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Abstract

Floods have caused severe environmental and social economic losses worldwide in
human history, and are projected to exacerbate due to climate change. Many floods are
caused by heavy rainfall with highly saturated soil, however, the relative importance of
rainfall and antecedent soil moisture and how it changes from place to place has not
been fully understood. Here we examined annual floods from more than 200
hydrological stations in the middle and lower Yangtze River basin. Our results indicate
that the dominant factor of flood generation shifts from rainfall to antecedent soil
moisture with the increase of watershed area. The ratio of the relative importance of
antecedent soil moisture and daily rainfall (SPR) is positively correlated with
topographic wetness index and has a negative correlation with the magnitude of annual
floods. This linkage between watershed characteristics that are easy to measure and the
dominant flood generation mechanism provides a framework to quantitatively estimate
potential flood risk in ungauged watersheds in the middle and lower Yangtze River

basin.
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1. Introduction

Flooding is one of the most destructive and costly natural hazards in the world, resulting
in considerable fatalities and property losses (Suresh et al., 2013). River floods have
affected nearly 2.5 billion people between 1994 and 2013 worldwide (CRED, 2015),
and caused 104 billion dollars losses every year (Desai et al 2015). The damages may
be further exacerbated by increasing frequency and intensity of extreme rainfall events
according to climate change projections (IPCC 2012; Ohmura and Wild 2002). Flood
control infrastructures and more accurate predictions are needed to reduce flood
damages, which requires better understanding of the underlying mechanism of flood

generation as well as the drivers of change (Villarini & Wasko 2021).

Numerous studies have been conducted to investigate the cause of floods across
the world (Bloschl et al 2013; Munoz et al 2018; Zhang et al 2018). Many studies
focused on examining the environmental and social characteristics that lead to specific
catastrophic flood events (Bloschl et al 2013; Liu et al 2020; Zhang et al., 2018). Others
concentrated on single locations, usually catchment outlets, to explore the influential
factors of floods and the future trends (Brunner et al., 2016; Munoz et al 2018). Yet
given the amount of data and time required, it is not practical to apply these detailed
studies to hundreds of catchments to generate an overview of the flood generation

mechanism at large scale.

Recently, researchers started to investigate the dominant flood generation
mechanisms at regional scales (Berghuijs et al 2019b; Do et al 2020; Garg & Mishra
2019; Smith et al 2018; Tramblay et al 2021; Ye et al 2017). Most of these studies are
conducted in North America and Europe with well-documented long-term records

(Berghuijs et al 2016; Bloschl et al 2019; Do et al 2020; Musselman et al 2018; Rottler
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et al 2020). Some research was conducted in China recently (Yang et al 2019; Yang et
al 2020), though such kind of work is still limited, further investigations are needed

given the considerable spatial heterogeneity and complexity in flood generation.

As the largest river in China, Yangtze River basin has long suffered from floods. In
summer 2020, 378 tributaries of the Yangtze River had floods exceeding the alarm level,
causing billions of dollars damage (Xia et al., 2021). With the increasing public
awareness, more accurate prediction is needed, which relies on better understanding.
However, due to the limitation of observations, there are only a few regional studies of
the flood generation mechanism in China, with few in the Yangtze River basin (Zhang
et al 2018; Yang et al 2019; Yang et al 2020). The large number of dams and reservoirs
built along the river further complicated the situation (Feng et al., 2017; Qian etal 2011;

Yang et al 2019).

Because of the relatively warm temperature, snowmelt has little impact on flood
generation in the Yangtze River basin (Yang et al 2020). Floods in the Yangtze River
basin usually occur during summer with relatively wet soil and high rainfall (Wang et
al 2021). Heavy rainfall with high antecedent soil moisture has also been identified as
dominant driver of floods across world (Beighuijs et al 2019b; Garg et al 2019;
Tramblay et al 2021; Wasko et al 2020). Recently, studies started to examines the
relative importance of rainfall and antecedent soil moisture in flood generation
(Brunner et al., 2021; Wasko et al., 2021; Bennett et al., 2018; Bertola et al., 2021).
Quantitative evaluation of the relative contribution of rainfall and antecedent soil
moisture and its change across watersheds is still limited and currently unavailable in

China (Liu et al., 2021; Wu et al., 2015).

Based on the watersheds in the middle and lower Yangtze River basin, this study

4



86
87
88
89
90
91
92
93
94
95

96

97

98

99
100
101
102
103
104
105
106
107
108
109

attempts to explore the following questions: 1) is there a way to quantitatively describe
the relative importance of antecedent soil moisture and rainfall on flood generation; and
2) how would this combination of flood-generation rainfall and soil moisture vary
across watersheds, and what are the influential factors. Based on the observations and
model estimation (Section 2), the spatial distribution patterns of antecedent soil
moisture and rainfall were obtained and analyzed to investigate their individual
contribution to flood generation and the influential factors (Section 3). This allows for
further examination of the relative importance of antecedent soil moisture and rainfall
on flood generation and its linkage to watershed characteristics as well as its

implications to flood prediction (Section 4), all the results are summarized in Section 5.

2 Methods

2.1 Study area

The Yangtze River is the largest river in China, with a total length of 6,300 kilometers
and annual discharge of 920km? at the outlet (Yang et al., 2018). It drains through an
area of 1.8*10° km?, lying between 90°33’and 122°25’E and 24°30’and 35°45°N, and
is home to over 400 million people, most of which live in the middle and lower Yangtze
River basin (YZRB) (Cai et al., 2020). The elevation of the YZRB declines from west
to east: from over 3000m in Qinghai-Tibet Plateau, to around 1000m in the central
mountain region, and the 100m in Eastern China Plain (Wang et al., 2013). The
vegetation types in the YZRB are forests, shrubs, grassland and agricultural land,
accounting for 11.85%, 12.65%, 32.26% and 42.88% respectively. Grassland and
shrubs are the dominant vegetation in the middle and upper YZRB, while the
downstream YZRB is dominated by forests and agricultural land (Miao et al., 2010).

There are more than 51,000 reservoirs of different sizes in the whole basin, including

5
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280 large ones (Peng et al., 2020).

Most of the YZRB is semi-humid and humid, with a typical subtropical monsoon
climate. The mean annual temperature is approximately 13.0 °C, varying from —4 °C
to 18°C downstream. The mean annual precipitation of the whole basin is about 1200
mm, increasing from 300mm in the western headwaters to 2400 mm downstream. (Li
etal., 2021). Most of the precipitation comes between June and September, the premise
of persistent heavy rain in the Yangtze River basin is the frequent activity of weak cold
air in the north (Tao et al., 1980) and the intersection of mid-latitude air mass and
monsoon air mass (Kato et al., 1985). Studies have found that both annual precipitation
and the frequency of extreme precipitation events have increased in the middle and
lower reaches of the Yangtze River (Qian et al., 2020; Fu et al., 2013). As aresult, floods
have occurred frequently in the middle and lower reaches of the Yangtze River, where

most of the population in the YZRB live (Liu et al., 2018).

2.2 Data

In this work, we focus on the middle and lower reaches of the Yangtze River for the
high population density and increasing flood risk. The 30-meter digital elevation model
(DEM) was downloaded from Geospatial Data Cloud (http://www.gscloud.cn/), from
which the drainage area corresponding to the hydrological station was extracted by
ArcGIS. Daily precipitation data and temperature data between 1970 and 2016 from
247 meteorological stations within and near the YZRB were downloaded from China
Meteorological Data Network (https://data.cma.cn/) (Figure 1). The temperature data
was used to estimate potential evaporation. The observed precipitation and estimated
potential evaporation were interpolated into the whole YZRB using the Thiessen

polygon method (Meena et al., 2013). The interpolated precipitation and potential
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evaporation were then averaged for the drainage area corresponding to each

hydrological station.

The daily streamflow data was collected from 267 hydrological stations from
Annual Hydrological Report of the People's Republic of China. Among which, 224
stations with at least 20 years records from both the period from 1970 to 1990 and the
period from 2007 to 2016 were selected, the data from 1990 to 2007 were not found in
online repository (see Figure S1 for data availability). Information of 361 reservoirs in
the middle and lower YZRB, including capacity and controlling area was downloaded
and extracted from the Global Reservoir and Dam database (GRanD) (Lehner et al
2011). Previous study showed that this database provides reliable information of middle
and large reservoirs in China (Yang et al 2021). Watersheds with more than 80% of the
drainage area under control reservoirs according to GRanD database and/or located
right downstream of reservoirs and water gates were considered as watersheds under

strong regulation (regulated watersheds).

2.3 Calculation of hydrological and topographic characteristics

Potential evaporation estimation

The temperature data was used to estimate potential evaporation following the

Hargreaves method (Allen et al., 1998; Vicente et al., 2014; Berti et al., 2014).

ETy = 0.0023 x (Tmax — Tmin)®® x (Tmean + 17.8) X Ra D

where ET) is potential evaporation (mm/d), 7max is the highest temperature (°C), Tmin
is the lowest temperature (°C), Tmean is the mean temperature (°C), and Ra is the outer

space radiation [MJ/(m? d)], which can be calculated as follows:



156

157
158
159

160

161

162

163

164

165
166

167

168
169
170
171
172

173

174

Ra = 37.6 X d, X (wg sin ¢ sin § + cos ¢ cos § sin wy), 2)

where d- is the reciprocal of the relative distance between the sun and the earth, wy is
the angle of sunshine hours, § is the inclination of the sun (rad), ¢ is geographic

latitude (rad). d,, § and wg can be calculated by the following formula:

d, = 1+0.033 x (2"] 3

= . cos ﬁ) 3)
. (27]

6 = 0.409 X sin (ﬁ - 1.39), 4

wg = arcos(—tan@ tan§) , (5)

where ] is the daily ordinal number (January Istis 1).

Soil water storage estimation

The soil water storage was estimated based on the daily water balance (Berhuijs et al.,
2016, 2019):

ds

=P ET- max(Q, 0), 6)

Where S is the soil water storage (mm), which is initially set to 0. Due to the long term
of simulation, the change of initial value would not significantly affect the results. P is
precipitation (mm/d), Q is discharge normalized by area (mm/d), ET is evaporation
(mm/d), which can be calculated from potential evapotranspiration (£7y), where the

soil water storage (S) is used as the upper limit of daily ET:

ET = min(0.75 X ET,,S), (7)

The estimation of soil water storage and ET are highly simplified and is not used for
8
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prediction but to capture the first order of the temporal variation and the relative
wetness of soil in the study time period, which helps develop a framework that
differentiates the relative contribution of precipitation and soil moisture in flood

generation.

Topographic wetness index estimation

Topographic wetness index was calculated to represent the combined impacts of

drainage area and topographic gradient (Alfonso et al., 2011; Grabs et al., 2009):

TWI =In(4,/tana) , (8)
where A4y is drainage area and « is topographic gradient estimated from DEM. TWI
represents the propensity of subsurface flow accumulation and frequency of saturated
conditions, thus can be used to predict relative surface wetness and hydrological
responses (Meles et al 2020). It is widely used to quantify topographic impact on
hydrological processes (i.e., spatial scale effects, hydrological flow path, etc.), as well
as in land surface models for hydrological, biogeochemical and ecological processes

(Sorensen et al 20006).

2.4 Quantification of the relative importance of soil moisture and precipitation

during floods

The maximum daily discharge of each year was selected as annual flood, which was
then averaged across years as the mean annual maximum flood (AMF). The observed
rainfall on that day and the estimated soil water storage at the day before AMF in each
year were also averaged across years as daily rainfall (P) and antecedent soil moisture
(So). Since almost all the AMFs in our study region come during rainy season when

rainfall comes in most of the days, it could be difficult to isolate the events of AMFs
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among consecutive flow events. To avoid the bias that may be caused in event
separation, the soil moisture at the day before AMF was used as antecedent soil
moisture, instead of the day before the event of AMF. To examine the impacts from
long-lasting rainfall event, especially for the large watersheds with longer concentration
time, we also calculated the mean accumulated rainfall from two days (rainfall on the

flood day and the day before, P) to seven days before (weekly rainfall, P).

The percentile of antecedent soil moisture (Sy) was calculated to represent the
relative saturation of soil moisture in the time series; while the percentile of daily
rainfall (P) was estimated to show the relative intensity (P’), representing the relative
magnitude of rainfall events across time. The percentile of accumulated rainfall was

also calculated for the two-day to seven-day rainfall.

To quantify the relative importance of antecedent soil moisture and rainfall in flood
generation, the ratio between these two factors at the AMFs was derived: SPR =S"/P".
When SPR is large, the antecedent soil moisture is much closer to the maximum, while
the daily rainfall is less extreme, floods are more affected by the antecedent soil
moisture. On the other hand, a smaller SPR indicates relatively larger magnitude of
rainfall comparing with antecedent soil moisture, that is, rainfall is more extreme and

influential in flood generation.

3 Results

3.1 Spatial patterns of antecedent soil moisture and precipitation during floods

Figure 2 shows the spatial distribution of the percentile of antecedent soil moisture and
daily rainfall during the annual maximum floods (AMFs) in the middle and lower
reaches of the Yangtze River. As we can see from Figure 2a, in the middle and lower
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reaches of YZRB, when AMFs occurred, the percentile of antecedent soil saturation
was generally high, most of them are larger than 0.6: the farther away from the main
stream, the more saturated the soil was. On the other hand, along and near the main
stream and the delta, the antecedent soil saturation rate could be much smaller, even

less than 0.4.

Figure 2b shows the daily rainfall during the AMFs. As we can see, the percentile
of daily rainfall is relatively high (>0.8) at more than half of the study sites, while it is
small (<0.5) for the sites along the main stream and in the delta (Figure 2b). Comparison
between Figure 2a and b suggests that, except the sites on the main stream and in the
delta, sites with relatively high antecedent soil saturation rate (i.e., >0.8, the blue dots)
during AMFs are also the ones with relatively small daily rainfall contribution (i.e.,
<0.8, the light blue and cyan dots). That is, for these sites, the AMFs are usually
occurring at a much wetter condition while extreme rainfall at flood day is not necessary,
suggesting the relative importance of soil wetness. For the sites with both the percentile
of soil moisture and rainfall between 0.6 and 1, both the antecedent soil moisture and
rainfall play important roles in flood generation. As for the sites on the main stream and
in the delta, both antecedent soil moisture and rainfall are low during AMFs, this is

likely due to the regulations from large reservoirs and water gates.

3.2 The scaling effect in the contribution of antecedent soil moisture and rainfall

To further investigate the relative importance of antecedent soil moisture and rainfall
in flood generation and the potential influential factors, we examined their correlation
with catchment area (Figure 3). Given the complicated environmental and social
impacts, the regulated watersheds and sites on the main stream are presented separately

(the green dots and cyan dots in Figure 3 respectively). Our study will focus on the sites
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that are not dominated by regulation (the blue dots in Figure 3), for simplicity, we will

refer them as natural watersheds.

As we can see from Figure 3, during the occurrence of AMFs, the percentile of
antecedent soil wetness increases with watershed area (p-value<0.001), while the
percentile of daily rainfall decreases with watershed area (p-value<0.001). That is, with
the increase of watershed size, antecedent soil moisture becomes more and more
saturated while the precipitation is less and less extreme during AMFs; suggesting the
rising contribution of antecedent soil moisture and declining importance of daily
precipitation in flood generation. As for the regulated watersheds (green dots in Figure
3), there is no clear correlation between drainage area and the percentile of antecedent
soil moisture or rainfall, which is understandable. Meanwhile, both the percentile of
antecedent soil moisture and rainfall decreases with watershed area for main stream

sites.

3.3 The scaling impacts on accumulated rainfall

The saturation of soil before floods could be due to previous rainfall events, and could
also be caused by accumulated rainfall in long-lasting rainfall events that eventually
generate floods (Xie et al., 2018). Figure 4 presents the correlation between the
percentile of accumulated rainfall and drainage area. When single day rainfall is
considered, it is negatively correlated with drainage area (Figure 3a); when
accumulated rainfall is considered, the correlation gradually shifts from negative to
positive correlation (Figure 4). For example, when two-day rainfall was examined, the
correlation between accumulated rainfall and drainage area shifts from negative to
positive at 10,000 km?; the negative correlation in Figure 3a is only valid for watersheds

larger than 10,000 km? (Figure 4a). This transition area increases from 10,000 km? for
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two-day rainfall to 100,000 km? for four-day rainfall (Figure 4c). The number of
watersheds with negative correlation also decreases. Eventually, the weekly rainfall has
similar positive correlation with drainage area like antecedent soil moisture (Figure 4f).
The increase of transition area may be explained by the increasing response time and
confluence time in large watersheds: it takes days to generate flow events by heavy
rainfall and for them to reach outlets where it can be observed in large watersheds. This
is also consistent with the conclusion in the Yellow River Basin (Ran et al., 2020) and
our previous findings of the dominant flood generation mechanism in the middle and
lower YZRB: weekly rainfall is the dominant flood driver for sites on the main streams
and the major tributaries (Wang et al 2021). The regulated watersheds don’t show
significant correlation which is understandable for the strong human intervention. For
the negative correlation between accumulated rainfall and drainage area at main stream

sites, it is difficult to decide whether it is due to scaling effect or human intervention.

3.4 The interlink of watershed characteristics, flood, antecedent soil moisture and

rainfall

Figure 5 presents the percentile of antecedent soil moisture and rainfall during the
AMFs at the study watersheds, the circles are scaled by watershed size and colored with
topographic gradient. Except the watersheds with strong human intervention (regulated
ones and the ones on main stream), there is a negative correlation between the
contribution of rainfall and antecedent soil moisture. The lower right of the scatter are
mostly big blue dots, which are large watersheds with gentle topographic gradient. That
is, AMFs usually occur when soil moisture is close to saturation while extreme rainfall
is not necessary for AMFs in these watersheds. On top of the scatter are relatively small

yellow and green dots, those are medium to small watersheds with steep topographic
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gradient. That is, AMFs are usually generated with extreme rainfall, while the saturation
of soil moisture is not necessary. This negative correlation indicates the shift of
dominance in AMFs generation from extreme rainfall to antecedent soil wetness from

small steep watersheds to large flat ones.

Figure 6 shows the relative importance of antecedent soil moisture and rainfall. For
the natural watersheds (the circles), SPR increases with drainage area and declines with
topographic gradient. That is, the larger the drainage area is, the more essential the
contribution of antecedent soil moisture to floods is, and the less influential rainfall is
in flood generation. For watersheds with similar drainage area (i.e., the green or light
blue dots in Figure 6b), topographic gradient also cast impacts on SPR: SPR decreases
with slope. That is, the relative importance of rainfall increases at steeper watersheds.
This may be attributed to the shortened hydrological response time due to the steep
topography which facilitates rainfall induced floods generation. As a combination of
both drainage area and topographic gradient, TWI is positively correlated with SPR at
natural watersheds, with less scatter than the correlation between SPR and drainage
area or topographic gradient alone. That is, watersheds with larger area and gentler
topographic gradient that are easier to get wet tend to have larger SPR: soil wetness is
more important in flood generation. There is no significant correlation between SPR
and TWI for the regulated watersheds along tributaries (black triangles). However, the
sites on main stream show opposite pattern: the SPR at these sites decreases with TWI
and drainage area. It is difficult to determine whether this is because of reservoir
regulation or not. More data about watersheds larger than 10,000km? but with limited

human intervention are needed to examine this hypothesis.

Besides TWI, SPR is also correlated with the magnitude of AMF (Figure 7). As
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Figure 7 shows, the area normalized flood peak declines with flood-generation SPR.
Watersheds with large flood peak are mostly the ones with steep topographic gradient
and small SPR (i.e., SPR<1) and vice versa. Catchments with more extreme floods are
the ones with relatively less influence of soil moisture on flood generation. Similar
correlation was also found at event scale in our experimental mountainous watershed,

which locates at a headwater of Yangtze River (Liu et al 2021).

4 Discussion

4.1 The relative importance of antecedent soil moisture and rainfall in flood

generation

While soil moisture and rainfall are the two main drivers of floods in the middle and
lower Yangtze River basin, the dominance of each factor varies across the relatively
natural watersheds. Floods in large watersheds are usually generated when soil is almost
saturated despite of the relatively small rainfall amount, while extreme rainfall is
usually observed during floods in small to medium watersheds (blue dots in Figure 3).
The rising contribution of antecedent soil moisture in large watersheds was consistent
with the findings in Australian watersheds (Wasko & Nathan, 2019); and the declining
influence of rainfall at larger watersheds was also found in Indian watersheds (Garg et
al 2019). This contrast correlation with watershed size indicates a shift of dominance
in AMFs generation, which may be attributed to the longer confluence time in the large

watersheds and less heterogeneity in small watersheds.

This shift of dominance can be observed more straightforwardly from the negative
correlation between the percentile of rainfall and antecedent soil moisture in Figure 5.

The natural watersheds in Figure 5 could be grouped into three classes based on their

15
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drainage area and topographic gradient. When a watershed is large and flat, flood
occurrence is mainly determined by soil wetness (i.e., the big blue dots at the lower
right of the scatter); on the other hand, when a watershed is small and steep, heavy
rainfall takes over the dominance (i.e., the small yellow and green dots at the upper left
of the scatter). Between these two groups are relatively small watersheds with gentle
topographic gradient, where the occurrence of AMF requires both highly saturated soil
and relatively heavy rainfall. That is, the dominant influential factor(s) in AMFs
generation across watersheds is correlated with the topographic characteristics (i.e.,
watershed size and topographic gradient). This helps quantify the relative importance

of soil moisture and rainfall in flood generation in the existing work.

This shift of dominance is not observed in the main stream sites (i.e., cyan dots in
Figure 3), where the percentile of both antecedent soil moisture and precipitation
declines with drainage area. This may be attributed to the more complicated flood
generation mechanism at large scale as well as the strong human intervention on main
stream (e.g., reservoirs, water gates regulation, etc.) (Gao etal., 2018; Long et al., 2020;
Zhang et al., 2017). The major responsibilities of reservoirs on the main stream are to
reduce peak flow and postpone the time to flood peak (Volpi et al., 2018). As a result,
the original flood peak would be delayed by regulation and the actual flood peak would
occur when rainfall declines/stops and soil water drains. Another possibility is that
when watershed size is larger than 100,000km?, the impact of antecedent soil moisture
declines as well. To examine this hypothesis, more data from watersheds larger than
100,000km? and with limited human intervention is needed. However, this is above the

scope of this work and requires future studies.

4.2 Linkage between topographic characteristics, SPR and floods
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The correlation between TWI and SPR (Figure 6¢) demonstrates that the relative
importance of soil moisture and rainfall could be inferred from topographic
characteristics quantitatively. We could derive the relative dominance of soil moisture
and rainfall in flood generation in specific watershed from its TWI for the natural
watersheds without significant human intervention. Rainfall and soil moisture level
have been identified as dominant drivers of floods, individually or together, in
watersheds worldwide (Berghuijs et al 2016, 2019b; Garg & Mishra 2019; Tramblay et
al 2021; Ye et al 2017). Our findings provide a framework to quantify the relative
importance of rainfall and soil moisture and to further identify the influential factors of

their importance based on topographic characteristics that are easy to measure.

Meanwhile, the SPR also present a negative correlation with the magnitude of
AMFs (Figure 7). That is, we could infer the mean annual AMF based on SPR for each
watershed. Since the characteristic SPR could be estimated from TWI, we could derive
quantitative estimation of the mean AMFs from topographic characteristics that are
easy to measure, even in watersheds with little hydrologic records. There is also similar
negative correlation between TWI and AMFs (Figure S2). This would be helpful for
flood control management in ungauged watersheds, especially in the mountainous
watersheds with risks of flash floods. Similar correlation was also found in the
observations from our experimental watershed, a headwater of Yangtze River (Liu et al
2021). The ratio of observed antecedent soil moisture and event precipitation also
presents similar decline trend with discharge at event scale. However, the correlation
between SPR and discharge at event scale is preliminary, more data with higher
resolution and detailed analysis are needed for validation at event scale. For this study,
our goal is to present the framework to derive flood generation SPR that could be

estimated from topographic characteristics and to provide information of mean AMFs.
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In conclusion, based on the topographic characteristics, we could derive the relative
importance of soil moisture and rainfall in flood generation (SPR); and from this
relative importance ratio, we could further infer the average flood magnitude at these
watersheds. As a result, we could link the topographic characteristics and annual floods

through the characteristic SPR during the AMFs.

4.3 Implications

Our findings could be helpful for potential flood risk evaluation in ungauged basins,
e.g., headwaters in the mountainous region. With the construction of large reservoirs,
the capability of flood risk control has improved substantially along the main stream
(Zou et al., 2011; Zhang et al., 2015). However, it is still difficult for quantitative
evaluation of flood risk in upstream mountainous watersheds, which are vulnerable to
floods but difficult for hydrological modeling and prediction due to little hydrologic

records.

Our findings suggest that we could derive the flood-generation SPR of each
watershed from drainage area and topographic gradient that are easy to measure. The
correlation between SPR and flood peak provides information of the mean annual
floods in ungauged watersheds. Therefore, in regions without observation data, to build
flood control infrastructure such as dams and gates, the mean annual flood peak
obtained by SPR based on the topographic characteristics can be used to provide
quantitative information for flood control and disaster management. Flood control
infrastructures could be designed based on the estimated mean annual flood peak as
well as the demographic information. With further validation of this framework at event
scale, by using the observed soil moisture from remote sensing data and precipitation

forecast to generate real-time prediction of SPR values, we could further provide early
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warning of floods in these ungauged watersheds. This would be helpful given the
increasing possibility of extreme rainfall events due to climate change, however, more

data and examination are needed in future studies.

4.4 Limitations

Previous works usually identify the dominant flood generation mechanism based on the
comparison of the timing of events (Berghuijs et al 2016; 2019b; Bloschl et al 2017; Ye
et al 2017). Similar work has been implemented in our study watersheds, suggesting
the importance of soil moisture and rainfall (Wang et al 2021). Based on that, we further
looked into the records to quantitatively evaluate the relative importance of soil

moisture and rainfall in flood generation. However, there are limitations in our methods.

The precipitation data we used were averaged for the study watersheds from 247
meteorological stations. Given the large area and considerable spatial heterogeneity, the
precipitation data we used may not always be representative of the actual precipitation
events. The daily data could also average the rainfall intensity at hourly scale, which
could be influential in small mountainous watersheds. ET was scaled as 0.75*ETy to
make sure it is smaller than the potential evaporation. This is a simplified estimation of
ET; more sophisticated method is needed in further analysis on specific catchments at

event scale.

The estimation of soil moisture is also highly simplified, which cannot be
considered as precise estimation at event scale. To reduce the influence from this
simplification, we used the percentile of soil moisture to represent the relative wetness
of soil moisture as well as the seasonal trend of soil moisture, which was then compared

with the percentile of rainfall (see supplementary and Figure S3. S4). While more

19



436
437
438
439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

456
457
458
459

sophisticated models can be used for soil moisture estimation, there could still be
substantial uncertainties (Ran et al 2020). Yet the seasonal trend and the relative
magnitude, after averaging through long-term records would be less impacted by the

simplification in estimation (Berghuijs et al 2019; Zhang et al 2019).

Our findings may appear different from that in Yang et al (2020), which attributed
the dominant flood generation mechanism in the Yangtze River basin to rainfall. This
may be explained by different classification criteria: Yang et al (2020) considered both
short-rain and long-rain as rainfall impacts while here we only considered the daily
rainfall. Thus, the importance of antecedent soil moisture may be considered as long-
rain impacts in Yang et al (2020). It is possible that soil moisture at the day before the
AMFs may not be the soil moisture before the event in large catchments due to the long
concentration time. We estimated the concentration time for 10 sites with largest
drainage area (larger than 100,000 km?): the ones on the main stream and at the outlets
of major tributaries following the USBR method (USBR 1973; Gericke & Smithers
2014). The concentration time is mostly within two days for main stream sites and is
less than 24hr for sites at the outlets of major tributaries (Table S1). Since the rest of
the sites are all smaller than these ones, so would be the concentration time. That is, for
the natural watersheds we focused on, the concentration time is likely to be within one
day. Thus, the soil moisture at the day before AMFs would contribute to the generation

of AMFs, and should be applicable for this study.

Besides, the exchange with groundwater was not considered in the soil moisture
estimation. The exchange with groundwater is more complicated and heterogenous (i.e.,
rivers could receive groundwater recharge in hilly area and recharge groundwater in

lower land (Che et al 2021)). According to Huang et al. (2021), the variation of
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groundwater level in the Yangtze River basin is relatively small. Since the goal of this
study is to capture the first order seasonal variation of soil moisture and develop a
framework that differentiates the relative importance of precipitation and soil moisture
in flood generation, in this study, we estimated the soil moisture following Berhuijs (et

al 2016, 2019) with a simple water balance equation.

Moreover, this work is focused on the relative importance soil moisture and rainfall,
the impact of snowmelt is not considered due to the warm and humid climate in the
study watersheds. To apply our findings to cold watersheds with significant impact of
snow, the snowmelt component needs to be incorporated. In addition, our method is
based on the average values from many years. While previous work indicated that the
occurrence of floods in our study watersheds are highly concentrated (Wang et al 2021),
there could be strong inter-annual variability in other watersheds. In future studies,
annual scale and event scale analysis are needed to examine and improve our findings
before it can be applied to watersheds with more diverse climate and landscape
conditions. There could be uncertainties embedded in the estimation of soil moisture
due to the uncertainties in the inputs and model structures. Comprehensive evaluation
of the performance and uncertainty is beyond the scope of our study. More sophisticated
models with groundwater component, remote sensing data, and reanalysis product with
higher spatial-temporal resolution are needed to provide more accurate estimation and
further validation of soil moisture, ET, and advances our understandings of the flood-

generation SPR.

5 Conclusions

Heavy rainfall on highly saturated soil was identified as the dominant flood generation

mechanism across world (Berghuijs et al 2019; Wang et al 2021; Wasko et al 2020).

21



484
485
486
487
488
489
490
491

492
493
494
495
496
497
498
499
500
501

502
503
504
505
506
507

This study aims to further evaluate the relative importance of antecedent soil moisture
and rainfall on floods generation and the controlling factors. Climate and hydrological
data from 224 hydrological stations and 247 meteorological stations in the middle and
lower reaches of the Yangtze River basin was analyzed, along with the modeled soil
moisture. Except the regulated watersheds, the relative importance of antecedent soil
moisture and daily rainfall present significant correlation with drainage area: the larger
the watershed is, the more essential antecedent soil saturation rate is in flood generation,

the less important daily rainfall is.

Using the percentile of antecedent soil moisture and rainfall as coordinates, the
flood generation mechanism(s) of study watersheds could be grouped into three classes:
antecedent soil moisture dominated large flat watersheds, heavy rainfall dominated
steep and small to middle size watersheds, and small to middle size watersheds with
gentle topographic gradient where floods occurrence requires both highly saturated soil
and heavy rainfall. Our analysis further shows that the ratio of relative importance
between antecedent soil moisture and rainfall (SPR) can be predicted by topographic
wetness index. When the topographic wetness index is large, the dominance of
antecedent soil moisture for extreme floods is stronger, and vice versa. The SPR also

presents negative correlation with area normalized flood peak.

With the potential increase of extreme rainfall events (Gao et al., 2016; Chen et
al., 2016), upstream mountainous watersheds in the middle and lower Yangtze River
basin are facing higher risk of extreme floods. The lack of hydrological records further
increases the vulnerability of people in these watersheds. The flood risks could be
reduced by construction of flood control facilities, but it is difficult to set flood control

standards in these ungauged watersheds. Our findings provide a framework to
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quantitatively estimate the possible flood risk for these ungauged watersheds. Based on
measurable watershed characteristics (i.e., drainage area and topographic gradient), the
flood generation SPR could be derived, which could then be used to estimate the mean
annual flood. This information can provide scientific support for flood control

management as well as infrastructures construction.

Future analysis at event scale could help generate the flood-generation curve
between SPR and discharge at event scale to further improve flood risk predictions in
these small ungauged watersheds. With more data from other regions and improved
estimation or observation of soil moisture, we could expand our analysis to watersheds
with more diverse climate and topographic characteristics to examine and refine our
findings and to enhance our understandings of flood generation. Comparison between
different time periods (i.e., before and after 2000) could also reveal temporal changes
in floods generation, which may be linked to the-climate change, yet longer data records

are needed to generateion representative patterns.
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843  Figure 1: Map of the Yangtze River basin, and the meteorological stations and

844  hydrological stations. The blue line is the main stream of Yangtze River.
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846
847  Figure 2: The spatial distribution of (a) the percentile of antecedent soil moisture during

848  annual maximum flood; (b) the percentile of daily precipitation during annual

849  maximum flood.
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Supplementary

To validate our results, we collected the 0-200cm soil moisture from the China Land

Data Assimilation System (CLDAS) provided by China Meteorological Administration

(CMA) (Wang & Li2020). 37 catchments covering a range of climate and topography

were selected for comparison (Figure S3). Since this dataset only has soil moisture data

from 2008, the mean percentile of antecedent soil moisture was calculated from 2008

to 2016 based on the CLDAS soil moisture. This was then compared with the mean

percentile based on water balance as in the manuscript (Figure S4). As we can see from

Figure S4, the scatters fall around the 1:1 line, that is, the mean percentile calculated

from water balance are close to the mean percentile from re-analysis soil moisture. This

is consistent with our discussion that averaging through long-term records would be

less impacted by the simplification in estimation. Due to the length of CLDAS dataset,

we only averaged within 9 years, for the at least 25 years records used in our study, it

is likely to be less scatter. While this is just a minimal evaluation of the values, given

the goal of'this study, we think the averaged percentile of antecedent soil moisture based

on the water balance model is acceptable for the purpose of this study at the mean

annual scale.

Wang, Y. and Li, G. (2020). Evaluation of simulated soil moisture from China Land Data

Assimilation System (CLDAS) land surface models, Remote Sensing Letters, 11 (12)
1060 — 1069.
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25  Table S1: Estimated concentration time for 10 sites with largest drainage area: the ones

26  on main stream (MS) and the ones at the outlets of major tributaries (TR).
27

Site Name Concentration Time (hr) Drainage Area (km?)
TR-Hukou 17.9 161,979
TR-Chenglingji 18.8 261,986
MS-Zhutuo 32.7 668,661
MS-Cuntan 32.8 827,799
MS-Wanxian 37.6 948,524
MS-Yichang 41.5 982,948
MS-Jianli 45.2 1,014,690
MS-Luoshan 46.3 1,276,676
MS-Hankou 51.0 1,432,008
MS-Datong 54.3 1,657,604
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35

Figure S1: The data availability of each station, each column indicates each year while

each row is corresponding to each station, blue grid indicates there is record of this year.
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