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Abstract. 12 

 13 

Extensive efforts over decades have focused on quantifying chemical transport in subsurface 14 

geological formations, from microfluidic laboratory cells to aquifer field scales. Outcomes of 15 

resulting modelsthese efforts have remained largely unsatisfactory, however, largely because 16 

domain heterogeneity –  (characterized for example byin terms of, e.g. porosity, hydraulic 17 

conductivity, and geochemical properties –) is present over multiple length scales, and 18 

“unresolved”, practically unmeasurable heterogeneities and preferential pathways arise at virtually 19 

every scale. While spatial averaging approaches are effective when considering overall fluid flow, 20 

– wherein pressure propagation is essentially instantaneous, and the system is “well mixed” – 21 

purely spatial averaging approaches are far less effective for chemical transport, essentially 22 

because well-mixed conditions do not prevail. We assert here that an explicit accounting of 23 

temporal information, under uncertainty, is an additional, but fundamental, component in an 24 

effective modeling formulation. As an outcome, we further assert that “upscaling” of chemical 25 

transport equations – in the sense of attempting to develop and apply chemical transport equations 26 

at large (length) scales, based on measurements and model parameter values obtained at 27 

significantly smaller length scales – can be considered is very much an unattainable “holy grail”. 28 

Rather, we maintain that it is necessary to formulate, calibrate and apply models using 29 

measurements at similar scales of interest, in both space and time. 30 

 31 
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1 Introduction  33 

 34 

1.1 Background 35 

 36 

There have been extensive efforts over the last ~60 years to model and otherwise quantify fluid 37 

flow and chemical (contaminant) transport in soils layers and subsurface geological formations, 38 

from millimeter-size, laboratory microfluidics cells to aquifer field scales extending to hundreds 39 

of meters and even tens of kilometers. 40 

Soils layers and subsurface formations can typically exhibit significant heterogeneity, in terms 41 

of domain characteristics such as porosity, hydraulic conductivity, structure, and biogeochemical 42 

properties (mineral and organic matter content). However, only more recently has it become 43 

broadly acceptedrecognition that effects of heterogeneity over multiple length scales, with 44 

“unresolved”, practically unmeasurable heterogeneities arising at every length scale (from pore to 45 

field), cannot be simply “averaged out”, has become broadly accepted only more recently. Indeed, 46 

much research on flow and transport in porous media, dating since particularly from ~1950-1990, 47 

but also essentially to date, has been based on the search for length scales at which one can define 48 

a “representative elementary volume”, or otherwise-named “averaging volume”, above which 49 

variability in fluid and chemical properties become constant. In this context, too, many varieties 50 

of homogenization, volume averaging, effective medium, and stochastic continuum theories have 51 

been developed in an extensive literature. These methods allowed formulation of continuum-scale, 52 

generally Eulerian, partial differential equations to quantify (“model”) fluid flow and chemical 53 

transport, which were then applied in the soil and groundwater literature at length scales ranging 54 

from millimeters to full aquifers. While originally deterministic in character, a variety of stochastic 55 

formulations, and use of Monte Carlo numerical simulation techniques, introduced from the 1980s, 56 

enabled analysis of uncertainties in input parameters such as hydraulic conductivity.  57 

However, while analysis of fluid flow using these methods has proven relatively effective, 58 

modelingquantification of chemical transport, and an accounting of associated (biogeo)chemical 59 

reactions in cases of reactive chemical species and/or host porous media, has revealed serious 60 

limitationsremained largely unsatisfactory. We discuss the reasons for this, in detail, in the sections 61 

below. Briefly, the overarching reason for these successes and failures is that spatial averaging 62 

approaches are effective when considering overall fluid flow rates and quantities: , wherein 63 

pressure propagation is essentially instantaneous and the system is “well mixed” (because mixing 64 

of water “parcels” is functionally irrelevant). However, purely spatial averaging approaches are 65 

far less effective for chemical transport, essentially because well-mixed conditions do not prevail, 66 

and spatial averaging is inadequate; here, an explicit, additional accounting of temporal effects is 67 

required.  68 

The focus of the current contribution is on modeling conservative chemical transport in 69 

geological media. In terms of modeling, one can delineate two main types of scenarios: (i) pore-70 

scale modeling in relatively small domains, with a detailed (and specified) pore structure, and (ii) 71 

continuum-scale modeling in porous media domains, that average pore space and solid phases at 72 
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scales from laboratory flow cells to field-scale plots and aquifers. Case (i) requires, e.g., Navier-73 

Stokes or Stokes equations solutions for the underlying flow field, coupled with solution of a local 74 

(e.g. advection-diffusion) equation for transport, while cCase (ii) requires Darcy (or related) 75 

equation solutions for the underlying flow field, coupled with solution of a governing transport 76 

equation for chemical transport. Note: here and throughout, we shall use the terms “continuum 77 

level” and “continuum scale” in reference to case (ii) scenarios, and “pore-scale” to refer to cCase 78 

(i) scenarios, although we recognize, too, that pore-scale Navier-Stokes and advection-diffusion 79 

equations, too, are continuum partial differential equations. 80 
 81 
Disclaimer: Here and throughout this contribution, the overview comments and references to 82 

existing philosophies, methodologies and interpretations are written, largely, mostly in broad 83 

terms, without only (necessarily limited numbers of) citations selected from the vast literature. 84 

This approach is taken with a clear recognition and respect for the extensive body of literature that 85 

has driven our field forward over the last decades, but with the express desire to avoid any risk of 86 

unintentionally alienating colleagues and/or misrepresenting aspects of relevant studies. As an 87 

Opinion contribution, and with length considerations in mind, there is no attempt to provide an 88 

exhaustive listing and description of relevant literature. 89 

 90 

 91 

1.2 Assertions 92 

 93 

The pioneering paper of Gelhar and Axness (1983) focused on quantifying conservative chemical 94 

transport at the continuum level. They expressed heterogeneity-induced chemical spreading in 95 

terms of the (longitudinal) macrodispersion coefficient – as it appears in the classical 96 

(macroscopically 1d) advection-dispersion equation – with knowledge of the variance and 97 

correlation length of the log-hydraulic conductivity field and the mean, ensemble-averaged fluid 98 

velocity. The conceptual approach embodied in Gelhar and Axness (1983) – and by many 99 

researchers since then (as well as previously) – was founded on delineation of the spatial 100 

distribution of the hydraulic conductivity, and application of an averaging method to determine 101 

theyield a governing transport equation with “effective parameters” thato describes chemical 102 

transport at a given length scale (e.g. Dagan, 1989; Gelhar, 1993; Dagan and Neuman, 1997). 103 

In contrast, we assert here that spatial information, alone, is generally insufficient for 104 

quantification of chemical transport phenomena. Rather, temporal information is an additional, 105 

but fundamental, component in an effective modeling formulation. In the discussion below, we 106 

shall justify this argument by a series of examples. We examine (i) spatial information on, e.g. the 107 

hydraulic conductivity distribution at the continuum level, or distribution of the solid phase at the 108 

pore-scale level; and (ii) temporal information on, e.g. contaminant (tracer, “particle”) transport 109 

mobility and retention in different regions of a domain. We thus define a type of “information 110 

hierarchy”, with different types of information required for different flow and chemical transport 111 

problems of interest.  112 

As an outcome of the above assertion and the discussion below, we further assert that 113 
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“upscaling” of chemical transport equations – development and application of chemical transport 114 

equations at large (length) scales, with corresponding parameter values, based on measurements 115 

and model parameter values obtained at significantly smaller length scales – can be considered an 116 

unattainableis very much a “holy grail”. Rather, we maintain that it is necessary to formulate and, 117 

calibrate models, and then apply themmodels, using measurements over spatial scales with 118 

relatively similar orders of magnitudein both space and time. This does not exclude use of similar 119 

equation formulations at different spatial scales, but it does entail use of different parameter values, 120 

at the relevant scale of interest, that cannot be determined a priori or from purely spatial or flow-121 

only measurements. 122 

 123 

 124 

1.3 Approach – Outline 125 

 126 

While our focus is on chemical transport, knowledge of fluid flow and delineation of the velocity 127 

field throughout the domain is a prerequisite. We therefore first discuss fluid flow as an intrinsic 128 

element aspect of the “information hierarchy”. Specifically, we address how: 129 

(1) Basic structural information on “conducting elements” in a system representing a porous 130 

and/or fractured geological domain (porous and/or fractured) can provide basic insight 131 

regarding overall fluid conduction in the domain, as a function of “conducting element” 132 

density. We emphasize that without direct simulation of fluid flow (as well as chemical 133 

transport) in such a system, this type of analysis is insufficient in terms ofdoes not 134 

definingdelineate the actual flow field and velocity distributions throughout the domain.  135 

(2) Spatial information on, in particular, the hydraulic conductivity distribution at a continuum 136 

scale, or solid phase distribution at the pore scale, throughout the domain, can be used to 137 

determine the flow field. We then show that this is insufficient in terms ofto defineing 138 

chemical transport.  139 

(3) Temporal information on chemical species migration, which quantifies distributions of 140 

retention and release times (or rates) of chemicals by advective-dispersive-diffusive and/or 141 

chemical mechanisms, can be used to determine the full spatial and temporal evolution of 142 

a migrating chemical plume, either by solution of a transport equation or use of particle 143 

tracking on the velocity field. 144 

We comment, parenthetically, that in conceptual-philosophical terms, this hierarchy and the 145 

“limitations” of each level are in a sense analogous to representation of geometrical constructs in 146 

multiple dimensions: in principle, one can represent, as a projection, a d-dimensional object in d–147 

1 dimensions. But of course, by its very nature, a projection does not capture all features of the 148 

construct in its “full” dimension. To illustrate, an (imaginary) 1d curve can represent a 2d Möbius 149 

strip, a 2d perspective drawing can represent a 3d cube, and a 3d construct can represent a 4d object 150 

(where the 4th dimension might be considered time) –– and yet, none of these d–1 dimensional 151 

representations contains all features of the actual d-dimensional objects. Similarly, despite our 152 

frequent attempts to the contrary, one cannot properly describe (2) only from (1), or (3) only from 153 
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(2).    154 

 155 

 156 

2 Fluid flow 157 

 158 

Prior to actually solving for fluid flow, to determine the underlying velocity field, efforts are 159 

sometimes invested in considering geometrical (structural) information, for example, when 160 

examining fracture networks in essentially impermeable host rock. Analysis of the geometry of 161 

structural elements in a domain can yield basic insights on fluid flow patterns. This approach is 162 

used, for example, when examining fracture networks in essentially impermeable host rock. As 163 

discussed below, however, full delineation of the underlying velocity field ultimately requires 164 

solution of equations for fluid flow.  165 

In this context, percolation theory (Stauffer and Aharony, 1994) is particularly useful in 166 

determining, statistically, whether or not a domain with N “conducting elements” (e.g. fractures) 167 

is includes sufficient element density to form a connected pathway enabling fluid flow across the 168 

domain. One can estimate, for examplein this context, the critical value, Nc, for which the domain 169 

is “just” connected, as a function of fracture length distribution, or the critical average fracture 170 

length as a function of N needed to reach domain connectivity (Berkowitz, 1995). Similarly, 171 

percolation theory shows how the overall hydraulic conductivity of the domain scales as the 172 

number of conducting elements, N, relative to the Nc critical number of conducting elements 173 

required for the system to begin to conduct fluid. Percolation theory also addresses diffusivity 174 

scaling behavior of chemical species. But, fundamentally, percolation is a statistical framework 175 

suitable for large (“infinite”) domains, and provides universal scaling behaviors with no coefficient 176 

of equality; see e.g., Sahimi (2021) for detailed discussion.  177 

Other approaches have been advanced to analyze domain connectivity, for example using 178 

graph theory and concepts of identification of paths of least resistance in porous medium domains 179 

(e.g. Rizzo and de Barros, 2017), or topological methods (e.g. Sanderson and Nixon, 2015). Like 180 

percolation theory, such approaches provide useful information and “estimates” on the hydraulic 181 

connectivity and flow field, and even on first arrival times of chemical species, without solving 182 

equations for fluid flow and chemical transport. However, these methods do not provide full 183 

delineation of the flow field and velocity distribution throughout a domain.  184 

These considerations indicateIt is thus clear that, in general, there are dynamic aspects of fluid 185 

flow are critical, over and above pure structure: knowledge of pure geometry is not sufficient, and 186 

we must actually solve for the flow field, at either the pore-scale or a continuum scale, to determine 187 

the velocity field and actual flow paths throughout the domain. Delineation of a flow field and 188 

velocity distribution by solution of the Navier-Stokes equations (or Stokes equation for small 189 

Reynolds numbers), or by solution of the Darcy equation, may be considered “rigorous”, correct 190 

and effective. But in the process of solving for the flow field, two key features arise, one more 191 

relevant to pore-scale analyses, and the other more relevant to continuum-scale analysis, as 192 

detailed in Sect. 2.1 and Sect. 2.2, respectively.  193 
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 194 

 195 

2.1 Pore-scale flow field analysis 196 

 197 

Why is knowledge only of the geometrical “static” structure (spatial distribution of solid phase) 198 

insufficient to know the flow dynamics in a pore-scale domain? Consider the 2d domain shown in 199 

Figure 1, containing sparsely and randomly distributed obstacles (porosity of 0.9). Figure 1 shows 200 

solutions of the Navier-Stokes equations for two Reynolds number (Re) values. [Recall: Re  201 

vL/, where  and  are density and dynamic viscosity of the fluid, respectively, v is fluid 202 

velocity, and L is a characteristic linear dimension. Here and throughout, the fluid is assumed to 203 

have constant viscosity.] Andrade et al. (1999) showed clearly that well-defined preferential flow 204 

channels at lower Re, while at higher Re, channeling is less intense and the streamline distribution 205 

is more spatially homogeneous in the direction orthogonal to the main flow. The domain shown in 206 

Fig. 1 is not intended to represent a natural geological domain, but rather to illustrate streamline 207 

behavior in even relatively simple pore-scale geometries. 208 

Figure 1 demonstrates that the streamlines in individual pores change because of the interplay 209 

between inertial and viscous forces, given by Re. In other words, with a change in overall fluid 210 

velocity (or hydraulic gradient) across the domain, the actual flow paths can be altered, together 211 

with a change in overall and (spatially) local residence times of fluid molecules; the same factors 212 

also govern (and chemical species, as addressed below). Of course, the significantly lower 213 

porosities and more tortuous pore space configuration in natural, heterogeneous geological porous 214 

media may affect the impact of inertial effects, especially at the pore scale, but the principle 215 

remains relevant. [We note, too, parenthetically, that the behavior shown in Fig. 1 is relevant also 216 

to fluid flow within fracture planes, wherein the obstacles represent contact areas and regions of 217 

variable aperture.] 218 

Clearly, then, except in highly idealized and simplified geometries, use of a purely analytical 219 

solution to identify the full velocity field and streamline patterns at the pore scale is not feasible. 220 

Moreover, the extent and changes in streamlines are not intuitively obvious without full numerical 221 

solution of the governing flow equations, for any specific set of porous medium structures and 222 

boundary conditions.  223 

 224 
 225 

 226 

 227 
 228 
 229 

 230 
 231 
 232 
 233 
 234 
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 235 

 236 
 237 

 238 
(a) Re = 0.0156       (b) Re = 15.6 239 

 240 
Figure 1.  2d domain containing randomly distributed obstacles (squares and rectangles). Stream functions 241 
for (a) Re = 0.0156 and (b) Re = 15.6 are shown with constant increments between consecutive streamlines 242 
(modified from Andrade et al., 1999, https://doi.org/10.1103/PhysRevLett.82.5249; Copyright, American 243 
Physical Society). The different patterns of preferential pathways are clear and distinct. The three pairs of 244 
circles (red, blue, black) highlight three (of many) specific locations where the streamlines are seen to 245 
change as a function of Re.  246 
 247 

 248 

2.2 Continuum-scale flow field analysis 249 

 250 

Considering now continuum-scale domains, but in analogy to the example shown in Sect. 2.1, we 251 

illustrate why knowledge only of the geometrical “static” structure (spatial distribution of the 252 

hydraulic conductivity) is insufficient to know the flow dynamics, without solution of the Darcy 253 

equation. Here, the geometrical structure refers to the spatial distribution of the hydraulic 254 

conductivity, K.   255 

Figure 2 represents a realization of a numerically-generated (statistically homogeneous, 256 

isotropic, Gaussian) hydraulic conductivity (K) 2d domain. The Darcy equation solution for this 257 

domain yields values of hydraulic head throughout the domain; these are converted to local 258 

velocities, to enable delineation of the streamlines and preferential flow paths. The latter are 259 

highlighted by actually solving for chemical transport, by following the migration of “particles” 260 

representative of masses of dissolved chemical species injected along the inlet boundary of the 261 

flow domain; see Edery et al. (2014) for details. Of particular significance is that 99.9% of the 262 

injected particles travel in preferential pathways through a limited number of domain cells. We 263 

return to Figure 2 in Sect. 3.3.2, where we discuss a framework that effectively characterizes and 264 

quantifies chemical transport.  265 

Unlike the pore-scale case shown in Sect. 2.1, at the Darcy/continuum scale, streamlines are 266 

not altered with changes in the overall hydraulic gradient, as long as laminar flow conditions are 267 

maintained. And yet, preferential flow paths are (possibly surprisingly) sparse and ramified, 268 

sampling only limited regions of a given heterogeneous domain, with the vast fraction of a 269 

migrating chemical species that interrogates the domain being even more limited. Significantly, 270 

except in highly idealized and simplified geometries (e.g. homogeneous media), delineation of 271 

these pathways is not intuitively obvious (e.g. by simple inspection of the hydraulic conductivity 272 

map in Fig. 2a) or definable from a priori analysis or tractable analytical solution. Rather, 273 

numerical solution of the governing flow equations is required, for any particular/specific set of 274 

porous medium structures and boundary conditions. [Note, too, that critical path analysis from 275 

percolation theory (discussed in Sect. 2) – again from purely “static” information without solution 276 

of the flow field – yields an incorrect interpretation, as shown in detail by Edery et al. (2014).]  277 

https://doi.org/10.1103/PhysRevLett.82.5249
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We emphasize that the delineation of “preferential flow paths” is usually relevant only for 278 

study of chemical transport; if water quantity, alone, is the focus, then specific “flow paths” 279 

travelled by water molecules – and their advective and diffusive migration along and between 280 

streamlines, and into/out of less mobile regions – are of little practical interest. On the other hand, 281 

tThe movement of chemical species, on the other hand, which experience similar advective and 282 

diffusive, and thus “dispersive”, transfers, must be monitored closely to be able to quantify overall 283 

migration through a domain. We return to consider patterns of chemical migration in Sect. 3. But 284 

tThis argument, too, reinforces the assertion that delineation of actual chemical transport cannot 285 

be deduced purely from spatial information and solution for fluid flow, but must be treated by 286 

solution of a transport equation.  287 

(a)         (b) 288 

(c) 289 
 290 

 291 
 292 

 293 
 294 

 295 
 296 

 297 
 298 
 299 

(d) 300 

 301 
 302 
 303 
 304 
 305 
 306 
 307 
 308 
 309 
 310 
 311 

Figure 2.  Maps of (a) hydraulic conductivity, K, distribution in a domain with 300  120 cells, (b) 312 
preferential pathways for fluid flow (and chemical transport), and (c) preferential pathways through cells 313 
that each contain a visitation of at least 0.1% of the total number of chemical species particles injected into 314 



9 
 

the domain (flux-weighted, along the entire inlet boundary). Flow is from left to right. Note that the color 315 
bars are in ln(K) scale for Figure 2a, and log10 number of particles for Figures 2b,c (modified from Edery 316 
et al., 2014; © with permission from the American Geophysical Union 2014). (d) Laboratory flow cell, 2.13 317 
m length, with an exponentially correlated K structure, showing preferential pathways for blue dye injected 318 
near the inlet (flow is left to right); dark, medium, and light colored sands represent high, medium and low 319 
conductivity, respectively (modified from Levy and Berkowitz, 2003; © with permission from Elsevier 320 
2003). The circles shown in (c) and (d) highlight two (of many) regions in which the pathways are seen to 321 
contain lower K “bottlenecks”.  322 
 323 

It is significant, too, that fluid flow (and chemical transport) occurs in preferential pathways 324 

that contain low conductivity sections (indicated by circles in Figs. 2c,d). How do we explain 325 

passage through low hydraulic conductivity “bottlenecks” (low hydraulic conductivity patches) 326 

within the preferential pathways, rather than and that fluid (and chemicals) do not 327 

migratemigration “only” through the highest conductivity patches?  328 

To address this question, we begin byfirst considering what happens in a 1d path. Consider 329 

two paths, each containing a series of five porous medium elements (or blocks), with distinct 330 

hydraulic conductivity values, (Ki) values. Consider Path 1, with a series hydraulic conductivity 331 

values of 3, 3, 3, 3, 3, and Path 2, with values 6, 6, 1, 6, 6 (specific length/time units are irrelevant 332 

here). The value of K = 1 represents a clear “bottleneck” in an otherwise higher K path than that 333 

of Path 1. In a 1d series, however, the overall hydraulic conductivity (Koverall) of the path is given 334 

by the harmonic mean of the conductivities of the elements comprising the path: Koverall = 5 / (i=1,5 335 

1/Ki); significantly, in the two cases here, both paths have Koverall = 3!. So a “bottleneck” (K=1) 336 

can be “overcome” and does not cause necessarily cause a potential pathway to be less “desirable” 337 

than a pathway without such “bottlenecks”. In other words, flow through pathways containing 338 

some low K regions should be expected. Of course, in 2d and 3d systems, patterns of heterogeneity 339 

and pathway “selection” by water/chemicals are significantly more “complicated”, but the 340 

principle discussed here for 1d systems still holds, in the sense that lower hydraulic conductivity 341 

(“bottleneck”) elements can (and do) exist in the preferential pathways (e.g. Margolin et al., 1998; 342 

Bianchi et al., 2011). 343 

 344 

 345 

3 Chemical transport 346 

 347 

We now consider the next level of the “information hierarchy” outlined in Sect. 1.3. To quantify 348 

the evolution of a migrating chemical plume, knowledge of the flow field is not generally 349 

sufficient, and additional means to characterize and quantify the behavior are needed. Dynamic 350 

aspects of chemical transport require us to think (also) in terms of time, not just space and physical 351 

structure. Moreover, it is generally insufficient to determine the transport of the chemical plume 352 

center of mass. Rather, in terms of water resource contamination and remediation, for example, it 353 

is critical to characterize, respectively, the early and late arrival times at compliance (or 354 

monitoring) regions downstream of the region (point, areal, or volumetric) region in which the 355 

chemical species entered the system.  356 
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As we show below, it becomes clear that, in general, there are dynamic aspects of chemical 357 

transport, on over and above the role of the flow field:, and we must actually solve for chemical 358 

transport, at either the pore-scale or a continuum scale, to determine the spatiotemporal (spatial 359 

plume and/or temporal breakthrough curve) evolution of the migrating chemical plume. In both 360 

pore-scale and continuum-scale domains, the critical control that arises is that of time, (in addition 361 

to space). This is in sharp contrast to fluid flow at pore and continuum scales, as shown in Sect. 362 

2.1 and Sect. 2.2: pore-scale fluid flow displays changing streamlines with changes in hydraulic 363 

gradient, while continuum-scale fluid flow follows distinct but difficult to identify preferential 364 

flow paths essentially independent of the hydraulic gradient. 365 

We point out, too, that for both pore-scale and continuum-level scenarios, one can solve, 366 

explicitly, a governing equation for transport. Alternatively, though, one can obtain an 367 

“equivalent” solution by solving for (Lagrangian framework) “particle tracking” of transport along 368 

the calculated streamlines, in a Lagrangian framework. In other words, particle tracking methods 369 

essentially represent an alternative means to solve an ((integro-)partial differential) equation for 370 

chemical transport; such methods can be applied, too, when the precise partial differential equation 371 

is unknown or the subject of debate. We also note that solution of the relevant equations for fluid 372 

flow and chemical transport is sometimes achieved by (semi-)analytical methods, if the 373 

flow/transport system can be treated sufficiently simply (e.g. as macroscopically, section-averaged 374 

1d flow and transport in a rectangular domain).  375 

We first discuss principal features of pore-scale (Sect. 3.1) and continuum-scale (Sect. 3.2) 376 

chemical transport, and in Sect. 3.3, we focus on effective model formulations. We focus on 377 

conservative chemical species, and mention chemical reaction effects only peripherally. Note that 378 

other factors such as temporally/spatially changing fluid viscosity and surface tension, or 379 

mechanical and wetting properties of the solid phase, represent further complexities that are not 380 

considered here. 381 

 382 

 383 

3.1 Pore-scale chemical transport analysis 384 

 385 

To illustrate why knowledge only of only the flow field is insufficient for full quantification of 386 

chemical transport, consider the three porous medium domains shown in Fig. 3. Each domains is 387 

comprised of pore-scale images of a natural rock, modified by enlarging the solid phase grains, to 388 

yield three different configurations: a statistically homogeneous system domain, a weakly 389 

correlated system, and a structured, strongly correlated system (see Nissan and Berkowitz (2019) 390 

for details). Fluid flow was determined by solution of the Navier-Stokes equations (Fig. 1a). 391 

Transport of a conservative chemical species was then simulated via a (Lagrangian) streamline 392 

particle tracking method, for an ensemble of particles that advance according to a Langevin 393 

equation. Transport behavior was determined for two values of macroscopic (domain average) 394 

Péclet number (Pe). [Recall; Pe  vL/D, where v is fluid velocity, L is a characteristic linear 395 

dimension, and D is the coefficient of molecular diffusion.] Here, the macroscopic Pe is based on 396 
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the mean particle velocity and mean particle displacement distance per transition (or “step”).  397 

Figure 3 shows that regardless of possible (pore-scale) streamline changes as a function of 398 

hydraulic gradient (recall Sect. 2.1, considering different values of Re), the choice of macroscopic 399 

Péclet number in a given domain plays a significant role in the evolution of the migrating chemical 400 

plume. In particular, the relative effects of advection and diffusion, which vary locally in space, 401 

are critical, as is the overall residence time in the domain. We stress here, (and return to this key 402 

point in discussion below,) that the spatially (and in some cases temporally) local changes in 403 

relative effects of advection and diffusion – characterized by the local Pe – dominates 404 

determination of the plume evolution. This can be understood from study of Fig. 3, for two choices 405 

of macroscopic Pe values in each of the three heterogeneity configurations, for two choices of 406 

macroscopic Pe values; the different patterns of longitudinal and transverse spreading are observed 407 

clearly. 408 

The behavior shown in Fig. 3 is essentially well-known from extensive simulations and 409 

experiments appearing in the literature. This behavior is described here to stress the importance of 410 

temporal effects, and to point out that information only of the advective velocity field – as 411 

discussed in Sect. 2.1 and Sect. 2.2 – is not sufficient to “predict” chemical transport. 412 

 413 

 414 
 415 
Figure 3.  Fluid velocities and chemical migration in three porous media configurations (from left to right): 416 
homogeneous system, randomly heterogeneous system, and structured heterogeneous system. The upper 417 
row shows the (normalized) velocity field for the three configurations; the color bar represents relative 418 
velocity, with dark blue being lowest. The middle and lower rows show, respectively, numerically-419 
simulated particle tracking patterns of an inert chemical species (blue dots) at Pe = 1 (middle row) and Pe 420 
= 100 (lower row) for the three configurations (white color indicates solid phase; black color indicates 421 
liquid phase). Note: The particles plumes are shown at 10% of the final time of each simulation; absolute 422 
travel times differ among the plots. The insets in the left side plots of the middle and lower rows show the 423 
pore-scale chemical species distributions; note the more diffuse pattern for Pe = 1 (from Nissan and 424 
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Berkowitz, 2019, https://doi.org/10.1103/PhysRevE.99.033108; © with permission from American 425 
Physical Society 2019). 426 
 427 
 428 

3.2 Continuum-scale chemical transport analysis 429 

 430 

The aspects discussed in Sect. 3.1 are relevant, analogous and applicable essentially also to 431 

chemical transport at the continuum scale. Consider the two laboratory experiments shown in Fig. 432 

4 and Fig. 5. Each flow cell was filled with a different clean, sieved sand configuration; see Levy 433 

and Berkowitz (2003) for details. Figure 4 shows a uniform (“homogeneous”) packing of clean 434 

sand, while Fig. 5 shows a “coarse” sand containing a randomly heterogeneous arrangement of 435 

rectangular inclusions consisting of a “fine” sand. The flow cells, fully saturated with water, 436 

enabled macroscopically (section-averaged) 1d, steady-state flow, with a mean gradient parallel to 437 

the horizontal axis of the cell. As seen in the two figures, neutrally-buoyant, inert red dye was 438 

injected at seven (Fig. 4) and five (Fig. 5) points near the inlet side, to illustrate the spatiotemporal 439 

evolution of the chemical plumes.  440 

 441 

 442 
 443 

 444 
 445 

 446 
 447 
 448 

 449 

 450 
 451 
 452 

 453 
 454 

 455 
 456 

 457 
 458 
 459 
Figure 4. Photographs of dye transport in a flow cell (internal dimensions 0.86  0.45  0.10 m) containing 460 
a uniform packing of quartz sand (average grain diameter 0.532 mm), under a constant flow rate with Pe 461 

>1, at four times (modified from Levy and Berkowitz, 2003; © with permission from Elsevier 2003). 462 

 463 

 464 
 465 

 466 
 467 
 468 

 469 

Flow direction  
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 470 

 471 
 472 

 473 
 474 
 475 
 476 
 477 

 478 
 479 
 480 
 481 
 482 

 483 
Figure 5. Photographs of dye transport in a flow cell (internal dimensions 0.86  0.45  0.10 m) containing 484 
a randomly heterogeneous packing of quartz sand, under a constant flow rate with Pe >1, at three times. 485 
The rectangular inclusions comprise sand with an average grain diameter ~0.5 smaller, and hydraulic 486 
conductivity ~3 lower, than the surrounding sand matrix (modified from Levy and Berkowitz, 2003; © 487 
with permission from Elsevier 2003). 488 
 489 

Most notably, in both Fig. 4 and Fig. 5: (i) each of the plumes has a different, unique pattern, 490 

which continues over the duration of the plume migration; and (ii) none of the plumes is 491 

“elliptical”, as expected in classical Fickian transport theory and embodied in solutions of the 492 

classical advection-dispersion equation (ADE). Indeed, vertical averaging of each plume shown in 493 

Fig. 4 and Fig. 5, at each time, does not yield Gaussian (normally distributed) concentration 494 

profiles, but rather asymmetrical, “heavy-tailed” profiles. 495 

At this juncture, note that here and below we use the terms “non-Fickian”, or “anomalous” – 496 

others sometimes use the terms “pre-asymptotic” or “pre-ergodic” – to denote any chemical 497 

transport behavior that differs from that described by the classical ADE or similar type of 498 

continuum-scale formulation. Typically, though, non-Fickian transport is characterized by early 499 

and or late arrival times of migrating chemical species to some control or measurement plane/point, 500 

relative to those resulting from solution of the ADE. The ADE applies to so-called Fickian 501 

behavior, in the sense that it accounts for mechanical dispersion as a macroscopic form of Fick’s 502 

law; mechanical dispersion arises as an “effective” (or “average”) quantity that describes local 503 

fluctuations around the average (advective) fluid velocity. Thus, in this formulation, a pulse of 504 

chemical introduced into a macroscopically 1d, uniform velocity, for example, leads to temporal 505 

and spatial concentration distributions that are equivalent to a normal (Gaussian) distribution. 506 

It is in this context that the term “homogeneous” packing used above is placed in quotation 507 

marks, to indicate that in natural geological media, “homogeneity” does not really exist. Any 508 

natural geological sample of porous medium contains multiple scales of heterogeneity; and at each 509 

particular scale of measurement, “unresolved” heterogeneities that are essentially unmeasurable 510 

are present (even scanning electron microscopy and atomic force microscopy have limits of spatial 511 

resolution, for example!). And thus, as seen in Fig. 4 for example, the overall transport pattern 512 

Flow direction  
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even in an “homogeneous” system can be non-Fickian (anomalous). We therefore emphasize that 513 

because natural heterogeneity in geological formations occurs over a broad range of scales, 514 

“normal” (Fickian) transport tends to be the “anomaly”, whereas “anomalous” (non-Fickian) 515 

transport is ubiquitous, and should be considered “normal”.  516 

Moreover, as noted in Sect. 2.2, streamlines are not altered with changes in the overall 517 

hydraulic gradient, at the continuum (Darcy) scale, as long as laminar flow conditions are 518 

maintained, because increasing the hydraulic gradient increases the fluid velocity along the 519 

existing, (“predefined”) streamlines by the same factor. However, the character of chemical 520 

transport can be altered, as the change in residence time in the domain affects the relative effects 521 

of advection and diffusion space. And in domains with heterogeneous distributions of hydraulic 522 

conductivity, the local Pe (Sect. 3.1) can vary more strongly, too.  523 

Thus, we argue that patterns of chemical transport cannot be fully determined from information 524 

only on the velocity field; solution of an appropriate continuum-scale transport equation cannot be 525 

avoided. In conclusion, then, and with particular reference to the (conceptually and theoretically 526 

beautiful) classical ADE – and to “conventional” conceptual understanding and quantitative 527 

description of chemical transport – we suggest that one must separate mathematical convenience 528 

and wishful thinking from the reality of experiments: there is a definitive need for more powerful 529 

formulations of transport equations. In this context, one is reminded of the quotation by the 530 

biologist Thomas Henry Huxley: “The great tragedy of science—the slaying of a beautiful theory 531 

by an ugly fact.” (President's Address to the British Association for the Advancement of Science, 532 

Liverpool Meeting, 14 Sep 1870). 533 

 534 

 535 

3.3 Modeling chemical transport, and the myth that “fewer parameters is always better”  536 

 537 

So how do we effectively model chemical transport?  538 

As noted at the outset of Sect. 2, solution of the Navier-Stokes or Darcy equations to determine 539 

the full flow field and velocity distribution in a given porous medium domain has been proven 540 

correct and effective in most applications, and is well-accepted in the literature. However, 541 

modeling of chemical transport is more contentious, the reasons for which we expand upon below.  542 

We argue here that modeling of chemical species transport requires us to think in terms of time, 543 

not just space. To assist the reader to enter this frame of thinking, and to sharpen our 544 

conceptualization, we provide two examples to illustrate aspects of time and space in the context 545 

of chemical transport dynamics:  546 

(1) The classical example of the brachistochrone (ancient Greek: "shortest time"), or path of 547 

fastest descent, is the curve (path) that would carry an idealized point-like body, starting at 548 

rest and moving along the curve, without friction, under constant gravity, to a given end 549 

point in the shortest time. (Correct solution: Johann Bernoulli, 1697) Somewhat non-550 

intuitively, the path that leads to the shortest travel time is not a straight line, but, rather, a 551 

special curve that is longer than a straight line (a cycloid)!, as demonstrated by Johann 552 
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Bernoulli in 1697. (sSee: http://old.nationalcurvebank.org//brach/brach.htm). 553 

(2) What error can be introduced when “averaging” in terms of “space”? Consider the case of 554 

driving a total distance of 100 km, by first traveling 50 km at 1 km h-1, and then traveling 555 

50 km at 99 km h-1. If we average the speed in terms of space (distance), then we traveled 556 

two segments of 50 km at two speeds, so the average speed is (1 + 99) / 2 = 50 km h-1. In 557 

this framework, the total time to travel the 100 km “should” only have been 2 h. However, 558 

in terms of time, the travel time is actually 50.5 h. 559 

These simple examples help to emphasize the errors introduced by traditional conceptual 560 

thinking, wherein the effects of spatial transport and domain heterogeneity are quantified only on 561 

the basis of spatial characteristics. It is worth recalling, too, Einstein’s quantitative treatment of 562 

Brownian motion (Einstein, 1905). Prior to his analysis, researchers applied – with puzzlement – 563 

a time-dependent velocity, v, to quantify experimental measurements. Einstein (1905) instead 564 

examined a recursion relation and expansion that led to a diffusion equation whose solution 565 

showed, for the first time, that the root mean squared displacement of particles undergoing 566 

Brownian motion is proportional to √𝑡, and not to vt as had been assumed traditionally. An 567 

astounding conceptual breakthrough over a century ago, this nature of diffusive motion is now 568 

“common knowledge”. 569 

In this same framework of focusing on time, the examples shown in Fig. 4 and Fig. 5 emphasize 570 

that for chemical transport, we must recognize the critical role of “rare events”. These rare events 571 

involve chemical species ( – migrating “particles” or “packets”) – that are held up or retained in 572 

(while traveling through, or in/out of) lower velocity regions (pore scale or continuum scale) in 573 

the porous domain, over various periods of time. Such events can have a dominant impact on 574 

overall transport patterns, at both pore and continuum scales. In this context, one must exercise 575 

caution with simple averaging of “small velocity fluctuations” and effects of molecular diffusion. 576 

Rather, small-scale heterogeneities (in both space and time) do not necessarily “average out” or 577 

become insignificant at larger scales; rather, the effects of “rare events” (e.g. temporary trapping 578 

of even small amounts of chemical species via diffusion into and out of low velocity regions) and 579 

fluctuations can propagate and become magnified, within and across length scales from pore to 580 

aquifer.  581 

Armed with these thoughts, we suggest that modeling chemical transport has been debated in 582 

the literature contentious for at least three reasons:  583 

1. The desire to work with spatial averaging approaches and equations: The research 584 

community was (and still is) split over the need to recognize and incorporate, explicitly, 585 

influences of temporal mechanisms caused largely by spatial heterogeneity (as 586 

characterized by the domain hydraulic conductivity), when formulating “effective” (or 587 

“averaged”) equations. And even when recognized, debate remains as to appropriate 588 

mathematical formulation. 589 

2. The lack of data: At least part of the difficulty in developing appropriate models is the lack 590 

of availability of high-resolution laboratory data and field measurements against which 591 

chemical transport models can be tested. Indeed, many elaborate theoretical developments 592 

http://old.nationalcurvebank.org/brach/brach.htm
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have been advanced over the decades, with accompanying, analytical and numerical 593 

solutions –– and yet, remarkably, comparative studies against actual laboratory data remain 594 

limited, and tests with field measurements are even sparser (see also Sect. 4 for further 595 

discussion of this point). 596 

3. The choice of approach to, and purpose of, chemical transport modeling: Two overarching 597 

approaches to quantifying chemical transport can be defined, focusing on (i) quantification 598 

of “effective”, “overall” chemical transport behavior without requiring high-resolution 599 

discretization and numerical solution of the domain, and, alternatively, (ii) high-resolution 600 

hydrogeological delineation and then intensive numerical simulation on highly discretized 601 

grids. We address approaches (i) and (ii) individually, below, in the context also of points 602 

(1) and (2). 603 

The debate in the literature between “effective” and high-resolution hydrogeological modeling, 604 

as well as various preconceptions and misconceptions discussed below and in Sect. 4, lead 605 

naturally to consideration of the (often incorrectly invoked) argument that “fewer model 606 

parameters is better”.  607 

We first discuss briefly aspects of high-resolution hydrogeological modeling in Sect. 3.3.1, 608 

and then focus on “effective” transport equation modeling in Sect. 3.3.2. We emphasize that the 609 

latter approach is applicable to both small- and large-scale domains. The former approach is 610 

generally intended for large- (field-)scale systems, (although, in a sense, the same approachit is in 611 

some sense often applied for detailed pore-scale modeling); this approach is not particularly 612 

contentious, per se, but is hampered by the complexity and cost associated with the demand for 613 

highly detailed hydrogeological information. Therefore, research work remains heavily invested 614 

in “effective” transport equation modeling. 615 

 616 

 617 

3.3.1 High-resolution domain delineation and modeling 618 

 619 

Efforts to resolve large-scale aquifer systems, to delineate the hydraulic conductivity distribution 620 

at increasingly higher resolutions, began in earnest in the 1990s. Analysis of field sites emphasized 621 

(relatively) high-resolution discretization of domain structure (e.g. “blocks” of the order of 10 m3 622 

at the field scale (Eggleston and Rojstaczer, 1998); 200  200  1 m3 at large regional scales 623 

(Maples et al. 2019)). These efforts, first focusing on determining the fluid flow field, and 624 

subsequently on delineating pathways for chemical transport, began largely because of 625 

dissatisfaction with results of application of 1d, 2d, 3d forms of an “effective” (averaged) ADE 626 

(see further discussion in Sect. 3.3.2). Acquiring high-resolution measurements of structural (e.g. 627 

mineralogy, porosity) and hydrological properties (e.g. hydraulic conductivity) was made more 628 

feasible in recent years by advances in hydrogeophysics, and as well as by advances in 629 

computational capabilities that enable incorporation of this information in finely-discretized 630 

meshes, and numerical solution for fluid flow and chemical transport. 631 

In these highly resolved, (high-resolution) gridded domains, the flow field can be determined 632 
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from solution of Darcy’s law. Chemical transport is then simulated either by use of streamline 633 

particle tracking methods, by (accounting for advection and diffusion in a Lagrangian framework,) 634 

or via solution of a local, (mesh element) continuum-scale transport equation. For chemical 635 

transport, use of an advection-diffusion equation might appear preferable – given that it requires 636 

no estimate for the local dispersivity –, but some researchers apply an advection-dispersion 637 

equation, which necessitates use of mesh-scale dispersivity values that are either assumed or 638 

estimated from local measurements. The latter case assumes mesh-scale transport to be fully 639 

Fickian (recall Sect. 3.2) to quantify overall transport. More recently, we note that alternative 640 

formulations of a governing transport equation that incorporates broad temporal effects more 641 

broadly can also be used in this type of modeling approach; see, e.g. Hansen and Berkowitz (2020) 642 

for incorporation of a continuous time random walk method (discussed in Sect. 3.3.2) into this 643 

modeling framework. 644 

 [Parenthetically, we note that “analogous”, high-resolution measurements are made at the 645 

pore-scale – in mm to decimeter rock core samples – as a basis for computationally-intensive 646 

modeling of fluid flow and chemical transport at these scales. Similar to the evolution of this 647 

approach for field-scale studies, high-resolution measurements advanced from use of 2d rock 648 

micrographs to advanced micro-computed tomography protocols (e.g. Thovert and Adler, 2011; 649 

Bijeljic et al., 2013; recall Sect. 2.1).] 650 

This approach is attractive in terms of the ability to “reproduce” detailed heterogeneous 651 

hydraulic conductivity structures, and can provide useful “overall assessments” of fluid flow and 652 

chemical transport pathways, and migration of a chemical plume. Moreover, solutions for fluid 653 

flow and chemical transport can be considered “exact”, at least at the scale at which the domain is 654 

discretized; (and they can thus also capture at least some aspects of non-Fickian transport). But 655 

even at this type of spatial resolution, the ability to effectively quantify actual chemical transport, 656 

even relative to the limited available field measurements, remains a question of debate;, and the 657 

research community, as well as practicing engineers, still often prefer to analyze chemical transport 658 

in a domain by use of relatively simple (often 1d, section-averaged) model formulations.  659 

Finally, we point out here that in the context of efforts to obtain increasing amounts of 660 

structural and hydrological information at a given field site, due consideration should also be given 661 

to the “worth” of data. Thus – for example – in an effort to quantify fluid flow or conservative 662 

chemical transport in an aquifer, do we really need “full”, detailed knowledge of the system (e.g. 663 

porosity, hydraulic conductivity) at every point in the formation? Possibly non-intuitively, the 664 

adage “more data is better” is often not true, and model incorporation of statistical uncertainty can 665 

offer equally satisfactory solutions with less costly, less measurement- and computationally-666 

intensive, detail (e.g. Dai et al., 2016).  667 

 668 

 669 

3.3.2 “Effective” characterization and modeling 670 

 671 

At least since the 1960’s, the research community has focused enormous efforts on formulation of 672 
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“averaged”, or “effective” (often macroscopically, section-averaged 1d) transport equations to 673 

quantify chemical transport, without requiring high-resolution discretization and 674 

(computationally-intensive) numerical solution of the domain. The (now “classical”) ADE was 675 

advanced as the governing (partial differential) equation; see also further discussion on “effective 676 

scales of interest”, in the context of “upscaling” (Sect. 4). Recall that as discussed in Sect. 3.2, the 677 

ADE assumes Fickian transport behavior, in the sense that mechanical dispersion – which is 678 

defined as an average quantity to describe local fluctuations around the average (advective) fluid 679 

velocity – is treated macroscopically by Fick’s law. The classical ADE then specifies coefficients 680 

of longitudinal and transverse dispersivity, which by definition are constants.  681 

Solutions of the ADE were compared against conservative tracer experiments in laboratory 682 

columns (generally 10-100 cm) to produce breakthrough curves of (concentration vs. time, at a set 683 

outlet distance),; but even from the outset, the applicability of the ADE was questioned by some 684 

researchers (e.g. Aronofsky and Heller, 1957; Scheidegger, 1959). Subsequent flow cell 685 

experiments demonstrated, for example, that the dispersivity constants are not actually constant, 686 

and change with length scale – even over tens of centimeters – to achieve even approximate fits to 687 

the measurements (e.g. Silliman and Simpson, 1987). Moreover, solutions of the ADE appear 688 

inadequate when compared to transport in laboratory flow cells with distinct regions of different 689 

hydraulic conductivities (e.g. Maina et al., 2018). In a sense, then, it can be considered somewhat 690 

surprising that this form of the ADE was subsequently assumed to apply, over several decades, in 691 

a rather sweeping fashion for a wide range of hydrogeological scenarios and length scales. Detailed 692 

discussions of these aspects appear in, e.g. Berkowitz et al. (2006, 2016). [Parenthetically, we 693 

stress again here that if one has complete information at the pore-scale, then solution of the Navier-694 

Stokes and advection-diffusion equations within the pore space can capture the true chemical 695 

transport behavior, i.e. purely spatial information is sufficient to describe chemical transport. But 696 

at continuum scales, time and unresolved heterogeneities became critical, and an “averaged” 697 

equation like the ADE with a “macrodispersion” concept is problematic.] 698 

To mMoveing beyond the ADE, and the definitive need for effective transport equations that 699 

quantify non-Fickian, (as well as Fickian,) transport (recall Figs. 4 and 5), we consider an  700 

alternative approach. The idea is to account for the temporal distribution that affects chemical 701 

migration of chemical species, in addition to thea spatial distribution, at a broad continuum level, 702 

and employ a transport equation in the spirit of a “general purpose” ADE. This approach 703 

necessarily leads to transport behaviors that are more general than those indicated by a “general 704 

ADE”, (i.e. in the context of an overall, averaged 1d transport scenario for example).  705 

To explain this approach, we refer to the continuous time random walk (CTRW) framework, 706 

which is particularly broad and general (Berkowitz et al., 2006). Significantly, and conveniently, 707 

it should be recognized thatit turns out that special, (or limit), cases of a general CTRW formulation 708 

lead to other well-known related “subset” formulations that can also quantify various types of non-709 

Fickian transport, as explained in, e.g., Dentz and Berkowitz (2003) and Berkowitz et al. (2006). 710 

These “subsets” include mobile-immobile (e.g, Feehley et al., 2000), multirate mass transfer (e.g. 711 

Haggerty and Gorelick, 1995; Harvey and Gorelick, 1995; Carrera et al., 1998), and time-fractional 712 
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derivative formulations (e.g. Barkai et al., 2000; Schumer et al., 2003; Metzler and Klafter, 2004), 713 

as explained in, e.g., Dentz and Berkowitz (2003) and Berkowitz et al. (2006). Indeed, in spite of 714 

frequent references to these model formulations as being “different”, they are closely related, with 715 

clear mathematical correspondence. Each formulation has advantages, depending on the domain, 716 

problem and objectives of model use; but model selection must first be justified physically, and it 717 

is inappropriate, for example, to apply a mobile-immobile (two domain) model to interpret  718 

chemical transport in a “uniform, homogeneous” porous medium when it displays non-Fickian 719 

transport behavior (recall Fig. 4). 720 

Here, we describe only briefly the principle and basic aspects of the CTRW formulation; 721 

detailed explanations and developments are available elsewhere (e.g. Berkowitz et al., 2006).  722 

To introduce “temporal thinking” in the context of non-Fickian transport, we begin by 723 

mentioning the analogy between a classical random walk (RW) – which leads to Fick’s law – and 724 

the CTRW. A classical random walk is given in Eq. 1:  725 

 726 

𝑃𝑛+1(ℓ) = ∑ 𝑝(ℓ, ℓ′)ℓ′ 𝑃𝑛(ℓ′)           (1) 727 

  728 

where 𝑝(ℓ, ℓ′) represents the probability of a random walker (“particle”) advancing from location 729 

ℓ′  to ℓ, 𝑃𝑛(ℓ′) denotes the probability of a particle being located at ℓ′ at (fixed) time step n, and 730 

𝑃𝑛+1(ℓ) denotes the probability of the particle then being located at ℓ at step n+1. With this 731 

formulation in mind, Einstein (1905) and Smoluchowski (1906a,b) demonstrated that for n 732 

sufficiently large and a sufficient number of particles undergoing purely (statistically) random 733 

movements in space, the spatial evolution of the particle distribution is equivalent to the solution 734 

of the (Fickian) diffusion equation. This elegant discovery demonstrated that a partial differential 735 

equation and its solution can be represented by following, numerically, the statistical movement 736 

of particles (i.e. particle tracking) following a random walk. Remarkably, random walk 737 

formulations are “generic” in the sense that they can be applied in a broad range of phenomena in 738 

physics, chemistry, mathematics, and life sciences; here, they describe naturally migration of 739 

chemical species (dissolved “particles” or “packets”) in water-saturated porous media. 740 

Generalizing the partial differential equation to include transport by advection, solution of the 741 

ADE under various boundary conditions can then be determined by an appropriate random walk 742 

method. 743 

The simple random walk given in Eq. 1 can be generalized by accounting for time, replacing 744 

the particle transition (or iteration) counter n by a time distribution. The generalized formalism in 745 

Eq. 2, with the joint distribution (s, t), called “continuous time random walk” and applied to 746 

transport, was first introduced by Scher and Lax (1973):  747 

 748 

𝑅𝑛+1(𝐬, 𝑡) = ∑ ∫ 
𝑡

0
(𝐬 − 𝐬′, 𝑡 − 𝑡′)𝑠′ 𝑅𝑛(𝐬′, 𝑡′)𝑑𝑡′          (2) 749 

 750 

where 𝑅𝑛+1(𝐬, 𝑡) is the probability per time for a particle to just arrive at site s at time t after n+1 751 

steps and (s, t) is the probability rate for a displacement from location s' to time s with a difference 752 
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of arrival times of t-t'. It is clear that (s, t) is the generalization of 𝑝(ℓ, ℓ′) in Eq. 1, and that the 753 

particle steps can each now take place at different times. Indeed, it is precisely this explicit 754 

accounting of a distribution of temporal contributions to particle transport, not just spatial 755 

contributions, that offers the ability to effectively quantify transport behaviors as expressed by, 756 

e.g. heavy-tailed, non-Fickian particle arrival times.  757 

To where does the generalization in Eq. 2 lead us? In a mindset similar to that of Brownian 758 

motion, and Einstein’s 1905 breakthrough mentioned above at the outset of Sect. 3.3, a puzzle 759 

arose about seven decades later for researchers attempting to interpret observations of electron 760 

transit times in disordered semiconductors. The electron mobility (defined as velocity per unit 761 

electric field), which was considered an intrinsic property of the material, was found to depend on 762 

variables that changed the duration of the experiment, such as sample length or electric field. Scher 763 

and Montroll (1975), considering Eq. 2, discovered that the mean displacement ℓ of the electron 764 

packet does not advance as  ℓ = 𝑣𝑡, but rather as ℓ ~ 𝑡.  765 

In the context of chemical transport in geological formations, the behavior ℓ ~ 𝑡 can be 766 

attributed to a wide distribution of transition times in naturally disordered geological media. In the 767 

CTRW formulation, the transition time distribution is characterized by a power law of the form 768 

(𝑡) ~ 𝑡−1− for t   and 0 <  < 2; significantly, the resulting transport behavior is Fickian for 769 

 > 2. At large times, for this (t) dependence, the mean displacement ℓ(𝑡) and standard deviation 770 

(𝑡) of the migrating chemical plume c(s, t) scale as ℓ(𝑡) ~ 𝑡  and (𝑡) ~ 𝑡  for t  , 0 <  < 771 

1 (Schlesinger, 1974). Moreover, for t   with 1 <  < 2, the plume scales as ℓ(𝑡)~ 𝑡 and 772 

(𝑡) ~ 𝑡(3−)/2. These behaviors are notably different than that of Fickian transport models, for 773 

which (from the central limit theorem), ℓ(𝑡) ~ 𝑡 and  (𝑡) ~ 𝑡1/2.  774 

With the concepts described here, and using the generally applicable decoupled form (s, t) = 775 

p(s)(t), where p(s) is the probability distribution of the transition lengths and (t) is the 776 

probability rate for a transition time t between sites, Eq. 2 can be developed into an (integro-)partial 777 

differential equation. Thus, the ADE given by  778 

 779 
𝜕𝑐(𝐬,𝑡)

𝜕𝑡
= −[𝐯(𝐬) ∙ ∇𝑐(𝐬, 𝑡) − 𝐃(𝐬): ∇2𝑐(𝐬, 𝑡)]       (3)  780 

 781 

where c(s, t) is the concentration at location s and time t, v(s) is the velocity field and D(s) is the 782 

dispersion tensor, is replaced by the more general CTRW transport equation:  783 

 784 
𝜕𝑐(𝐬,𝑡)

𝜕𝑡
= − ∫ 𝑀(𝑡 − 𝑡′)

𝑡

0
[𝐯 ∙ ∇𝑐(𝐬, 𝑡′) − 𝐃 ∶ ∇∇𝑐(𝐬, 𝑡′)]𝑑𝑡′   (4) 785 

 786 

where v and D are generalized particle velocity and dispersion, respectively, and M(t) is a 787 

temporal memory function based on (t).  788 

The strength of this type of formulation is that it effectively quantifies (non-Fickian) early 789 

arrivals and late time tailing of migrating chemical species, and the spatial evolution of chemical 790 

plumes in heterogeneous media. For example, recalling the scenario in Fig. 2, wherein 99.9% of 791 
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the inflowing particles traverse the preferential pathways seen in Fig. 2c, detailed numerical 792 

simulations indicate that concentration breakthrough curves exhibit significant, non-Fickian, long-793 

time tails (Edery et al., 2014). Choice of an appropriate power-law form of (t) was then shown 794 

to capture this behavior; moreover, a functional form defining the value of the power-law exponent 795 

β in (t) was identified, based on statistics of the hydraulic conductivity and particle interrogation 796 

of the domain (Edery et al., 2014).   797 

Equation (4) is essentially an ADE weighted by a temporal memory. When (t) is an 798 

exponential function (or power law but for β  2), M(t)  (t) and we recover Fickian transport 799 

described by the ADE; thus, the ADE assumes, implicitly, that particle transition times are 800 

distributed exponentially. But with a power law form (𝑡) ~ 𝑡−1− for 0 <  < 2, the transport is 801 

non-Fickian. A wide range of functional forms of (t) can be chosen, including, e.g. truncated 802 

power law forms that allow evolution to Fickian transport at large times or travel distances (e.g. 803 

DentzBerkowitz et al., 20046), as well as Pareto (e.g. Hansen and Berkowitz, 2014) and curved 804 

(or inverse gamma; e.g. Nissan and Berkowitz, 2019) temporal distributions. Other, generally 805 

simpler, choices of (t) or M(t) lead to mobile-immobile, multirate mass transfer, and time-806 

fractional derivative formulations, as mentioned above. We note, too, that the elegant result 807 

derived by Gelhar and Axness (1983) and others, discussed in Sect. 1.2, is valid only at an 808 

asymptotic limit, wherein transport is Fickian and there is no residual non-Fickian memory in thbe 809 

plume advance.  810 

A plethora of related studies have examined a range of perspectives and applications that 811 

explore CTRW formulations. These studies address, for example, numerical simulations (e.g. Le 812 

Borgne et al., 2008; Berkowitz and Scher, 2010; Hansen, 2020; Kang et al., 2014; Rhodes et al., 813 

2008; Edery, 2021), fractured formations (e.g. Geiger et al., 2010; Wang and Cardenas, 2017), 814 

stream transport (e.g. Boano et al., 2007), and laboratory measurements at difference scales (e.g. 815 

Le Borgne and Gouze, 2008; Major et al., 2011). Other studies have explored space-fractional 816 

differential equations (e.g. Benson et al., 2000; Wang and Barkai, 2020). 817 

Each of these power law forms of course requires one or more parameters – at least β – and in 818 

some cases, other parameters that define, e.g. a transition time from non-Fickian to Fickian 819 

transport (Berkowitz et al., 2006; Hansen and Berkowitz, 2014; Nissan et al., 2017). These 820 

parameters have physical meaning, and are not purely empirical; perspectives on “numbers of 821 

parameters” associated with all models are discussed in Sect. 3.3.3. The question of how model 822 

parameter values are determined is addressed in Sect. 4.1. 823 

The efficacy of formulations that incorporate, whether explicitly or implicitly, some type of 824 

power-law characterization of temporal aspects of chemical transport, is now generally recognized 825 

in the literature. Indeed, applications of mobile-immobile, multirate mass transfer, time-fractional 826 

advection-dispersion, and general CTRW formulations have been applied quite extensively and 827 

successfully. In particular, solutions of Eq. 4 and related variants have interpreted a wide range of 828 

chemical transport scenarios: (i) pore-scale to meter scale laboratory experiments, field studies, 829 

and numerical simulations, in (ii) porous, fractured, and fractured porous domains, (iii) accounting 830 

for constant and time-dependent velocity fields, and (iv) for both conservative and reactive 831 
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chemical transport scenarios. Solutions to address some of these scenarios are more easily obtained 832 

by use of particle tracking methods that incorporate the same considerations and power-law form 833 

of (t), as embedded in Eq. 4. 834 

It should be recognized that, lLike the ADE, Eq. 3, the formulation given in Eq. 4 represents a 835 

continuum-level mechanistic model (as derived in, e.g., Berkowitz et al. 2002), in the sense that 836 

both equations contain clear advective and dispersive contributions. The occurrence of a broad 837 

distribution of transition times, fundamental to CTRW and related approaches, emanates from a 838 

variety of physical controls. Discussion in the literature about the need for “mechanistic models” 839 

often uses the term rather loosely: “mechanistic” transport model equations are based on 840 

fundamental laws of physics, with (constant) parameters that have physical meaning (e.g. 841 

hydraulic conductivity, diffusivity, sorption), and thus offer process understanding. But to quantify 842 

the spatiotemporal evolution of a migrating chemical plume, additional parameters are needed. We 843 

argue that, bBecause of the nature of geological materials, a transport equation should of course 844 

capture the relevant physical mechanisms that influence the transport, (as well asand chemical 845 

mechanisms, if the species is reactive) mechanisms that impact the transport,; but to do so, we 846 

must also capture the uncertain characterization of hydrogeological properties due to the reality of 847 

unresolved, (unmeasurable) heterogeneities at any length scale of interest. Thus, we suggest that a 848 

mechanistic-stochastic equation formulation such as given in Eq. 4 is required. Such an equation 849 

(which (i) incorporates a probability density function to account for temporal transitions that 850 

cannot be determined only from spatial information) is required, (ii) describesing known transport 851 

mechanisms (and with physically meaningful parameters), and (iii) accountsing for unknown (and 852 

unknowable!) information.  853 

We note here, too, that other stochastic continuum averaging methods have been proposed in 854 

the literature, in the same context of efforts to formulate a “general”, “effective” transport equation 855 

at a specific scale of interest (see further discussion on “effective” equations and “upscaling” in 856 

Sect. 4). In many cases, though, sophisticated stochastic averaging and homogenization 857 

approaches have led to transport formulations that are essentially intractable, in terms of solution, 858 

and/or have remained at the level of hypothesis without being tested successfully against actual 859 

data. 860 

 861 

 862 

3.3.3 Are fewer parameters always better? (Answer: No!) 863 

 864 

The term “modeling” is used in many contexts and with differing intents. However, in the 865 

literature dealing with chemical transport in subsurface hydrological systems, there are frequent 866 

but (often misguided!) “arguments” regarding “which model is better“, with a major point of some 867 

authors being the claim that “fewer parameters is always best”. Not always. Indeed, some models 868 

involve more parameters than others, but if these parameters have physical meaning and are needed 869 

as factors to quantify key mechanisms, then “more parameters” is not a “weakness”. We 870 

emphasize, too, that when weighing use of any specific (any!) model, “better” also depends, (at 871 

https://gosilico.com/technology/process-understanding/
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least in part), on what the modeling effort is addressing. ; Cclearly – and regardless of the number 872 

of parameters – a “back-of-the-envelope” calculation using a simple model is sufficient if, for 873 

example, one requires only an order of magnitude estimate of the center-of-mass velocity of a 874 

migrating contaminant plume, (or in other words, no need for artillery to swat a mosquito!). [In 875 

this context, quoting Albert Einstein regarding his simplification of physics into general relativity: 876 

“Everything should be made as simple as possible, but not simpler.”]  877 

Considering chemical transport in subsurface geological formations, and the aim of 878 

quantifying (modeling) the evolution of a migrating chemical plume in both space and time, we 879 

return to focus on the ADE- and CTRW-based formulations discussed in Sect. 3.3.2. As noted in 880 

the preceding sections, CTRW and related formulations have been demonstrated repeatedly tocan 881 

describe a transportsystem behaviors effectively, with sufficient parameters to account for the 882 

various mechanisms. Most significantly, the seminal work of Scher and Montroll (1975) showed 883 

that the  exponent has mustto be included because the mean displacement is not linear with time 884 

(i.e. the mean displacement ℓ of the electron packet does not advance as ℓ = 𝑣𝑡, but rather as 885 

ℓ ~ 𝑡 ). SimilarlyThus, a corresponding parameter, relative to an ADE formulation invoking 886 

Fickian transport, is unavoidable when transport is non-Fickianin such cases. In a sense, too, one 887 

can argue that this parameter is not an “additional” parameter relative to the ADE; rather, a 888 

decision to invoke the ADE to quantify a transport problem simply assigns a value to this 889 

parameter, implicitly, as β  2. 890 

It should be recognized that – while not (yet?) standard practice in the research community – 891 

quantitative model information criteria, or model selection criteria, can be used to assess and 892 

compare various model formulations that are applied to diverse scenarios (such as fluid flow, 893 

chemical transport) in subsurface geological formations. These information criteria include AIC 894 

(Akaike, 1974), AICc (Hurvich and Tsai, 1989), and KIC (Kashyap, 1982) measures, as well as 895 

the Bayesian (or Schwarz) BIC (Schwarz, 1978). They are formulated to rank models, or assign 896 

(probabilistic) posterior weights to various models in a multimodel comparative framework, and 897 

therefore focus on model parameter estimates and the associated estimation uncertainty. As such, 898 

these information criteria discriminate among various models according to (i) the ability to 899 

reproduce system behavior, and (ii) the structural complexity and number of parameters. 900 

Discussion of theoretical and applied features of these criteria is given elsewhere (e.g. Ye et al., 901 

2008). Using such measures sSpecifically in the context of the ADE and CTRW formulations, 902 

with an accounting also of chemical reactions, for example, it was shown that while solution of an 903 

ADE can fit measurements from some locations quite closely, the CTRW formulation offers 904 

significantly improved predictive capabilities (in the context of model assessment in the presence 905 

of uncertainty) when examined against an entire experimental data set (Ciriello et al., 2015). In 906 

addition, focusing on the most sensitive observations associated with the CTRW model provides 907 

a stronger basis for model prediction, relative to the most sensitive observations corresponding to 908 

the ADE model. 909 

To conclude this section: Notwithstanding the above arguments, some readers might continue 910 

to argue that the approach discussed here – viz., the need for time considerations as well as space 911 



24 
 

such (as embodied in the CTRW framework and related formulations) – is “inelegant” because it 912 

requires more parameters relative to the classical ADE. In response, the reader is encouraged to 913 

recall the words of Albert Einstein following criticism that his theory of gravitation was “far more 914 

complex” than Newton’s. His response was simply: “If you are out to describe the truth, leave 915 

elegance to the tailor”. 916 

 917 

 918 

4 The holy grail of upscaling, and myths about “a priori” parameter determination  919 

 920 

We begin by defining the term “upscaling” in the context of the discussion here on chemical 921 

transport. As defined in the Introduction, Sect. 1.2, we use the term “upscaling” to describe the 922 

effort to develop and apply chemical transport equations at large length scales, and identify 923 

corresponding model parameter values, based on measurements and parameter values obtained at 924 

significantly smaller length scales. 925 

We attempt “upscaling” in the hope of developing governing equations for chemical transport 926 

at larger and larger scales, from pore, to core, to plot, and to field length scales. Clearly, then, 927 

“upscaling” is relevant to the modeling approach discussed in Sect. 3.3.2 – which focuses on use 928 

of “averaged”, or “effective” (often 1d, or section-averaged) transport equations – and not to the 929 

high-resolution domain delineation and modeling approach of Sect. 3.3.1. 930 

However, in light of the discussion in Sect. 2 and Sect. 3, we argue that “upscaling” of chemical 931 

transport equations is very much an unattainable holy grail. Particularly in light of recognizing 932 

temporal effects, in addition to spatial characterization, we maintain that it is necessary to 933 

formulate and, calibrate and apply models, and then apply them, using measurements at similar 934 

measurement scales of interest, in both space and time. Of course, similar equation formulations 935 

can be applied at different spatial scales. But parameter values for transport equations cannot 936 

generally be determined a priori or from purely spatial or flow-only measurements; measurements 937 

with a temporal “component”, at the relevant length scale of interest, are required. 938 

In Sect. 4.1, we briefly discuss aspects of model calibration. This leads naturally to our 939 

discussion of upscaling in Sect. 4.2. 940 

 941 

 942 

4.1 Parameter determination and model calibration  943 

 944 

First, it is prudent to offer some words about the need for parameter estimation, or model 945 

calibration. Unless one is dealing with first principles calculations of a physical process such as 946 

(e.g., molecular diffusion) in a perfectly homogeneous domain, a priori determination of model 947 

parameters – for any model equation formulation – requires calibration against actual experimental 948 

measurements.; Iin some limited cases, detailed numerical simulations can be used at small (pore) 949 

scales, (e.g. using an advection-diffusion equation with the fluid phase, together with solution of 950 

the Navier-Stokes equations to first determine the precise flow field in the pore space); but this 951 

https://www.definitions.net/definition/describe
https://www.definitions.net/definition/leave
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also necessitates detailed measurements of the pore structure such as obtained by computed 952 

tomography measurements (e.g. Bijeljic et al., 2013). Indeed, then, at any realistic problem or scale 953 

of interest, all chemical transport models require calibration.  954 

This fundamental tenet should be clear and well-recognized, yet the literature contains all-too-955 

frequent – and both misguided and misleading – “criticism” of various model formulations, 956 

claiming that “parameters are empirical because they are estimated by calibration (fitting) to 957 

experiments”; additional “criticisms” follow, for example, that such as a model is therefore not 958 

“universal”, and/or “it therefore has no predictive capability”. We address these latter “criticisms” 959 

in Sect. 4.2. Parameters are not “empirical” simply because their values are determined by 960 

matching to an experiment!. Moreover, it should be recognized that application even of the 961 

classical ADE at various column and larger scales requires estimates – obtained by calibration – 962 

of dispersivity coefficients; (and for high-resolution domain delineation and modeling as discussed 963 

in Sect. 3.3.1, calibrated “block-scale” dispersivities are needed). [Note: And iIf dispersivities are 964 

not actually determined for a specific experiment, but selected from on the literature for “typical” 965 

values of dispersivity, there is still a reliance on calibration from previous “similar” studies!.] 966 

Moreover, with reference to the desire for model parameters that represent fundamental, spatial 967 

hydrogeological properties of the domain, note that even the classical ADE dispersivity parameter 968 

is not uniquely identified with such properties; rather, it varies even in a given domain as a function 969 

of chemical plume travel distance or time. 970 

With regard to model “universality”, recall that, for example, percolation theory (discussed at 971 

the beginning of Sect. 2) offers “universal” exponents in scaling relationships. But even for this 972 

type of convenient and useful, statistical model, such scaling relationships, too, can only advance 973 

from “scaling” (e.g. A ~ B) to a full “equation” (e.g. A = kB) by calibration of a coefficient of 974 

equality (k) against actual measurements. So even in “simple” models, model calibration cannot 975 

be avoided. 976 

To address “empiricism” – here enters the question of whether parameters of a particular model 977 

(in this case, equations for chemical transport) have a physical meaning. As discussed in Sect. 978 

3.3.2, a mechanistic-stochastic equation formulation such as given in Eq. 4 incorporates a 979 

probability density function to describe known transport mechanisms in a stochastic sense; but 980 

stochastic does not mean “unphysical”, and the parameters as given in, e.g., particular functional 981 

forms of M(t) or (t) are indeed physically meaningful. For example, the key β exponent 982 

characterizing the power law behavior can be linked directly to the statistics of the hydraulic 983 

conductivity field (Edery et al., 2014), or, in a fracture network, be determined from the velocity 984 

distribution in fracture segments (Berkowitz and Scher, 1998), which is related directly to physical 985 

properties of the domain. Similarly, corresponding parameters appearing in “subset” formulations 986 

to quantify non-Fickian transport – e.g. mobile-immobile, multirate mass transfer, and time-987 

fractional derivative formulations – can be understood to have physical meaning (e.g. Haggerty 988 

and Gorelick, 1995; Harvey and Gorelick, 1995; Carrera et al., 1998; Dentz and Berkowitz, 2003; 989 

Berkowitz et al., 2006). These parameters, too, of course require determination by model 990 

calibration to experimental data, (or where appropriate, to results of numerical simulations), just 991 
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as for ADE and any other model, including ADE formulations.  992 

 993 

 994 

4.2 Upscaling, the scale of interest, and predictive capabilities 995 

 996 

Upscaling of fluid flow “works” because pressure propagation is essentially instantaneous.  aAt 997 

the Darcy scale – which is the “practical” scale for most applications – flow paths and streamlines 998 

do not change with increasing gradient (as long as a transition to turbulent flow is not reached)., 999 

Tthe equation formulation remains valid, and the fluid residence time in a domain is irrelevant 1000 

because self-diffusion of water does not affect overall fluid fluxes. Pore-scale flow analyses are 1001 

local and more specialized, and “upscaling” is not per se an objective.  1002 

For chemical transport, though, the situation is totally different. Why? Because “upscaling” 1003 

entails some kind of “coupled” averaging or in parameterization in both space and time, and it is 1004 

far from clear how, if at all, this can be achieved. Moreover, small-scale concentration fluctuations 1005 

do not necessarily “average out”, but instead propagate from local to larger spatial scales. To 1006 

illustrate another aspect of the complexity, the Péclet number (Pe) in heterogeneous media, with 1007 

preferential pathways, varies locally in space (recall Fig. 3 and the discussion in Sect. 3.1). 1008 

Averaging to obtain a macroscale (“upscaled”) Pe must address the relative, locally varying effects 1009 

of advection and diffusion in space, as well as the overall residence time in the domain; after all, 1010 

it is these effects that dominate determination of the plume evolution. Thus, upscaling requires 1011 

spatial averaging, but (at least an) implicit temporal averaging must also be included. It can be 1012 

argued that no single, effective Pe can be defined for the entire domain; whether or not it is 1013 

possible, and how, it is possible to average local Pe values to achieve a single, meaningful domain-1014 

scale Pe remains an open question. And whether we like it or not, even with complete information 1015 

on the spatial (local) Pe distribution, the impact on the overall transport pattern evolution cannot 1016 

be determined without actually solving for transport in the domain. 1017 

For chemically reactive species, the transport situation becomes even more complex, because 1018 

the local residence time, not just the local Pe, must be taken into consideration. Moreover, when 1019 

precipitation or dissolution processes are present, the velocity field will change locally, introducing 1020 

additional local temporal and spatial variability. And when sorption is present but tapers off – (for 1021 

example, when the cation exchange capacity is met, for example), – even the diffusion coefficient 1022 

itself changes. These factors further complicate attempts to upscale. [In this context, too, it should 1023 

be noted that for chemically-reactive systems, it is well-known (e.g. White and Brantley, 2003) 1024 

that there is often a significant lack of correspondence between laboratory and field-based 1025 

estimates of geochemical reaction rates and rates of rock weathering, with field-scale estimates – 1026 

often based on macroscopically Fickian, ADE-like transport formulations – being generally 1027 

significantly smaller (e.g. White and Brantley, 2003).] 1028 

Thus, we suggest that focusing efforts on attempting to develop upscaling methodologies for 1029 

chemical transport, based on any transport equation formulation, appears to be doomed largely to 1030 

failure – as evidenced, too, by decades of research publications. Rather, we argue that because of 1031 
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the subtle effects of temporal mechanisms, and their close coupling to spatial mechanisms, use of 1032 

an “effective”, or “averaged” continuum-level equation to describe chemical transport (as opposed, 1033 

e.g. to intensive numerical simulation using a streamline particle tracking method in a high-1034 

resolution hydraulic conductivity field) requires calibration of a suitable model at the appropriate 1035 

scale of interest, with model parameter values calibrated at essentially the same scale. The model 1036 

can then be applied to examine transport behaviors over spatial scales with relatively similar orders 1037 

of magnitude.  1038 

We emphasize, though, that as stated at the outset of Sect. 4, we do argue that similar 1039 

(continuum-level) transport equation formulations can be applied at different spatial scales, as long 1040 

as they are mechanistically correct, (with a temporal component), and the parameter values are 1041 

based on measurements at the relevant length scale of interest.  1042 

Now, in the context of the above arguments regarding “upscaling” and model application, we 1043 

return to the ideas presented in Sect. 3.3.2 and consideration of model formulations that account 1044 

for both spatial and temporal effects. We first mention use of the ADE. As pointed out in Sect. 3.2 1045 

and extensive literature, the “constant” (as required by the ADE formulation) “intrinsic” 1046 

dispersivity parameter changes significantly even over relatively small (e.g. 10’s of cm’s, Silliman 1047 

and Simpson, 1987) increases in length scales (e.g. 10’s of cm’s; Silliman and Simpson, 1987) – 1048 

and therefore also over time scales – scales., so that iIt therefore makes no real sense to attempt to 1049 

define an “upscaled” dispersivity parameter for larger scales. Even in the framework of high-1050 

resolution domain delineation and modeling, discussed in Sect. 3.3.1 – which is not “upscaling” 1051 

as defined here – the question remains as to what dispersivity values are relevant for field-scale 1052 

aquifer “blocks” of the order of 100 to 1000’s of m3. 1053 

In contrast, CTRW and related transport formulations with explicit accounting of time effects, 1054 

as outlined in Sect. 3.3.2, can be applied meaningfully to interpret real measurements and transport 1055 

behavior at “all” scales. We can use the same equation formulation at different scales, with 1056 

different but relevant parameters at each scale. We emphasize, too, that we do not argue for “hard” 1057 

length scales, :  so that in principle, e.g., an appropriate (CTRW-based) model calibrated at 20 cm 1058 

will be applicable to 100 cm scales, and a model calibrated on a 100 m scale data set can be 1059 

applicable at a kilometer scale (e.g. Berkowitz and Scher, 1998, 2009; Rhodes et al., 2008; Geiger 1060 

et al., 2010; Edery, 2021). The point, though, is that it makes no sense to calibrate at a centimeter 1061 

scale and then expect to somehow “upscale” parameters to apply the same model at a kilometer 1062 

scale. [Note: As an aside, over very large field-length and field-time scales, we point out that 1063 

homogenization effects of molecular diffusion may become more significant, lessening impacts of 1064 

some preferential pathways.] Similarly, a CTRW-based approach can be applied over a range of 1065 

time scales, because the power law accounting for temporal effects can be as broad as needed. In 1066 

these cases, temporal effects are critical, because at the continuum (Darcy) scale, streamlines do 1067 

not change but residence times do. Specifically, for example, a model formulation with a fixed set 1068 

of parameters can interpret transport measurements in the same domain, but acquired under 1069 

different hydraulic gradients or (fluid velocities), and thus domain residence times (Berkowitz and 1070 

Scher, 2009). Indeed, because of the temporal accounting, CTRW has been applied successfully 1071 
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over scales from pores (e.g. Bijeljic et al., 2013) to kilometers (e.g. Goeppert et al., 2020), with 1072 

parameter calibration at the relevant scale of interest. In principle then, too, a calibrated model 1073 

shown to be effective/meaningful over one region of a porous medium or geological formation can 1074 

offer at least a reasonable estimate of transport behavior elsewhere in the medium/formation, at a 1075 

similar length/time scale, and as long as the medium/formation can be expected to have reasonably 1076 

similar hydrogeological structure and properties.  1077 

And fFinally, another critical aspect must be pointed out with regard to continuum-scale 1078 

transport models as outlined in Sect. 3.2. The preceding discussion leads to the stated need and 1079 

desire – at least in principle – to achieve model “prediction”. This term appears often, but it is 1080 

often used incorrectly. Fitting a model solution to data is of course not “prediction”. On one hand, 1081 

using specific experiments and data sets, models can be used to characterize transport behavior, 1082 

e.g., is transport Fickian or non-Fickian?, or, is a migrating chemical plume compact or elongated 1083 

and ramified?, which is of fundamental importance. But if prediction is the ultimate goal 1084 

(recognizing that addressing prediction uncertainty is yet another consideration), then we require 1085 

multiple data sets from the same porous medium or geological formation, in the sense that we need 1086 

measurements over a range of length scales, and/or over a range of time scales (i.e. same distance, 1087 

different flow rates). An intended model can then be calibrated against one part of the data set; the 1088 

calibrated model is then applied “as is” and the resulting solution, a (“prediction”), is compared 1089 

against other (“previously unknown”) measurements. At the laboratory scale, such a protocol is 1090 

feasible, but rarely executed. Rather, the literature generally reports fits of transport equation 1091 

solutions at specific scales – (individual data sets at a given length scale), – and not over a range 1092 

of scales, so that no real testing of “upscaling” or “prediction” is achieved. Thus, even at laboratory 1093 

scales, true “predictive capability” of a model is rarely examined or reported. [Note: A similar 1094 

approach to “prediction” can be done in a purely numerical/computational study, using “ground 1095 

truth simulations” that are assumed correct (e.g. Darcy flow calculations and then streamline 1096 

particle tracking for chemical transport in a highly-resolved domain; recall Sect. 3.3.1), and then 1097 

comparing solutions from a continuum (e.g. partial differential equation) model solution. But it 1098 

should be recognized that results from assumed simulation methods are often unsatisfactory when 1099 

compared against experimental measurements and field observations.] 1100 

And at the field scale, the situation is even less satisfying; large-scale field tests for chemical 1101 

transport are difficult and expensive to execute, so that systematic data sets that enable testing of 1102 

model “prediction” – as well as even initial calibration of a transport model – are essentially non-1103 

existent. Moreover, while larger-scale structural features can be identified in principle via non-1104 

invasive geophysical methods, higher resolution sampling and measurements of hydraulic 1105 

conductivity and geochemical parameters are Moreover, at the field scale, there are necessarily 1106 

highly limited. As a result, numbers of measurements, so that oft-used, (and non-unique) 1107 

interpolation of sparse concentration measurements is employed to yield (ideally 3d) contour maps 1108 

of hydrogeological parameters and actual chemical concentrations; but interpolation will 1109 

unrealistically smooth and dampen existing non-uniform, ramified and irregular preferential 1110 

pathways (recall Fig. 2). Thus, notwithstanding the extensive research efforts reported in the 1111 
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literature, truly comparative studies using field measurements – to genuinely test proposed 1112 

“upscaling” methodologies – are essentially non-existent (e.g. Berkowitz et al., 2016)!. In this 1113 

context, then, we note that criticism in the literature that a given continuum model “demonstrates 1114 

no predictive capability” is in fact not generally based on its assessment relative to sufficiently 1115 

resolved, representative, and real data sets.  1116 

Finally, it is important to recognize that models are most commonly tested against 1d, section-1117 

averaged concentration breakthrough curves, which can be (i) measured directly in laboratory 1118 

column experiments, (ii) estimated or derived in 2d/3d laboratory flow cells by averaging over 1119 

control planes, or (iii) estimated from limited monitoring well measurements (single or multi-level 1120 

sampling with depth) at a fixed number of locations. The latter case, in particular, requires 1121 

extensive interpolation and/or assumption of a large-scale, essentially 1d and uniform, 1122 

macroscopic flow field. Moreover, chemical transport model discrimination often requires 1123 

breakthrough curves that extend over the late time tailing, which are particularly difficult to 1124 

determine in field conditions, due both to interruptions or lack of practicality in well monitoring 1125 

at long times, and to detection limits of measurement methods. While reliance on such 1d (section 1126 

averaged, over some control plane) breakthrough curves many not be ideal, it is often the reality 1127 

in terms of feasible data acquisition.  As a direct consequence, model selection, model parameter 1128 

fits, and model calibration results may each (and all) be non-unique and lead to confusing or 1129 

conflicting conclusions. It is therefore critical that we at least select from mechanistic-stochastic 1130 

models based on fundamental laws of physics, with parameters that have physical meaning, as 1131 

discussed in Sect. 3.3.2, rather than from models invoking purely statistical distributions or 1132 

assumptions known to be incorrect. 1133 

 1134 

 1135 

5 Concluding remarks 1136 

 1137 

The ideas, arguments and perspectives offered here represent an effort to somehow summarize 1138 

and synthesize an understanding of existing approaches and methods proposed to quantify 1139 

chemical transport in subsurface hydrological systems. The literature on this subject is vast, 1140 

extending over decades, and measurements and observations of chemical transport range from 1141 

pore-scale microfluidic laboratory cells to aquifer field scales. A similarly broad range of model 1142 

formulations has been proposed to quantify and interpret these measurements/observations. And 1143 

yet, outcomes of these efforts are often largely unsatisfactory.  1144 

We contend that modeling obstacles arise largely because domain heterogeneity – in terms of 1145 

porosity, hydraulic conductivity, and geochemical properties – is present over multiple length 1146 

scales, so that “unresolved”, practically unmeasurable heterogeneities and preferential pathways 1147 

arise at every length scale. Moreover, while spatial averaging approaches are effective when 1148 

considering overall fluid flow – wherein pressure propagation is essentially instantaneous and the 1149 

system is “well mixed” – purely spatial averaging approaches are far less effective for chemical 1150 

transport, essentially because well-mixed conditions do not prevail. We assert here that an explicit 1151 
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accounting of temporal information, under uncertainty, is an additional – but fundamental – 1152 

component in an effective modeling formulation. As a consequence, we argue that for continuum-1153 

scale analysis, mechanistic-stochastic models such as those outlined in Sect. 3.2 must be invoked 1154 

to account explicitly for both “additional” temporal effects and unresolved heterogeneity. Clearly, 1155 

no single model is “best” for all situations and objectives, but any selected model must be 1156 

physically relevant and justified. 1157 

We further assert, as an outcome of these arguments, that “upscaling” of chemical transport 1158 

equations – in the sense of attempting to develop and apply chemical transport equations at large 1159 

(length) scales based on measurements and model parameter values obtained at significantly 1160 

smaller length scales – is very much an unattainable holy grail. Rather, because probabilistic 1161 

considerations required to account for small-scale fluctuations do not necessarily “average out” –  1162 

(and can propagate from local to larger spatial scales), – we maintain that it is necessary to 1163 

formulate and, calibrate and apply models, and then apply them, using measurements over spatial 1164 

scales with at similar orders of magnitude measurement scales of interest, in both space and time.  1165 

In all of our efforts to reasonably model chemical transport in subsurface hydrological systems, 1166 

we should recognize and accept the objective of advancing our science by integrating theory, 1167 

computational techniques, laboratory experiments and field measurement, with the aim of 1168 

extracting broadly applicable insights and establishing practical, functional tools. In this context, 1169 

as a close colleague and mentor said to me many, many years ago, “remember, this is hydrology, 1170 

with very real problems to address…we’re not doing string theory”!. 1171 

We have included many points for discussion and open thought. Understandably, tThe reader 1172 

may not agree with all arguments and conclusions raised here, but scholarly debate is critical: it is 1173 

hoped that this contribution will stimulate further discussion, assist in ordering classification of 1174 

the (often confusing) terminologies and considerations, and identify the most relevant, real 1175 

questions for analysis, implementation and future research.  1176 

We hope that the above thoughts and illustrations (i) encourage careful consideration prior to 1177 

data collection, (whether from field measurements, laboratory experiments, and/or numerical 1178 

simulations), (ii) assist in experimental design and subsequent analysis, and, even more 1179 

significantly, (iii) influence the research agenda for the field by challenging researchers to ask and 1180 

address appropriately formulated questions. In terms of “modeling” efforts: recall the statement 1181 

by Manfred Eigen (Nobel prize chemistry, 1967): “A theory has only the alternative of being right 1182 

or wrong. A model has a third possibility: it may be right, but irrelevant.” 1183 
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