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Dear reviewers and editor:  

Thank you so much for valuable comments and kind suggestions on our paper. 

Your illuminating comments and suggestions give us the possibility to properly fix 

several questionable issues, and to improve the overall quality of the paper. We highly 

appreciate your time and effort. Please find our point-to-point responses to your 

comments below. 

 

 

Response to reviewer #1 

 

1. This paper studies the predictability of flash drought over China using machine 

learning methods. The starting point is ERA5 soil moisture over China for the period 

1979-2021. They use a definition of flash drought based on changes in soil moisture 

percentiles (SMP) which they term the rate of intensification (RI) during periods 

when SMP is decreasing. They define flash droughts as occurring when SMP crosses 

the 40th percentile and is decreasing at a rate of at least 6.5 percent per week (time 

step is weekly). There is some confusion in Figure 1 and text surrounding it as to 

whether crossing of the 20th percentile of SMP is also required (the figure implies this, 

but text does not). There also is a criterion for a termination time Tn “when the rapid 

decline of soil moisture ceases”, but this is not shown in Figure 1 nor are specifics in 

the text. 

 

Response: We thank the reviewer’s comment. In the revised manuscript (no marks), 

we added some descriptions in Page 5 Lines 159-160 to clarify two detailed 

requirements for extracting drought events: “Specifically, the drought events are 

extracted from the entire period by following two requirements below: (1) soil 

moisture falls below the 40th percentile, and (2) soil moisture should decay to below 

the 20th percentile.”. The original symbol Tn which represents the termination time of 



the onset-development phase was replaced by T0+d in order to keep its consistency 

between Fig. 1(a) and Fig. 1(b). We adjusted the formula of the intensification rate of 

drought events and revised some related descriptions as below: 

In Page 6 Lines 173-177: 

𝑅𝐼 =
1

𝑑+1
∑ [

𝑆𝑀(𝑇𝑖+1)−𝑆𝑀(𝑇𝑖)

𝑇𝑖+1−𝑇𝑖
]𝑑

𝑖=0 , 𝑇0 ≤ 𝑇𝑖 ≤ 𝑇0+𝑑,                                                    (1)                                                                                                                                                                                                                                                                                                      

𝑠. 𝑡 = {min[𝑆𝑀(𝑇𝑖)] ≤ 20𝑡ℎ},                                                                                     (2)                                                                                                                                                                                                                                                                                                                                               

“Where 𝑇0  is the onset time, 𝑇0+𝑑  denotes the termination time for the onset-

development phase, d is the duration of onset-development phase, 𝑆𝑀(𝑇𝑖) is the soil 

moisture percentile at time 𝑇𝑖 in the rapid intensification process of drought.” 

In Page 6 Lines 168-170: 

“T0+d denotes the termination time for the onset-development stage when the rapid 

decline of soil moisture ceases…” 

“T0+d can be determined through a polynomial function and located when the first 

derivative of the constructed polynomial equals zero in calculus.” 

Besides, we revised Figure 1 in the original manuscript to show the termination time 

T0+d clearly. For the specific identification method of the termination time, we added 

one sentence in Page 6 Lines 170-171: “The detailed determination process of T0+d is 

presented in our previous study (Liu et al. 2020a).” 



 

Fig.1 A concept map for identifying flash droughts. 

 

2. My main problem with this paper is philosophical. Why are you using machine 

learning at all? It reflects no physical process understanding water – you just throw a 

bunch of variables that you think could possibly have something to do with RI and 

turn the crank. Rather obviously, flash droughts are going to occur during dry periods 

(during precipitating periods, presumably soil moisture increases rather than 

decreases). So given that it’s dry, it must have to do with evaporative demand, and the 

soil moisture you start with. We do understand those processes (albeit imperfectly), so 

surely you could use a physically based model to predict the RI. Now, if you did that 

first, and then applied ML and could somehow (not clear at all to me how) use the ML 

predictions to diagnose the physically based ones so as to improve them, I would be 

interested. But I don’t really see where the hydrologic content is in this paper. 

Response: 

Thanks for your comments. We agree that a physically-based model is helpful to 

understand the physical process of flash drought. Flash drought is an emerging and 

ongoing topic in the drought community during the past ten years. It has a rather 

complicated evolving process and is influenced by a variety of factors in its different 

development stages. A variety of studies have analyzed the characteristics of flash 



drought at global and regional scales, though there is no consistent notion on how we 

define flash droughts in the community (e.g., Ford et al. 2015; Otkin et al. 2018; Liu 

et al., 2020a). Especially, the physically driven mechanism of flash drought is still 

uncertain. Given the current progresses of the flash drought field, it is difficult to 

predict RI using physical-based models. The three machine learning (ML) 

technologies (i.e., MLR, RF, and LSTM) were used to establish the relationship 

between RI and predictors, which can be served as references for recognizing and 

understanding the physical formation and development features of flash droughts.  

 

We agree that it is difficult to use ML technologies to reflect the physical process of 

flash drought. However, these ML technologies have advantages in providing a fast 

and direct mapping pathway between the independent and dependent variables based 

on a combination of abundant data and advanced model architectures (Feng et al., 

2021; Sahoo et al., 2017; Yang et al., 2020). Also, they can provide an accurate 

estimation of soil moisture, though the input samples are limited (Long et al., 2019). 

Given this, we considered using the ML models to evaluate the feasibility of flash 

droughts simulation over China. Our current study is to figure out the statistical 

interaction between RI and the anomalies of meteorological factors, which is 

beneficial for understanding the physical mechanism of flash droughts. 

 

Besides, we appreciate the reviewer for providing a good idea that we can diagnose 

the physical-based models using machine learning technologies to improve the 

performance of the former models. This might be a study direction in the future flash 

drought field. However, considering the reason for the unclear physical mechanism of 

flash droughts, we applied the ML models to analyze the potential relationship 

between the RI and anomalies of climate factors in the current work. This is the first 

step before we effectively construct physical-based models to simulate and predict the 

RI in the future. The advantages for using machine learning algorithms have been 

supplemented in the introduction section in Page 4 Lines 105-111: 

“These ML technologies have superiorities in providing a fast and direct mapping 

pathway between the independent and dependent variables without further a priori 

knowledge about, or assumptions on, underlying physical processes (Feng et al., 2021; 

Sahoo et al., 2017; Yang et al., 2020). They can capture key information hidden in 

historical data, and then apply these patterns to predict target data in future scenarios. 



Also, they can provide an accurate estimation of soil moisture, though the input 

samples are limited (Long et al., 2019; Almendra-Martín, et al., 2021). However, 

limited studies focused on flash droughts simulation based on ML technologies.” 
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3. My other complaint is that key information needed to understand the results is 

either buried in text or missing altogether. For instance, were flash drought periods 

extracted from the entire period of record, without regard for season? Ordinarily, one 

would expect such events to occur primarily in summer, when evaporative demand is 

the highest. But RI is determined in terms of soil moisture percentage changes, which 

https://doi.org/10.1016/j.rse.2021.112377
https://doi.org/10.1016/j.jhydrol.2021.126062


complicates the picture considerably. In winter, for instance, evaporative demand will 

be reduced, but the range of soil moisture percentages likely is also reduced, so it 

could be that the statistics of RIs are being dominated by events that in a practical 

sense aren’t really droughts at all. I don’t know if this is true but constraining the 

analysis to a window in the summer (if this hasn’t already been done – I searched the 

document and didn’t find any indication that it was) would make the most sense. 

 

Response:  

Thanks for pointing out that. Yes, we extracted flash drought from the entire period of 

record. When we designed the manuscript, we also first focused on flash droughts in 

the summertime as the reviewer suggested. We analyzed the identification results 

carefully and found flash droughts are prone to occur during the cross seasons (e.g., 

spring-summer or the summer-autumn). Constraining the analysis to a window in the 

summer may miss the continuous development process of flash drought. Given the 

above considerations, we preferred to analyze flash droughts by using the entire 

period. The main reasons are listed below: Firstly, our method relies on continuous 

time series of soil moisture percentile. The intermittent data makes it hard to capture 

the onset, or termination of drought events accurately, and the continuity and integrity 

of the datasets are important for identifying the development process of drought. 

Secondly, some important information related to flash droughts might be ignored if 

we merely focus on them in the summer. Previous studies showed that flash droughts 

may coexist with the seasonal drought and cross-seasonal drought due to the diverse 

climatic conditions and underlying surface (i.e., the soil texture and vegetation cover) 

of China (Liu et al., 2020b). Meanwhile, according to their study, cross-season 

drought events easily started from spring (April and May) and summer (June and 

July). We also analyze the frequency of flash drought occurrence (FOC, Mo et al., 

2016) in different seasons, as shown in Fig. 2. According to our identification results, 

the frequency of flash drought occurrence in winter is the lowest, and for 84% of the 

study area, the FOC is no more than 5% (Fig. 2a). This low value may have tiny 

influences on the simulation results. Based on the above analysis, we were more 

inclined to use the entire period for RI simulation and prediction of flash droughts. We 

considered your suggestion carefully and supplemented some expressions in Page 6 

Lines 178-185 in the revised manuscript to explain the reason why we focused on the 

entire period. 

“In this method, we extracted flash droughts from the entire period of records, the 



main reasons are listed: Firstly, our method relies on continuous time series of soil 

moisture percentile. The intermittent data makes it hard to capture the onset, or 

termination of drought events accurately, and the continuity and integrity of the 

datasets are important for identifying the development process of drought. Secondly, 

enough important information related to flash droughts need be included in the ML 

models because flash droughts may coexist with the seasonal drought and cross-

seasonal drought due to the diverse climatic conditions and underlying surface (i.e., 

the soil texture and vegetation cover) of China (Liu et al., 2020b). Thirdly, the 

occurrence of flash drought in winter is limited, which may have tiny influences on the 

simulation results.” 

 

Fig.2 Spatial distribution of frequency of occurrence of flash droughts in different 

seasons over China 
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Response to reviewer #2 

 

Overall, I consider this to be a worthwhile contribution to the rapidly expanding flash 

drought literature. The authors provide a new definition that can be compared to other 

proposed definitions and they examine association with a range of potential drought 

predictors. My two major comments are on the framing and the comparison between 

flash droughts and "slow droughts." 

Response: We thank the reviewer for the positive comments to our study and please 

see our responses in detail below. 

 

Major comments: 

1. The methods applied in the study are, formally, supervised statistical learning 

algorithms. While one can debate what "AI" means, I think it's fair to assume that 

very few people think of linear regression, or even nonparametric statistical 

approaches like Random Forest, as AI. LTSM does sometimes get put in the AI basket, 

but it's no longer really a leading edge, advanced AI application. All that to say, I was 

surprised by the content of the manuscript after reading the title, and I suspect others 

may be as well. The paper simply does not provide an AI-oriented methodological 

advance, nor does it present results that are interesting because of novel application of 

relatively new methods. For this reason I recommend retitling and reframing the paper 

to focus on the flash drought findings, and removing the prominent use of the term AI 

in title, abstract, and throughout the paper. There are many published studies in many 

fields that compare performance of parametric and nonparametric methods for various 

applications, sometimes including NN as well, and at this point I really think that the 

difference in performance between those methods is best presented as a comparison of 

statistical methods that is useful but not particularly innovative. Instead, I recommend 

that the authors focus on their actual flash drought results in the framing of the paper, 

as those results are quite interesting for the flash drought community. 

Response:  

Thank you for pointing out that. We agree with the reviewer’s comment that these 

three methods (i.e., MLR, RF, and LSTM) are inappropriate to consider as artificial 

intelligence (AI) technologies. As you mentioned, these parametric and nonparametric 

methods were named machine learning (ML) technologies in previous studies (Bouras 

et al., 2021; Liakos et al., 2018; Schwalbert et al., 2020). Following your suggestions 



and previous studies, we classified these methods i.e., MLR, RF, and LSTM into 

machine learning technologies and modified the original title to “Analysis of Flash 

Droughts in China using Machine Learning”. The new title would be better to reflect 

the key point of flash drought in this work. We corrected sentences containing AI 

terms and replaced them with descriptions of machine learning technologies. The 

detailed revisions are shown as below: 

In Page 1 Lines 16-17: 

“The relationship between the rate of intensification (RI) and nine related climate 

variables is constructed using three machine learning (ML) technologies, namely, 

multiple linear regression (MLR), long short-term memory (LSTM), and random 

forest (RF) models.” 

In Page 1 Line 22-23: 

“For drought detection, all three ML technologies presented a better performance in 

monitoring flash droughts than in conventional slowly-evolving droughts.” 

In Page 1 Line 32: 

“This study is valuable to enhance the understanding of flash drought and highlight 

the potential of ML technologies in flash droughts monitoring.” 

In Page 4 Lines 118-121: 

“In Section 4, we present the evaluation of RI simulation results, the performance 

comparison of ML technologies in terms of flash droughts and slow evolving droughts, 

as well as a specific investigation on typical flash drought events. Section 5 discusses 

the potential reasons for the varied performances of ML models in RI estimation, and 

their feasibilities in flash droughts detection.” 

In Page 10 Lines 273-276: 

“In addition, three skill scores, including the probability of detection (POD), false 

alarm ratio (FAR), and critical success index (CSI), were employed to measure the 

performances of three ML technologies in flash droughts detection. All these three 

metrics indices range between 0 and 1. POD and CSI show the ratio of detected flash 

droughts by the ML technologies to observed flash droughts, and the higher values, 

the better performances of ML technologies in flash droughts detection.” 

In Page 10 Lines 281-283: 

“…where H (Hits) represents flash droughts both detected by the ML methods and 

observations; F (False alarms) represents the case when flash droughts captured by 

ML approaches but not recorded in observations. M (Misses) represents flash 



droughts recorded in observations but not captured by ML approaches.” 

In Page 11 Lines 285-286: 

“The general flowchart for evaluating the performances of ML technologies (i.e., 

MLR, LSTM, and RF model) in flash drought detection is presented in Fig. 2.” 

In Page 12 Line 299: 

 

Figure 2: The flow chart of evaluating the performances of ML models for flash 

droughts detection. 

In Page 12 Line 300: 

“Figure 2: The flow chart of evaluating the performances of ML models for flash 

droughts detection.” 

In Page 12 Lines 303-304： 

“The capabilities of ML technologies in simulating the RI of soil moisture were 

assessed through intercomparison with the observed RI derived from ERA soil 

moisture.” 

In Page 13 Line 312: 



“Based on the observed RI and simulations from three ML technologies (i.e., MLR, 

LSTM, and RF), Fig. 4 shows the….” 

In Page 13 Line 318: 

“Among the three ML models, the RF performed best, as shown in Figs. 5e and f, …” 

In Page 16 Line 346: 

“To evaluate the capabilities of three ML models in detecting drought events, we 

analyzed…” 

In Page 17 Lines 377-378: 

“In general, all three ML models provided more reliable information in detecting 

flash droughts than slowly-evolving droughts.” 

Page 20 Lines 390-391: 

“The ability of capturing the migration trajectories of droughts over time and space is 

also important for evaluating the capabilities of candidate ML models in drought 

detection.” 

In Page 22 Lines 416-418: 

“5.1 Performance of ML technologies for RI estimation 

In this study, we evaluated three ML technologies, and found RF provided the best 

estimations of RI with higher CC and lower RMSE comparing to the observed RI 

(Figs. 4 and 5).” 

In Page 26 Lines 466-467: 

“5.2 Comparison of ML technologies for flash droughts and slowly-evolving droughts 

In this study, all three ML models produced better RI estimations of flash droughts 

than those of conventional droughts…” 

In Page 28 Line 546-547: 

“Furthermore, these ML methods displayed a relatively higher detection capacity of 

flash droughts than that of traditional slowly evolving droughts.” 

In Page 29 Lines 554-556: 

“This work would help enhance the understanding of flash droughts and provide a 

reference for the application of ML models on simulating flash droughts.” 
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2. I appreciate the section of the manuscript that compares the predictability of flash 

drought to conventional drought. But in making this distinction the authors implicitly 

assume that flash and slow droughts, as distinguished using the RI threshold 

employed in this paper, are meaningful and relatively homogeneous types of drought 

with respect to the predictor variables. Are the flash droughts and slow droughts in the 

inventory relatively homogeneous and separable with respect to these predictors, 

when evaluated using standard clustering or homogeneity tests? And is there evidence 

of the greater spread in meteorological predictors for slow drought relative to flash 

drought, as the authors suggest when explaining poorer performance in predicting 

slow droughts as a function of meteorology? 

Response:  

We thank the reviewer for their work and the positive comments. Yes. Flash droughts 

and slowly-evolving droughts are relatively homogenous and separable with respect 

to these predictors. Figure 3 shows the anomalies of meteorological elements (i.e., 

average temperature (Tmean), maximum temperature (Tmax), potential 

evapotranspiration (PET), precipitation (P), and relative humidity (RHU)) at the onset 

phase of flash droughts and traditional droughts across China. It shows that the 

climate driving of two types of droughts is significantly different. For energy-related 

meteorological elements, their average anomalies of flash droughts are more than 1-

fold of standard deviation, which is generally larger than that of conventional 

droughts. As for the moisture-related climate factors, their anomalies of rapid 

intensification droughts are lower than that of slowing developing droughts. For the 

RI threshold method used in this study, we first identified drought events and 

calculated the decline rate of soil moisture. Our identification method followed the 

suggestion of Otkin et al. (2018) was similar to the previous literature (Ford et al., 

2015; Yuan et al., 2017) which focused on two key characteristics of flash drought, 
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namely the intensification rate to reflect how fast the drying status proceeds, and the 

upper (40th) and lower (20th) limits of soil percentile to guarantee the event really 

falls into drought. Then, the RI of different drought events (including both flash 

droughts and traditional slowly-evolving droughts, and flash droughts can be 

distinguished from conventional droughts based on the RI threshold of “-6.5th 

percentile/week”), as well as relevant predictors, were employed as inputs to the ML 

models. Finally, the feasibilities of flash drought and slowly-evolving drought 

simulation were evaluated. 

 

Figure 3 Meteorological anomalies of flash droughts and slowly developing droughts 

at the onset phase over China. 

 

Traditional drought is influenced by a variety of predictors actively involved in the 

physical processes of the atmosphere, ocean, and land (Hao et al., 2018), which bring 



great challenges for the prediction of drought. These predictors can be divided into 

three types: (1) The first type of predictors is the large-scale climate indices, for 

instance, Surface Sea Temperature (SST), Southern Oscillation Index (SOI), Pacific 

Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO). The large-scale 

teleconnection factors have been shown to be an important driving force for the 

occurrence and development of drought in different areas of the world (Hoerling et al., 

2003; Nicolai-Shaw et al., 2016; Trambauer et al., 2013). (2) The second type of 

predictor refer to the local climate variables (e.g., precipitation, temperature). For 

example, under the joint effects of precipitation deficit and high temperature, soil 

moisture may be declined and persistent moisture deficits may lead to agricultural 

drought (Otkin et al., 2018; Yuan et al., 2019). (3) The land initial conditions (e.g., the 

persistence of soil moisture) can also be used as predictors for the prediction of 

drought (Wu et al., 2021). Especially for flash droughts, relevant studies showed that 

they have a stronger meteorological driving demand than conventional droughts (Ford 

and Labosier, 2017; Liu et al., 2021). This suggests a close interaction between RI and 

these local meteorological conditions, and this may be one reason for the relatively 

high efficiencies of these meteorological variables for RI prediction. By contrast, the 

formation of traditional drought involves complicated atmosphere-land surface 

feedbacks at multiple scales, and it is difficult to efficiently capture the variation of RI 

for slowly-evolving drought from a meteorological perspective. The revisions are 

listed as below: 

In Page 5 Line 155-158: 

“Following the suggestion of Otkin et al. (2018) and the methodology of Liu et al., 

(2020a), we adopt a quantitative method to identify flash droughts by focusing on the 

rate of intensification (RI) during their onset-development phase. The soil moisture 

decline rate-based approach was similar to methods of the previous literature (Ford 

et al., 2017; Yuan, et al., 2017).” 

In Page 26 Line 470-473: 

“For instance, precipitation deficits, enhanced evaporative demand (high temperature 

or heatwave), their joint or alternant effects are all possible to impose cumulative 

effects on soil moisture and lead to agricultural drought (Otkin et al., 2018; Yuan et 

al., 2019).” 

In Page 26 Line 476-484: 

“The large-scale circulation can modify precipitation’s frequency and intensity, 



increase wind speed, temperature, and evaporative demand. Several studies showed 

that the occurrence of droughts is related to large-scale circulation factors (Hoerling 

et al., 2014; Mo and Lettenmaier, 2016). Wang et al., (2016) found that under the 

background of El Niño of 2015/2016, a positive summer Eurasian teleconnection 

pattern is beneficial to anomalous northerly currents and weakening the East Asia 

summer monsoon, then leading to extreme droughts over northern China. The 2017 

drought in north-eastern China was caused by a strong positive phase of Arctic 

Oscillation (AO) in March (Zeng et al., 2019). Also, 2000-2012 interdecadal drought 

in Eastern Africa is closely linked to the anomalies of Surface Sea Temperature (SST) 

in the tropical Pacific basin (Lyon and De Witt, 2012).” 

In Page 26 Line 492-494: 

“Meanwhile, they have a stronger meteorological forcing than conventional droughts 

(Ford and Labosier, 2017), indicating a close interaction between RI of flash drought 

and these local meteorological conditions. This may be one possible reason for the 

higher accuracies of RI prediction for flash droughts.” 
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Other comments: 

1. I have no issue with the authors using their own, new definition to define flash 

drought events in their inventory, but it would be useful to, at a minimum, see a 

discussion of how the choice of definition is expected to influence results. Ideally, a 

comparison of inventories generated using one or two other definitions would be 

included. 

Response:  

Thanks for your constructive suggestion. For the definition of flash drought, Mo and 

Lettenmaier (2015, 2016) first proposed an identification method by combing several 

thresholds of hydrometeorological variables including soil moisture, precipitation, 

temperature, and evapotranspiration (hereafter denoted multiple thresholds method). 

On this basis, two types of flash drought were distinguished: the precipitation deficit 

flash drought (PDFD) and the heat wave flash drought (HWFD). The multiple 
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threshold method provides some insights for understanding flash droughts from the 

aspect of their driving mechanism. Oktin et al. (2018) argued that the multiple 

threshold method may have intrinsic drawbacks and they stated that the approach of 

flash drought identification should account for two aspects, one refers to the rapid 

intensification, and the other is the actual moisture limitation condition (hereafter 

denoted soil moisture decline rate-based threshold method). Liu et al. (2020) 

evaluated the flash drought results derived from different identification methods and 

found that the unreasonable thresholds associated with PDFD and HWFD limited 

their ability to capture the spatiotemporally continuous variation of drought. Mo et al. 

(2020) agreed that the multiple threshold method in some cases may lead to 

misjudgments of flash drought. In this study, we followed the suggestions of Otkin et 

al. (2018): (1) soil moisture percentile needs to be below the 20th percentile, which 

can guarantee the drought status to reach the actual moisture limitation condition; (2) 

the average RI exceeded a predetermined threshold (absolute value of the RI threshold 

is 6.5th percentile per week), which can reflect the feature of rapid intensification of 

drought. The soil moisture decline rate-based method is the main identification 

measurement for flash drought in recent years. And this threshold criterion is similar 

to studies conducted by Ford et al. (2015) which defined the decline of soil moisture 

percentile from 40th to 20th within 4 pentads as a flash drought event. The 

comparisons between our method and the multiple threshold method had been 

conducted in the previous study (Liu et al., 2020), along with the sensitivities of RI 

threshold on the identification results of flash droughts. We carefully considered your 

suggestions. In the revised manuscript, we discussed the influences of different 

definitions on simulation results in the discussion section in Page 28 Line 514-534.  

“5.3 Influence of definitions on RI simulation results 

As we mentioned before, two main definitions of flash drought were proposed by Mo 

et al., (2015, 2016) and Otkin et al., (2018). The two definitions were compared in 

several former studies in their effects on identifying flash droughts. Wang et al., (2018) 

investigated PDFD and HWFD over China during the growing seasons in 1979-2010 

and found that PDFD tends to occur in southern China, where moisture supply is 

sufficient, while HWFD is more likely to occur in semi-arid regions (e.g., northern 

China). Liu et al., (2020a) showed the strengths and limitations of the soil moisture 

rapid-intensification approach and the multiple variables threshold methods (i.e., 

identification methods for PDFD and HWFD events). For flash drought based on the 



rate of intensification approach (RIFD), the average frequency of occurrence (FOC) 

varied between 3% and 10%, while the average FOC of HWFD and PDFD was less 

than 3% and ranged from 4% to 6%, respectively, suggesting different identification 

ways would affect results of FOC to some extent. Even though the choice of 

definition may lead to different results of flash drought frequency, the difference 

wouldn’t be significant no matter which kinds of definitions are applied. Osman et al., 

(2021) compared several definitions (e.g., soil moisture percentiles drop (SMPD), 

standardized evaporative stress ratio (SEER), heat-wave-driven (HWD), and 

precipitation-deficit-driven (PDD)) to investigate the sensitivity of identification 

results to the choice of definition, and the research showed that the spatial distribution 

of some typical flash drought events is well captured by most of the evaluated 

definitions. In short, diverse definitions of flash drought wouldn’t affect the feasibility 

of analyzing the flash droughts simulation from the perspective of meteorological 

forcing. In this study, we focused on evaluating the performance of three ML 

algorithms on RI simulation and their ability in identifying flash droughts. Indeed, the 

ML models have a weak advantage in discovering the physical mechanism of flash 

droughts. However, the interaction between flash drought and corresponding 

meteorological anomaly was first analyzed, which would provide a reference to 

develop a physical-based model to simulate flash drought in the future.” 

 

References: 

Liu, Y., Zhu, Y., Ren, L., Otkin, J., Jiang S.: Two Different Methods for Flash Drought 

Identification: Comparison of Their Strengths and Limitations, J. Hydrometeorol., 21: 691-

704, https://doi.org/10.1175/JHM-D-19-0088.1, 2020a. 

Mo, K. C., Lettenmaier, D. P.: Heat wave flash droughts in decline, Geophys. Res. Lett., 42(8), 

2823-2829, https://doi.org/10.1002/2015GL064018, 2015. 

Mo, K. C., Lettenmaier, D, P.: Precipitation deficit flash droughts over the United States, J. 

Hydrometeorol., 17(4): 1169-1184, https://doi.org/10.1175/JHM-D-15-0158.1, 2016. 

Mo, K. C., Lettenmaier, D. P.: Prediction of Flash Droughts over the United States, J. 

Hydrometeorol., 21(8), 1793–1810, https://doi.org/10.1175/JHM-D-19-0221.1, 2020. 

Osman, M., Zaitchik, B. F., Badr, H. S., Christian, J. I., Tadesse, T., Otkin, J. A., Anderson, M. C.: 

Flash drought onset over the Contiguous UnitedStates: Sensitivity of inventories and trends 

to quantitative definitions, Hydrol. Earth Syst.Sci., 25 (2): 565–581, doi.org/10.5194/hess-25-

565-2021, 2021. 

Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M. C., Hain, C., Basara, J. B.: Flash 



Droughts: A review and assessment of the challenges imposed by rapid onset droughts in the 

United States, Bull. Am. Meteorol. Soc., 99(5), 911-919, https://doi.org/10.1175/BAMS-D-

17-0149.1, 2018.  

 

2. The authors use a combination of ERA5 and meteorological station data. Can they 

show or cite a study that shows how consistent ERA5 is with meteorological station 

data in China? 

Response:  

Thanks for the reviewer’s comment. In our study, we applied ERA-interim soil 

moisture data and anomalies of multiple meteorological elements as the input to 

machine learning models for analyzing the feasibilities of flash droughts simulation 

over China. For the ERA-interim dataset, many efforts have been conducted to assess 

its quality based on limited in-situ observations. For example, Ling et al. (2021) 

compared satellite-based and reanalysis soil moisture products (i.e., the European 

Space Agency’s Climate Change Initiative (ESA CCI), ERA-interim, National Centers 

for Environmental Prediction (NCEP), the 20th Century Reanalysis Project from 

National Oceanic and Atmospheric Administration (NOAA), and ERA5) using ground 

observations in China during 1981-2013. Compared to other soil moisture datasets, 

ERA-interim and ERA5 products can better show the decreasing trend from the 

southeast to northwest, and they are able to reproduce the variabilities tendency of 

time series compared to that of in-situ observations. Meanwhile, ERA-interim 

precipitation and temperature data showed better consistencies with the interpolated 

ground station (STA) data in eastern China than in western China during 1980-2012 

(Liu et al., 2018). At the regional and seasonal scales, ERA-interim temperature and 

precipitation both present a good agreement with STA temperature, and the former is 

better than the latter. Therefore, ERA-Interim is generally consistent with the in-situ 

observation and can be used to combine ground observations to simulate flash 

droughts. We have added some descriptions in the revised manuscript in Page 5 Lines 

140-144 including the following sentences:  

“For the reliability of the ERA-interim soil moisture dataset in China, it can well 

present the decreasing trend from the southeast to the northwest and reproduce the 

variability tendency of the time series of soil moisture compared to the in-situ soil 

moisture observations (Ling et al., 2021). Thus, ERA-Interim SM can be used to 

identify drought events and combined with meteorological station data to simulate 



flash droughts in this study.” 

 

References: 

Ling, X., Huang, Y., Guo, W., Wang, Y., Chen, C., Qiu, B., Ge, J., Qin, K., Xue, Y., Peng, J.: 

Comprehensive evaluation of satellite-based and reanalysis soil moisture products using in 

situ observations over China, Hydrol. Earth Syst. Sci., 25, 4209–4229, 

https://doi.org/10.5194/hess-25-4209-2021, 2021. 

Liu, Z., Liu, Y., Wang, S., Yang, X., Wang, L., Baig, M. H. A., Chi, W., Wang, Z.: Evaluation of 

Spatial and Temporal Performances of ERA-Interim Precipitation and Temperature in 

Mainland China,31:4347–4365, https://doi.org/10.1175/JCLI-D-17-0212.1, 2018. 

 

https://doi.org/10.1175/JCLI-D-17-0212.1

