𝑓 in the grid cell of interest (see section 3.3.2 for details). The first-order 

sensitivity measure for the 𝑗𝑡ℎ parameter is calculated at each sample point as: 

𝑆𝑗
𝐿 =

(
𝜕Ψ

𝜕𝜃𝑗
|𝜃∗)

2

𝑠𝑗
2

𝑉𝐿(𝜃∗)
,            (4) 

Where 𝑠𝑗
2 is the a priori parameter variance of the 𝑗𝑡ℎ parameter, and 𝑉𝐿(𝜃∗) is the linearized local variance: 205 

𝑉𝐿(𝜃∗) = ∑ (
𝜕Ψ

𝜕𝜃𝑗
|𝜃∗)

2

𝑠𝑗
2𝑘

𝑗=1 ,          (5) 

Finally, 𝑠𝑗
2 is obtained from the variance of a uniform distribution (Rakovec et al., 2014), which is 

1

12
(𝜃𝑗,𝑚𝑎𝑥 − 𝜃𝑗,𝑚𝑖𝑛)

2
. 

The first-order sensitivity indices vary between 0 and 1, and the sum of first-order sensitivities from all parameters at each 

sampling point is equal to 1. Local sensitivities can be examined through their cumulative frequency distribution across the 

parameter space, or by computing a specific statistical property. Here, we quantify the relative contribution of a specific 210 

parameter using the area above the curve of the full frequency distribution:  

𝐼𝑆𝑗
𝐿 = 1 − ∫ 𝐹(𝑆𝑗

𝐿)𝑑𝑆𝑗
𝐿1

0
           (6) 

3.4 Performance metrics 

We use eight model evaluation metrics to quantify the sensitivity of simulated hydrological processes to variations in model 

parameters. The notation, brief description, mathematical formulation, and physical process associated with each metric are 215 

detailed in Table 4. These metrics are computed by contrasting model output from sampling points produced for DELSA, with 

a reference, national scale dataset with simulated states and fluxes obtained from the National Water Balance database (DGA, 
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2018, 2019, 2020) for the historical period 1985-2015. Such dataset was developed by running the VIC model at the same grid 

discretization employed here (i.e., 0.05°x0.05°), using a combination of CR2MET version 2.0, ERA-Interim and ERA5 output 

as meteorological forcings. The spatially distributed parameter fields for our reference simulation were developed via 220 

parameter regionalization, based on the similarity between possible donor catchments – whose parameters were calibrated 

individually (Vásquez et al., 2021) – and each grid cell across the domain, following Beck et al. (2016). The reader is referred 

to Vásquez et al., (2021) and DGA (2018, 2019, 2020; in Spanish) for more details on individual model calibration and 

parameter regionalization procedures used to generate the reference simulation.   

Four evaluation metrics are formulated from runoff time series. The first objective function is the root-mean-square error 225 

(RMSE), which is a standard metric that emphasizes high flows. The second metric selected is the transformed-root-mean-

square error (TRMSE), for which the simulated and observed runoff time series are transformed using a Box-Cox 

transformation to emphasize low flows (Misirli et al., 2003). The third objective function is the flow duration curve (FDC) 

midsegment slope difference (FMS), which represents the variability, or flashiness, of the flow magnitudes, so it measures 

how well a model captures the distribution of the mid-level flows. A steep slope of the FDC indicates flashiness of the 230 

streamflow response, whereas a flatter curve indicates a relatively damped response and a higher storage (Yadav et al., 2007; 

Casper et al., 2012). The fourth evaluation metric is the runoff ratio difference (RR), considered as a measure of the general 

water balance and, therefore, as a signature of the evapotranspiration model component (Mendoza et al., 2015b). 

We use two metrics to characterize snow cover processes: the difference in long-term simulated peak SWE (PeakSWE) – an 

integrated measure of processes occurring during the snowfall season –, and the difference in snow cover duration, quantified 235 

by the number of days with snow on the ground (SnowLength; Mizukami et al., 2014). Finally, we include two metrics based 

on evaporation fluxes: the sublimation difference (SUBL) emphasizes the net sublimation from the snowpack surface, and the 

plant transpiration difference (TRANSP).  

3.5 Experimental setup 

We apply the DELSA method in 5,574 grid cells across continental Chile, which are contained within the 101 catchments 240 

described in section 2. In each grid cell, hydrologic model simulations are conducted at 3-hourly time steps for a 12-year period 

(April/1999 – March/2011), with the first two years used to initialize model states (i.e., spin-up period). The model is run in 

full energy balance mode, which means that both energy and water balances are solved, and 3-hourly outputs are aggregated 

to daily time steps for subsequent analyses. 

In this study, we use the Latin hypercube sampling (LHS) method to obtain 200 sample points across the parameter space, for 245 

which first-order sensitivity indices are computed. LHS is an efficient simulation technique, especially suitable for statistical 

and sensitivity calculations (Vořechovský, 2015). To stratify the parameter space, we sample uniformly in a 43-dimensional 

hypercube, and map onto the parameter space using the inverse cumulative distribution function of each parameter’s prior. 

Since DELSA is used here, all parameter distribution functions are assumed to be uniform. The computational cost of applying 
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DELSA at each cell is Nl (k +1) = 8,800 model runs, where Nl is the number of sample points (200) and k is the number of 250 

parameters (43), and the total number of models runs required for this study is 49,051,200.  

In this paper, a parameter is considered redundant or insensitive when the median value of the integrated first-order sensitivity 

index (i.e., median 𝐼𝑆𝑗
𝐿) across all grid cells is smaller than 0.05 for at least seven of the eight evaluation metrics listed in Table 

4. Parameter sensitivity results are also examined per metric (section 3.4) and grid cell climate type based on the aridity index 

(UNEP, 1997; Verbist et al., 2010; Table 5).  255 

Finally, we use the Spearman rank correlation coefficient, 𝑟𝑠 , to measure the degree of association between parameter 

sensitivities and physiographic/hydroclimatic characteristics listed in Table 2. These attributes were chosen due to their ability 

to improve the prediction of hydrological signatures (Addor et al. 2018) and because they are relatively easy to obtain. 

4. Results and discussion 

4.1 Intra and inter-basin variability in parameter sensitivities 260 

Figure 3 shows the cumulative distribution functions of sensitivity indices 𝑆𝑗
𝐿

 for combinations of evaluation metric and 

parameter across six hydroclimatically different catchments – also displayed in Figures Figure 1 and Figure 2. Each panel 

located in the first six rows includes the CDFs of all the grid cells contained in a specific basin, and the last row in Figure 3 

comprises the CDFs of all grid cells contained in the six basins. The results reveal high parametric sensitivities for RMSE-

INFILT in basins located in northern Chile (arid regime) and lower sensitivities along central-southern catchments, while the 265 

opposite behavior is observed for TRMSE – DsMAX, FMS – DsMAX and RR – LAI (i.e., increasing sensitivities towards the 

south). Such dependence between hydroclimatic basin characteristics and parameter sensitivities was also reported by Demaria 

et al. (2007). Gou et al. (2020) also found that sensitivities were strongly related to environmental characteristics, including 

climate, vegetation, soil and topographic features. Figure 3 also enables the comparison between intra-catchment (top six rows) 

and inter-catchment (bottom row) variability in parameter sensitivities. For the sample of basins included here, one can note 270 

that inter-basin variability in sensitivities is larger than intra-basin variability in runoff-related metrics. Nevertheless, for some 

combinations of metric and parameter intra-catchment variability is comparable to inter-basin variations in parametric 

sensitivities. For example, the spread in the CDFs displayed for SUBL – z0 SNOW  at basin 8317001 (Biobio River at 

Rucalhue) – characterized by a wet hydroclimate – is comparable to the spread arising from all basins (see same column, last 

row).  275 

To further illustrate intra-basin differences in parameter sensitivities, Figure 4 and Figure 5 show the spatial distribution of the 

𝐼𝑆𝑗
𝐿

 indices for the leaf area index (LAI) and the snow albedo parameter ALB THA, respectively, over a cluster of sub-humid 

and humid basins located in southern Chile. For the LAI parameter (Figure 4), a west-east gradient in 𝐼𝑆𝑗
𝐿

 is observed for RMSE 

(high flows), TRMSE (low flows) and FMS (flashiness of runoff), with increasing sensitivity to LAI variations towards the 

coast, while an inverse pattern is observed for the same metrics and ALB THA (i.e., larger sensitivities towards the Andes, 280 



10 

 

Figure 5). For PeakSWE, SUBL, and – to a smaller degree – SnowLength, LAI yields larger sensitivities in vegetated areas, 

where snow accumulates during winter (Figure 4), matching those locations where forest is the dominant land cover type, 

which is also the only vegetation class with overstory (e.g. trees). Notably, very large variations in PeakSWE sensitivities to 

LAI are observed over relatively short distances due to differences among grid cells in the fraction of land cover defined as 

forest. Such dependence among SWE sensitivities, LAI and canopy fractions was also reported by Bennett et al. (2018). Figure 285 

4 also shows that LAI does not yield a clear sensitivity pattern in RR and TRANSP throughout this subdomain, although 𝐼𝑆𝑗
𝐿 

values are higher for RR. For this metric, there are spatial singularities where the sensitivity is minimal or null since, in these 

areas, the fraction of ground cover defined as bare soil increases considerably, reaching up to 100% of bare soil (LAI ~ 0) in 

some grid cells. 

The results presented in Figure 5 reinforce the idea that hard-coded parameters should be exposed to users (Mendoza et al., 290 

2015a; Cuntz et al., 2016). In particular, Figure 5 shows the large effects of ALB THA variations on SnowLength (with a very 

pronounced east-west gradient) and, to a smaller degree, on PeakSWE and SUBL. ALB THA also affects runoff-based metrics 

along the Andes, especially on simulated high (RMSE) and low (TRMSE) flows. 

4.2 Identification of most sensitive parameters 

Figure 6 displays box plots comprising 𝐼𝑆𝑗
𝐿

 results from all grid cells in the study domain, for each parameter and evaluation 295 

metric (displayed in different panels). The results show that 72% of the parameters analysed (i.e., 31) yield little sensitivities 

for the metrics examined here. Conversely, a suite of 12 sensitive parameters are associated to soil (INFILT, Ds, DsMAX, Ws, 

Expt2, Depth2, Depth3), snow (NEW ALB, ALB THA, and ALB AA), and vegetation (Rmin and LAI) processes. Figure 7 shows 

the spatial variability of 𝐼𝑆𝑗
𝐿 for the 12 parameters identified as the most sensitive across the 101 basins of continental Chile. 

For the case of high flows (RMSE), low flows (TRMSE), and flashiness of runoff (FMS), the parameters identified as sensitive 300 

are INFILT, Ds, DsMAX, Ws, Expt2, Depth2, and Depth3 (see top three panels in Figure 6). The parameter INFILT controls 

the shape of the variable infiltration capacity curve (Zhao et al., 1980; Wood et al., 1992), and thus the partitioning of rainfall 

or snowmelt into infiltration and surface runoff. A higher INFILT value yields less infiltration and higher surface runoff. The 

RMSE and TRMSE metrics are particularly sensitive to INFILT, indicating a key role in the generation and timing of high and 

low flows. This parameter has been identified as sensitive in all the studies listed in Table 1. DsMAX is the maximum velocity 305 

of baseflow, while Ds and Ws are the fraction of DsMAX and the fraction of the maximum soil moisture content in the third 

layer, respectively, where non-linear baseflow occurs. These three parameters are involved in the ARNO formulation of 

subsurface runoff (Franchini and Pacciani, 1991; Todini, 1996), controlling the speed of baseflow release from the third soil 

layer (Liang et al., 1994) and, specifically, the non-linear part of the baseflow generation function. The sensitivity indices 

found for these parameters are consistent with the high sensitivity measures reported by Mendoza et al. (2015b), Melsen et al. 310 

(2016) and Wi et al. (2017). 
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The Expt2 parameter is an exponent of the Brooks-Corey relationship (Brooks and Corey, 1964) and controls the hydraulic 

conductivity between the second and third soil layers. A small value for the Expt2 parameter increases inter-layer drainage for 

the same soil moisture content, and therefore increases baseflow generation. The Depth2 parameter is the thickness of the 

second soil layer. In general, thicker soil layers slow seasonal peak flows and increase water loss due to evapotranspiration 315 

(Xie et al., 2007). It should be noted that the parameter Depth2 has been identified as highly sensitive by many authors  

(Demaria et al., 2007; Mendoza et al., 2015b; Wi et al., 2017; Gou et al., 2020; Lilhare et al., 2020; Yeste et al., 2020; Melsen 

and Guse, 2021). Finally, Depth3 is the thickness of the third layer of soil, and the large sensitivities obtained here agree with 

the results reported by Mendoza et al. (2015b) and Wi et al. (2017).  

The results in Figure 6 show that Expt2 and Depth2 also provide large sensitivities for metrics focused on evaporative fluxes 320 

(i.e., RR and TRANSP). Other parameters that are relevant for these processes are LAI and the minimum stomatal resistance 

(Rmin). Indeed, Chaney et al. (2015) reported high sensitivity of annual flow biases to variations in Rmin. LAI is a 

dimensionless quantity that characterizes intra-annual variations in plant canopies, and it is defined as the one-sided green leaf 

area per unit ground surface area. On the other hand, Rmin is one of the parameters that control canopy resistance when 

computing transpiration from each vegetation class, following the formulations proposed by Blondin (1991) and Ducoudré et 325 

al. (1993). Both LAI and Rmin provide null sensitivities if the land cover type is bare ground; however, Rmin can also produce 

null sensitivities in vegetated grid cells. 

Figure 6 reveals the large influence of hard-coded parameters on PeakSWE, SnowLength and SUBL, in particular NEW ALB, 

ALB THA and ALB AA. The NEW ALB parameter is the new snow surface albedo, which controls the reflection of solar 

radiation and, therefore, the energy exchange between the atmosphere, forest canopy and the surface layer of the snowpack 330 

(Andreadis et al., 2009). Additionally. The ALB AA and ALB THA parameters represent the albedo decay in the accumulation 

and melting season in the snow albedo curve, respectively (USACE, 1956). These seasons are defined based on the absence 

or presence of liquid water in the surface snow cover. These results correspond well with the high sensitivities reported by 

Mendoza et al. (2015b) for these three hard-coded parameters. Finally, the snow surface roughness length (z0 SNOW) also 

affects sublimation rates across Andean subdomains. 335 

4.3 What drives parameter sensitivities across different hydroclimates? 

Figure 8 shows the Spearman rank correlation coefficient, 𝑟𝑠 , between parameter sensitivities and a suite of climatic, 

topographic, land cover and soil-related grid cell attributes described in Table 2. The magnitude and sign of correlation 

quantifies how each sensitivity index varies with a given geophysical attribute. The results show that the magnitude of the 

correlation varies depending on the combination of metric and parameter, with the maximum correlations generally found for 340 

soil parameters, such as DsMAX and Ws with precipitation (𝑟𝑠 = 0.91) and aridity index (𝑟𝑠 = −0.91) for the FMS function 

(flashiness of the flow). For this example, the simulation of flow flashiness is highly sensitive to DsMAX and Ws in the wet 

region but insensitive in the arid area. Conversely, the minimum correlations are found for snow parameters. It should be noted 
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that weak correlation indicates that there is less spatial pattern in sensitivity; however, the magnitude of sensitivity index can 

be high or low. For example, NEW ALB is a highly sensitive parameter across the domain (Figure 6).    345 

The results in Figure 8 also indicate that high correlations (either positive or negative) are mainly associated with climate 

indices, which exert a stronger influence compared to the remaining attribute classes. These strong dependencies of the 

parametric sensitivity on climate variables are somewhat expected, because some combinations of hydrological signatures and 

parameters inherit strong spatial climate patterns (Addor et al. 2018); compare, for example, aridity index Figure 1(d) with 

panel DsMAX – FMS; RMSE in Figure 7. Among climate descriptors, the aridity index, mean annual precipitation and relative 350 

humidity yield the highest correlations, and temperature exhibits a relatively lower influence on parametric sensitivity; this 

result was confirmed with additional correlation analyses including only grid cells with mean annual temperatures below 5°C 

and 2°C (not shown). The lowest correlations are obtained for mean slope (topographic attribute), shrub fraction (land cover 

attribute) and mean clay content of soil (soil attribute). The key influence of climatic conditions on hydrological behaviour is 

not new, since aridity is commonly regarded as the main driver of water partitioning at the land surface (Budyko, 1974; 355 

Hrachowitz et al., 2013). 

Figure 8 shows that the extent to which parametric sensitivities are related to grid cell attributes depends on the target 

evaluation metric (i.e., runoff, evaporative processes and snow processes), with the three distinct groups containing the same 

influential parameters. In the following subsections, we discuss the results based on these groups, with emphasis on spatial 

patterns and process interpretation across our study basins. Table 6 summarizes, for each evaluation metric (i.e., physical 360 

process to be represented) and climatic zone (using the classification from Table 5), the three most important parameters. 

Hence, the lists contained therein can be used to guide the selection of parameters for hydrologic model calibration, based on 

the hydroclimatic regime and target process that modelers would like to represent.  

4.3.1 Runoff-oriented metrics 

The results presented in Figure 7 (see RMSE and TRMSE) and Figure 8 (RMSE) show a direct relationship between the 365 

sensitivities provided by INFILT, and the degree of aridity, especially in semi-arid to hyper-arid subdomains. The runoff-

oriented metrics are also sensitive to baseflow generation parameters Ds, Ws and DsMAX in most basins – with a similar spatial 

distribution of 𝐼𝑆𝑗
𝐿  values –, excepting those located in the north and some areas in Southern Patagonia, where climatic 

conditions are arid or hyper-arid. In basins located in the extreme north, small sensitivities can be attributed to local climate 

characteristics: most precipitation events in that area occur in summer (i.e., December-March) due to orographic rains caused 370 

by air masses coming from the Amazon region, and there is usually little recharge to the aquifers. Additionally, the third soil 

layer in these basins generally does not reach saturation; therefore, runoff simulations in those areas are insensitive to variations 

in Ds and Ws because the non-linear part of the baseflow function is only activated when the moisture storage in the third layer 

exceeds a threshold (Gou et al., 2020). Because of the dependency of DsMAX with precipitation, this parameter could be 

playing a key role in baseflow generation processes over Andean regions (Figure 7). Finally, a similar spatial distribution of 375 
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integrated first-order sensitivities for Ds, Ws and DsMAX is expected, since they all focus on baseflow generation (see panels 

DsMAX - FMS, RMSE -; Ws -TRMSE, FMS-; Ds -TRMSE- in Figure 7). 

Expt2 is identified as sensitive for runoff-oriented metrics in basins with semi-arid to hyper-arid climates, characterized by 

small annual precipitation amounts and permanent water stress. In these hydroclimatic regimes, there is usually not enough 

water to reach the third soil layer, so water is stored in the second layer and drainage is mainly controlled by Expt2, affecting 380 

the vertical redistribution of soil moisture (FMS) and low flows (TRMSE), as shown in Figure 7. Depth2 provides large runoff 

sensitivities in dry-subhumid to hyper-arid hydroclimatic regimes, for the same reasons as Expt2. Variations in the depth of 

the second soil layer change the soil moisture of the layer, and higher (lower) values of Depth2 for the same volumetric water 

content produce lower (higher) soil moisture, affecting drainage between soil layers. 

Finally, Depth3 provides large sensitivities for all runoff-oriented metrics, with similar spatial patterns to Ws, Ds and DsMAX, 385 

but to a smaller degree (Figure 7). Depth3 is particularly sensitive in humid-subhumid and humid catchments, suggesting a 

direct relationship with mean annual precipitation, or with the size and intermittency of storms (Abdulla and Lettenmaier, 

1997). In these climatic domains, periodic heavy rainfall events enable a continuous recharge of the second and third soil layers 

– which may reach saturation- and thus a constant baseflow generation that affects runoff response and the retention time of 

soil moisture, producing higher baseflow during wet seasons (Shi et al., 2008). Interestingly, in humid subdomains baseflow 390 

parameters yield high sensitivities in both rainfall and snowfall dominated grid cells, although ALB THA emerges as the most 

important parameter for RMSE and TRMSE in snowfall dominated grid cells (not shown). 

4.3.2 Evaporative processes 

The evaluation metrics associated with these processes are RR (a measure of the overall water balance) and TRANSP (plant 

transpiration), with LAI, Rmin, Expt2 and Depth2 being the most important parameters. 395 

Figure 7 shows a pronounced spatial variability in LAI sensitivities across a large domain that comprises very different land 

cover types. One can note that LAI yields high sensitivities for nearly all hydroclimatic regimes, since this parameter controls 

the evaporation from the canopy layer and canopy transpiration. In hyper-arid climates, the LAI is usually less important, given 

the permanent water stress common for grid cells with bare soil. In summary, LAI is influential wherever vegetation exists, 

regardless of the prevailing hydroclimatic regime. 400 

The parameter Rmin yields parametric sensitivities across humid/sub-humid and humid areas (Figure 7 and Table 6). In the 

canopy resistance process, there is a stomatal resistance multiplier, gsm[n], defined as a soil moisture stress factor that depends 

on the water in the root zone for the n-th surface cover class. Thus, when the soil moisture in layer n is less than the fraction 

of the moisture content at the wilting point, the value of gsm[n] is 0, while when the soil moisture is greater than the fractional 

content of soil moisture at the critical point (~ 70% of field capacity), the value of gsm[n] is 1. For the intermediate condition, 405 

gsm[n] values vary linearly with soil moisture in that layer, which explains why Rmin provides high sensitivities in very humid 

(i.e., large precipitation) climates.  
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Finally, our results show that Expt2 and Depth2 yield large sensitivities to RR and TRANSP in all hydroclimatic regimes, 

since they affect the soil moisture content in layer 2, which indirectly affects the gsm[n] factor in the canopy resistance 

formulation. These parameters show a lower relative sensitivity in humid/sub-humid and humid climates, since the Rmin 410 

parameter becomes more relevant when there is no soil moisture stress (i.e., gsm[n] ~ 1). 

4.3.3 Snow processes 

Figure 7 shows that NEW ALB, ALB THA and ALB AA yield high sensitivities throughout the study domain, especially in areas 

where snow processes dominate hydrological responses. In particular, the NEW ALB parameter is important throughout the 

domain and reaches the highest values for snow-oriented evaluation metrics. Additionally, the results in Figure 7 show that 415 

ALB AA and ALB THA dominate snow responses in different domains: the ALB THA parameter yields large sensitivities in 

humid and sub-humid mountain areas located southern from 34 S, with large effects on the snow season length and the 

maximum SWE accumulation, while ALB AA shows greater sensitivity for the other climatic regimes, affecting SnowLength 

and sublimation in semiarid, colder environments in Northern Chile (26-29 S).  

5. Conclusions 420 

In this study, we have re-visited parameter sensitivities in the Variable Infiltration Capacity hydrological model. To this end, 

we have implemented the DELSA method at every 0.05°×0.05° (~5 km) grid cell contained in 101 basins across continental 

Chile (i.e., a total of 5,574 grid cells), spanning a broad diversity of hydroclimatic (from hyper-arid to humid) and 

physiographic (e.g., topography, land cover) conditions. Our experiments consider a suite of 43 parameters included in soil, 

vegetation and snow process representations, with three of these corresponding to hard-coded parameters (i.e., not exposed to 425 

model users). We use eight model evaluation metrics that account for runoff components, evapotranspiration and snow 

processes, and conduct correlation analyses to disentangle relationships between parametric sensitivities and pixel-scale 

attributes. The main findings of this study are as follows: 

• 31 out of 43 (i.e., 72%) parameters yield little or no sensitivity, most of which correspond to soil and vegetation 

processes. Therefore, calibrating such parameters will lead to minimal improvements in system representations with 430 

considerable computational costs. 

• The three model evaluation metrics focused on snow accumulation and ablation processes were found to be highly 

sensitive to hard-coded parameters. Exposing these parameters will certainly expand our abilities to perform extensive 

analysis and increase our opportunities to improve model fidelity and characterize model uncertainty.  

• For some evaluation metrics, the climate attributes examined here are highly correlated with parameter sensitivities, 435 

which therefore inherit spatial patterns observed in climate variables across the territory. In particular, mean annual 

precipitation and the aridity index are highly correlated with Ds, Ws and DsMAX sensitivities when examining RMSE, 

TRMSE and FMS. Unexpectedly, temperature yields a relatively lower influence among climates descriptors, even 
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for metrics and parameters associated with snow processes. The rest of the attributes (topographic, soil and land 

cover) provided generally low correlations, and therefore small predictive power on parameter sensitivities. 440 

• Parametric sensitivities are strongly related with the climate types in the case study basins. In humid environments, 

the most important parameters are related to the third soil layer (Ws; Ds; DsMAX and Depth3) and vegetation (Rmin); 

in arid regimes, the most influential parameters are associated with the firsts soil layers (INFILT; Expt2; and Depth2).  

• In snow-dominated areas, the hard-coded parameters NEW ALB; ALB THA and ALB AA provide large sensitivities to 

maximum SWE, snow season length and sublimation. 445 

• The leaf area index (LAI) is a crucial parameter wherever there is vegetation on the ground. Although such condition 

is more frequent in humid environments, the relevance of this parameter depends on vegetation characteristics rather 

than the underlying climatic conditions.  

This study reaffirms overparameterization issues in the VIC model (e.g., Demaria et al., 2007; Gou et al., 2020), and that 

relative parameter importance varies depending on the specific metric or variable analysed (Chaney et al., 2015; Bennett et al., 450 

2018; Yeste et al., 2020; Melsen & Guse, 2021), and physiographic or climatic site characteristics (Liang & Guo, 2003; 

Demaria et al., 2007; Lilhare et al., 2020). However, the results and conclusions reported here are not directly comparable to 

previous studies due to differences in the experimental designs and domains of interest. In particular, our study considers (1) 

a large number of soil, vegetation and snow parameters – only comparable to Bennett et al. (2018), who included 46 parameters 

(excluding snow processes) over the semiarid Colorado River basin –, (2) a larger number of process-oriented metrics 455 

(compared previous efforts listed in Table 1), and (3) a very large sample of grid cells at a relatively high (~5 km) horizontal 

resolution, spanning very different physiographic characteristics and hydroclimatic conditions. Hence, our study contributes 

to the existing literature by providing guidance on relevant VIC parameters for a suite of target processes and climate types. 

Future studies aiming at improving spatial calibration density and/or parameter regionalization techniques using VIC – or any 

similar hydrology or land surface model – could incorporate this information to define spatially varying target parameters, and 460 

examine to what extent the spatial patterns in parameter sensitivities relate to calibrated parameter fields. Finally, the strong 

correlations found here between parameter sensitivities and hydroclimatic properties reaffirm the need to incorporate periods 

with contrasting climate characteristics in sensitivity analysis and calibration strategies in order to achieve more credible 

hydrologic model simulations under changing climatic conditions. 

Data availability 465 

Land cover descriptors for all grid cells and reference VIC model outputs used to compute performance metrics were obtained 

from the National Water Balance database (DGA, 2018, 2019, 2020). This information may be requested through the website 

https://siac.mop.gob.cl/. Other grid cell attributes were obtained from the United States Geological Survey dataset 

(https://earthexplorer.usgs.gov/), the CR2MET dataset (https://www.cr2.cl/), and SoilGrids250m 2.0 (https://soilgrids.org/). 

Catchment scale hydrometeorological data were obtained from the CAMELS-CL dataset (Alvarez-Garreton et al., 2018). 470 
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Table 1. Summary of sensitivity analysis studies conducted with VIC, that incorporate at least five parametersa. 

Study Region Number of 

sites or 

catchments 

Target variables or 

metrics  

Number of 

parameters 

included in SA 

Methods Most sensitive 

parameters 

Liang & 

Guo 

(2003) 

Red-

Arkansas 

River 

basin, USA 

3 sites Annual runoff, 

annual ET, annual 

mean soil moisture, 

and annual mean 

sensible heat flux 

5 pre-defined 

parameters 

Fractional Factorial 

Analysis (FFA) 

Varied with site 

characteristics 

Demaria 

et al. 

(2007) 

South-East 

of the 

United 

States 

4 catchments Five metrics 

(including RMSE, 

bias and correlation) 

formulated with daily 

streamflow and daily 

baseflow 

10 soil 

parameters 

Regional Sensitivity 

Analysis 

INFILT, Expti and Depth2 

Chaney 

et al. 

(2015) 

Global 1 resolution 

grid 

cells over the 

globe 

excluding 

Greenland 

and 

Antarctica 

(15,836 grid 

cells in total). 

Annual flow biases, 

runoff seasonality 

and daily flow 

percentiles. 

8 soil and one 

vegetation 

parameter 

Distance between a 

priori CDF and 

behavioral 

parameter CDF 

INFILT, DsMAX, Expti, 

and Rmin for annual 

biases; 

INFILT and DsMAX when 

adding the monthly 

constraint; 

INFILT, DsMAX, Expti, 

and Rmin dominate daily 

flow extremes. 

Mendoza 

et al. 

(2015b) 

Colorado 

Headwaters 

3 headwater 

basins 

RMSE(Q) with Q at 

daily time steps 

34 soil, 

vegetation and 

DELSA INFILT, Ds, DsMAX, Ws, 

Depth2, Depth3, NEW 

ALB, ALB AA, ALB THA 
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Study Region Number of 

sites or 

catchments 

Target variables or 

metrics  

Number of 

parameters 

included in SA 

Methods Most sensitive 

parameters 

Region, 

USA 

snow 

parameters 

Melsen 

et al. 

(2016) 

Thur basin, 

Switzerland 

3 catchments NSE(Q), KGE(Q) 

and KGE(log(Q)) 

with Q at daily and 

hourly time steps 

28 soil, 

vegetation and 

snow 

parameters 

DELSA INFILT, Ds, Expt2, 

DsMAX 

Wi et al. 

(2017)b 

American 

River 

basin, USA 

One 

catchment 

(North Fork 

sub-basin) 

NSE(Q) with Q at 

daily time steps 

15 soil, snow 

and routing 

parameters 

Morris INFILT, Ds, DsMAX, Ws, 

Depth1, Depth2, Depth3, 

snow Tmax & Tmin 

Bennett 

et al. 

(2018) 

Colorado 

River 

basin, USA 

7 grid cells 

across the 

basin, 

with ~7 km 

horizontal 

resolution 

Projected changes 

(i.e., 2070-2099 

minus 1970-1999 

averages) in mean 

annual runoff, June 

soil moisture, March 

SWE and annual ET 

46 soil and 

vegetation 

parameters 

Variance-based 

Sensitivity 

Analysis, applied to 

a Gaussian process 

emulator developed 

for VIC at each grid 

cell 

DsMAX, Ds and Depth3 

for projected changes in 

runoff, ET and soil 

moisture; wintertime 

canopy fraction and 

wintertime LAI for 

projected changes in SWE 

Gou et 

al. 

(2020) 

10 major 

river basins 

in China 

14 

catchments 

NSE(Q) with Q at 

monthly time steps 

13 soil 

parameters 

Three qualitative 

(SOT, MARS, DT) 

and one quantitative 

(Sobol’) method  

INFILT, Depth1 and 

Depth2 are the overall 

most influential 

parameters on streamflow 

Lilhare 

et al. 

(2020) 

Lower 

Nelson 

River 

basin, 

Canada 

10 sub-basins NSE(Q), KGE(Q) 

and PBIAS(Q) with 

Q at daily time steps 

6 soil 

parameters 

VARS INFILT and Depth2 arised 

as the most sensitive 

parameters. Relative 

importance depends on 

the catchment. 

Yeste et 

al. 

(2020) 

Duero 

River 

basin, 

Iberian 

Peninsula 

31 headwater 

basins 

Temporal averages 

of surface runoff, 

baseflow, total 

runoff, ET, and total 

soil moisture 

5 soil 

parameters 

SRC Surface runoff, baseflow, 

total runoff, ET and SM1 

are mainly sensitive to 

INFILT and Depth2. SM2 

affected mostly by 

Depth2, and SM3 affected 

by Ds, DsMAX and Ws 

Melsen 

and 

Guse 

(2021) 

Contiguous 

United 

States 

(CONUS) 

605 

catchments 

Mean simulated 

streamflow and the 

day of the year when 

half of the 

streamflow volume 

has passed (i.e., 

streamflow timing) 

17 soil, 

vegetation and 

snow 

parameters 

DELSA Rmin, Depth2 and Expt2 

are the most sensitive 

parameter for mean 

annual discharge; Ds, 

DsMAX, Depth2, Rmin, 

Expt2 and Depth3 control 

streamflow timing 

This 

study 

Continental 

Chile 

5,574 grid 

cells 

(0.05°×0.05°) 

across 101 

basins 

8 metrics computed 

at daily time steps 

43 soil, 

vegetation and 

snow 

parameters 

DELSA INFILT, Ds, DsMAX, Ws, 

Expt2, Depth2, Depth3, 

Rmin, LAI, NEW ALB, 

ALB THA, ALB AA 
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aThe studies are listed in order of publication date. The present study has been added for completeness. 820 
bWe exclude two routing parameters that were found sensitive, but were not used in the other studies. 

FFA: Factorial Fractional Analysis (Montgomery, 1991)  

DELSA: Distributed Evaluation of Local Sensitivity Analysis (Rakovec et al., 2014). 

DT: Delta test (Pi and Peterson, 1994). 

SOT: Sum-Of-Trees model (Chipman et al., 2010). 825 
MARS: Multivariate Adaptive Regression Splines (Friedman, 1991). 

VARS: Variariogram Analysis of Response Surfaces (Razavi and Gupta, 2016). 

SRC: Standardized Regression Coefficients (Saltelli et al., 2008). 

VISCOUS: VarIance-based Sensitivity analysis using COp- UlaS (Sheikholeslami et al., 2021). 
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Table 2. List of physiographic and hydroclimatic attributes used to characterize model grid cells. 

Predictor Class Description Data source 

Elevation Topographic Mean elevation (m.a.s.l.) DGA (2018, 2019, 2020) 

Slope Topographic Mean topographic slope (°) 
Digital Elevation SRTM 1 Arc-Second Global 

(https://earthexplorer.usgs.gov/) 

Precipitation Climate Mean annual precipitation (mm/yr) CR2MET (Boisier et al., 2018) (https://www.cr2.cl/) 

Temperature Climate Mean temperature (°C) CR2MET (Boisier et al., 2018) (https://www.cr2.cl/) 

Humidity Climate Mean relative humidity (-) CR2MET (Boisier et al., 2018) (https://www.cr2.cl/) 

Aridity Climate 
Aridity index (-), ratio of long-term 

potential evaporation to precipitation 
- 

Clay Soil Soil clay content (%) average over all layers 
SoilGrids250m (Hengl et al., 2017) 

(https://soilgrids.org/) 

Bare soil Land cover Fraction of bare soil DGA (2018, 2019, 2020) 

Forest Land cover Fraction of forest DGA (2018, 2019, 2020) 

Grasslands Land cover Fraction of grasslands DGA (2018, 2019, 2020) 

Shrub Land cover Fraction of shrub DGA (2018, 2019, 2020) 

Snow Land cover Fraction of snow cover DGA (2018, 2019, 2020) 

 

Table 3. Parameters of the VIC model considered in this study. 

Parameter Description Units Min Max Comment 

Soil parameters 

INFILT 
Variable infiltration curve 

parameter 
- 0.001 0.4 

Based on Mendoza et al. 

(2015b) 

DsMAX Maximum velocity of baseflow mm/d 1 50 
Based on Melsen et al., 

(2016) 

Ds 
Fraction of DsMAX where non-

linear baseflow occurs 
- 0.00005 1 

Based on Mendoza et al. 

(2015b) 

Ws 

Fraction of maximum soil 

moisture where non-linear 

baseflow occurs 

- 0.0009 1 
Based on Mendoza et al. 

(2015b) 

c Exponent used in baseflow curve - 1 4 
Based on Melsen et al. 

(2016) 

Expti 

Exponent in Campbell’s equation 

for hydraulic conductivity of soil 

layer i 

- 5 30 
Based on Melsen et al. 

(2016) 
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Parameter Description Units Min Max Comment 

Ksati 
Saturated hydraulic conductivity 

of soil layer i 
mm/d 1 10,000 

Based on Demaria et al. 

(2007) 

Depth1 Thickness of layer 1 (uppermost) m 0.01 0.5 
Based on Demaria et al. 

(2007) 

Depth2 Thickness of layer 2 m Depth1 + 0.1 Depth1 + 4 
Based on Melsen et al. 

(2016) 

Depth3 Thickness of layer 3 (lowermost) m 0.1 4 
Based on Melsen et al. 

(2016) 

dp Soil thermal damping depth m 1 3.75 

Based on Gates & Evans 

(1964) and Al 

Nakshabandi & Kohnke 

(1965) 

quartzi Quartz content of soil layer i - 0.1 0.82 

Based on Hogue et al. 

(2005) and Rosero et al. 

(2010) 

bulk densityi Bulk density of layer i kg/m3 1,200 1,609 

Based on Cosby et al. 

(1984); Rawls et al. (1992) 

and Reynolds et al. (2000) 

rough Surface roughness of bare soil m 0.0001 0.08 
Based on Woodward 

(1999) 

Resid moist Residual soil moisture of layer i - 0.02 0.109 
Based on Rawls et al. 

(1992) 

Vegetation parameters 

rarc 
Architectural resistance of 

vegetation type 
s/m 2 50 

Based on Ducoudré et al. 

(1993) 

Rmin 
Minimum stomatal resistance of 

vegetation type 
s/m 30 300 

Based on Melsen et al. 

(2016) 

LAI* 
Leaf-area index of vegetation 

type 
- 0.1 1.16 

Multipliers obtained from 

leaf-area index range 0.01-

7 based on Dorman & 

Sellers (1989) and Myneni 

et al. (1997) 

ALB* 
Shortwave albedo for vegetation 

type 
- 1 1.65 

Multiplier obtained from 

shortwave albedo range 

0.1-0.33 based on Dorman 

& Sellers (1989) 

ROU* Vegetation roughness length - 0.82 2.11 

Multiplier obtained from 

roughness length range 

0.06-2.6 m based on 

Dorman & Sellers (1989) 

DIS* Vegetation displacement height - 0.82 2.11 

Multiplier obtained from 

roughness length range 

0.06-2.6 m based on 

Dorman & Sellers (1989) 

and VIC definitions 
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Parameter Description Units Min Max Comment 

Root depth i 

Root zone thickness (sum of 

depths is total depth of root 

penetration) of layer i 

m 0.1 3 
Based on Melsen et al. 

(2016) 

Root fraction i 
Fraction of root in the current 

root zone of layer i. 
- 0 1 

Based on Bohn & Vivoni 

(2016) 

Snow and general parameters 

z0 SNOW Surface roughness of snowpack m 0.0001 0.01 

Based on range suggested 

by Marks & Dozier (1992) 

and Reba et al. (2014) 

Tmin 
Minimum temperature at which 

rain can fall. 
°C -1.5 0 

Based on Melsen et al. 

(2016) 

Tmax 
Maximum temperature at which 

snow can fall. 
°C Tmin + 0.5 Tmin + 1.5 

Based on Melsen et al. 

(2016) 

NEW ALB New snow albedo - 0.7 0.99 
Based on Mendoza et al. 

(2015b) 

ALB AA 
Base in snow albedo function 

(accumulation) 
- 0.88 0.99 

Based on Mendoza et al. 

(2015b) 

ALB THA 
Base in snow albedo function 

(melt) 
- 0.66 0.98 

Based on Mendoza et al. 

(2015b) 

*This parameter is temporally distributed (monthly variations) and, therefore, its sensitivity is analyzed based on multipliers. 835 

Although description and units refer to actual parameters of VIC, parameter values in bold represent the multiplier values 

(instead of actual parameters). 

 

 

Table 4. Parameter sensitivity metrics used in this study.  840 

Notations Short descriptions Formulas Indicator of processes 

RMSE Root-mean-squared-error √
1

𝑁
 ∑(𝑄𝑡

𝑠𝑖𝑚 − 𝑄𝑡
𝑟𝑒𝑓

)
2

𝑁

𝑡=1

 High flows 

TRMSE 
Transformed-root-mean-

squared-error 

√
1

𝑁
 ∑(𝑍𝑡

𝑠𝑖𝑚 − 𝑍𝑡
𝑟𝑒𝑓

)
2

𝑁

𝑡=1

 

𝑍𝑡 =
(1 + 𝑄𝑡)𝜆 − 1

𝜆
;  𝜆 = 0.3 

Low flows 

FMS 
Flow duration curve 

midsegment slope difference 
|
𝑄𝑚1

𝑠𝑖𝑚 − 𝑄𝑚2

𝑟𝑒𝑓

𝑚1 − 𝑚2
−

𝑄𝑚1

𝑜𝑏𝑠 − 𝑄𝑚2

𝑟𝑒𝑓

𝑚1 − 𝑚2
| 

Variability, or flashiness, 

of the flow magnitudes 

RR Runoff ratio difference |
𝑅𝑠𝑖𝑚

𝑃𝑠𝑖𝑚
−

𝑅𝑟𝑒𝑓

𝑃𝑟𝑒𝑓
| 

Overall water balance (ET 

processes) 

PeakSWE Peak SWE difference |𝑚𝑎𝑥{𝑆𝑊𝐸𝑡}𝑠𝑖𝑚 − 𝑚𝑎𝑥{𝑆𝑊𝐸𝑡}𝑟𝑒𝑓| 
Maximum long-term SWE 

accumulation 

SnowLength Snow length difference 
|∑ 𝑑𝑎𝑦𝑠 ∈ 𝑆𝑊𝐸𝑠𝑖𝑚 > 𝑥 − ∑ 𝑑𝑎𝑦𝑠 ∈ 𝑆𝑊𝐸𝑟𝑒𝑓 > 𝑥| 

𝑥 = 1 𝑚𝑚 

The number of days when 

snow is on the ground 
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Notations Short descriptions Formulas Indicator of processes 

SUBL Sublimation difference |𝑆𝑢𝑏𝑙𝑠𝑖𝑚 − 𝑆𝑢𝑏𝑙𝑟𝑒𝑓| 
Mean error on sublimation 

estimation 

TRANSP Transpiration difference |𝑇𝑟𝑎𝑛𝑠𝑝𝑠𝑖𝑚 − 𝑇𝑟𝑎𝑛𝑠𝑝𝑟𝑒𝑓| 
Mean error on transpiration 

estimation 

N, number of time steps; 𝑄𝑡, flow for time step t; 𝑍𝑡, flow transformed for time step t; 𝑄𝑚1
, 𝑚1 percentile flow of simulated 

flow duration curve; 𝑚1 = 70; 𝑄𝑚2
, 𝑚2 percentile flow of simulated flow duration curve; 𝑚2 = 30; 𝑅, grid-averaged mean 

annual runoff; 𝑃, grid-averaged mean annual precipitation; 𝑆𝑊𝐸𝑡, Snow water equivalent for time step t; 𝑆𝑢𝑏𝑙, grid-averaged 

mean annual sublimation; 𝑇𝑟𝑎𝑛𝑠𝑝, grid-averaged mean annual transpiration. 
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Table 5. Climate classification used to group model grid cells. 

Classification Humid Humid sub-humid Dry sub-humid Semi-arid Arid Hyper arid 

Aridity index <1 1 to 1.53 1.53 to 2 2 to 5 5 to 20 >20 

Number of grid cells 2,189 772 318 992 803 499 

 

Table 6. Summary with the most sensitive VIC parameters found for each metric (rows) and climatic type. The three most important 

parameters are determined based on the median of integrated first-order DELSA sensitivity indices and are sorted by ranking (i.e., 850 
1st, 2nd, and 3rd most sensitive). 

Classification Humid 
Humid sub-

humid 

Dry sub-

humid 
Semi-arid Arid Hyper arid 

RMSE 

Ds MAX 

Ws 

Depth 3 

Ds MAX 

Ws 

Depth 3 

INFILT 

Ws 

Ds MAX 

INFILT 

Expt 2 

Depth 2 

INFILT 

Expt 2 

Depth 2 

INFILT 

Expt 2 

Depth 2 

TRMSE 

Ds MAX 

Ws 

Ds 

LAI 

Ds MAX 

Ds 

LAI 

Depth 2 

Ds 

INFILT 

Depth 2 

Expt 2 

INFILT 

Expt 2 

Depth 2 

INFILT 

Expt 2 

Depth 2 

FMS 

Ds MAX 

Ds 

Ws 

Ds 

Ds MAX 

LAI 

Ds 

Ds MAX 

LAI 

Ds 

Ds MAX 

Depth 2 

Depth 2 

Expt 2 

Ds 

Depth 2 

Expt 2 

Ds 

RR 

LAI 

Rmin 

Expt 2 

LAI 

Rmin 

Expt 2 

LAI 

Expt 2 

Depth 2 

LAI 

Expt 2 

Depth 2 

INFILT 

Depth 1 

Expt 2 

Depth 2 

INFILT 

Depth 1 

PeakSWE 

NEW ALB 

ALB THA 

LAI 

NEW ALB 

ALB THA 

ALB AA 

NEW ALB 

z0 SNOW 

ALB THA 

NEW ALB 

ALB AA 

T MAX 

NEW ALB 

ALB AA 

z0 SNOW 

NEW ALB 

ALB AA 

z0 SNOW 

SnowLength 

NEW ALB 

ALB THA 

ALB AA 

NEW ALB 

ALB AA 

ALB THA 

NEW ALB 

ALB AA 

ALB THA 

NEW ALB 

ALB AA 

T MAX 

NEW ALB 

ALB AA 

ALB THA  

NEW ALB 

ALB AA 

z0 SNOW 

SUBL 

z0 SNOW 

NEW ALB 

ALB THA 

NEW ALB 

z0 SNOW 

T MAX 

z0 SNOW 

NEW ALB 

T MAX 

NEW ALB 

z0 SNOW 

ALB AA 

NEW ALB 

z0 SNOW 

ALB AA 

NEW ALB 

ALB AA 

z0 SNOW 

TRANSP 

LAI 

Rmin 

Expt 2 

LAI 

Rmin 

Depth 2 

LAI 

Depth 2 

Expt 2 

LAI 

Depth 2 

Expt 2 

Expt 2 

LAI 

Depth 2 

Expt 2 

Depth 2 

LAI 
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Figure 1. Spatial distribution of climatic and physiographic attributes across all grid cells: (a) mean annual precipitation (period 855 
1979 – 2020), (b) mean annual temperature (period 1979 – 2020), (c) mean elevation, (d) aridity index and (e) bare soil fraction. In 

each panel, the back thick lines represent the boundaries of six basins representative of the hydroclimatic diversity within the study 

domain, from north to south: (a) Loa River upstream Lequena reservoir; (b) Pulido River at Vertedero; (c) Colorado River before 

junction with Maipo River; (d) Palos River at junction with Colorado River; (e) Biobío River at Rucalhue; (f) Cautin River at Cajon.   

 860 
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Figure 2. Seasonal cycles of catchment-averaged rainfall, snowfall, runoff and temperature (period 1979 – 2020) for six basins 

representative of the hydroclimatic diversity within the study domain (see location in Figure 1). From north to south: (a) Loa River 865 
upstream Lequena reservoir; (b) Pulido River at Vertedero; (c) Colorado River before junction with Maipo River; (d) Palos River 

at junction with Colorado River; (e) Biobío River at Rucalhue; (f) Cautin River at Cajon. The location of these catchments is shown 

in Figure 1. 
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Figure 3. Comparison of cumulative frequency distributions of first-order DELSA indices (𝑺𝒋

𝑳) across six hydroclimatically different 870 

basins (displayed in different rows, sorted by latitude).  The location and seasonal cycles for these basins are displayed in Figures 1 

and 2, respectively. Results are displayed for the most sensitive parameter associated with each evaluation metric (displayed in 

different columns), so each panel (excepting those in the last row) comprises the CDFs of all grid cells contained in a specific basin, 

for a particular combination of metric/parameter. The most sensitive parameter was determined based on the median sensitivity 

index 𝑰𝑺𝒋
𝑳 from all the grid cells contained in the study domain (see text for details). The number next to each basin code at the top 875 

of this figure is the catchment-scale aridity index. 



35 

 

 

 

 

Figure 4. Spatial distribution of integrated first-order DELSA sensitivity indices (𝑰𝑺𝒋
𝑳) for the leaf area index (LAI) across a humid 880 

subdomain located in Southern Chile. Results are displayed for eight sensitivity metrics: (a) RMSE, (b) TRMSE; (c) FMS; (d) RR; 

(e) PeakSWE; (f) SnowLength; (g) SUBL; (h) TRANSP. 
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Figure 5. Same as in Figure 4, but for the base in the snow albedo function ALBTHA (melt). 
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Figure 6. Boxplots comprising integrated first-order DELSA sensitivity indices (𝑰𝑺𝒋

𝑳) from all modeling units (5,574 grid cells). 

Results are displayed for all parameters (x-axis) and sensitivity metrics, which are presented in different panels: (a) RMSE, (b) 

TRMSE; (c) FMS; (d) RR; (e) PeakSWE; (f) SnowLength; (g) SUBL; (h) TRANSP.  895 
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Figure 7. Integrated first-order DELSA sensitivity indices for all grid cells within our study basins. The results are displayed only 

for the 12 most sensitive parameters, and their associated most impacted metrics. 
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Figure 7. (continued). 
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Figure 8. Spearman rank correlation coefficient between integrated first-order DELSA sensitivity indices 𝑰𝑺𝒋

𝑳 and 

grid cell characteristics. Results are displayed only for the four most sensitive parameters affecting each metric. The 

crosses indicate correlation values whose p-values are lower than 0.05. 905 


