Preprints
https://doi.org/10.5194/hess-2021-538
https://doi.org/10.5194/hess-2021-538
08 Nov 2021
 | 08 Nov 2021
Status: this discussion paper is a preprint. It has been under review for the journal Hydrology and Earth System Sciences (HESS). The manuscript was not accepted for further review after discussion.

Description and application of a distributed hydrological model based on soil–gravel structure in the Qinghai–Tibet Plateau

Pengxiang Wang, Zuhao Zhou, Jiajia Liu, Chongyu Xu, Kang Wang, Yangli Liu, Jia Li, Yuqing Li, Yangwen Jia, and Hao Wang

Abstract. The Qinghai–Tibet Plateau, known as the “Asian Water Tower”, has a thin soil layer with a thick gravel layer underneath. Its unique geological structure, combined with widespread snow and frozen soil in this area, profoundly affect the water circulation processes of the entire region. To thoroughly study the water cycle mechanism of the Qinghai–Tibet Plateau, this study considered the geological and climatic characteristics of this area and selected the Niyang River Basin as the study area. The Water and Energy transfer Processes in the Qinghai–Tibet Plateau (WEP-QTP) model was constructed based on the original Water and Energy transfer Processes in Cold Regions (WEP-COR) model. This model divides the single soil structure into two types of media: the soil layer and gravel layer. In the non-freeze–thaw period, two infiltration models based on the dualistic soil–gravel structure were developed based on the Richards equation in non-heavy rain periods and the multi-layer Green–Ampt model in heavy rain periods. During the freeze–thaw period, a hydrothermal coupling model based on the continuum of the snow–soil–gravel layer was constructed. This distributed hydrological model can dynamically simulate the changes in frozen soil and flow processes in this area. The addition of the gravel layer corrected the original model’s overestimation of the moisture content of the soil layer below the surface soil and reduced the moisture content relative error (RE) from 33.74 % to −12.11 %. The addition of the snow layer not only reduces the temperature fluctuation of the surface soil, but also works with the gravel layers to revise the original model’s overestimation of the freeze–thaw speed of the frozen soil. The temperature RE was reduced from −3.60 % to 0.08 %. In the non-freeze–thaw period, the dualistic soil–gravel structure improved the regulation effect of groundwater on flow, stabilizing the flow process. The maximum RE at the flow peak and valley decreased by 88.2 % and 21.3 %, respectively. In the freeze–thaw period, by considering the effect of the snow–soil–gravel layer continuum, the change in the frozen soil depth of WEP-QTP lags behind that of WEP-COR by approximately one month. There was more time for the river groundwater recharge, which better shows the “tailing” process after October. The flow simulated by the WEP-QTP model was more accurate and closer to the actual measurements, with Nash > 0.75 and |RE| < 10 %. The improved model reflects the effects of the Qinghai-Tibet Plateau special environment on the hydrothermal transport and water cycle process and is suitable for hydrological simulation of the Qinghai-Tibet Plateau.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Pengxiang Wang, Zuhao Zhou, Jiajia Liu, Chongyu Xu, Kang Wang, Yangli Liu, Jia Li, Yuqing Li, Yangwen Jia, and Hao Wang

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on hess-2021-538', Anonymous Referee #1, 18 Dec 2021
  • RC2: 'Comment on hess-2021-538', Anonymous Referee #2, 18 Dec 2021
  • RC3: 'Comment on hess-2021-538', Anonymous Referee #3, 07 Feb 2022

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on hess-2021-538', Anonymous Referee #1, 18 Dec 2021
  • RC2: 'Comment on hess-2021-538', Anonymous Referee #2, 18 Dec 2021
  • RC3: 'Comment on hess-2021-538', Anonymous Referee #3, 07 Feb 2022
Pengxiang Wang, Zuhao Zhou, Jiajia Liu, Chongyu Xu, Kang Wang, Yangli Liu, Jia Li, Yuqing Li, Yangwen Jia, and Hao Wang
Pengxiang Wang, Zuhao Zhou, Jiajia Liu, Chongyu Xu, Kang Wang, Yangli Liu, Jia Li, Yuqing Li, Yangwen Jia, and Hao Wang

Viewed

Total article views: 1,528 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,111 353 64 1,528 42 49
  • HTML: 1,111
  • PDF: 353
  • XML: 64
  • Total: 1,528
  • BibTeX: 42
  • EndNote: 49
Views and downloads (calculated since 08 Nov 2021)
Cumulative views and downloads (calculated since 08 Nov 2021)

Viewed (geographical distribution)

Total article views: 1,438 (including HTML, PDF, and XML) Thereof 1,438 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 13 Dec 2024
Download
Short summary
Combining the geological characteristics of the thin soil layer on the thick gravel layer and the climate characteristics of the long-term snow cover of the Qinghai-Tibet Plateau, the WEP-QTP hydrological model was constructed by dividing a single soil structure into soil and gravel. In contrast to the general cold area, the special environment of the Qinghai–Tibet Plateau affects the hydrothermal transport process, which can not be ignored in hydrological forecast and water resource assessment.