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Abstract. 12 

 13 

Extensive efforts over decades have focused on quantifying chemical transport in subsurface 14 

geological formations, from microfluidic laboratory cells to aquifer field scales. Outcomes of 15 

resulting models have remained largely unsatisfactory, however, largely because domain 16 

heterogeneity – characterized for example by porosity, hydraulic conductivity and geochemical 17 

properties – is present over multiple length scales, and “unresolved”, practically unmeasurable 18 

heterogeneities and preferential pathways arise at virtually every scale. While spatial averaging 19 

approaches are effective when considering overall fluid flow, wherein pressure propagation is 20 

essentially instantaneous, purely spatial averaging approaches are far less effective for chemical 21 

transport essentially because well-mixed conditions do not prevail. We assert here that an explicit 22 

accounting of temporal information, under uncertainty, is an additional but fundamental 23 

component in an effective modeling formulation. As an outcome, we further assert that “upscaling” 24 

of chemical transport equations – in the sense of attempting to develop and apply chemical 25 

transport equations at large length scales, based on measurements and model parameter values 26 

obtained at significantly smaller length scales – can be considered an unattainable “holy grail”. 27 

Rather, we maintain that it is necessary to formulate, calibrate and apply models using 28 

measurements at similar scales of interest. 29 
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1 Introduction  32 

 33 

1.1 Background 34 

 35 

There have been extensive efforts over the last ~60 years to model and otherwise quantify fluid 36 

flow and chemical (contaminant) transport in soils and subsurface geological formations, from 37 

millimeter-size, laboratory microfluidics cells to aquifer field scales extending to hundreds of 38 

meters and even tens of kilometers. 39 

Soils and subsurface formations typically exhibit significant heterogeneity, in terms of domain 40 

characteristics such as porosity, hydraulic conductivity, structure, and biogeochemical properties 41 

(mineral and organic matter content). However, only more recently has it become broadly accepted 42 

that effects of heterogeneity over multiple length scales, with “unresolved”, practically 43 

unmeasurable heterogeneities arising at every length scale from pore to field, cannot be simply 44 

“averaged out”. Indeed, much research on flow and transport in porous media, dating since ~1950, 45 

has been based on the search for length scales at which one can define a “representative elementary 46 

volume”, or otherwise-named “averaging volume”, above which variability in fluid and chemical 47 

properties become constant. In this context, too, many varieties of homogenization, volume 48 

averaging, effective medium, and stochastic continuum theories have been developed in an 49 

extensive literature. These methods allowed formulation of continuum-scale, generally Eulerian, 50 

partial differential equations to quantify (“model”) fluid flow and chemical transport, which were 51 

then applied in the soil and groundwater literature at length scales ranging from millimeters to full 52 

aquifers. While originally deterministic in character, a variety of stochastic formulations and  53 

Monte Carlo numerical simulation techniques, introduced from the 1980s, enabled analysis of 54 

uncertainties in input parameters such as hydraulic conductivity.  55 

However, while analysis of fluid flow using these methods has proven relatively effective, 56 

modeling of chemical transport, and an accounting of associated (biogeo)chemical reactions in 57 

cases of reactive chemical species and/or host porous media, has revealed serious limitations. We 58 

discuss the reasons for this in the sections below. Briefly, the overarching reason for these 59 

successes and failures is that spatial averaging approaches are effective when considering overall 60 

fluid flow rates and quantities:  pressure propagation is essentially instantaneous and the system is 61 

“well mixed” because mixing of water “parcels” is functionally irrelevant. However, purely spatial 62 

averaging approaches are far less effective for chemical transport, essentially because well-mixed 63 

conditions do not prevail, and spatial averaging is inadequate; here, an explicit, additional 64 

accounting of temporal effects is required.  65 

The focus of the current contribution is on modeling conservative chemical transport in 66 

geological media. In terms of modeling, one can delineate two main types of scenarios: (i) pore-67 

scale modeling in relatively small domains, with a detailed and specified pore structure, and (ii) 68 

continuum-scale modeling in porous media domains, that average pore space and solid phases at 69 

scales from laboratory flow cells to field-scale plots and aquifers. Case (i) requires, e.g., Navier-70 

Stokes or Stokes equations solutions for the underlying flow field, coupled with solution of a local 71 
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(e.g. advection-diffusion) equation for transport, while case (ii) requires Darcy (or related) equation 72 

solutions for the underlying flow field, coupled with solution of a governing transport equation for 73 

chemical transport. Note: here and throughout, we shall use the terms “continuum level” and 74 

“continuum scale” in reference to case (ii) scenarios, and “pore-scale” to refer to case (i) scenarios, 75 

although we recognize that pore-scale Navier-Stokes and advection-diffusion equations, too, are 76 

continuum partial differential equations. 77 
 78 
Disclaimer: Here and throughout this contribution, the overview comments and references to 79 

existing philosophies, methodologies and interpretations are written mostly in broad terms, with 80 

only limited citations selected from the vast literature. This approach is taken with a clear 81 

recognition and respect for the extensive body of literature that has driven our field forward over 82 

the last decades, but with the express desire to avoid any risk of unintentionally alienating 83 

colleagues and/or misrepresenting aspects of relevant studies. As an Opinion contribution, and 84 

with length considerations in mind, there is no attempt to provide an exhaustive listing and 85 

description of relevant literature. 86 

 87 

 88 

1.2 Assertions 89 

 90 

The pioneering paper of Gelhar and Axness (1983) focused on quantifying conservative chemical 91 

transport at the continuum level. They expressed heterogeneity-induced chemical spreading in 92 

terms of the (longitudinal) macrodispersion coefficient – as it appears in the classical 93 

(macroscopically 1d) advection-dispersion equation – with knowledge of the variance and 94 

correlation length of the log-hydraulic conductivity field and the mean, ensemble-averaged fluid 95 

velocity. The conceptual approach embodied in Gelhar and Axness (1983) – and by many 96 

researchers since then (as well as previously) – was founded on delineation of the spatial 97 

distribution of the hydraulic conductivity, and application of an averaging method to yield a 98 

governing transport equation with “effective parameters” that describes chemical transport at a 99 

given length scale (e.g. Dagan, 1989; Gelhar, 1993; Dagan and Neuman, 1997). 100 

In contrast, we assert here that spatial information, alone, is generally insufficient for 101 

quantification of chemical transport phenomena. Rather, temporal information is an additional, 102 

but fundamental, component in an effective modeling formulation. In the discussion below, we 103 

shall justify this argument by a series of examples. We examine (i) spatial information on, e.g. the 104 

hydraulic conductivity distribution at the continuum level, or distribution of the solid phase at the 105 

pore-scale level; and (ii) temporal information on, e.g. contaminant (tracer, “particle”) transport 106 

mobility and retention in different regions of a domain. We thus define a type of “information 107 

hierarchy”, with different types of information required for different flow and chemical transport 108 

problems of interest.  109 

As an outcome of the above assertion and the discussion below, we further assert that 110 

“upscaling” of chemical transport equations – development and application of chemical transport 111 

equations at large (length) scales, with corresponding parameter values, based on measurements 112 
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and model parameter values obtained at significantly smaller length scales – can be considered an 113 

unattainable “holy grail”. Rather, we maintain that it is necessary to formulate and calibrate 114 

models, and then apply them, over spatial scales with relatively similar orders of magnitude. This 115 

does not exclude use of similar equation formulations at different spatial scales, but it does entail 116 

use of different parameter values, at the relevant scale of interest, that cannot be determined a 117 

priori or from purely spatial or flow-only measurements. 118 

 119 

 120 

1.3 Approach – Outline 121 

 122 

While our focus is on chemical transport, knowledge of fluid flow and delineation of the velocity 123 

field throughout the domain is a prerequisite. We therefore first discuss fluid flow as an intrinsic 124 

element of the “information hierarchy”. Specifically, we address how: 125 

(1) Basic structural information on “conducting elements” in a system representing a porous 126 

and/or fractured geological domain can provide insight regarding overall fluid conduction 127 

in the domain, as a function of “conducting element” density. We emphasize that without 128 

direct simulation of fluid flow in such a system, this type of analysis does not delineate the 129 

actual flow field and velocity distributions throughout the domain.  130 

(2) Spatial information on the hydraulic conductivity distribution at a continuum scale, or solid 131 

phase distribution at the pore scale, throughout the domain, can be used to determine the 132 

flow field. We then show that this is insufficient to define chemical transport.  133 

(3) Temporal information on chemical species migration, which quantifies distributions of 134 

retention and release times (or rates) of chemicals by advective-dispersive-diffusive and/or 135 

chemical mechanisms, can be used to determine the full spatial and temporal evolution of 136 

a migrating chemical plume, either by solution of a transport equation or use of particle 137 

tracking on the velocity field. 138 

We comment, parenthetically, that in conceptual-philosophical terms, this hierarchy and the 139 

“limitations” of each level are in a sense analogous to representation of geometrical constructs in 140 

multiple dimensions: in principle, one can represent, as a projection, a d-dimensional object in d–141 

1 dimensions. But of course, by its very nature, a projection does not capture all features of the 142 

construct in its “full” dimension. To illustrate, an imaginary 1d curve can represent a 2d Möbius 143 

strip, a 2d perspective drawing can represent a 3d cube, and a 3d construct can represent a 4d object 144 

(where the 4th dimension might be time) –– and yet, none of these d–1 dimensional representations 145 

contains all features of the actual d-dimensional objects. Similarly, despite our frequent attempts 146 

to the contrary, one cannot properly describe (2) only from (1), or (3) only from (2).    147 

 148 

 149 

2 Fluid flow 150 

 151 

Analysis of the geometry of structural elements in a domain can yield basic insights on fluid flow 152 
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patterns. This approach is used, for example, when examining fracture networks in essentially 153 

impermeable host rock. As discussed below, however, full delineation of the underlying velocity 154 

field ultimately requires solution of equations for fluid flow.  155 

In this context, percolation theory (Stauffer and Aharony, 1994) is particularly useful in 156 

determining, statistically, whether or not a domain with N “conducting elements” (e.g. fractures) 157 

includes sufficient element density to form a connected pathway enabling fluid flow across the 158 

domain. One can estimate, for example, the critical value, Nc, for which the domain is “just” 159 

connected, as a function of fracture length distribution, or the critical average fracture length as a 160 

function of N needed to reach domain connectivity (Berkowitz, 1995). Similarly, percolation 161 

theory shows how the overall hydraulic conductivity of the domain scales as the number of 162 

conducting elements, N, relative to the Nc critical number of conducting elements required for the 163 

system to begin to conduct fluid. Percolation theory also addresses diffusivity scaling behavior of 164 

chemical species. But, fundamentally, percolation is a statistical framework suitable for large 165 

(“infinite”) domains, and provides universal scaling behaviors with no coefficient of equality; see 166 

e.g., Sahimi (2021) for detailed discussion.  167 

Other approaches have been advanced to analyze domain connectivity, for example using 168 

graph theory and concepts of identification of paths of least resistance in porous medium domains 169 

(e.g. Rizzo and de Barros, 2017), or topological methods (e.g. Sanderson and Nixon, 2015). Like 170 

percolation theory, such approaches provide useful information and “estimates” on the hydraulic 171 

connectivity and flow field, and even on first arrival times of chemical species, without solving 172 

equations for fluid flow and chemical transport. However, these methods do not provide full 173 

delineation of the flow field and velocity distribution throughout a domain.  174 

These considerations indicate that, in general, dynamic aspects of fluid flow are critical: 175 

knowledge of pure geometry is not sufficient, and we must actually solve for the flow field, at either 176 

the pore-scale or a continuum scale, to determine the velocity field and actual flow paths 177 

throughout the domain. Delineation of a flow field and velocity distribution by solution of the 178 

Navier-Stokes equations (or Stokes equation for small Reynolds numbers), or by solution of the 179 

Darcy equation, may be considered “rigorous”, correct and effective. But in the process of solving 180 

for the flow field, two key features arise, one more relevant to pore-scale analyses, and the other 181 

more relevant to continuum-scale analysis, as detailed in Sect. 2.1 and Sect. 2.2, respectively.  182 

 183 

 184 

2.1 Pore-scale flow field analysis 185 

 186 

Why is knowledge only of the geometrical “static” structure (spatial distribution of solid phase) 187 

insufficient to know the flow dynamics in a pore-scale domain? Consider the 2d domain shown in 188 

Figure 1, containing sparsely and randomly distributed obstacles (porosity of 0.9). Figure 1 shows 189 

solutions of the Navier-Stokes equations for two Reynolds number (Re) values. [Recall: Re  190 

vL/, where  and  are density and dynamic viscosity of the fluid, respectively, v is fluid 191 

velocity, and L is a characteristic linear dimension. Here and throughout, the fluid is assumed to 192 
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have constant viscosity.] Andrade et al. (1999) showed clearly that well-defined preferential flow 193 

channels at lower Re, while at higher Re, channeling is less intense and the streamline distribution 194 

is more spatially homogeneous in the direction orthogonal to the main flow. The domain shown in 195 

Fig. 1 is not intended to represent a natural geological domain, but rather to illustrate streamline 196 

behavior in even relatively simple pore-scale geometries. 197 

Figure 1 demonstrates that the streamlines in individual pores change because of the interplay 198 

between inertial and viscous forces, given by Re. In other words, with a change in overall fluid 199 

velocity or hydraulic gradient across the domain, the actual flow paths can be altered, together 200 

with a change in overall and (spatially) local residence times of fluid molecules; the same factors 201 

also govern  chemical species, as addressed below. Of course, the significantly lower porosities 202 

and more tortuous pore space configuration in natural, heterogeneous geological porous media 203 

may affect the impact of inertial effects, especially at the pore scale, but the principle remains 204 

relevant. [We note, too, parenthetically, that the behavior shown in Fig. 1 is relevant also to fluid 205 

flow within fracture planes, wherein the obstacles represent contact areas and regions of variable 206 

aperture.] 207 

Clearly, then, except in highly idealized and simplified geometries, use of a purely analytical 208 

solution to identify the full velocity field and streamline patterns at the pore scale is not feasible. 209 

Moreover, the extent and changes in streamlines are not intuitively obvious without full numerical 210 

solution of the governing flow equations, for any specific set of porous medium structures and 211 

boundary conditions.  212 

 213 

 214 

 215 

 216 
 217 

 218 
 219 
 220 

 221 
 222 

 223 
 224 
 225 
 226 

 227 

(a) Re = 0.0156       (b) Re = 15.6 228 
 229 
Figure 1.  2d domain containing randomly distributed obstacles (squares and rectangles). Stream functions 230 
for (a) Re = 0.0156 and (b) Re = 15.6 are shown with constant increments between consecutive streamlines 231 
(modified from Andrade et al., 1999, https://doi.org/10.1103/PhysRevLett.82.5249; Copyright, American 232 
Physical Society). The different patterns of preferential pathways are clear and distinct. The three pairs of 233 
circles (red, blue, black) highlight three (of many) specific locations where the streamlines are seen to 234 
change as a function of Re.  235 
 236 

https://doi.org/10.1103/PhysRevLett.82.5249
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2.2 Continuum-scale flow field analysis 237 

 238 

Considering now continuum-scale domains, but in analogy to the example shown in Sect. 2.1, we 239 

illustrate why knowledge only of the geometrical “static” structure is insufficient to know the flow 240 

dynamics, without solution of the Darcy equation. Here, the geometrical structure refers to the 241 

spatial distribution of the hydraulic conductivity, K.   242 

Figure 2 represents a realization of a numerically-generated (statistically homogeneous, 243 

isotropic, Gaussian) hydraulic conductivity 2d domain. The Darcy equation solution for this 244 

domain yields values of hydraulic head throughout the domain; these are converted to local 245 

velocities, to enable delineation of the streamlines and preferential flow paths. The latter are 246 

highlighted by actually solving for chemical transport, by following the migration of “particles” 247 

representative of masses of dissolved chemical species injected along the inlet boundary of the 248 

flow domain; see Edery et al. (2014) for details. Of particular significance is that 99.9% of the 249 

injected particles travel in preferential pathways through a limited number of domain cells. We 250 

return to Figure 2 in Sect. 3.3.2, where we discuss a framework that effectively characterizes and 251 

quantifies chemical transport.  252 

Unlike the pore-scale case shown in Sect. 2.1, at the Darcy/continuum scale, streamlines are 253 

not altered with changes in the overall hydraulic gradient, as long as laminar flow conditions are 254 

maintained. And yet, preferential flow paths are (possibly surprisingly) sparse and ramified, 255 

sampling only limited regions of a given heterogeneous domain, with the vast fraction of a 256 

migrating chemical species that interrogates the domain being even more limited. Significantly, 257 

except in highly idealized and simplified geometries delineation of these pathways is not 258 

intuitively obvious (e.g. by simple inspection of the hydraulic conductivity map in Fig. 2a) or 259 

definable from a priori analysis or tractable analytical solution. Rather, numerical solution of the 260 

governing flow equations is required, for any particular/specific set of porous medium structures 261 

and boundary conditions. [Note, too, that critical path analysis from percolation theory (discussed 262 

in Sect. 2) – again from purely “static” information without solution of the flow field – yields an 263 

incorrect interpretation, as shown in detail by Edery et al. (2014).]  264 

We emphasize that the delineation of “preferential flow paths” is usually relevant only for 265 

study of chemical transport; if water quantity, alone, is the focus, then specific “flow paths” 266 

travelled by water molecules – and their advective and diffusive migration along and between 267 

streamlines, and into/out of less mobile regions – are of little practical interest. On the other hand, 268 

the movement of chemical species, which experience similar advective and diffusive transfers, 269 

must be monitored closely to be able to quantify overall migration through a domain. We return to 270 

consider patterns of chemical migration in Sect. 3. This argument, too, reinforces the assertion that 271 

delineation of actual chemical transport cannot be deduced purely from spatial information and 272 

solution for fluid flow, but must be treated by solution of a transport equation.  273 
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(a)         (b) 274 

(c) 275 
 276 

 277 

 278 
 279 

 280 

 281 
 282 

 283 
 284 
 285 

(d) 286 
 287 
 288 
 289 
 290 
 291 
 292 
 293 
 294 
 295 
 296 
 297 

Figure 2.  Maps of (a) hydraulic conductivity, K, distribution in a domain with 300  120 cells, (b) 298 
preferential pathways for fluid flow (and chemical transport), and (c) preferential pathways through cells 299 
that each contain a visitation of at least 0.1% of the total number of chemical species particles injected into 300 
the domain (flux-weighted, along the entire inlet boundary). Flow is from left to right. Note that the color 301 
bars are in ln(K) scale for Figure 2a, and log10 number of particles for Figures 2b,c (modified from Edery 302 
et al., 2014; © with permission from the American Geophysical Union 2014). (d) Laboratory flow cell, 2.13 303 
m length, with an exponentially correlated K structure, showing preferential pathways for blue dye injected 304 
near the inlet (flow is left to right); dark, medium, and light colored sands represent high, medium and low 305 
conductivity, respectively (modified from Levy and Berkowitz, 2003; © with permission from Elsevier 306 
2003). The circles shown in (c) and (d) highlight two (of many) regions in which the pathways are seen to 307 
contain lower K “bottlenecks”.  308 
 309 

It is significant, too, that fluid flow and chemical transport occur in preferential pathways that 310 

contain low conductivity sections (indicated by circles in Figs. 2c,d). How do we explain passage 311 

through low hydraulic conductivity “bottlenecks” within the preferential pathways, rather than 312 
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migration “only” through the highest conductivity patches?  313 

To address this question, we first consider what happens in a 1d path. Consider two paths, each 314 

containing a series of five porous medium elements or blocks, with distinct hydraulic conductivity 315 

values, Ki. Consider Path 1, with a series hydraulic conductivity values of 3, 3, 3, 3, 3, and Path 2, 316 

with values 6, 6, 1, 6, 6 (specific length/time units are irrelevant here). The value of K = 1 317 

represents a clear “bottleneck” in an otherwise higher K path than that of Path 1. In a 1d series, 318 

however, the overall hydraulic conductivity (Koverall) of the path is given by the harmonic mean of 319 

the conductivities of the elements comprising the path: Koverall = 5 / (i=1,5 1/Ki); significantly, in 320 

the two cases here, both paths have Koverall = 3. So a “bottleneck” (K=1) can be “overcome” and 321 

does not cause necessarily a potential pathway to be less “desirable” than a pathway without such 322 

“bottlenecks”. In other words, flow through pathways containing some low K regions should be 323 

expected. Of course, in 2d and 3d systems, patterns of heterogeneity and pathway “selection” by 324 

water/chemicals are significantly more “complicated”, but the principle discussed here for 1d 325 

systems still holds, in the sense that lower hydraulic conductivity (“bottleneck”) elements can (and 326 

do) exist in the preferential pathways (e.g. Margolin et al., 1998; Bianchi et al., 2011). 327 

 328 

 329 

3 Chemical transport 330 

 331 

We now consider the next level of the “information hierarchy” outlined in Sect. 1.3. To quantify 332 

the evolution of a migrating chemical plume, knowledge of the flow field is not generally 333 

sufficient, and additional means to characterize and quantify the behavior are needed. Dynamic 334 

aspects of chemical transport require us to think (also) in terms of time, not just space and physical 335 

structure. Moreover, it is generally insufficient to determine the transport of the chemical plume 336 

center of mass. Rather, in terms of water resource contamination and remediation, for example, it 337 

is critical to characterize, respectively, the early and late arrival times at compliance or monitoring 338 

regions downstream of the point, areal, or volumetric region in which the chemical species entered 339 

the system.  340 

As we show below, it becomes clear that there are dynamic aspects of chemical transport, over 341 

and above the role of the flow field: we must actually solve for chemical transport, at either the 342 

pore-scale or a continuum scale, to determine the spatial plume and/or temporal breakthrough 343 

curve evolution of the migrating chemical plume. In both pore-scale and continuum-scale domains, 344 

the critical control that arises is that of time, in addition to space. This is in sharp contrast to fluid 345 

flow at pore and continuum scales, as shown in Sect. 2.1 and Sect. 2.2: pore-scale fluid flow 346 

displays changing streamlines with changes in hydraulic gradient, while continuum-scale fluid 347 

flow follows distinct but difficult to identify preferential flow paths essentially independent of the 348 

hydraulic gradient. 349 

We point out, too, that for both pore-scale and continuum-level scenarios, one can solve 350 

explicitly a governing equation for transport. Alternatively, one can obtain an “equivalent” 351 

solution by solving for “particle tracking” of transport along the calculated streamlines, in a 352 

Lagrangian framework. In other words, particle tracking methods essentially represent an 353 
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alternative means to solve an (integro-)partial differential equation for chemical transport; such 354 

methods can be applied, too, when the precise partial differential equation is unknown or the 355 

subject of debate. We also note that solution of the relevant equations for fluid flow and chemical 356 

transport is sometimes achieved by (semi-)analytical methods, if the flow/transport system can be 357 

treated sufficiently simply (e.g. as macroscopically, section-averaged 1d flow and transport in a 358 

rectangular domain).  359 

We first discuss principal features of pore-scale (Sect. 3.1) and continuum-scale (Sect. 3.2) 360 

chemical transport, and in Sect. 3.3, we focus on effective model formulations. We focus on 361 

conservative chemical species, and mention chemical reaction effects only peripherally. Note that 362 

other factors such as temporally/spatially changing fluid viscosity and surface tension, or 363 

mechanical and wetting properties of the solid phase, represent further complexities that are not 364 

considered here. 365 

 366 

 367 

3.1 Pore-scale chemical transport analysis 368 

 369 

To illustrate why knowledge only of the flow field is insufficient for full quantification of chemical 370 

transport, consider the three porous medium domains shown in Fig. 3. Each domains is comprised 371 

of pore-scale images of a natural rock, modified by enlarging the solid phase grains, to yield three 372 

different configurations: a statistically homogeneous system domain, a weakly correlated system, 373 

and a structured, strongly correlated system (see Nissan and Berkowitz (2019) for details). Fluid 374 

flow was determined by solution of the Navier-Stokes equations (Fig. 1a). Transport of a 375 

conservative chemical species was then simulated via a (Lagrangian) streamline particle tracking 376 

method, for an ensemble of particles that advance according to a Langevin equation. Transport 377 

behavior was determined for two values of macroscopic (domain average) Péclet number (Pe). 378 

[Recall; Pe  vL/D, where v is fluid velocity, L is a characteristic linear dimension, and D is the 379 

coefficient of molecular diffusion.] Here, the macroscopic Pe is based on the mean particle velocity 380 

and mean particle displacement distance per transition (or “step”).  381 

Figure 3 shows that regardless of possible pore-scale streamline changes as a function of 382 

hydraulic gradient (recall Sect. 2.1, considering different values of Re), the choice of macroscopic 383 

Péclet number in a given domain plays a significant role in the evolution of the migrating chemical 384 

plume. In particular, the relative effects of advection and diffusion, which vary locally in space, 385 

are critical, as is the overall residence time in the domain. We stress here, and return to this key 386 

point in discussion below, that the spatially and in some cases temporally local changes in relative 387 

effects of advection and diffusion – characterized by the local Pe – dominate determination of the 388 

plume evolution. This can be understood from study of Fig. 3, for two choices of macroscopic Pe 389 

values in each of the three heterogeneity configurations; the different patterns of longitudinal and 390 

transverse spreading are observed clearly. 391 

The behavior shown in Fig. 3 is essentially well-known from extensive simulations and 392 

experiments appearing in the literature. This behavior is described here to stress the importance of 393 
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temporal effects, and to point out that information only of the advective velocity field – as 394 

discussed in Sect. 2.1 and Sect. 2.2 – is not sufficient to “predict” chemical transport. 395 

 396 

 397 
 398 
Figure 3.  Fluid velocities and chemical migration in three porous media configurations (from left to right): 399 
homogeneous system, randomly heterogeneous system, and structured heterogeneous system. The upper 400 
row shows the (normalized) velocity field for the three configurations; the color bar represents relative 401 
velocity, with dark blue being lowest. The middle and lower rows show, respectively, numerically-402 
simulated particle tracking patterns of an inert chemical species (blue dots) at Pe = 1 (middle row) and Pe 403 
= 100 (lower row) for the three configurations (white color indicates solid phase; black color indicates 404 
liquid phase). Note: The particles plumes are shown at 10% of the final time of each simulation; absolute 405 
travel times differ among the plots. The insets in the left side plots of the middle and lower rows show the 406 
pore-scale chemical species distributions; note the more diffuse pattern for Pe = 1 (from Nissan and 407 
Berkowitz, 2019, https://doi.org/10.1103/PhysRevE.99.033108; © with permission from American 408 
Physical Society 2019). 409 
 410 
 411 

3.2 Continuum-scale chemical transport analysis 412 

 413 

The aspects discussed in Sect. 3.1 are relevant, analogous and applicable essentially also to 414 

chemical transport at the continuum scale. Consider the two laboratory experiments shown in Fig. 415 

4 and Fig. 5. Each flow cell was filled with a different clean, sieved sand configuration; see Levy 416 

and Berkowitz (2003) for details. Figure 4 shows a uniform (“homogeneous”) packing of clean 417 

sand, while Fig. 5 shows a “coarse” sand containing a randomly heterogeneous arrangement of 418 

rectangular inclusions consisting of a “fine” sand. The flow cells, fully saturated with water, 419 

enabled macroscopically (section-averaged) 1d, steady-state flow, with a mean gradient parallel to 420 

the horizontal axis of the cell. As seen in the two figures, neutrally-buoyant, inert red dye was 421 

injected at seven (Fig. 4) and five (Fig. 5) points near the inlet side, to illustrate the spatiotemporal 422 
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evolution of the chemical plumes.  423 

 424 

 425 
 426 

 427 

 428 
 429 
 430 
 431 
 432 

 433 
 434 
 435 

 436 
 437 
 438 

 439 
 440 

 441 
 442 
Figure 4. Photographs of dye transport in a flow cell (internal dimensions 0.86  0.45  0.10 m) containing 443 
a uniform packing of quartz sand (average grain diameter 0.532 mm), under a constant flow rate with Pe 444 

>1, at four times (modified from Levy and Berkowitz, 2003; © with permission from Elsevier 2003). 445 

 446 

 447 
 448 

 449 
 450 
 451 

 452 
 453 

 454 
 455 

 456 
 457 
 458 
 459 
 460 

 461 

 462 

 463 
 464 
 465 

 466 
Figure 5. Photographs of dye transport in a flow cell (internal dimensions 0.86  0.45  0.10 m) containing 467 
a randomly heterogeneous packing of quartz sand, under a constant flow rate with Pe >1, at three times. 468 
The rectangular inclusions comprise sand with an average grain diameter ~0.5 smaller, and hydraulic 469 

Flow direction  

Flow direction  
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conductivity ~3 lower, than the surrounding sand matrix (modified from Levy and Berkowitz, 2003; © 470 
with permission from Elsevier 2003). 471 
 472 

Most notably, in both Fig. 4 and Fig. 5: (i) each of the plumes has a different, unique pattern, 473 

which continues over the duration of the plume migration; and (ii) none of the plumes is 474 

“elliptical”, as expected in classical Fickian transport theory and embodied in solutions of the 475 

classical advection-dispersion equation (ADE). Indeed, vertical averaging of each plume shown in 476 

Fig. 4 and Fig. 5, at each time, does not yield Gaussian (normally distributed) concentration 477 

profiles, but rather asymmetrical, “heavy-tailed” profiles. 478 

At this juncture, note that here and below we use the terms “non-Fickian”, or “anomalous” – 479 

others sometimes use the terms “pre-asymptotic” or “pre-ergodic” – to denote any chemical 480 

transport behavior that differs from that described by the classical ADE or similar type of 481 

continuum-scale formulation. Typically, though, non-Fickian transport is characterized by early 482 

and or late arrival times of migrating chemical species to some control or measurement plane/point, 483 

relative to those resulting from solution of the ADE. The ADE applies to so-called Fickian 484 

behavior, in the sense that it accounts for mechanical dispersion as a macroscopic form of Fick’s 485 

law; mechanical dispersion arises as an “effective” (or “average”) quantity that describes local 486 

fluctuations around the average (advective) fluid velocity. Thus, in this formulation, a pulse of 487 

chemical introduced into a macroscopically 1d, uniform velocity, for example, leads to temporal 488 

and spatial concentration distributions that are equivalent to a normal (Gaussian) distribution. 489 

It is in this context that the term “homogeneous” packing used above is placed in quotation 490 

marks, to indicate that in natural geological media, “homogeneity” does not really exist. Any 491 

natural geological sample of porous medium contains multiple scales of heterogeneity; and at each 492 

particular scale of measurement, “unresolved” heterogeneities that are essentially unmeasurable 493 

are present. And thus, as seen in Fig. 4 for example, the overall transport pattern even in an 494 

“homogeneous” system can be non-Fickian (anomalous). We therefore emphasize that because 495 

natural heterogeneity in geological formations occurs over a broad range of scales, “normal” 496 

(Fickian) transport tends to be the “anomaly”, whereas “anomalous” (non-Fickian) transport is 497 

ubiquitous, and should be considered “normal”.  498 

Moreover, as noted in Sect. 2.2, streamlines are not altered with changes in the overall 499 

hydraulic gradient, at the continuum (Darcy) scale, as long as laminar flow conditions are 500 

maintained, because increasing the hydraulic gradient increases the fluid velocity along the 501 

existing, “predefined” streamlines by the same factor. However, the character of chemical 502 

transport can be altered, as the change in residence time in the domain affects the relative effects 503 

of advection and diffusion space. And in domains with heterogeneous distributions of hydraulic 504 

conductivity, the local Pe (Sect. 3.1) can vary more strongly, too.  505 

Thus, we argue that patterns of chemical transport cannot be fully determined from information 506 

only on the velocity field; solution of an appropriate continuum-scale transport equation cannot be 507 

avoided. In conclusion, then, and with particular reference to the (conceptually and theoretically 508 

beautiful) classical ADE – and to “conventional” conceptual understanding and quantitative 509 

description of chemical transport – we suggest that one must separate mathematical convenience 510 
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and wishful thinking from the reality of experiments: there is a definitive need for more powerful 511 

formulations of transport equations. In this context, one is reminded of the quotation by the 512 

biologist Thomas Henry Huxley: “The great tragedy of science—the slaying of a beautiful theory 513 

by an ugly fact.” (President's Address to the British Association for the Advancement of Science, 514 

Liverpool Meeting, 14 Sep 1870). 515 

 516 

 517 

3.3 Modeling chemical transport, and the myth that “fewer parameters is always better”  518 

 519 

So how do we effectively model chemical transport?  520 

As noted at the outset of Sect. 2, solution of the Navier-Stokes or Darcy equations to determine 521 

the full flow field and velocity distribution in a given porous medium domain has been proven 522 

correct and effective in most applications, and is well-accepted in the literature. However, 523 

modeling of chemical transport is more contentious, the reasons for which we expand upon below.  524 

We argue here that modeling of chemical species transport requires us to think in terms of time, 525 

not just space. To assist the reader to enter this frame of thinking, and to sharpen our 526 

conceptualization, we provide two examples to illustrate aspects of time and space in the context 527 

of chemical transport dynamics:  528 

(1) The classical example of the brachistochrone (ancient Greek: "shortest time"), or path of 529 

fastest descent, is the curve that would carry an idealized point-like body, starting at rest 530 

and moving along the curve, without friction, under constant gravity, to a given end point 531 

in the shortest time. Somewhat non-intuitively, the path that leads to the shortest travel 532 

time is not a straight line, but, rather, a special curve that is longer than a straight line (a 533 

cycloid), as demonstrated by Johann Bernoulli in 1697 (see: 534 

http://old.nationalcurvebank.org//brach/brach.htm). 535 

(2) What error can be introduced when “averaging” in terms of “space”? Consider the case of 536 

driving a total distance of 100 km, by first traveling 50 km at 1 km h-1, and then traveling 537 

50 km at 99 km h-1. If we average the speed in terms of space (distance), then we traveled 538 

two segments of 50 km at two speeds, so the average speed is (1 + 99) / 2 = 50 km h-1. In 539 

this framework, the total time to travel the 100 km “should” only have been 2 h. However, 540 

in terms of time, the travel time is actually 50.5 h. 541 

These simple examples help to emphasize the errors introduced by traditional conceptual 542 

thinking, wherein the effects of spatial transport and domain heterogeneity are quantified only on 543 

the basis of spatial characteristics. It is worth recalling, too, Einstein’s quantitative treatment of 544 

Brownian motion (Einstein, 1905). Prior to his analysis, researchers applied – with puzzlement – 545 

a time-dependent velocity, v, to quantify experimental measurements. Einstein (1905) instead 546 

examined a recursion relation and expansion that led to a diffusion equation whose solution 547 

showed, for the first time, that the root mean squared displacement of particles undergoing 548 

Brownian motion is proportional to √𝑡, and not to vt as had been assumed traditionally. An 549 

astounding conceptual breakthrough over a century ago, this nature of diffusive motion is now 550 

http://old.nationalcurvebank.org/brach/brach.htm
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“common knowledge”. 551 

In this same framework of focusing on time, the examples shown in Fig. 4 and Fig. 5 emphasize 552 

that for chemical transport, we must recognize the critical role of “rare events”. These rare events 553 

involve chemical species – migrating “particles” or “packets” – that are held up or retained while 554 

traveling through or in/out of lower velocity regions  in the porous domain over various periods of 555 

time. Such events can have a dominant impact on overall transport patterns, at both pore and 556 

continuum scales. In this context, one must exercise caution with simple averaging of “small 557 

velocity fluctuations” and effects of molecular diffusion. Rather, small-scale heterogeneities in 558 

both space and time do not necessarily “average out” or become insignificant at larger scales; 559 

rather, the effects of “rare events” (e.g. temporary trapping of even small amounts of chemical 560 

species via diffusion into and out of low velocity regions) and fluctuations can propagate and 561 

become magnified, within and across length scales from pore to aquifer.  562 

Armed with these thoughts, we suggest that modeling chemical transport has been debated in 563 

the literature for at least three reasons:  564 

1. The desire to work with spatial averaging approaches and equations: The research 565 

community was (and still is) split over the need to recognize and incorporate, explicitly, 566 

influences of temporal mechanisms caused largely by spatial heterogeneity (as 567 

characterized by the domain hydraulic conductivity), when formulating “effective” (or 568 

“averaged”) equations. And even when recognized, debate remains as to appropriate 569 

mathematical formulation. 570 

2. The lack of data: At least part of the difficulty in developing appropriate models is the lack 571 

of availability of high-resolution laboratory data and field measurements against which 572 

chemical transport models can be tested. Indeed, many elaborate theoretical developments 573 

have been advanced over the decades, with accompanying, analytical and numerical 574 

solutions –– and yet, remarkably, comparative studies against actual laboratory data remain 575 

limited, and tests with field measurements are even sparser (see also Sect. 4 for further 576 

discussion of this point). 577 

3. The choice of approach to, and purpose of, chemical transport modeling: Two overarching 578 

approaches to quantifying chemical transport can be defined, focusing on (i) quantification 579 

of “effective”, “overall” chemical transport behavior without requiring high-resolution 580 

discretization and numerical solution of the domain, and, alternatively, (ii) high-resolution 581 

hydrogeological delineation and then intensive numerical simulation on highly discretized 582 

grids. We address approaches (i) and (ii) individually, below, in the context also of points 583 

(1) and (2). 584 

The debate in the literature between “effective” and high-resolution hydrogeological modeling, 585 

as well as various preconceptions and misconceptions discussed below and in Sect. 4, lead 586 

naturally to consideration of the (often incorrectly invoked) argument that “fewer model 587 

parameters is better”.  588 

We first discuss briefly aspects of high-resolution hydrogeological modeling in Sect. 3.3.1, 589 

and then focus on “effective” transport equation modeling in Sect. 3.3.2. We emphasize that the 590 
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latter approach is applicable to both small- and large-scale domains. The former approach is 591 

generally intended for large- (field-)scale systems, although it is in some sense often applied for 592 

detailed pore-scale modeling; this approach is not particularly contentious, per se, but is hampered 593 

by the complexity and cost associated with the demand for highly detailed hydrogeological 594 

information. Therefore, research work remains heavily invested in “effective” transport equation 595 

modeling. 596 

 597 

 598 

3.3.1 High-resolution domain delineation and modeling 599 

 600 

Efforts to resolve large-scale aquifer systems, to delineate the hydraulic conductivity distribution 601 

at increasingly higher resolutions, began in earnest in the 1990s. Analysis of field sites emphasized 602 

relatively high-resolution discretization of domain structure (e.g. “blocks” of the order of 10 m3 at 603 

the field scale (Eggleston and Rojstaczer, 1998); 200  200  1 m3 at large regional scales (Maples 604 

et al. 2019)). These efforts, first focusing on determining the fluid flow field, and subsequently on 605 

delineating pathways for chemical transport, began largely because of dissatisfaction with results 606 

of application of 1d, 2d, 3d forms of an “effective” (averaged) ADE (see further discussion in Sect. 607 

3.3.2). Acquiring high-resolution measurements of structural (e.g. mineralogy, porosity) and 608 

hydrological properties (e.g. hydraulic conductivity) was made more feasible in recent years by 609 

advances in hydrogeophysics, and as well as by advances in computational capabilities that enable 610 

incorporation of this information in finely-discretized meshes, and numerical solution for fluid 611 

flow and chemical transport. 612 

In these highly resolved, high-resolution gridded domains, the flow field can be determined 613 

from solution of Darcy’s law. Chemical transport is then simulated either by use of streamline 614 

particle tracking methods, by accounting for advection and diffusion in a Lagrangian framework, 615 

or via solution of a local, mesh element continuum-scale transport equation. For chemical 616 

transport, use of an advection-diffusion equation might appear preferable – given that it requires 617 

no estimate for the local dispersivity – but some researchers apply an advection-dispersion 618 

equation, which necessitates use of mesh-scale dispersivity values that are either assumed or 619 

estimated from local measurements. The latter case assumes mesh-scale transport to be fully 620 

Fickian (recall Sect. 3.2). More recently, alternative formulations of a governing transport equation 621 

that incorporates broad temporal effects can also be used in this type of modeling approach; see, 622 

e.g. Hansen and Berkowitz (2020) for incorporation of a continuous time random walk method 623 

(discussed in Sect. 3.3.2). [Parenthetically, we note that “analogous”, high-resolution 624 

measurements are made at the pore-scale – in mm to decimeter rock core samples – as a basis for 625 

computationally-intensive modeling of fluid flow and chemical transport at these scales. Similar 626 

to the evolution of this approach for field-scale studies, high-resolution measurements advanced 627 

from use of 2d rock micrographs to advanced micro-computed tomography protocols (e.g. Thovert 628 

and Adler, 2011; Bijeljic et al., 2013; recall Sect. 2.1).] 629 

This approach is attractive in terms of the ability to “reproduce” detailed heterogeneous 630 
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hydraulic conductivity structures, and can provide useful “overall assessments” of fluid flow and 631 

chemical transport pathways, and migration of a chemical plume. Moreover, solutions for fluid 632 

flow and chemical transport can be considered “exact”, at least at the scale at which the domain is 633 

discretized; they can thus also capture at least some aspects of non-Fickian transport. But even at 634 

this type of spatial resolution, the ability to effectively quantify actual chemical transport, even 635 

relative to the limited available field measurements, remains a question of debate; the research 636 

community, as well as practicing engineers, still often prefer to analyze chemical transport in a 637 

domain by use of relatively simple (often 1d, section-averaged) model formulations.  638 

Finally, we point out that in the context of efforts to obtain increasing amounts of structural 639 

and hydrological information at a given field site, due consideration should also be given to the 640 

“worth” of data. Thus – for example – in an effort to quantify fluid flow or conservative chemical 641 

transport in an aquifer, do we really need “full”, detailed knowledge of the system (e.g. porosity, 642 

hydraulic conductivity) at every point in the formation? Possibly non-intuitively, the adage “more 643 

data is better” is often not true, and model incorporation of statistical uncertainty can offer equally 644 

satisfactory solutions with less costly, less measurement- and computationally-intensive, detail 645 

(e.g. Dai et al., 2016).  646 

 647 

 648 

3.3.2 “Effective” characterization and modeling 649 

 650 

At least since the 1960’s, the research community has focused enormous efforts on formulation of 651 

“averaged”, or “effective” (often macroscopically, section-averaged 1d) transport equations to 652 

quantify chemical transport, without requiring high-resolution discretization and computationally-653 

intensive numerical solution of the domain. The now “classical” ADE was advanced as the 654 

governing partial differential equation; see also further discussion on “effective scales of interest”, 655 

in the context of “upscaling” (Sect. 4). Recall that as discussed in Sect. 3.2, the ADE assumes 656 

Fickian transport behavior, in the sense that mechanical dispersion – which is defined as an average 657 

quantity to describe local fluctuations around the average (advective) fluid velocity – is treated 658 

macroscopically by Fick’s law. The classical ADE then specifies coefficients of longitudinal and 659 

transverse dispersivity, which by definition are constants.  660 

Solutions of the ADE were compared against conservative tracer experiments in laboratory 661 

columns (generally 10-100 cm) to produce breakthrough curves of concentration vs. time, at a set 662 

outlet distance; but even from the outset, the applicability of the ADE was questioned by some 663 

researchers (e.g. Aronofsky and Heller, 1957; Scheidegger, 1959). Subsequent flow cell 664 

experiments demonstrated, for example, that the dispersivity constants are not actually constant, 665 

and change with length scale – even over tens of centimeters – to achieve even approximate fits to 666 

the measurements (e.g. Silliman and Simpson, 1987). Moreover, solutions of the ADE appear 667 

inadequate when compared to transport in laboratory flow cells with distinct regions of different 668 

hydraulic conductivities (e.g. Maina et al., 2018). In a sense, then, it can be considered somewhat 669 

surprising that this form of the ADE was subsequently assumed to apply, over several decades, in 670 
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a rather sweeping fashion for a wide range of hydrogeological scenarios and length scales. Detailed 671 

discussions of these aspects appear in, e.g. Berkowitz et al. (2006, 2016). [Parenthetically, we 672 

stress again here that if one has complete information at the pore-scale, then solution of the Navier-673 

Stokes and advection-diffusion equations within the pore space can capture the true chemical 674 

transport behavior, i.e. purely spatial information is sufficient to describe chemical transport. But 675 

at continuum scales, time and unresolved heterogeneities became critical, and an “averaged” 676 

equation like the ADE with a “macrodispersion” concept is problematic.] 677 

To move beyond the ADE, and the definitive need for effective transport equations that 678 

quantify non-Fickian, as well as Fickian, transport (recall Figs. 4 and 5), we consider an alternative 679 

approach. The idea is to account for the temporal distribution that affects chemical migration, in 680 

addition to the spatial distribution, at a broad continuum level, and employ a transport equation in 681 

the spirit of a “general purpose” ADE. This approach necessarily leads to transport behaviors that 682 

are more general than those indicated by a “general ADE”, i.e. in the context of an overall, 683 

averaged 1d transport scenario for example.  684 

To explain this approach, we refer to the continuous time random walk (CTRW) framework, 685 

which is particularly broad and general (Berkowitz et al., 2006). Significantly, and conveniently, 686 

it turns out that special, or limit, cases of a general CTRW formulation lead to other well-known  687 

formulations that can also quantify various types of non-Fickian transport, as explained in, e.g., 688 

Dentz and Berkowitz (2003) and Berkowitz et al. (2006). These “subsets” include mobile-689 

immobile (e.g, Feehley et al., 2000), multirate mass transfer (e.g. Haggerty and Gorelick, 1995; 690 

Harvey and Gorelick, 1995; Carrera et al., 1998), and time-fractional derivative formulations (e.g. 691 

Barkai et al., 2000; Schumer et al., 2003; Metzler and Klafter, 2004). Indeed, in spite of references 692 

to these model formulations as being “different”, they are closely related, with clear mathematical 693 

correspondence. Each formulation has advantages, depending on the domain, problem and 694 

objectives of model use; but model selection must first be justified physically, and it is 695 

inappropriate, for example, to apply a mobile-immobile (two domain) model to interpret  chemical 696 

transport in a “uniform, homogeneous” porous medium when it displays non-Fickian transport 697 

behavior (recall Fig. 4). 698 

Here, we describe only briefly the principle and basic aspects of the CTRW formulation; 699 

detailed explanations and developments are available elsewhere (e.g. Berkowitz et al., 2006).  700 

To introduce “temporal thinking” in the context of non-Fickian transport, we begin by 701 

mentioning the analogy between a classical random walk (RW) – which leads to Fick’s law – and 702 

the CTRW. A classical random walk is given in Eq. 1:  703 

 704 

𝑃𝑛+1(ℓ) = ∑ 𝑝(ℓ, ℓ′)ℓ′ 𝑃𝑛(ℓ′)           (1) 705 

  706 

where 𝑝(ℓ, ℓ′) represents the probability of a random walker (“particle”) advancing from location 707 

ℓ′  to ℓ, 𝑃𝑛(ℓ′) denotes the probability of a particle being located at ℓ′ at (fixed) time step n, and 708 

𝑃𝑛+1(ℓ) denotes the probability of the particle then being located at ℓ at step n+1. With this 709 

formulation in mind, Einstein (1905) and Smoluchowski (1906a,b) demonstrated that for n 710 
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sufficiently large and a sufficient number of particles undergoing purely (statistically) random 711 

movements in space, the spatial evolution of the particle distribution is equivalent to the solution 712 

of the (Fickian) diffusion equation. This elegant discovery demonstrated that a partial differential 713 

equation and its solution can be represented by following, numerically, the statistical movement 714 

of particles (i.e. particle tracking) following a random walk. Remarkably, random walk 715 

formulations are “generic” in the sense that they can be applied in a broad range of phenomena in 716 

physics, chemistry, mathematics, and life sciences; here, they describe naturally migration of 717 

chemical species (dissolved “particles” or “packets”) in water-saturated porous media. 718 

Generalizing the partial differential equation to include transport by advection, solution of the 719 

ADE under various boundary conditions can then be determined by an appropriate random walk 720 

method. 721 

The simple random walk given in Eq. 1 can be generalized by accounting for time, replacing 722 

the particle transition (or iteration) counter n by a time distribution. The generalized formalism in 723 

Eq. 2, with the joint distribution (s, t), called “continuous time random walk” and applied to 724 

transport, was first introduced by Scher and Lax (1973):  725 

 726 

𝑅𝑛+1(𝐬, 𝑡) = ∑ ∫ 
𝑡

0
(𝐬 − 𝐬′, 𝑡 − 𝑡′)𝑠′ 𝑅𝑛(𝐬′, 𝑡′)𝑑𝑡′          (2) 727 

 728 

where 𝑅𝑛+1(𝐬, 𝑡) is the probability per time for a particle to just arrive at site s at time t after n+1 729 

steps and (s, t) is the probability rate for a displacement from location s' to time s with a difference 730 

of arrival times of t-t'. It is clear that (s, t) is the generalization of 𝑝(ℓ, ℓ′) in Eq. 1, and that the 731 

particle steps can each now take place at different times. Indeed, it is precisely this explicit 732 

accounting of a distribution of temporal contributions to particle transport, not just spatial 733 

contributions, that offers the ability to effectively quantify transport behaviors as expressed by, 734 

e.g. heavy-tailed, non-Fickian particle arrival times.  735 

To where does the generalization in Eq. 2 lead us? In a mindset similar to that of Brownian 736 

motion, and Einstein’s 1905 breakthrough mentioned above at the outset of Sect. 3.3, a puzzle 737 

arose about seven decades later for researchers attempting to interpret observations of electron 738 

transit times in disordered semiconductors. The electron mobility (defined as velocity per unit 739 

electric field), which was considered an intrinsic property of the material, was found to depend on 740 

variables that changed the duration of the experiment, such as sample length or electric field. Scher 741 

and Montroll (1975), considering Eq. 2, discovered that the mean displacement ℓ of the electron 742 

packet does not advance as  ℓ = 𝑣𝑡, but rather as ℓ ~ 𝑡.  743 

In the context of chemical transport in geological formations, the behavior ℓ ~ 𝑡 can be 744 

attributed to a wide distribution of transition times in naturally disordered geological media. In the 745 

CTRW formulation, the transition time distribution is characterized by a power law of the form 746 

(𝑡) ~ 𝑡−1− for t   and 0 <  < 2; significantly, the resulting transport behavior is Fickian for 747 

 > 2. At large times, for this (t) dependence, the mean displacement ℓ(𝑡) and standard deviation 748 

(𝑡) of the migrating chemical plume c(s, t) scale as ℓ(𝑡) ~ 𝑡  and (𝑡) ~ 𝑡  for t  , 0 <  < 749 
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1 (Schlesinger, 1974). Moreover, for t   with 1 <  < 2, the plume scales as ℓ(𝑡)~ 𝑡 and 750 

(𝑡) ~ 𝑡(3−)/2. These behaviors are notably different than that of Fickian transport models, for 751 

which (from the central limit theorem), ℓ(𝑡) ~ 𝑡 and  (𝑡) ~ 𝑡1/2.  752 

With the concepts described here, and using the generally applicable decoupled form (s, t) = 753 

p(s)(t), where p(s) is the probability distribution of the transition lengths and (t) is the 754 

probability rate for a transition time t between sites, Eq. 2 can be developed into an (integro-)partial 755 

differential equation. Thus, the ADE given by  756 

 757 
𝜕𝑐(𝐬,𝑡)

𝜕𝑡
= −[𝐯(𝐬) ∙ ∇𝑐(𝐬, 𝑡) − 𝐃(𝐬): ∇2𝑐(𝐬, 𝑡)]       (3)  758 

 759 
where c(s, t) is the concentration at location s and time t, v(s) is the velocity field and D(s) is the 760 

dispersion tensor, is replaced by the more general CTRW transport equation:  761 

 762 
𝜕𝑐(𝐬,𝑡)

𝜕𝑡
= − ∫ 𝑀(𝑡 − 𝑡′)

𝑡

0
[𝐯 ∙ ∇𝑐(𝐬, 𝑡′) − 𝐃 ∶ ∇∇𝑐(𝐬, 𝑡′)]𝑑𝑡′   (4) 763 

 764 

where v and D are generalized particle velocity and dispersion, respectively, and M(t) is a 765 

temporal memory function based on (t).  766 

The strength of this type of formulation is that it effectively quantifies (non-Fickian) early 767 

arrivals and late time tailing of migrating chemical species, and the spatial evolution of chemical 768 

plumes in heterogeneous media. For example, recalling the scenario in Fig. 2, wherein 99.9% of 769 

the inflowing particles traverse the preferential pathways seen in Fig. 2c, detailed numerical 770 

simulations indicate that concentration breakthrough curves exhibit significant, non-Fickian, long-771 

time tails (Edery et al., 2014). Choice of an appropriate power-law form of (t) was then shown 772 

to capture this behavior; moreover, a functional form defining the value of the power-law exponent 773 

β in (t) was identified, based on statistics of the hydraulic conductivity and particle interrogation 774 

of the domain (Edery et al., 2014).   775 

Equation (4) is essentially an ADE weighted by a temporal memory. When (t) is an 776 

exponential function (or power law but for β  2), M(t)  (t) and we recover Fickian transport 777 

described by the ADE; thus, the ADE assumes, implicitly, that particle transition times are 778 

distributed exponentially. But with a power law form (𝑡) ~ 𝑡−1− for 0 <  < 2, the transport is 779 

non-Fickian. A wide range of functional forms of (t) can be chosen, including, e.g. truncated 780 

power law forms that allow evolution to Fickian transport at large times or travel distances (e.g. 781 

Dentz et al., 2004), as well as Pareto (e.g. Hansen and Berkowitz, 2014) and curved (or inverse 782 

gamma; e.g. Nissan and Berkowitz, 2019) temporal distributions. Other, generally simpler, choices 783 

of (t) or M(t) lead to mobile-immobile, multirate mass transfer, and time-fractional derivative 784 

formulations, as mentioned above. We note, too, that the elegant result derived by Gelhar and 785 

Axness (1983) and others, discussed in Sect. 1.2, is valid only at an asymptotic limit, wherein 786 

transport is Fickian and there is no residual non-Fickian memory in thbe plume advance.  787 

A plethora of related studies have examined a range of perspectives and applications that 788 
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explore CTRW formulations. These studies address, for example, numerical simulations (e.g. Le 789 

Borgne et al., 2008; Berkowitz and Scher, 2010; Hansen, 2020; Kang et al., 2014; Rhodes et al., 790 

2008; Edery, 2021), fractured formations (e.g. Geiger et al., 2010; Wang and Cardenas, 2017), 791 

stream transport (e.g. Boano et al., 2007), and laboratory measurements at difference scales (e.g. 792 

Le Borgne and Gouze, 2008; Major et al., 2011). Other studies have explored space-fractional 793 

differential equations (e.g. Benson et al., 2000; Wang and Barkai, 2020). 794 

Each of these power law forms of course requires one or more parameters – at least β – and in 795 

some cases, other parameters that define, e.g. a transition time from non-Fickian to Fickian 796 

transport (Berkowitz et al., 2006; Hansen and Berkowitz, 2014; Nissan et al., 2017). These 797 

parameters have physical meaning, and are not purely empirical; perspectives on “numbers of 798 

parameters” associated with all models are discussed in Sect. 3.3.3. The question of how model 799 

parameter values are determined is addressed in Sect. 4.1. 800 

The efficacy of formulations that incorporate, whether explicitly or implicitly, some type of 801 

power-law characterization of temporal aspects of chemical transport, is now generally recognized 802 

in the literature. Indeed, applications of mobile-immobile, multirate mass transfer, time-fractional 803 

advection-dispersion, and general CTRW formulations have been applied quite extensively and 804 

successfully. In particular, solutions of Eq. 4 and related variants have interpreted a wide range of 805 

chemical transport scenarios: (i) pore-scale to meter scale laboratory experiments, field studies, 806 

and numerical simulations, in (ii) porous, fractured, and fractured porous domains, (iii) accounting 807 

for constant and time-dependent velocity fields, and (iv) for both conservative and reactive 808 

chemical transport scenarios. Solutions to address some of these scenarios are more easily obtained 809 

by use of particle tracking methods that incorporate the same considerations and power-law form 810 

of (t), as embedded in Eq. 4. 811 

Like the ADE, Eq. 3, the formulation given in Eq. 4 represents a continuum-level mechanistic 812 

model (as derived in, e.g., Berkowitz et al. 2002), in the sense that both equations contain clear 813 

advective and dispersive contributions. The occurrence of a broad distribution of transition times, 814 

fundamental to CTRW and related approaches, emanates from a variety of physical controls. 815 

Discussion in the literature about the need for “mechanistic models” often uses the term rather 816 

loosely: “mechanistic” transport model equations are based on fundamental laws of physics, with 817 

constant parameters that have physical meaning (e.g. hydraulic conductivity, diffusivity, sorption), 818 

and thus offer process understanding. But to quantify the spatiotemporal evolution of a migrating 819 

chemical plume, additional parameters are needed. Because of the nature of geological materials, 820 

a transport equation should of course capture the relevant physical mechanisms that influence the 821 

transport, as well as chemical mechanisms if the species is reactive; but to do so, we must also 822 

capture the uncertain characterization of hydrogeological properties due to the reality of 823 

unresolved, unmeasurable heterogeneities at any length scale of interest. Thus, we suggest that a 824 

mechanistic-stochastic equation formulation such as given in Eq. 4 is required. Such an equation 825 

(i) incorporates a probability density function to account for temporal transitions that cannot be 826 

determined only from spatial information, (ii) describes known transport mechanisms with 827 

physically meaningful parameters, and (iii) accounts for unknown (and unknowable) information.  828 

https://gosilico.com/technology/process-understanding/
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We note here, too, that other stochastic continuum averaging methods have been proposed in 829 

the literature, in the same context of efforts to formulate a “general”, “effective” transport equation 830 

at a specific scale of interest (see further discussion on “effective” equations and “upscaling” in 831 

Sect. 4). In many cases, though, sophisticated stochastic averaging and homogenization 832 

approaches have led to transport formulations that are essentially intractable, in terms of solution, 833 

and/or have remained at the level of hypothesis without being tested successfully against actual 834 

data. 835 

 836 

 837 

3.3.3 Are fewer parameters always better? (Answer: No!) 838 

 839 

The term “modeling” is used in many contexts and with differing intents. However, in the 840 

literature dealing with chemical transport in subsurface hydrological systems, there are frequent 841 

but often misguided “arguments” regarding “which model is better“, with a major point of some 842 

authors being the claim that “fewer parameters is always best”. Not always. Indeed, some models 843 

involve more parameters than others, but if these parameters have physical meaning and are needed 844 

as factors to quantify key mechanisms, then “more parameters” is not a “weakness”. We 845 

emphasize, too, that when weighing use of any specific model, “better” also depends, at least in 846 

part, on what the modeling effort is addressing. Clearly – regardless of the number of parameters 847 

– a “back-of-the-envelope” calculation using a simple model is sufficient if, for example, one 848 

requires only an order of magnitude estimate of the center-of-mass velocity of a migrating 849 

contaminant plume, or in other words, no need for artillery to swat a mosquito. [In this context, 850 

quoting Albert Einstein regarding his simplification of physics into general relativity: “Everything 851 

should be made as simple as possible, but not simpler.”]  852 

Considering chemical transport in subsurface geological formations, and the aim of 853 

quantifying (modeling) the evolution of a migrating chemical plume in both space and time, we 854 

return to focus on the ADE- and CTRW-based formulations discussed in Sect. 3.3.2. As noted in 855 

the preceding sections, CTRW and related formulations can describe transport behaviors 856 

effectively. Most significantly, the seminal work of Scher and Montroll (1975) showed that the  857 

exponent must be included because the mean displacement is not linear with time (i.e. the mean 858 

displacement ℓ of the electron packet does not advance as ℓ = 𝑣𝑡, but rather as ℓ ~ 𝑡 ). Similarly, 859 

a corresponding parameter, relative to an ADE formulation invoking Fickian transport, is 860 

unavoidable when transport is non-Fickian.  861 

It should be recognized that quantitative model information criteria, or model selection criteria, 862 

can be used to assess and compare various model formulations that are applied to diverse scenarios 863 

(such as fluid flow, chemical transport) in subsurface geological formations. These information 864 

criteria include AIC (Akaike, 1974), AICc (Hurvich and Tsai, 1989), and KIC (Kashyap, 1982) 865 

measures, as well as the Bayesian (or Schwarz) BIC (Schwarz, 1978). They are formulated to rank 866 

models, or assign (probabilistic) posterior weights to various models in a multimodel comparative 867 

framework, and therefore focus on model parameter estimates and the associated estimation 868 
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uncertainty. As such, these information criteria discriminate among various models according to 869 

(i) the ability to reproduce system behavior, and (ii) the structural complexity and number of 870 

parameters. Discussion of theoretical and applied features of these criteria is given elsewhere (e.g. 871 

Ye et al., 2008). Using such measures specifically in the context of the ADE and CTRW 872 

formulations, with an accounting also of chemical reactions, it was shown that while solution of 873 

an ADE can fit measurements from some locations quite closely, the CTRW formulation offers 874 

significantly improved predictive capabilities when examined against an entire experimental data 875 

set (Ciriello et al., 2015). In addition, focusing on the most sensitive observations associated with 876 

the CTRW model provides a stronger basis for model prediction, relative to the most sensitive 877 

observations corresponding to the ADE model. 878 

To conclude this section: Notwithstanding the above arguments, some readers might continue 879 

to argue that the approach discussed here – viz., the need for time considerations as well as space 880 

such as embodied in the CTRW framework and related formulations – is “inelegant” because it 881 

requires more parameters relative to the classical ADE. In response, the reader is encouraged to 882 

recall the words of Albert Einstein following criticism that his theory of gravitation was “far more 883 

complex” than Newton’s. His response was simply: “If you are out to describe the truth, leave 884 

elegance to the tailor”. 885 

 886 

 887 

4 The holy grail of upscaling, and myths about “a priori” parameter determination  888 

 889 

We begin by defining the term “upscaling” in the context of the discussion here on chemical 890 

transport. As defined in the Introduction, Sect. 1.2, we use the term “upscaling” to describe the 891 

effort to develop and apply chemical transport equations at large length scales, and identify 892 

corresponding model parameter values, based on measurements and parameter values obtained at 893 

significantly smaller length scales. 894 

We attempt “upscaling” in the hope of developing governing equations for chemical transport 895 

at larger and larger scales, from pore, to core, to plot, and to field length scales. Clearly, then, 896 

“upscaling” is relevant to the modeling approach discussed in Sect. 3.3.2 – which focuses on use 897 

of “averaged”, or “effective” (often 1d, or section-averaged) transport equations – and not to the 898 

high-resolution domain delineation and modeling approach of Sect. 3.3.1. 899 

However, in light of the discussion in Sect. 2 and Sect. 3, we argue that “upscaling” of chemical 900 

transport equations is very much an unattainable holy grail. Particularly in light of recognizing 901 

temporal effects, in addition to spatial characterization, we maintain that it is necessary to 902 

formulate and calibrate models, and then apply them, at similar measurement scales of interest. Of 903 

course, similar equation formulations can be applied at different spatial scales. But parameter 904 

values for transport equations cannot generally be determined a priori or from purely spatial or 905 

flow-only measurements; measurements with a temporal “component”, at the relevant length 906 

scale of interest, are required. 907 

In Sect. 4.1, we briefly discuss aspects of model calibration. This leads naturally to our 908 

https://www.definitions.net/definition/describe
https://www.definitions.net/definition/leave


24 
 

discussion of upscaling in Sect. 4.2. 909 

 910 

 911 

4.1 Parameter determination and model calibration  912 

 913 

First, it is prudent to offer some words about the need for parameter estimation, or model 914 

calibration. Unless one is dealing with first principles calculations of a physical process such as  915 

molecular diffusion in a perfectly homogeneous domain, a priori determination of model 916 

parameters – for any model equation formulation – requires calibration against actual experimental 917 

measurements. In some limited cases, detailed numerical simulations can be used at small (pore) 918 

scales, e.g. using an advection-diffusion equation together with solution of the Navier-Stokes 919 

equations to first determine the precise flow field in the pore space; but this also necessitates 920 

detailed measurements of the pore structure such as obtained by computed tomography 921 

measurements (e.g. Bijeljic et al., 2013). Indeed, then, at any realistic problem or scale of interest, 922 

all chemical transport models require calibration.  923 

This fundamental tenet should be clear and well-recognized, yet the literature contains all-too-924 

frequent – and both misguided and misleading – “criticism” of various model formulations, 925 

claiming that “parameters are empirical because they are estimated by calibration (fitting) to 926 

experiments”; additional “criticisms” follow, for example, that such as a model is therefore not 927 

“universal”, and/or “it therefore has no predictive capability”. We address these latter “criticisms” 928 

in Sect. 4.2. Parameters are not “empirical” simply because their values are determined by 929 

matching to an experiment. Moreover, it should be recognized that application even of the classical 930 

ADE at various column and larger scales requires estimates – obtained by calibration – of 931 

dispersivity coefficients; and for high-resolution domain delineation and modeling as discussed in 932 

Sect. 3.3.1, calibrated “block-scale” dispersivities are needed. [Note: If dispersivities are not 933 

actually determined for a specific experiment, but selected from on the literature for “typical” 934 

values of dispersivity, there is still a reliance on calibration from previous “similar” studies.] 935 

Moreover, with reference to the desire for model parameters that represent fundamental, spatial 936 

hydrogeological properties of the domain, note that even the classical ADE dispersivity parameter 937 

is not uniquely identified with such properties; rather, it varies even in a given domain as a function 938 

of chemical plume travel distance or time. 939 

With regard to model “universality”, recall that, for example, percolation theory (discussed at 940 

the beginning of Sect. 2) offers “universal” exponents in scaling relationships. But even for this 941 

type of convenient and useful, statistical model, such scaling relationships, too, can only advance 942 

from “scaling” (e.g. A ~ B) to a full “equation” (e.g. A = kB) by calibration of a coefficient of 943 

equality (k) against actual measurements. So even in “simple” models, model calibration cannot 944 

be avoided. 945 

To address “empiricism” – here enters the question of whether parameters of a particular model 946 

(in this case, equations for chemical transport) have a physical meaning. As discussed in Sect. 947 

3.3.2, a mechanistic-stochastic equation formulation such as given in Eq. 4 incorporates a 948 
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probability density function to describe known transport mechanisms in a stochastic sense; but 949 

stochastic does not mean “unphysical”, and the parameters as given in, e.g., particular functional 950 

forms of M(t) or (t) are indeed physically meaningful. For example, the key β exponent 951 

characterizing the power law behavior can be linked directly to the statistics of the hydraulic 952 

conductivity field (Edery et al., 2014), or, in a fracture network, be determined from the velocity 953 

distribution in fracture segments (Berkowitz and Scher, 1998), which is related directly to physical 954 

properties of the domain. Similarly, corresponding parameters appearing in “subset” formulations 955 

to quantify non-Fickian transport – e.g. mobile-immobile, multirate mass transfer, and time-956 

fractional derivative formulations – can be understood to have physical meaning (e.g. Haggerty 957 

and Gorelick, 1995; Harvey and Gorelick, 1995; Carrera et al., 1998; Dentz and Berkowitz, 2003; 958 

Berkowitz et al., 2006). These parameters, too, of course require determination by model 959 

calibration to experimental data, or where appropriate to results of numerical simulations, just as 960 

for ADE and any other model  formulation.  961 

 962 

 963 

4.2 Upscaling, the scale of interest, and predictive capabilities 964 

 965 

Upscaling of fluid flow “works” because  at the Darcy scale – which is the “practical” scale for 966 

most applications – flow paths and streamlines do not change with increasing gradient (as long as 967 

a transition to turbulent flow is not reached). The equation formulation remains valid, and the fluid 968 

residence time in a domain is irrelevant because self-diffusion of water does not affect overall fluid 969 

fluxes.  970 

For chemical transport, though, the situation is totally different. Why? Because “upscaling” 971 

entails some kind of “coupled” averaging or parameterization in both space and time, and it is far 972 

from clear how, if at all, this can be achieved. Moreover, small-scale concentration fluctuations do 973 

not necessarily “average out”, but instead propagate from local to larger spatial scales. To illustrate 974 

another aspect of the complexity, the Péclet number (Pe) in heterogeneous media, with preferential 975 

pathways, varies locally in space (recall Fig. 3 and the discussion in Sect. 3.1). Averaging to obtain 976 

a macroscale (“upscaled”) Pe must address the relative, locally varying effects of advection and 977 

diffusion in space, as well as the overall residence time in the domain; after all, it is these effects 978 

that dominate determination of the plume evolution. Thus, upscaling requires spatial averaging, 979 

but (at least an) implicit temporal averaging must also be included. It can be argued that no single, 980 

effective Pe can be defined for the entire domain; whether or not it is possible, and how, it is 981 

possible to average local Pe values to achieve a single, meaningful domain-scale Pe remains an 982 

open question. And whether we like it or not, even with complete information on the spatial (local) 983 

Pe distribution, the impact on the overall transport pattern evolution cannot be determined without 984 

actually solving for transport in the domain. 985 

For chemically reactive species, the transport situation becomes even more complex, because 986 

the local residence time, not just the local Pe, must be taken into consideration. Moreover, when 987 

precipitation or dissolution processes are present, the velocity field will change locally, introducing 988 
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additional local temporal and spatial variability. And when sorption is present but tapers off – for 989 

example, when the cation exchange capacity is met – even the diffusion coefficient itself changes. 990 

These factors further complicate attempts to upscale. [In this context, too, it should be noted that 991 

for chemically-reactive systems, it is well-known  that there is often a significant lack of 992 

correspondence between laboratory and field-based estimates of geochemical reaction rates and 993 

rates of rock weathering, with field-scale estimates – often based on macroscopically Fickian, 994 

ADE-like transport formulations – being generally significantly smaller (e.g. White and Brantley, 995 

2003).] 996 

Thus, we suggest that focusing efforts on attempting to develop upscaling methodologies for 997 

chemical transport, based on any transport equation formulation, appears to be doomed largely to 998 

failure – as evidenced, too, by decades of research publications. Rather, we argue that because of 999 

the subtle effects of temporal mechanisms, and their close coupling to spatial mechanisms, use of 1000 

an “effective”, or “averaged” continuum-level equation to describe chemical transport  requires 1001 

calibration of a suitable model at the appropriate scale of interest, with model parameter values 1002 

calibrated at essentially the same scale. The model can then be applied to examine transport 1003 

behaviors over spatial scales with relatively similar orders of magnitude.  1004 

We emphasize, though, that as stated at the outset of Sect. 4, we do argue that similar 1005 

(continuum-level) transport equation formulations can be applied at different spatial scales, as long 1006 

as they are mechanistically correct, with a temporal component, and the parameter values are based 1007 

on measurements at the relevant length scale of interest.  1008 

Now, in the context of the above arguments regarding “upscaling” and model application, we 1009 

return to the ideas presented in Sect. 3.3.2 and consideration of model formulations that account 1010 

for both spatial and temporal effects. We first mention use of the ADE. As pointed out in Sect. 3.2 1011 

and extensive literature, the “constant” (as required by the ADE formulation) “intrinsic” 1012 

dispersivity parameter changes significantly even over relatively small increases in length scales 1013 

(e.g. 10’s of cm’s; Silliman and Simpson, 1987) – and therefore also over time scales. It therefore 1014 

makes no real sense to attempt to define an “upscaled” dispersivity parameter for larger scales. 1015 

Even in the framework of high-resolution domain delineation and modeling, discussed in Sect. 1016 

3.3.1 – which is not “upscaling” as defined here – the question remains as to what dispersivity 1017 

values are relevant for field-scale aquifer “blocks” of the order of 100 to 1000’s of m3. 1018 

In contrast, CTRW and related transport formulations with explicit accounting of time effects, 1019 

as outlined in Sect. 3.3.2, can be applied meaningfully to interpret real measurements and transport 1020 

behavior at “all” scales. We can use the same equation formulation at different scales, with 1021 

different but relevant parameters at each scale. We emphasize, too, that we do not argue for “hard” 1022 

length scales:  in principle, e.g., an appropriate CTRW-based model calibrated at 20 cm will be 1023 

applicable to 100 cm scales, and a model calibrated on a 100 m scale data set can be applicable at 1024 

a kilometer scale (e.g. Berkowitz and Scher, 1998, 2009; Rhodes et al., 2008; Geiger et al., 2010; 1025 

Edery, 2021). The point, though, is that it makes no sense to calibrate at a centimeter scale and 1026 

then expect to somehow “upscale” parameters to apply the same model at a kilometer scale. [Note: 1027 

As an aside, over very large field-length and field-time scales, we point out that homogenization 1028 
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effects of molecular diffusion may become more significant, lessening impacts of some 1029 

preferential pathways.] Similarly, a CTRW-based approach can be applied over a range of time 1030 

scales, because the power law accounting for temporal effects can be as broad as needed. In these 1031 

cases, temporal effects are critical, because at the continuum (Darcy) scale, streamlines do not 1032 

change but residence times do. Specifically, for example, a model formulation with a fixed set of 1033 

parameters can interpret transport measurements in the same domain, but acquired under different 1034 

hydraulic gradients or fluid velocities, and thus domain residence times (Berkowitz and Scher, 1035 

2009). Indeed, because of the temporal accounting, CTRW has been applied successfully over 1036 

scales from pores (e.g. Bijeljic et al., 2013) to kilometers (e.g. Goeppert et al., 2020), with 1037 

parameter calibration at the relevant scale of interest. In principle then, a calibrated model shown 1038 

to be meaningful over one region of a porous medium or geological formation can offer at least a 1039 

reasonable estimate of transport behavior elsewhere in the medium/formation, at a similar 1040 

length/time scale, and as long as the medium/formation can be expected to have reasonably similar 1041 

hydrogeological structure and properties.  1042 

Finally, another critical aspect must be pointed out with regard to continuum-scale transport 1043 

models as outlined in Sect. 3.2. The preceding discussion leads to the stated need and desire – at 1044 

least in principle – to achieve model “prediction”. This term appears often, but it is often used 1045 

incorrectly. Fitting a model solution to data is of course not “prediction”. On one hand, using 1046 

specific experiments and data sets, models can be used to characterize transport behavior, e.g., is 1047 

transport Fickian or non-Fickian?, or, is a migrating chemical plume compact or elongated and 1048 

ramified?, which is of fundamental importance. But if prediction is the ultimate goal (recognizing 1049 

that addressing prediction uncertainty is yet another consideration), then we require multiple data 1050 

sets from the same porous medium or geological formation, in the sense that we need 1051 

measurements over a range of length scales, and/or over a range of time scales (i.e. same distance, 1052 

different flow rates). An intended model can then be calibrated against one part of the data set; the 1053 

calibrated model is then applied “as is” and the resulting solution, a “prediction”, is compared 1054 

against other “previously unknown” measurements. At the laboratory scale, such a protocol is 1055 

feasible, but rarely executed. Rather, the literature generally reports fits of transport equation 1056 

solutions at specific scales – individual data sets at a given length scale – and not over a range of 1057 

scales, so that no real testing of “upscaling” or “prediction” is achieved. Thus, even at laboratory 1058 

scales, true “predictive capability” of a model is rarely examined or reported. [Note: A similar 1059 

approach to “prediction” can be done in a purely numerical/computational study, using “ground 1060 

truth simulations” that are assumed correct (e.g. Darcy flow calculations and then streamline 1061 

particle tracking for chemical transport in a highly-resolved domain; recall Sect. 3.3.1), and then 1062 

comparing solutions from a continuum (partial differential equation) model solution. But it should 1063 

be recognized that results from assumed simulation methods are often unsatisfactory when 1064 

compared against experimental measurements and field observations.] 1065 

And at the field scale, the situation is even less satisfying; large-scale field tests for chemical 1066 

transport are difficult and expensive to execute, so that systematic data sets that enable testing of 1067 

model “prediction” – as well as even initial calibration of a transport model – are essentially non-1068 
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existent. Moreover, while larger-scale structural features can be identified in principle via non-1069 

invasive geophysical methods, higher resolution sampling and measurements of hydraulic 1070 

conductivity and geochemical parameters are necessarily highly limited. As a result, oft-used, non-1071 

unique interpolation of sparse concentration measurements is employed to yield (ideally 3d) 1072 

contour maps of hydrogeological parameters and actual chemical concentrations; but interpolation 1073 

will unrealistically smooth and dampen existing ramified and irregular preferential pathways 1074 

(recall Fig. 2). Thus, notwithstanding the extensive research efforts reported in the literature, truly 1075 

comparative studies using field measurements – to genuinely test proposed “upscaling” 1076 

methodologies – are essentially non-existent (e.g. Berkowitz et al., 2016). In this context, then, we 1077 

note that criticism in the literature that a given continuum model “demonstrates no predictive 1078 

capability” is in fact not generally based on its assessment relative to sufficiently resolved, 1079 

representative, and real data sets. Finally, it is important to recognize that models are most 1080 

commonly tested against 1d, section-averaged concentration breakthrough curves, which can be 1081 

(i) measured directly in laboratory column experiments, (ii) estimated or derived in 2d/3d 1082 

laboratory flow cells by averaging over control planes, or (iii) estimated from limited monitoring 1083 

well measurements (single or multi-level sampling with depth) at a fixed number of locations. The 1084 

latter case, in particular, requires extensive interpolation and/or assumption of a large-scale, 1085 

essentially 1d and uniform, macroscopic flow field. Moreover, chemical transport model 1086 

discrimination often requires breakthrough curves that extend over the late time tailing, which are 1087 

particularly difficult to determine in field conditions, due both to interruptions or lack of 1088 

practicality in well monitoring at long times, and to detection limits of measurement methods. 1089 

While reliance on such 1d (section averaged, over some control plane) breakthrough curves may 1090 

not be ideal, it is often the reality in terms of feasible data acquisition.  As a direct consequence, 1091 

model selection, model parameter fits, and model calibration results may each (and all) be non-1092 

unique and lead to confusing or conflicting conclusions. It is therefore critical that we at least select 1093 

from mechanistic-stochastic models based on fundamental laws of physics, with parameters that 1094 

have physical meaning, as discussed in Sect. 3.3.2, rather than from models invoking purely 1095 

statistical distributions or assumptions known to be incorrect. 1096 

 1097 

 1098 

5 Concluding remarks 1099 

 1100 

The ideas, arguments and perspectives offered here represent an effort to somehow summarize 1101 

and synthesize an understanding of existing approaches and methods proposed to quantify 1102 

chemical transport in subsurface hydrological systems. The literature on this subject is vast, 1103 

extending over decades, and measurements and observations of chemical transport range from 1104 

pore-scale microfluidic laboratory cells to aquifer field scales. A similarly broad range of model 1105 

formulations has been proposed to quantify and interpret these measurements/observations. And 1106 

yet, outcomes of these efforts are often largely unsatisfactory.  1107 

We contend that modeling obstacles arise largely because domain heterogeneity – in terms of 1108 
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porosity, hydraulic conductivity, and geochemical properties – is present over multiple length 1109 

scales, so that “unresolved”, practically unmeasurable heterogeneities and preferential pathways 1110 

arise at every length scale. Moreover, while spatial averaging approaches are effective when 1111 

considering overall fluid flow – wherein pressure propagation is essentially instantaneous and the 1112 

system is “well mixed” – purely spatial averaging approaches are far less effective for chemical 1113 

transport, essentially because well-mixed conditions do not prevail. We assert here that an explicit 1114 

accounting of temporal information, under uncertainty, is an additional – but fundamental – 1115 

component in an effective modeling formulation. As a consequence, we argue that for continuum-1116 

scale analysis, mechanistic-stochastic models such as those outlined in Sect. 3.2 must be invoked 1117 

to account explicitly for both “additional” temporal effects and unresolved heterogeneity. Clearly, 1118 

no single model is “best” for all situations and objectives, but any selected model must be 1119 

physically relevant and justified. 1120 

We further assert, as an outcome of these arguments, that “upscaling” of chemical transport 1121 

equations – in the sense of attempting to develop and apply chemical transport equations at large 1122 

length scales based on measurements and model parameter values obtained at significantly smaller 1123 

length scales – is very much an unattainable holy grail. Rather, because probabilistic 1124 

considerations required to account for small-scale fluctuations do not necessarily “average out” – 1125 

and can propagate from local to larger spatial scales – we maintain that it is necessary to formulate 1126 

and calibrate models, and then apply them, over spatial scales with similar orders of magnitude.  1127 

In all of our efforts to reasonably model chemical transport in subsurface hydrological systems, 1128 

we should recognize and accept the objective of advancing our science by integrating theory, 1129 

computational techniques, laboratory experiments and field measurement, with the aim of 1130 

extracting broadly applicable insights and establishing practical, functional tools. In this context, 1131 

as a close colleague and mentor said to me many, many years ago, “remember, this is hydrology, 1132 

with very real problems to address…we’re not doing string theory”. 1133 

We have included many points for discussion and open thought. Understandably, the reader 1134 

may not agree with all arguments and conclusions raised here, but scholarly debate is critical: it is 1135 

hoped that this contribution will stimulate further discussion, assist in ordering classification of 1136 

the (often confusing) terminologies and considerations, and identify the most relevant, real 1137 

questions for analysis, implementation and future research.  1138 

We hope that the above thoughts and illustrations (i) encourage careful consideration prior to 1139 

data collection, whether from field measurements, laboratory experiments, and/or numerical 1140 

simulations, (ii) assist in experimental design and subsequent analysis, and, even more 1141 

significantly, (iii) influence the research agenda for the field by challenging researchers to ask and 1142 

address appropriately formulated questions. In terms of “modeling” efforts: recall the statement 1143 

by Manfred Eigen (Nobel prize chemistry, 1967): “A theory has only the alternative of being right 1144 

or wrong. A model has a third possibility: it may be right, but irrelevant.” 1145 
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