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Abstract: Hydrological simulations are a main method of quantifying the contribution rate (CR) of climate change (CC) and 10 

human activities (HAs) to watershed streamflow changes. However, the uncertainty of hydrological simulations is rarely 

considered in current research. To fill this research gap, based on the Soil and Water Assessment Tool (SWAT) model, in this 

study, we propose a new framework to quantify the CR of CC and HAs based on the posterior histogram distribution of 

hydrological simulations. In our new quantitative framework, the uncertainty of hydrological simulations is first considered to 

quantify the impact of "equifinality for different parameters", which is common in hydrological simulations. The Lancang River 15 

(LR) Basin in China, which has been greatly affected by HAs in the past two decades, is then selected as the study area. The global 

gridded monthly sectoral water use data set (GMSWU), coupled with the dead capacity data of the large reservoirs within the LR 

basin and the Budyko hypothesis framework, are used to compare the calculation result of the novel framework. The results show 

that (1) the annual streamflow at Yunjinghong station in the Lancang River Basin changed abruptly in 2005, which was mainly 

due to the construction of the Xiaowan hydropower station that started in October 2004. The annual streamflow and annual mean 20 

temperature time series from 1961 to 2015 in the LR Basin showed a significant decreasing and increasing trend at the α = 0.01 

significance level, respectively. The annual precipitation showed an insignificant decreasing trend. (2) The results of quantitative 

analysis using the new framework showed that the reason for the decrease in the streamflow at Yunjinghong station was 42.6% 

due to CC, and the remaining 57.4% was due to HAs, such as the construction of hydropower stations within the study area. (3) 

The comparison with the other two methods showed that the CR of CC calculated by the Budyko framework and the GMSWU 25 

data were 37.2% and 42.5%, respectively, and the errors of the calculations of the new framework proposed in this study were 

within 5%. Therefore, the newly proposed framework, which considers the uncertainty of hydrological simulations, can accurately 

quantify the CR of CC and HAs to streamflow changes. (4) The quantitative results calculated by using the simulation results with 

the largest Nash-Sutcliffe efficiency coefficient (NSE) indicated that CC was the dominant factor for streamflow reduction, which 

was in opposition to the calculation results of our new framework. In other words, our novel framework could effectively solve 30 

the calculation errors caused by the “equifinality for different parameters” of hydrological simulations. (5) The results of this case 

study also showed that the reduction in the streamflow in June and November was mainly caused by decreased precipitation and 

increased evapotranspiration, while the changes in the streamflow in other months were mainly due to HAs such as the regulation 

of the constructed reservoirs. In general, the novel quantitative framework that considers the uncertainty of hydrological 
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simulations presented in this study has validated an efficient alternative for quantifying the CR of CC and HAs to streamflow 35 

changes. 
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1. Introduction 

Both the hydrological cycle of the watershed and water resource systems are deeply influenced by climate change (CC) and 

human activities (HAs) (Bao et al., 2012; Chandesris et al., 2019; Han et al., 2019; Teuling et al., 2019). CC mainly refers to 40 

changes in precipitation and evapotranspiration that are caused by rising temperatures and water vapor (Hegerl et al., 2015), while 

the impact of HAs is mainly reflected in the following aspects: reservoir construction changes the spatial and temporal distribution 

of streamflow processes (Hennig et al., 2013; Chandesris et al., 2019); land use changes change the characteristics of the 

underlying surface of the watershed, in turn affecting the streamflow of the watershed (Yang et al., 2017); population increase 

leads to an increase in the amount of water used for domestic consumption (Teuling et al., 2019), etc. However, identifying which 45 

CC and HAs are the main factors driving the changes in the water cycle of river basins is of great significance for water resource 

managers to formulate policies for sustainable water resource utilization (Dey and Mishra, 2017; Liu et al., 2017). If CC is the 

dominant driving factor, then hydro-meteorologists need to assess the future trends of meteorological factors, such as precipitation 

and temperature, to change their water resource management strategies in a timely manner. Conversely, if HAs are the dominant 

factor, water resource managers should evaluate whether the impact of these HAs exceeds the local water resource carrying 50 

capacity and then adjust their related policies (Fu et al., 2004). 

Numerous published articles have focused on how to quantify the CR of CC and HAs to the streamflow change in river basins 

(Liu et al., 2019; Bao et al., 2012; Chandesris et al., 2019; Han et al., 2019; Kong et al., 2016; Xie et al., 2019). In general, the 

commonly used methods of attribution analysis can be divided into the following three categories: 1) conceptual methods, such 

as the Budyko framework (Li et al., 2007; Liu et al., 2017); 2) hydrological simulation methods (Liu et al., 2019); and 3) analytical 55 

methods, such as the climate elasticity method (Liang et al., 2013). What these three methods have in common is that they all 

need to first test the annual streamflow sequence through non-stationary testing methods (such as the Mann-Kendall test), and 

then divide the study period into the natural period (before the break point) and the impacted period (after the break point). The 

first type of method needs to first calculate the sensitivity of the basin’s precipitation and potential evapotranspiration to 

hydrological variables, and then the hydrological changes caused by CC can be calculated combined with the hydrological 60 

sensitivity parameters through the changes in precipitation and potential evapotranspiration in the impacted period and natural 

period so that the CR of HAs is obtained based on the water balance equation (Li et al., 2007). The second type of method simulates 

multiple scenarios by changing one impact factor with other fixed factors to evaluate the CR of the changed factor using lumped 

or distributed hydrological models (Liu et al., 2019). The core of these methods is the modelling of two situations where only one 

impact factor state has been changed, and the difference between the two simulation results is regarded as the influence of the 65 

changed factor. The third type of method is mostly based on numerical calculation, taking the climate elasticity method as an 

example (Liang et al., 2013), this method introduces the concept of climate elasticity to define the quantitative relationship between 

changes in streamflow and climatic variables (precipitation, evapotranspiration, etc.), and the CR of HAs to streamflow changes 

can be obtained by subtracting the CR of climate variables. Among the three types of methods, the second type methods are the 

most widely used because it has the following advantages: 1) relatively small data requirements (one only needs to input the 70 
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meteorological and hydrological data to the hydrological model); 2) relatively simple theoretical assumptions; and 3) can quantify 

the CR of CC and HAs to streamflow changes at the monthly scale.  

Various related published articles are briefly reviewed as follows. Bao et al. (2012) used the variable infiltration capacity (VIC) 

model to investigate the impacts of CC and HAs on streamflow changes in the Haihe River Basin, China, and they concluded that 

HA accounted for more than 70% of the decrease in streamflow at Guantai station. Wang et al. (2013) used a two-parameter 75 

hydrological model to quantify the contribution of CC and HAs to streamflow changes in three river basins (i.e., Zhanghe, Chaohe, 

and Hutuo River), and they found that HAs were the dominant factor in streamflow changes. The above literature review shows 

that these studies all used hydrological simulations with fixed parameter sets to quantify the impact of CC and HAs. As pointed 

out by Abbaspour et al. (2004) and Zhao et al. (2018a), there is a phenomenon of "equifinality for different parameters" (Beven, 

2006) in hydrological calibration and simulation, which also means that we cannot ignore the uncertainty of model parameters in 80 

the process of quantifying the CR of CC and HAs to streamflow changes because two sets of parameters with the same 

performance (with the same Nash-Sutcliffe efficiency coefficient) may lead to very different results; this will further influence the 

decision-making of water resource managers to make effective and sustainable water resource utilization policies. In the last few 

decades, great progress has been made in evaluating the uncertainty of hydrological simulations (Abbaspour et al., 2004; Beven 

and Binley, 1992; Yang et al., 2008; Zhao et al., 2018a; Farsi and Mahjouri, 2019); however, in studies related to quantifying the 85 

CR of CC and HAs for streamflow changes, few studies have considered the uncertainty of hydrological simulations (Farsi and 

Mahjouri, 2019). According to our literature search, Farsi and Mahjouri (2019) first considered the uncertainty of hydrological 

simulations in the process of quantifying the CR of CC and HAs to streamflow changes, but they only constructed the posterior 

distribution of the CRs of CC and HAs; in their research, they did not specify how to calculate the CRs of CC and HAs while 

considering the uncertainty of hydrological simulations. Therefore, to fill this research gap, in this study we propose a new method 90 

to quantify the contribution of CC and HAs to streamflow changes considering the uncertainty of hydrological simulations, which 

in summary, is developed using the posterior histogram distribution of hydrological simulations. 

The Lancang River (LR) is located in southwest China, and is the largest transboundary river in the Indo-China Peninsula; it is 

usually called the Mekong River (MR) after flowing out of China (Grumbine and Xu, 2011). The abundant water and ecological 

diversity of the Lancang-Mekong River Basin nurtures tens of millions of people in many countries along the Lancang-Mekong 95 

River. The upstream flow of the river provides guarantees for irrigation and fishery water use in the countries along the MR during 

the dry season, and the water conservancy facilities of the LR during the peak of the flood period also provide important 

engineering guarantees for downstream flood control (Piman et al., 2012; Piman et al., 2016). In the past three decades, a series 

of hydropower stations have been constructed in the LR Basin to meet the flood control and drought relief requirements of 

downstream countries and the power needs of Southwest China. Therefore, it is particularly important to quantify the CR of CC 100 

and HAs to streamflow changes in the LR Basin. However, so far, there are still few corresponding studies. Han et al. (2019) 

chose the LR Basin as the study area and then divided the research period into three periods, the natural period, transition period, 

and impacted period, and combined them with the construction time of six large hydropower stations in the LR area. Finally, they 

found that the CR of HAs during the impact period exceeded 95%, using the coupled routing and excess storage (CREST) model, 

which was probably due to the construction of the Nuozhadu hydropower station. However, there are still areas for improvement 105 

in their research: 1) the results of the hydrological simulation were relatively poor (with monthly NSE = 0.57 for the whole study 

period), and 2) the uncertainty involved in hydrological simulations was not considered.   
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    In this paper, the breakpoint of the change in flow regimes was identified using the Mann-Kendall break point test. Then, the 

study period was divided into a natural period (before the breakpoint) and an impacted period (after the breakpoint). The Soil and 

Water Assessment Tool (SWAT) model was used for monthly streamflow simulation at the Yunjinghong station. Next, the 110 

monthly SWAT model was calibrated and validated using the sequential uncertainty fitting procedure version 2 (SUFI-2) 

(Abbaspour et al., 2004). Uncertainty analysis was also conducted with the SUFI-2 method, and then the posterior histogram 

frequency distribution (HFD) of the CR of CC and HAs was obtained. Finally, the proposed quantification framework was 

compared with two other methods: one was the Budyko framework, and the other was to use the LR Basin’s gridded monthly 

sectoral water withdrawals in the period from 1971 to 2010 (Huang et al., 2018) together with the dead reservoir storage capacity 115 

data of the six constructed hydropower stations along the main stream of LR, to separate the CR of HAs. 

2. Study area and data sets 

2.1 Study area 

The Lancang River (LR) originates in the northeastern Tanggula Mountains, Qinghai Province, China, and flows through 

China's Qinghai Province, Tibet Autonomous Region and Yunnan Province. It is the largest international river in Southeast Asia, 120 

and it is called the Mekong River after it flows out of China. Its main stream has a total length of ~2161 km and a total catchment 

area of ~160000 km2 (Han et al., 2019; Li et al., 2017a). The topography of the LR is characterized by high northern and low 

southern portions; the maximum elevation in the northern mountainous area can reach ~5871 meters, while the lowest elevation 

in the downstream area is only ~547 meters (Fig. 1). This steep terrain difference also leads to the LR having a large potential for 

hydropower resources. During the past few decades, Huaneng Lancangjiang Hydropower Co., Ltd. constructed six large 125 

hydropower stations (i.e., Gongguoqiao, Xiaowan, Manwan, Dachaoshan, Nuozhadu and Jinghong) on the main stream of the LR 

to meet the demands for power and irrigation water in Southwest China (Fig. 1 and Table 1) (Han et al., 2019; Hennig et al., 2013; 

Xue et al., 2011). At the same time, the construction of these hydropower stations has greatly reduced the risk of flooding in 

downstream countries and brought great convenience to using water for downstream agricultural irrigation. Detailed information 

on the six constructed hydropower stations is outlined in Table 1. These data are mainly collected from 130 

https://opendevelopmentmekong.net/topics/hydropower/, as well as from other published related literature (Han et al., 2019; Xue 

et al., 2011; Hennig et al., 2013; Tilt and Gerkey, 2016). 

The LR features an arid climate in the upper mountainous areas, while the lower reaches are dominated by humid climates. The 

average annual precipitation of the whole basin is ~ 870 mm based on a 55-year record (from 1961 to 2015) using the China 

Gauge-based Daily Precipitation Analysis (CGDPA) (Xie et al., 2007; Tang et al., 2019). Due to the influence of the westerlies 135 

and the Indian Ocean monsoon, the precipitation in the LR has obvious seasonal changes, and the precipitation from June to 

September accounts for more than 70% of the annual precipitation (Jacobs, 2002). Correspondingly, the streamflow of the LR 

also shows seasonality, and the floods are mostly concentrated from June to September. 

https://opendevelopmentmekong.net/topics/hydropower/
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Fig. 1. Locations of the Lancang River (LR) Basin, Yunjinghong hydrological station, constructed dams on the main stream of 140 

the LRB, and main rivers and elevations (m). 
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Table 1 Basic information for the six large constructed dams on the mainstream of the LR Basin 

Hydropower station Manwan Dachaoshan Jinghong Xiaowan Gongguoqiao Nuozhadu 

Date of river closure 1987.12 1997.11 2005.01 2004.10 2008.12 2007.11 

Date of complete construction 1995.06 2003.10 2009.05 2010.08 2012.03 2014.06 

Drainage area (104 km2) 11.45 12.10 14.91 11.33 9.73 14.47 

Dead reservoir storage (km3) 0.668 0.371 0.81 4.35 0.316 10.3 

Total reservoir storage (km3) 0.92 0.94 1.40 15.3 0.365 22.7 

Installed capacity (104 kw) 150 135 150 420 90 500 

(Notation: Dead storage capacity refers to the storage capacity below the dead water level of the reservoir, which does not 145 

participate in runoff regulation during the normal operation of the reservoir.) 

2.2 Data sets 

The China Gauge-based Daily Precipitation Analysis (CGDPA) product was developed by the China Meteorological 

Administration (CMA) using data from ~2400 ground-based national weather stations across China (Tang et al., 2018; Xie et al., 

2007; Shen et al., 2014). It provides daily precipitation, maximum temperature, minimum temperature, relative humidity, and 150 

wind speed data at a 0.25-degree spatial resolution from 1961 to 2015 (http://cdc.nmic.cn). Previous studies have successfully 

applied this product to multiple research areas in China (Tang et al., 2019; Tang et al., 2018; Han et al., 2019). The daily streamflow 

data from Yunjinghong station for the time period from 1961 to 2015 were collected from the Information Center of the Ministry 

of Water Resources and the local water resources management department. 

The digital elevation model (DEM) used in this study was downloaded from NASA’s Shuttle Radar Topography Mission 155 

(SRTM) data bank at a spatial resolution of ~90 meters (http://srtm.csi.cgiar.org/), which was used to generate the watershed 

boundary, slope and sub-watershed data in the SWAT model (Arnold et al., 2012a). The Harmonized World Soil Database (version 

1.2) (HWSD v1.2) at a spatial resolution of ~1 km was downloaded from the Food and Agriculture Organization of the United 

Nations, and this data set contains two layers of soil. The land use and cover data with a spatial resolution of ~1km were collected 

from the Geospatial Data Cloud (http://www.gscloud.cn/). In this study, to analyze the land use change in the LR during the 160 

historical period, we collected five periods of land use data in the 1980s, 1990s, 2000s, and from 2010 to 2015, and this data set 

was downloaded from the Geographic Information Monitoring Cloud Platform (http://www.dsac.cn/), with a spatial resolution of 

30 meters. It should be pointed out that this study only used the land use information in 2010 to construct the SWAT hydrological 

model, and did not consider the dynamic changes of land use information in the hydrological simulation. 

The global gridded monthly sectoral water use (GMSWU) data set for 1971-2010 was obtained from 165 

https://zenodo.org/record/1209296#.XsJmiTNlsSJ. This data set was developed by Huang et al. (2018), and it provides the global 

domestic water use, irrigation water use, livestock water use, manufacturing water use and mining water use with a spatial 

resolution of 0.5 degrees. This dataset is used in this study because it is difficult to collect water withdrawal data related to HAs 

in the LR Basin, and this dataset has been successfully applied in this basin in other studies (Han et al., 2019). And we used this 

data set here to roughly separate the effects of HAs in the LR. For more technical information about this set of products, the 170 

readers can refer to Huang et al. (2018) and Han et al. (2019). Furthermore, detailed information on six large dams in the main 

http://cdc.nmic.cn/
http://srtm.csi.cgiar.org/
http://www.gscloud.cn/
https://zenodo.org/record/1209296#.XsJmiTNlsSJ
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stream of the LR was collected from Open Development Mekong (https://opendevelopmentmekong.net/topics/hydropower/) and 

Huaneng Lancang River Hydropower Inc. It mainly includes the dates when the rivers start to be closed, when these dams were 

fully put into use, their dead storage capacity, their total storage capacity, and other information. 

3. Methodologies 175 

3.1 The novel proposed framework 

Hydrological simulation is one of the main methodologies to quantify the CR of CC and HAs to streamflow variations; however, 

in the past, related studies have rarely considered the uncertainty involved in hydrological simulations (Farsi and Mahjouri, 2019). 

In this section, we will introduce a new quantitative framework to quantify the influence of the common phenomenon of 

"equifinality for different parameters" in hydrological simulation on the quantitative results, by constructing the posterior 180 

distribution of streamflow simulations during the implementation process. The specific implementation flowchart is shown in Fig. 

2. The detailed execution steps are shown as follows. 

Step 1: Inspection of break points in the annual streamflow sequence; based on the result of break point test, the entire time 

series is divided into a natural period (before the break point) and an impacted period (after the break point). 

Step 2: Sensitivity analysis of the parameters in the hydrological model. 185 

Step 3: According to the results of the parameter sensitivity analysis, selection of the more sensitive parameters and input of 

the hydrometeorological data of the natural period (before the break point) to calibrate the hydrological model with 1000 runs. 

Step 4: Selection of the parameter sets with Nash-Sutcliffe efficiency coefficients (NSE) is greater than 0.75 in 1000 simulations, 

input of the hydrometeorological data of the impacted period, and further calculation of the CR of CC and HAs to the streamflow 

change corresponding to each simulation result. 190 

Step 5: Construction of the posterior histogram distribution (PHD) of the CR of CC and HAs (with a 5% step), and then the 

histogram with the highest frequency is treated as the uncertainty CR interval of CC and HAs to the streamflow change.  

Step 6: The arithmetic mean of the results in the interval is treated as its true CR. 

In step 4, to ensure the number of streamflow simulation samples, we set the simulation results with NSE is greater than 0.75 

to at least 500 times. If the setting is not met, then step 3 is repeated until the cumulative simulation times are greater than 500 195 

times.  

https://opendevelopmentmekong.net/topics/hydropower/
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Fig. 2. Flowchart of the newly proposed quantitative framework. 

3.2 Mann-Kendall test 

In this step, the trends and break points of the hydrometeorological data are detected using the nonparametric Mann-Kendall 200 

monotonic trend test (Gilbert, 1987; Kendall, 1975; Mann, 1945) and the Mann-Kendall break point test (Sneyers, 1991), 
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respectively. The main consideration of using the Mann-Kendall test is that this method assumes no particular distribution for the 

tested time series (Song et al., 2019; Xu et al., 2018). Significance levels of α = 0.01 and 0.05 is used in this study. 

3.2.1 Mann-Kendall monotonic trend test 

The Mann-Kendall (MK) monotonic trend test was developed by Mann (1945), Kendall (1975) and Gilbert (1987), which 205 

has been widely used to detect the presence of an upward or downward trend of the hydrometeorological time series, and the 

advantage of this test is that the time series does not need to follow a certain distribution (Hamed and Ramachandra Rao, 1998). 

This method first tests whether to reject the null hypothesis ( 0H : no monotonic trend) and accept the alternative hypothesis ( aH : 

with monotonic trend) for a significance level of  . The defined statistic S  can be calculated by the following equation: 

( )
1

1 1

n n

j k

k j k

S sign x x
−

= = +

= −                                                                      (1) 210 

where kx  is the data in the order over time, x1, x2, …, xn-1, which means the time series obtained at times 1, 2, …, n-1, respectively; 

jx  is another time series over time xk+1, xk+2, …, xn; n is the length of the data set record; and ( )j ksign x x−  is a sign function 

that takes on the values of 1, 0, or -1 based on the sign of j kx x− , and its values can be calculated by the following equation: 
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1,  0
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j k
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After calculating the S  sequence, the variance of S  can be computed as follows: 215 

( ) ( )( ) ( )( )
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                                  (3) 

where n  is the length of the time series; g  is the length of any given tied group and pt  is the length of the data set series in the 

thp  group. Then, the defined test statistic MKZ  can be transformed from the statistical value S , and the equation is as follows: 

( )

( )

1
   0

        0          0

1
   0

MK

S
if S

VAR S

Z if S

S
if S

VAR S

−
= 



= = =
 +
= 



                                                                  (4) 

At the given significance level  , if /2 /2MKZ Z Z −   , then the 0H  (null hypothesis) is accepted, which means that 220 

there is no significant trend in the time series. By contrast, a positive MKZ  indicates that the tested time series has an upward 

trend, while a negative value indicates a downward trend. 
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3.2.2 Mann-Kendall break point test 

The break point of the hydrometeorological time series denotes a change from one stable state to another stable state (Xu et al., 

2018). It occurs when the climate system breaks through a certain threshold. The Mann-Kendall break point test has been widely 225 

used to test break points for hydrometeorological time series, signaling when abrupt changes start (Sneyers, 1991). This test 

method is used to determine the break point of the observed annual streamflow in this study. The defined statistic kUF  is obtained 

by the following formulas: 

( )

( )
              1, 2,...,

k k

k

k

S E S
UF k n

Var S

−
= =                                                          (5) 

1

1     
              1,2,...,

0         

k
i j

k i i

i

x x
S r r j i

else=


= = =


                                                     (6) 230 

where ix  is the variable to be tested and n  is the total number of data points. The expectation ( )kE S  and variance 

( )kVar S  of the data series can be calculated as follows: 

( )
( )1

=
4

k

n n
E S

−
                                                                            (7) 

( )
( )( )1 2 5

72
k

n n n
Var S

− +
=                                                                  (8) 

kUF  is a sequence of statistics calculated by arranging x1, x2, ..., xn in the order of time series x that obeys the standard 235 

normal distribution. Then, treating the time series x in reverse order xn, xn-1, ..., x1, the above process is repeated, but by using a 

reversed definition of , , 1,...,1k kUB UF k n n= − = − . Given the significance level α (0.01 in this study), if 

, 1,2,...,k kUB UF k n= − = , no significant trend is detected, where /2U  is the standard normal deviation. In contrast, this 

means that the tested sequence has a significant upward or downward trend when /2kUF U . Then, the curves of kUF  and 

kUB  are plotted. If there is an intersection of the two curves and the trend of the data series is statistically significant, then this 240 

intersection is regarded as the break point of the data series.  

 After identification of the break points in the annual streamflow series, the study period is divided into a “natural period” 

(before the break point) and an “impacted period” (after the break point) (Wang et al., 2015; Bao et al., 2012). The “natural period” 

means that there is no significant increase or decrease in streamflow during this period, and it also means that relatively slow CC 

is the dominant factor, and that the impact of HAs is very small during this period. Consequently, the impacted period indicates 245 

to a significant change in streamflow during this period, mostly due to factors such as the construction of water conservancy 

engineering facilities, increased water consumption for irrigation, changes in land use and increased water consumption in cities 

and towns.  
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3.3 SWAT model 

The Soil & Water Assessment Tool (SWAT) model is a semi-distributed, physical process-based hydrological model developed 250 

by the Agricultural Research Service of the United States Department of Agriculture (USDA-ARS) (Arnold et al., 1998). The 

SWAT model first divides the study area into several subbasins based on DEM data, and then each subbasin is further divided 

into several HRUs (Hydrologic Response Units) based on land use and soil data sets. Then, streamflow generation at the subbasin 

scale is calculated following the principles of water balance and energy balance after inputting the meteorological data sets. Finally, 

the total flow of river basin exports is calculated according to the Muskingum method (Tang et al., 2019; Arnold et al., 2012b). 255 

We chose to use the SWAT model in this study because numerous published studies have proven that this model has excellent 

performance in hydrological simulations across the world (Tang et al., 2019; Zhao et al., 2018a; Zhao et al., 2018b; Lee et al., 

2018). 

The calibration of model parameters is executed using the independent software SWAT-CUP, which was developed by 

Abbaspour et al. (2007). This software is freely available and provides five parameter calibration and uncertainty analysis methods. 260 

In this study, the sequential uncertainty domain parameter fitting version 2 (SUFI-2) algorithm (Abbaspour et al., 1997; Abbaspour 

et al., 2004) was used to perform parameter calibration and uncertainty analysis, because this method has proven to have the 

advantages of shorter calculation time, ease of implementation and ability to set arbitrary objective functions (Zhao et al., 2018a; 

Tuo et al., 2016; Wu and Chen, 2015). The performance of the SWAT model was evaluated by the Nash-Sutcliffe efficiency 

coefficient (NSE) (Nash and Sutcliffe, 1970) and relative error (RE): 265 

NSE = 1 −  
∑ (𝑄𝑜𝑏𝑠,𝑖 −  𝑄𝑠𝑖𝑚,𝑖)

2𝑁
𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖 −  𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ )

2𝑁
𝑖=1

                                                                (9) 

RE =  
𝑅𝑠𝑖𝑚− 𝑅𝑜𝑏𝑠

𝑅𝑜𝑏𝑠
 × 100%                                                                (10) 

where 𝑄𝑜𝑏𝑠,𝑖  and 𝑄𝑠𝑖𝑚,𝑖  are the observed and simulated streamflow, respectively; 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  is the mean value of the observed 

streamflow; 𝑁 is the total number of days or months in the calibration period; and 𝑅𝑠𝑖𝑚 and 𝑅𝑜𝑏𝑠 are the mean annual simulated 

and observed streamflow, respectively. 270 

3.4 Construction of the Posterior Histogram Distribution of contribution rate 

In this section, we introduce how to calculate the CR of climate change (CC) and human activities (HAs) to streamflow 

variations and how to construct the posterior histogram distribution (PHD) of the CR to consider the uncertainty of hydrological 

simulations. 

3.4.1 CR of CC and HAs 275 

    A schematic diagram of the attribution evaluation of streamflow changes is shown in Fig, 3. ∆Q in the figure represents the 

amount of change in the observed streamflow during the impacted period based on the natural period, while ∆𝑄𝑐𝑐  and ∆𝑄ℎ𝑎 

represent the amount of streamflow change caused by CC and HAs, respectively. The total change in the annual streamflow can 

be calculated using the following formula: 

∆Q =  ∆𝑄𝑐𝑐 +  ∆𝑄ℎ𝑎 =  𝑄𝑜𝑖
̅̅ ̅̅ −  𝑄𝑜𝑛

̅̅ ̅̅ ̅                                                                       (11) 280 

where 𝑄𝑜𝑖
̅̅ ̅̅  and 𝑄𝑜𝑛

̅̅ ̅̅ ̅ are the mean annual observed streamflow (m3/s) in the impacted period and natural period, respectively. 



12 

 

 

Fig. 3. Schematic diagram of the contribution rate (CR) of climate change (CC) and human activities (HAs) to streamflow 

change using SWAT modelling. (Notation: ∆Q, ∆𝑄𝑐𝑐  and ∆𝑄ℎ𝑎 respectively represent the amount of streamflow change in the 

impacted period, the amount of streamflow change caused by CC, and the amount of streamflow change caused by human 285 

activities.) 

The hydrological and meteorological data in the natural period are input into the SWAT model, and using the SUFI-2 method 

to calibrate the model, a set of parameters represents the characteristics of catchment under natural conditions with less impact 

from HAs. Then, this set of parameters is brought back into the SWAT model using the meteorological data of the impacted period. 

Based on the above simulation results, the CC induced in streamflow can be calculated as follows: 290 

∆𝑄𝑐𝑐 =  𝑄𝑠𝑖
̅̅ ̅̅ −  𝑄𝑠𝑛

̅̅ ̅̅ ̅                                                                                      (12) 

where 𝑄𝑠𝑖
̅̅ ̅̅  and 𝑄𝑠𝑛

̅̅ ̅̅ ̅ represent the mean simulated annual streamflow (m3/s) for the impacted period and natural period, respectively. 

Thus, the streamflow change induced by HAs can be calculated by the following equation: 

∆𝑄ℎ𝑎 =  ∆Q −  ∆𝑄𝑐𝑐                                                                                  (13) 

After the calculation of ∆𝑄𝑐𝑐  and ∆𝑄ℎ𝑎, the CR of CC and HAs to streamflow changes, which are defined as 𝐶𝑅𝑐𝑐 and 𝐶𝑅ℎ𝑎, 295 

respectively, can be estimated as: 

𝐶𝑅𝑐𝑐 =  
|∆𝑄𝑐𝑐|

|∆Q|
 × 100%                                                                              (14) 

𝐶𝑅ℎ𝑎 =  
|∆𝑄ℎ𝑎|

|∆Q|
 × 100%                                                                             (15) 

Equations 12 to 15 are also applicable to quantify the CR of CC and HAs to streamflow changes on a monthly scale. 

3.4.2 Construction of the PHD of the CR of CC and HAs 300 

Before the construction of the PHD of the CR of CC and HAs, the sensitivity of the parameters of the SWAT model is first 

conducted. Based on the related published literature (Zhao et al., 2018a; Yang et al., 2008; Malagò et al., 2015) and the authors’ 

experience, the Latin-Hypercube and global sensitivity methods were used to perform the uncertainty analysis (Abbaspour et al., 

2007). The global sensitivity analysis method is the estimation of the average change in the objective function caused by the 

change in each parameter, and all parameters change during the whole process. A t-test was used to identify the relative sensitivity 305 

of each parameter. Considering the influence of the snowmelt streamflow process upstream of the LR Basin on the hydrological 
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simulation, 22 parameters were selected and the details of these selected parameters are shown in Table 2. According to the 

suggestion of Abbaspour et al. (2004), 500 simulations were set up to implement the sensitivity analysis. The t-stat and P-values 

were used to measure which parameters were more sensitive, where a larger absolute t-stat value and a smaller absolute P-value 

represent a higher sensitivity of a given parameter.  310 

Table 2 Twenty-two selected SWAT model parameters in the sensitivity analysis at Yunjinghong station 

Parameter Description 
Parameter 

Range 

R_CN2 SCS runoff curve number for soil condition Ⅱ –0.2 – 0.2 

R_SOL_AWC Available water capacity of each soil layer –0.2 – 0.1 

A_GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur 0 – 25 

V_SNOCOVMX Minimum snow water content that corresponds to 100% snow cover 0 – 500 

V_SMFMN Minimum melt rate for snow during the year (occurs on the winter solstice) 0 – 20 

V_CH_K2 Effective hydraulic conductivity in the main channel alluvium 0 – 500 

V_GW_REVAP Groundwater "revap" coefficient 0.02 – 0.2 

V_REVAPMN Threshold depth of water in the shallow aquifer for "revap" to occur 0 – 500 

V_GW_DELAY Groundwater delay (days) 0 – 500 

V_ALPHA_BF Baseflow alpha factor (days) 0 – 1 

V_SOL_BD Moist bulk density 0.9 – 2.5 

A_ESCO Soil evaporation compensation factor 0 – 0.2 

V_OV_N Manning's "n" value for overland flow –0.01 – 0.6 

R_RCHRG_DP Deep aquifer percolation fraction 0 – 1 

V_CH_N2 Manning's "n" value for the main channel 0.018 – 0.15 

R_SLSUBBSN Average slope length 0 – 0.2 

V_SMTMP Snowmelt base temperature –5 – 5 

V_TLAPS Temperature lapse rate –10 – 10 

V_SMFMX Maximum melt rate for snow during year 0 – 20 

R_SOL_K Saturated hydraulic conductivity –0.8 – 0.8 

V_SFTMP Snowfall temperature –5 – 5 

V_ALPHA_BNK Baseflow alpha factor for bank storage 0 – 1 

(Notation: R_, V_, and A_ represent multiplying, replacing, and adding the corresponding parameter values, respectively, in the 

process of calibrating the parameters.) 

Based on the sensitivity analysis results, 9 parameters with the highest sensitivity were selected to re-calibrate the model with 

1000 simulations. According to the recommendations in Tuo et al. (2016) and Moriasi et al. (2007), the performance of the 315 

hydrological simulation can be divided into four grades based on the NSE values: very good performance (0.75 ≤ NSE < 1), good 

performance (0.65 ≤ NSE < 0.75), satisfactory performance (0.5 ≤ NSE <0.65) and unsatisfactory performance (NSE < 0.5). 

According to this evaluation standard, we selected simulation results with NSE greater than 0.75 out of 1000 simulation results to 

construct the posterior histogram frequency distribution (PHD) of the CR of CC and HAs to streamflow changes using the method 

introduced in section 3.4.1. Note that to reduce the random error caused by the number of samples, we set the number of 320 
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simulations with NSEs ≥ 0.75 to be more than 500; that is, we needed to repeatedly use Latin hypercube sampling and the SUFI-

2 algorithm until the number of simulation results that met the conditions was more than 500. Then, the CR of more than 500 

groups of CC and HAs to streamflow change was calculated. Finally, the posterior histogram distribution (PHD) of the CR of CC 

and HAs was constructed in 5% steps. At this stage, the histogram column with the highest frequency in the PHD was selected as 

the result of quantitative analysis, which considered the uncertainty, and the arithmetic average of all results in the column was 325 

used as the actual value of the CR of CC and HAs. 

3.5 Comparison of the newly developed quantification method with other two methods 

In order to evaluate the calculation accuracy of the novel framework proposed in this study to quantify the CR of CC and HAs 

to streamflow changes, the Budyko framework was used first. This framework was developed by Budyko (1961) and links climate 

variability to streamflow (Q) and actual evapotranspiration (AE) through the assumption that the long-term average annual 330 

catchment AE is determined by the catchment average precipitation (P) and the catchment potential evapotranspiration (PET) (Liu 

and Liang, 2015). Over the past few decades, the Budyko framework and its variants have been widely used to conduct CC and 

HA attribution analyses of streamflow changes (Liu et al., 2017; Han et al., 2019; Xin et al., 2019). According to its theoretical 

assumptions, the multiyear average water balance within the catchment can be expressed as follows: 

∆S = P − AE − Q                                                                                      (16) 335 

where P, Q, and AE represent the multiyear average precipitation (mm), streamflow (mm) and actual evapotranspiration (mm), 

respectively; ∆S (mm) is the change in the amount of water storage at the watershed scale, and it is reasonable to assume that it is 

equal to 0 on the multiyear average scale. According to Zhang et al. (2001), the AE can be calculated by the following formula: 

𝐴𝐸

𝑃
=  

1 +  𝜔(𝑃𝐸𝑇
𝑃⁄ )

1 +  𝜔(𝑃𝐸𝑇
𝑃⁄ ) + (𝑃𝐸𝑇

𝑃⁄ )
−1                                                              (17) 

where 𝜔 is the plant-available water coefficient which is related to the vegetation type of the catchment. According to the method 340 

for selecting the value of 𝜔 provided in Zhang's research (Zhang et al., 2001), and based on the multi-year average AE/P (0.55) 

and PET/P (0.96) values in the LR Basin, this study set the value of 𝜔 to 0.5. 

The changes in the catchment streamflow due to CC, which are mainly characterized by precipitation (P) and actual 

evapotranspiration (AE), can be expressed as follows: 

∆𝑄𝑐𝑐 =  𝛼∆𝑃 +  𝛽∆𝐴𝐸                                                                          (18) 345 

where ∆𝑄𝑐𝑐  (mm) represents the streamflow changes induced by CC; 𝛼  and 𝛽  represent the sensitivity of streamflow to 

precipitation and actual evapotranspiration, respectively; and ∆𝑃  and ∆𝐴𝐸  are the changes in precipitation and actual 

evapotranspiration in the impacted period compared to the natural period, respectively. The sensitivity coefficients 𝛼 and 𝛽 are 

defined as follows: 

α =  
1 + 2𝐷𝐼 + 3𝜔𝐷𝐼

(1 + 𝐷𝐼 +  𝜔(𝐷𝐼)2)2
                                                                     (19) 350 

β =  −
1 + 2𝜔𝐷𝐼

(1 + 𝐷𝐼 +  𝜔(𝐷𝐼)2)2
                                                                   (20) 

where DI is the dryness index which is equal to 𝑃𝐸𝑇 𝑃⁄ . 

Through the above formulas, we can separate the CR of CC to streamflow variations, and further compare it with the calculation 

results of the new method proposed in this paper.  
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    In addition to the Budyko framework, we also used the GMSWU data introduced in Section 2.2 and the reservoir dead storage 355 

capacity data to roughly separate the CR of HAs from the streamflow changes in the LR Basin. The GMSWU data set provides 

five types of water withdrawals (i.e., irrigation, livestock, domestic use, mining, and manufacturing) within the period of 1970 to 

2010 in the LR Basin, and it was generated by downscaling country-scale estimates of different sectoral water withdrawals from 

the Food and Agriculture Organization (FAO) of the United Nations AQUASTAT, which ensured its good accuracy (Huang et 

al., 2018). Here, AQUASTAT refers to FAO’s Global Information System on Water and Agriculture 360 

(http://www.fao.org/aquastat/en/). Catchment-scale annual water use data were calculated by spatially averaging all grids within 

the LR Basin, and then streamflow changes caused by each type of water use were obtained using the average annual water use 

value during the impacted period minus that during the natural period. As shown by Han et al. (2019) and Zhao et al. (2012), 

during the past two decades, dam construction has been the most significant HA affecting the streamflow changes in the LR Basin. 

Therefore, in this study, we converted the dead storage capacity of 6 large reservoirs (Table 1) into units of millimeters according 365 

to their watershed control area because the impact of the reservoir on the outlet flow of the watershed can be used as its minimum 

impact value on the multiyear average scale. It should be pointed out that here we use two seemingly simpler methods to verify 

the computational results of the new framework proposed in this study. However, this does not reduce the innovation of this study, 

as the new framework has the following significant advantages over the other two methods: 1) The new framework can perform 

quantitative calculations on the annual and monthly scales; 2) It has relatively less data requirements; 3) It has a more explicit 370 

physical meaning.  

4. Results 

4.1 Hydrological and Meteorological trends in the LR Basin 

4.1.1 Trends and break points of the streamflow 

The results of the Mann-Kendall break point test for the annual streamflow at Yunjinghong station within the period from 375 

1961 to 2015 are shown in Fig. 4. Since the intersection of the UF and UB curves in Fig. 4 is within the confidence intervals (of 

0.05 and 0.01), the break point of the annual streamflow in the LR Basin occurred in 2005. Combined with the construction of 

reservoirs in the LR Basin, the construction of the Xiaowan hydropower station started in October 2004 (with total storage capacity 

= 15.3 km3). Therefore, according to the principle of time division introduced in Section 3.1, the study period can be divided into 

the natural period (from 1961 to 2004) and the impacted period (from 2005 to 2015). UF curves of the MK break point test 380 

represent the trend of the time series. As shown in Fig. 4, the observed annual streamflow at Yunjinghong station had an increasing 

trend before 1967, after which the annual streamflow experienced a significant decreasing trend until 2015. 
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Fig. 4. The Mann-Kendall break point testing statistics of the annual streamflow for the LR Basin from 1961 to 2015. 

Fig. 5 shows the MK monotonic trend testing statistics of the annual and monthly streamflow for the LR Basin from 1961 to 385 

2015. A positive Z statistic represents an upward trend in the time series, and vice versa. The annual average streamflow in the 

LR Basin showed a significant decreasing trend, and passed the 0.01 significance level. This decreasing trend of the annual 

streamflow in the LR Basin is consistent with the conclusions of Han et al. (2019). For the monthly streamflow, the streamflow 

from February to May showed an increasing trend, among which March and May passed the significance level of 0.05 (with the 

Z statistic greater than 1.96). The streamflow in the remaining months showed a decreasing trend. Except for June, the decreases 390 

in the other months all passed the 0.05 significance level. The decrease in the streamflow from August to October even passed the 

0.01 significance test. Among them, the largest decrease was in August (Z statistic = -4.23). This trend of changes in streamflow 

during the year was mainly caused by the operation of reservoirs within the basin, because reservoirs often release flows during 

dry periods (from January to May) to alleviate possible droughts in the downstream areas, and they store water during wet periods 

(from June to October) to reduce the flood control pressure in the downstream area below the reservoir. 395 

 

Fig. 5. The Mann-Kendall monotonic trend test statistics of the annual and monthly streamflow for the LR Basin from 1961 to 

2015. 
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4.1.2 Trends and break points of the mean areal precipitation and temperature 

The time series and MK break point test results of the annual areal precipitation and mean temperature for the LR Basin from 400 

1961 to 2015 are presented in Fig. 6. In general, changes in the annual precipitation were more complicated than changes in the 

mean temperature in the LR Basin. The precipitation showed a fluctuating trend, while the mean temperature almost showed a 

continuous rising trend throughout the study period.  

As shown by the time series of the annual precipitation in the LR Basin in Fig. 6 (a), there was a slightly decreasing trend in 

the LRB during the last 55 years, especially in the past 10 years, but this trend was not significant according to the result of the 405 

MK test at the α = 0.05 significance level. The areal annual precipitation in 1985 reached 971 mm, which was the highest in the 

last 55 years. In 2009, it was 769 mm, which was the lowest value from 1961 to 2015. The MK break point test results showed 

that there were 11 break points in the annual precipitation time series. Regarding the positive and negative changes in the UF 

value, the annual precipitation showed a fluctuating trend from 1961 to 1966; then until 1998, the annual precipitation showed a 

small decreasing trend (except in 1991); from 1999 to 2006, the annual precipitation experienced a small increase; and in the last 410 

9 years (2007-2015), the annual precipitation in the study area showed a decreasing trend. 

 

Fig. 6. Time series and the Mann-Kendall break point test statistics of the annual precipitation (a) and mean temperature (b) in 

the LR Basin from 1961 to 2015. 

The time series of the annual mean temperature in the LR Basin presented in Fig. 6 (b) shows that the annual mean 415 

temperature in the study area changed relatively smoothly before 1998. After 1998, the temperature began to rise significantly 

and exceeded the significance level of 0.01. The annual mean temperature in 1963 reached 5.2 ℃, the coldest temperature in the 

study period. The hottest year was 2009, during which the mean temperature was 7.2 ℃. In terms of changes in the UF value, the 

mean temperature showed a fluctuating trend from 1961 to 1968, and then continued to rise until it exceeded the significance level 
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of 0.05 in 1991 and exceeded the significance level of 0.01 in 1998. The break point of the annual mean temperature was detected 420 

in 1997. 

    The MK monotonic trend test statistics of the annual and monthly precipitation and mean temperature for the LR Basin from 

1961 to 2015 are presented in Fig. 7. The annual precipitation in the study area showed an insignificant decreasing trend (Z statistic 

= -0.55), while the annual average temperature showed a significant increasing trend (Z statistic = 6.02) and exceeded the 

significance level of 0.01. The monthly change in precipitation also showed a fluctuating trend. The increasing trend of 425 

precipitation in April and the decreasing trend of precipitation in June exceeded the significance level of 0.05, while the trends of 

precipitation in other months were not significant (|z statistic| < 1.96). The trend of the monthly mean temperature was relatively 

simple. Except for the increase in the mean temperature in November, which passed the significance level of 0.05, the increasing 

trend of the mean temperature in all other months passed the significance level test of 0.01. This also means that the climate in 

the study area has been gradually warming and drying during the past 55 years. 430 

 

Fig. 7. The Mann-Kendall monotonic trend test statistics of the annual and monthly precipitation and mean temperature for the 

LR Basin from 1961 to 2015. 

4.2 Results of the SWAT simulations 

4.2.1 Sensitivity analysis of the SWAT model parameters 435 

As descripted in Section 3.4.2, the sensitivity of 22 selected parameters was evaluated using the SWAT-CUP software 

(Abbaspour et al., 2007; Abbaspour et al., 1997), and this software integrates the global sensitivity analysis method and the 

parameter optimization methods (such as SUFI-2). The SWAT-CUP can  perform a combined optimization and uncertainty 

analysis using a global search procedure and deal with a large number of parameters through Latin hypercube sampling. The 
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sensitivity evaluation indexes, the t-Stat and P-value, of 22 parameters are shown in Table 3. Obviously, the sensitivity ranks of 440 

the parameters calculated based on SUFI-2 showed that ALPHA_BNK has the highest sensitivity, followed by CH_K2, SOL_BD, 

GW_REVAP, SFTMP, CN2, SOL_K, SMTMP and ALPHA_BF, whereas the other 14 parameters have less sensitivity for the 

streamflow simulation. ALPHA_BNK mainly controls the baseflow process within the watershed, and this parameter has also 

proven to have high sensitivity in other relevant studies (Wu and Chen, 2015), especially in mountainous areas. CH_K2 and 

ALPHA_BF are mainly related to groundwater runoff, CN2 is the SCS runoff curve number, and these parameters all have higher 445 

sensitivity in many published articles on the SWAT model parameter sensitivity (Zhao et al., 2018a; Wu and Chen, 2015). Other 

parameters with high sensitivity, such as SFTMP and SMTMP, which mainly control the snowmelt process in the basin, also 

indicate that snowmelt runoff plays an important role in the recharge of the LR Basin (Gao et al., 2019). Based on the above 

sensitivity analysis results, the top 9 parameters of the sensitivity ranking were selected for further research.  

Table 3 Basin wide sensitivity ranking calculated from 22 selected parameters using SUFI-2 450 

Parameter t-Stat P-Value Parameter t-Stat P-Value 

V_ALPHA_BNK 38.1 0 V_CH_N2 1.25 0.21 

V_CH_K2 -10.5 0 V_TLAPS 1.19 0.23 

V_SOL_BD 6.81 0 A_ESCO 1.12 0.24 

V_GW_REVAP -5.0 0 V_SNOCOVMX -1.01 0.31 

V_SFTMP -4.73 0 V_PLAPS -0.73 0.47 

R_CN2 4.60 0 V_GW_DELAY -0.68 0.50 

R_SOL_K 4.34 0 R_SLSUBBASN -0.65 0.52 

V_SMTMP 3.41 0 V_OV_N 0.44 0.66 

V_ALPHA_BF -2.70 0 V_SMFMX 0.36 0.72 

R_SOL_AWC -2.46 0.01 A_GWQMN 0.15 0.88 

R_RCHRG_DP -1.74 0.08 V_REVAPMN -0.07 0.94 

(Notation: V_ represents replacing the default value with the given value; R_ represents the relative change (%); and A_ 

represents adding the given value to the original parameter value) 

4.2.2 Results of the SWAT simulations 

As mentioned above, the 9 parameters with the highest sensitivity rankings that controlled different stages of the basin's 

streamflow production and flow concentration were selected to re-calibrate the model using the SUFI-2 method, and the number 455 

of simulations was set to 2000. To reduce the influence of the initial value of the model parameters on the simulation results, 

during the model parameter calibration process, 1961 and 1962 were set as the warming-up period. Table 4 shows the evaluation 

metrics of the simulation using the SWAT model at a monthly scale with the largest NS value. For the calibration period from 

1963 to 1990, the NSE and RE were found to be equal to 0.94 and -10.62%, respectively; for the validation period from 1991 to 

2004, the model performance was slightly better than that in the calibration period, and the NSE and RE were 0.95 and -8.65%, 460 

respectively. For the whole period from 1963 to 2004, the NSE (0.94) and RE (-9.97%) were also satisfactory. According to the 

requirements of the Information Center of the Ministry of Water Resources, the data provider, this study standardized the observed 

and simulated runoff curves of the Yunjinghong station. Fig. 8 shows the normalized monthly observed and simulated streamflow 

at Yunjinghong station from 1963 to 2004 and the histogram of the mean monthly precipitation in the LR Basin. As seen from 
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Fig. 8 (a) and Fig. 8 (b), the SWAT model can simulate the flow processes very well and almost perfectly match the observed 465 

streamflow curve. Note that the simulated streamflow overestimated the floods in individual years (1973, 1985 and 1995 in Fig.8 

(b)), which might be caused by the uncertainty of the precipitation product (Han et al., 2019). In summary, the SWAT model can 

better simulate the streamflow process at Yunjinghong station on a monthly scale; therefore, this model is considered suitable for 

the next part of the research.  

Table 4 Evaluation metrics, Nash-Suttcliffe Efficiency and Relative Error of the SWAT model on a monthly scale 470 

Period NSE RE (%) 

Calibration (1963-1990) 0.94 -10.62 

Validation (1991-2004) 0.95 -8.65 

Overall (1963-2004) 0.94 -9.97 

 

  

Fig. 8. Normalized monthly observed and simulated streamflow at Yunjinghong station for the calibration (from 1963 to 1990) and 

validation (from 1991 to 2004) periods. The blue histogram shows the monthly precipitation in the LR Basin. The normalized 

streamflow was calculated from the observed and simulated streamflow divided by their average values. 475 

According to the method described in Section 3.4.2, simulations with NSEs greater than 0.75 among the 1000 simulations were 

selected. Fig. 9 shows the number of simulations with 0.75 ≤ NSE < 0.8, 0.8 ≤ NSE < 0.85, 0.85 ≤ NSE < 0.9 and 0.9 ≤ NSE < 

0.95 during the calibration period (1963 - 1990), the validation period (1991 - 2004) and the whole period (1963 - 2004) on a 

monthly scale. In summary, there were 575 simulations with NSEs greater than 0.75 out of 1000 simulation results during the 

calibration period, the validation period, and the whole period. Clearly, the NSEs of most simulation results were between 0.75 480 

and 0.9, with 533, 537 and 533 simulations in the calibration period, the validation period, and the whole period, respectively, and 
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only a few simulation results had NSEs greater than 0.9. In the different periods, the model performed well in the validation period 

compared with that in the calibration period, which indicated that the model has good predictive ability in the LR Basin.  

 

Fig. 9. Number of simulations with NSEs greater than 0.75 during the calibration (1963 - 1990), validation (1991 - 2004), and whole 485 

periods (1963 - 2004). 

4.3 Quantification of CC and HAs for streamflow change considering the uncertainties 

4.3.1 Quantification of the impacts considering the uncertainties at the annual scale 

The 575 simulations with NSEs greater than 0.75 were selected to construct the posterior histogram frequency distribution 

(PHD) of the CR of CC and HAs to streamflow changes in the LR Basin. Fig. 10 shows the number of simulations of the CC CR 490 

in 5% intervals and their corresponding NS box plots. In total, 167 out of 575 simulations calculated that the CR of CC in the LR 

Basin to runoff reduction was 40% - 45%, and the average NSE was 0.84. Then, 131 and 92 of the simulation results had calculated 

climate CRs of 35 - 40% and 45 - 50%, respectively. The CR of CC in other intervals had relatively few simulations. The NSE 

value of the  CR between 70-75% was the largest (NSE = 0.86), but it had only 1 simulation. Therefore, when using hydrological 

simulations to quantify the CR of CC and HAs to the streamflow change of the watershed, not only the merits of the model 495 

performance but also the uncertainty of the model simulation should be considered. In general, according to the results calculated 

by the new quantitative framework proposed in this paper, streamflow changes in the LR Basin duo to CC accounted for 40-45% 

(with an average CR of 42.6%), and the corresponding HAs accounted for 55-60% (with an average CR of 57.4%).  
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Fig. 10. Histogram of the number of simulations of the CR (with 5% steps) of climate change to streamflow reduction in the 500 

LR Basin at the annual scale and corresponding Nash-Sutcliffe Efficiency box plots. 

Table 5 shows the average values of the main hydrological and meteorological elements and their changes during the natural 

period and the impacted period. During the impacted period, compared with the natural period, the multiyear average streamflow 

decreased by 396 m3/s (86.5 mm), the precipitation decreased by 25 mm; as basin wide temperatures increased, the mean potential 

evapotranspiration and temperature in the basin increased by 6.4 mm and 0.9°C. In terms of relative changes, the streamflow 505 

decreased by 22%, but precipitation and potential evapotranspiration changed by -2.9% and 6.4%, respectively, which may 

indicate that the streamflow reduction in the LR Basin was mainly caused by HAs. 

Table 5 Hydrological and meteorological elements in the natural (1963 - 2004) and impacted periods (2005 - 2015) of the LR 

Basin and their changes during the two periods 

Hydro- 

meteorological element 

Streamflow 

(m3/s) 

Streamflow 

(mm) 

Precipitation 

(mm) 

 

Potential 

evapotranspiration 

(mm) 

Temperature 

(℃) 

Natural period 1801.5 398.6 863.8 832.5 5.8 

Impacted period 1405.5 312.1 838.8 885.8 6.7 

Amount of change -396 -86.5 -25 53.3 0.9 

Relative change (%) -22.0 -22.0 -2.9 6.4 15.9 

4.3.2 Quantification of the impacts considering the uncertainties on a monthly scale 510 

The monthly CR of CC and HAs to the changing streamflow at Yunjinghong station was also analyzed using the new 

framework proposed in this study, and the results are shown in Fig. 11. In general, only June and November had a large CR of 

CC, which reached 95 - 99.9% and 70 - 75%, respectively, while the CR of CC in the other 10 months was relatively small. The 

trends of the streamflow and the precipitation and mean temperature in the study area shown in Fig. 5 and Fig. 7 indicate that the 

streamflow in June and November showed a decreasing trend (Fig. 5), while the precipitation in June decreased significantly 515 

(passing the significance level of 0.05), and the temperature increased significantly (passing the significance level of 0.05) (Fig. 
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7). This significant decrease in precipitation and the significant increase in temperature were the main reasons for the decrease in 

the streamflow in June; that is, the decrease in the streamflow in June was mainly caused by CC. The main factors that led to the 

decrease in the streamflow in November were also the decrease in precipitation and the significant increase in temperature (Fig. 

7). From the results of each month, the CR of CC in March and April was the smallest, reaching 10 - 15%; followed by July (15 520 

- 20%); May, August, and September (20 - 25%); October (25 – 30%); January and February (30 – 35%); and December (45 – 

50%).  

 

Fig. 11. Histogram of the number of simulations of the contribution rate (CR) (with 5% step) of climate change to streamflow 

reduction in the LR Basin on a monthly scale. 525 

The mean CR of CC and HAs at the monthly scale, which was calculated by averaging the CRs of all simulation results 

within the highest frequency, is displayed in Fig. 12 (left panel), and the monthly precipitation, potential evapotranspiration and 

runoff depth during the natural period and the impacted period are shown in the right panel of Fig. 12. Overall, the monthly CR 

was consistent with the annual results, and the CR in a total of 10 months was mainly due to HAs that led to a decrease in the 

streamflow in the LR Basin. It is worth noting that the CR of CC in June reached 96%. The panel in the right of Fig. 12 shows 530 

that the precipitation in June during the impacted period was significantly reduced compared with the natural period (with a 20.2 

mm decrease). At the same time, the increase in potential evapotranspiration in June was also relatively obvious (with a 9.2 mm 

increase). Fig. 12 (right panel) clearly shows that the streamflow in the LR Basin during the impacted period was significantly 

reduced compared with the natural period in June to October, and the precipitation had little change, except in June. Therefore, 
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we can conclude that the main reason for the decrease in the streamflow in the LR Basin was HAs, as shown in the left panel. In 535 

this study area, the main cause of the streamflow changes was mainly due to the construction of reservoirs (such as Manwan and 

Xiaowan), and at the same time, the water storage of these water conservancy facilities during the flood period also provides 

engineering support for protecting the safety of downstream life and property. Conversely, during the dry season (from January 

to May), the streamflow in the impacted period showed an increasing trend compared with the natural period, and the increase in 

runoff during these five months was mainly due to HAs (Fig. 12, left panel), which might have been caused by the release of water 540 

from the reservoirs during the dry season. For example, in 2016, due to the influence of El Niño, the countries along the lower 

Mekong River all suffered severe drought. The Chinese government immediately asked the Jinghong Reservoir to release water 

urgently, which effectively helped downstream countries mitigate a series of possible effects caused by drought and water 

shortages (Li et al., 2017b). 

 545 

Fig. 12. CR of CC and human activities to the changing monthly streamflow at Yunjinghong station (left panel), monthly 

precipitation, potential evapotranspiration and runoff depth during the natural period and the impacted period in the LR Basin 

(right panel). (Notation: HA = “Human Activities”, CC = “Climate Change”, PET = “Potential evapotranspiration”, NP = 

Natural Period and IP = Impacted Period) 

4.4 Comparison with the other two methods 550 

In this sub-section, the new proposed framework that considers the uncertainty of hydrological simulations was compared with 

the Budyko framework, five sections of water withdrawal data from the LR Basin and the equivalent streamflow depth converted 

from the dead storage capacity of six large hydropower stations.  

Table 6 shows the CR of CC and HAs to annual streamflow changes at Yunjinghong station, which was calculated from the 

Budyko framework. The actual evapotranspiration was calculated from the annual precipitation minus the annual streamflow 555 

depth. As shown in Table 6, compared with the natural period, the precipitation and streamflow depth in the impacted period 

showed a decreasing trend.  

Table 6 CR of climate change (CC) and human activities (HA) calculated by the Budyko framework 
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Time period Precipitation (mm) Streamflow (mm) Actual evapotranspiration (mm) CC (%) HA (%) 

Natural period 863.8 398.6 463.7 
37.2 62.8 

Impacted period 838.8 312.1 526.6 

The precipitation decreased by 25 mm and the streamflow depth decreased by 86.5 mm. In contrast, the actual 

evapotranspiration showed an increasing trend, which may be related to the continuous increase in temperature in recent decades. 560 

The CR of CC and HAs to streamflow changes accounted for 37.2% and 62.8%, respectively, which was basically consistent with 

the results calculated by the new framework proposed in this study (the difference was 5.4%). 

Fig. 13 shows the annual water withdrawals (i.e., domestic, irrigation, livestock, manufacturing and mining) in the LR Basin 

during the period from 1970 to 2010 and changes in the installed capacity and dead reservoir storage from 1992 to 2015. In 

addition to the amount of water use for irrigation, the other four types of water use withdrawals all showed an increasing trend 565 

from 1970 to 2010, with domestic water consumption increasing the most (linear slope = 0.043). The comparison between the 

impacted period and the natural period showed that the other four types of water consumption, except for domestic water use, all 

had a larger increase in the natural period than during the impacted period. To meet the power generation needs of Southwest 

China and the flood control and drought resistance requirements of downstream countries, the total dead storage capacity and total 

installed capacity of the reservoirs from 1992 to 2015 all showed a significant increase, especially after the construction of 570 

Nuozhadu hydropower station in 2012, shown in Fig. 1. 

 

 

 

 575 
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Fig. 13. Annual water withdrawals of the LR Basin during the period from 1970 to 2010. The linear trend lines are indicated by 

blue (1970-2004), green (2005-2010) and red (1970-2010), and in the last panel, the total dead storage capacity and installed 

capacity of the LR from 1992 to 2012 are shown. 

According to the method introduced in Section 3.5, the changes in the streamflow caused by HAs in the LR Basin were 

separated, which mainly included the five sections of water consumption changes and the same amount of water depth as the total 580 

dead storage capacity of the reservoir. Fig. 14 shows the CR of the five types of water withdrawals by HAs and the construction 

of the reservoirs to the streamflow changes in the LR Basin during the impacted period (from 2005 to 2015) compared to the 

natural period (from 1961 to 2004). Overall, the CR of HAs to streamflow changes was 59.91%, while that of CC was 40.09%. 

This result was also consistent with the results calculated in Section 4.3.1. Among them, the streamflow depth caused by the 

construction of the reservoir was reduced by -50.17 mm, which was also the factor that had the greatest impact on streamflow 585 

compared with other HAs, and its CR reached 58.0%, while the CR of the other five types of water withdrawal was relatively 

small. The CRs of domestic, irrigation, livestock, manufacturing, and mining water withdrawals were 1.32%, -0.35%, 0.12%, 

0.79% and 0.03%, respectively, a total of 1.91%. In other words, the decrease in the streamflow in the LR Basin was mainly due 

to the impact of HAs, and most of it was caused by the construction of the reservoirs.  

 590 

Fig. 14. Contribution rate (CR) of Domestic, Irrigation, Livestock, Manufacturing, and Mining water withdrawals and 

reservoir construction and climate change (CC) to the streamflow changes at Yunjinghong station from 1961 to 2015. 
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5. Discussion 

5.1 How does parameter uncertainty affect the quantitative results? 

In this paper, we proposed a novel framework to quantify the CR of CC and HAs to streamflow changes considering the 595 

uncertainty of hydrological simulations. This is because the phenomenon of "equifinality for different parameters" in hydrological 

simulations greatly affects the quantification results. To preliminarily investigate the impact of model simulation uncertainty of 

the quantitative results, we selected the two simulation results with the largest NSEs in this study for analysis. The evaluation 

metrics and CR of CC and HAs are shown in Table 7, which shows that both simulations can simulate the monthly streamflow at 

Yunjinghong station in the LR Basin accurately, and the two simulations have almost the same evaluation performance. However, 600 

the attribution analysis obtained from the two hydrological simulations showed completely different results. In the first simulation 

result, according to the method introduced in Section 3.4.1, the streamflow changes in the LR Basin were mainly caused by CC, 

but in the second hydrological simulation, the opposite conclusion was drawn, that is, HAs dominated. These were almost the 

same hydrological simulation results but with opposite conclusions from the attribution analysis; this was one of the reasons why 

we must consider the uncertainty of the model parameters in the attribution analysis of CC and HAs using hydrological simulations. 605 

The results of Section 4.3.1 and related published studies (Han et al., 2019) in the LR Basin show that the streamflow changes in 

the LR Basin were mainly caused by HAs.  

 

Table 7 Results of the CR of climate change and human activities to runoff changes with almost equal model performance 

(monthly) using the SWAT model 610 

Simulation 

result 

Calibration Validation Overall Contribution Rate (%) 

NSE RE (%) NSE RE (%) NSE RE (%) CC HA 

1st simulation 0.94 -10.6 0.95 -8.6 0.94 -9.97 54.5 45.5 

2nd simulation 0.94 -7.7 0.95 -8.7 0.94 -8.1 42.1 57.9 

(Notation: CC and HA represent the climate change and human activities, respectively; NSE and RE represent the Nash-

Sutcliffe efficiency coefficient and the relative error, respectively) 

Table 8 shows the values of 9 highly sensitive parameters of the two simulation results and the streamflow values simulated by 

the two simulations in the natural period and the impacted period. Table 8 and the calculation methods introduced in Section 3.4.1 

show that the watershed streamflow reduction caused by CC calculated by the 1st and 2nd simulation results was -217.1 m3/s and 615 

-170.6 m3/s, respectively, which was the reason why they had opposing calculated attribution results. From the perspective of 

specific parameter values, the most sensitive parameter is ALPHA_BNK, which was the base flow alpha factor for bank storage 

(days) characterized by the bank storage recession curve. The difference between the two calibration results was not large, and 

this parameter mainly controlled the baseflow process, having little effect on the average annual streamflow while the difference 

in CH_K2 in the two calibration results was larger, at 303.87 and 106.12. This parameter represented the effective hydraulic 620 

conductivity of the main channel alluvial layer, which meant that the larger the CH_K2 value is, the more likely the water in the 

main channel is lost to groundwater; accordingly, the streamflow production at the outlet of the watershed would decrease (Arnold 

et al., 2012b; Xu et al., 2016; Zhao et al., 2018a). This might also be one of the reasons that the first simulated streamflow (1617 

m3/s) was slightly smaller than the second one (1667.9 m3/s). The SFTMP parameter, which was the temperature when 

precipitation was converted into snowfall, returned values for the first simulation and the second simulation as 2.69°C and -0.11°C, 625 
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respectively; this meant that in the first simulation, more liquid precipitation was converted into a solid state and less streamflow 

was formed, which also led to a smaller simulated streamflow in the first simulation. The SMTMP parameter, which was the snow 

melt base temperature, was -4.13°C in the first simulation result and 3.73°C in the second simulation result. From basic physical 

knowledge, the SMTMP parameter in the second calibration result was more reasonable. Compared with other research results 

with similar terrain features in this study area, Debele et al. (2010) constructed the SWAT model in the high altitude area of the 630 

source of the Yellow River, China, and the SMTMP value obtained was 4°C. The difference between the two simulations was not 

large for the set of the other parameters (SOL_BD, GW_REVAP, CN2 and SOL_K), or the parameter that controlled the baseflow 

(ALPHA_BF) had little effect on the average streamflow of the basin. Based on the above, the second simulation results were 

consistent with the calculation results of the new framework proposed in this study. Therefore, when we choose a hydrological 

simulation to analyze the attribution of CC and HAs to streamflow variations, we should clearly also consider the actual physical 635 

meaning and the uncertainties of the model parameters. 

 

Table 8 Values of 9 sensitivity parameters with similar simulation results and their simulated streamflow in the natural and 

impacted periods 

Simulation No. 1st simulation 2nd simulation 

V__ALPHA_BNK 0.84  0.68  

V__CH_K2 303.87  106.12  

V__SOL_BD 1.51  1.93  

V__GW_REVAP 0.03  0.003  

V__SFTMP 2.69  -0.11  

R__CN2 -0.06  -0.12  

R__SOL_K 0.32  0.31  

V__SMTMP -4.13  3.73  

V__ALPHA_BF 0.11  0.77  

Simulated streamflow in the NP (m3/s) 1617.6 1667.9 

Simulated streamflow in the IP (m3/s) 1400.5 1497.3 

(Notation: NP = “Natural period”, IP = “Impacted period”, R_, V_, and A_ represent multiplying, replacing, and adding the 640 

corresponding parameter values, respectively, in the process of calibrating the parameters.) 

In this study, 575 parameter combinations with good simulation results (NSE greater than 0.75) were selected, with a step size 

of 5%, it is proposed to reduce the influence of hydrological modeling uncertainty on the quantitative results by constructing the 

posterior histogram distribution of the CR of CC and HAs to watershed streamflow change. However, it is undeniable that there 

are still unreasonable parameter combinations in the simulation results with high probability (167 times).  For the LR basin, it is 645 

almost impossible to obtain the measured values of all 9 parameters with high sensitivity (Table 3). Therefore, in order to further 

explore the possible influence of unreasonable parameter values on the quantitative results, we selected two parameters related to 

snowmelt streamflow (SMTMP and SFTMP) to exclude unreasonable parameter combinations. According to the parameter value 

ranges recommended by Abbaspour et al. (2007) and other related references (Arnold et al., 2012a; Yang et al., 2017), in this 

study, the reasonable value range of these two parameters is set to -5 to 5 ℃. After excluding parameter combinations outside this 650 

value range, we obtained 55 simulation results with relatively reasonable parameter values, and the quantization results obtained 
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from this calculation are shown in Fig. 15. It can be seen from Fig. 15 that after excluding unreasonable parameter combinations, 

the calculated CR of CC in the LR Basin to the reduction of streamflow is 45-50% (with an average CR of 47.1%), and this result 

is consistent with the results presented in Fig. 10 which derived from the novel framework proposed in our study. At the same 

time, it is also proved that although the calculation framework proposed in this study may contain unreasonable parameter 655 

combinations in obtaining the simulation results with the highest frequency, the calculation results are still highly accurate. In 

addition, for the research area where the measured values of related parameters can be obtained, the rationality and authenticity 

of the parameter values should be fully considered while selecting the parameter combination with higher NSE. 

 

Fig. 15 Histogram of the number of simulations of the CR (with 5% steps) of climate change to streamflow reduction in the 660 

LR Basin at the annual scale and corresponding Nash-Sutcliffe Efficiency box plots after excluding the parameter combinations. 

5.2 Land use/land cover change in the LR Basin from 1980 to 2015 

In Section 4.4, the water withdrawals of domestic, irrigation, mining, livestock, and manufacturing, and in addition, dead 

storage capacity of constructed reservoirs as well as the impact of HAs were separated; then the impacts of HAs on streamflow 

changes were separated. However, HAs also influenced the land use change on rainfall-runoff characteristics. Fig. 16 shows the 665 

land use in the LR Basin in 2015. Grassland was the largest land use in the upper LR Basin, while the lower reaches were 

dominated by forest. Due to the high-altitude terrain in the upper reaches, unused land and glaciers were mainly distributed in this 

area. Table 9 shows the areas of land use types in the LR Basin in 1980, 1990, 2000, 2010 and 2015. In general, the water area of 

the LR Basin showed a significant reduction from 1980 to 1990, which was possibly due to the decrease in the area of glaciers 

due to the increase in temperature from 1980 to 1990 (Fig. 6). In contrast, the water area increased by nearly 38% from 2010 to 670 

2015, which was mainly due to the construction of Nuozhadu hydropower station (with a total storage capacity of 22.7 km3) within 

the basin.  

Table 9 Areas (km2) of land use types in the LR Basin in 1980, 1990, 2000, 2010 and 2015 

Land use type 1980 1990 2000 2010 2015 

Farmland 10061  9969  10146  10016  9932  

Forest 51679  51713  51615  51746  51543  

Grassland 63454  63484  63389  63362  63266  

Water 1281  789  828  828  1148  

City 114  154  152  178  237  

Unused land 7578  8058  8037  8036  8041  

Permanent glacier  1087  309  371  371  365  

(Nation: Permanent glacier in Table 5 is second-level type which belong to Water) 



30 

 

The area of farmland in the LR Basin showed a decreasing trend during 2000-2010 and 2010-2015, which is also the main 675 

reason for the reduction in the irrigation water consumption in the basin, which is consistent with the results shown in Fig. 13. 

The areas of the cities all showed an increasing trend in the three periods of 1980-2000, 2000-2010 and 2010-2015 (by 33.3%, 

17.1% and 33.1%, respectively), while the other three types of land use/land cover (i.e., forest, grassland, and unused land) did 

not change significantly in the three periods. In summary, no significant changes were found from 1980 to 2015 in the forest and 

grassland of the LR Basin (accounting for 38.4% and 47.2% of the total area, respectively). Although the city area has undergone 680 

significant changes, it accounts for a very small total area of the basin very (0.17%). The change in the water area was mainly due 

to the construction of the reservoirs, so the method used in Section 4.3 to separate the contribution of HAs to the reduction in the 

streamflow in the LR Basin used is reasonable. 

 

 685 

Fig. 16. Land use classification in the LR Basin in 2015. 
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5.3 Comparison with results of other published studies 

As analyzed above, there was no particularly significant change in the precipitation and potential evapotranspiration from 

1961 to 2015 in the LR Basin. HAs mainly included the construction of reservoirs, resulting in changes in the streamflow. 

Attribution analysis results showed that the CR of HAs was 57.6%, and the corresponding CC was 42.4%. This result was basically 690 

consistent with Han et al. (2019), but the CR of HAs was smaller than the results of Han et al. research results (95%). This may 

be due to the following reasons:  

1) The streamflow data of different time spans were used to obtain different break points. They used streamflow data from 

1980 to 2014 to obtain the break point in 2008, and this study used data from 1961 to 2015 to identify the break point in 2005.  

2) Different hydrological models were used. They used the coupled routing and excess storage (CREST) model with an NSE 695 

of 0.57, while the SWAT model used in this study had an NSE of 0.94.  

3) Longer series of streamflow data and simulation data were used. 

 As indicated by Li et al. (2017a) and (Han et al., 2019), as the streamflow data series became longer in the impacted period, 

the impact of reservoir scheduling on the streamflow changes on an average scale for many years gradually decreased. Li et al. 

(2017a) selected Chiang Saen station, which was the nearest station to Yunjinghong station downstream of the LR Basin, for their 700 

research, and then they divided the streamflow series into three stages, the pre-impact period (1960-1991), the transition period 

(1992-2009) and the post-impact period (2010-2014). They concluded that the construction of the reservoirs in the LR Basin led 

to a decrease in the streamflow process during the flood period and an increase in the dry period, which was consistent with the 

results of our study (Section 4.3.2). Their results also showed that HAs contributed 61.88% to the streamflow reduction at Chiang 

Saen station, which was also close to the results of our study (57.4%).  705 

5.4 Applicability and uncertainty of the proposed framework 

A new quantitative framework for calculating the CR of CC and HAs to watershed streamflow variations was proposed in this 

study, and it was successfully applied to the LR Basin with relatively accurate results. From our perspective, this method can 

effectively quantify the influence of the "equifinality for different parameters" that may exist in the use of hydrological simulation 

methods to quantify the CR of CC and HAs. At the same time, we also believe that this framework can be applied to other 710 

watersheds based on the following aspects. First, in the section 4.4, the Budyko framework and sectional water withdrawal data 

within the basin were used to compare with the new framework. Second, the results of the comparison with published research on 

the LR Basin (Han et al., 2019) also proved that the framework has good accuracy and applicability. Third, in the process of 

comparing with the new framework, we fully considered the impact of various HAs within the study area, including five types of 

water withdrawals (i.e., irrigation, livestock, living, mining, and manufacturing), the impact of reservoir storage and the land 715 

use/land cover change. Of course, due to the highly nonlinear relationship between the parameters of the hydrological model, we 

suggest that readers ensure that the selected simulation results with NSEs greater than 0.75 are large enough when applying the 

novel framework in other research areas (this study had 500 simulations). It is undeniable that this method still has certain 

uncertainties and limitations when it is applied to other watersheds. First, if there are multiple break points in the annual streamflow 

sequence, then when selecting the unique break point, it is necessary to consider the abrupt change points of the time series of 720 

other meteorological elements (precipitation, temperature, etc.) in the basin. At the same time, the impact of strong human 

activities (reservoir construction, large-scale water transfer project construction, etc.) on the abrupt change of streamflow in the 

basin should also be considered (Dey and Mishra, 2017). Finally, a unique break point is selected to divide the research time series 
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into a natural period and an impacted period, and then the quantitative framework proposed in this study can be applied. Second, 

because the SWAT model has good applicability at the Yunjinghong station in the LR Basin, it can meet the 500 best simulation 725 

requirements set by the framework proposed in this study, but the hydrological model may have different applicability in different 

research areas. Therefore, the application of this framework in other research areas may have limitations, which need to be further 

verified. Third, because this study uses the parameter combinations obtained by the natural period to input the meteorological 

element data of the impacted period for calculation, this may also bring uncertainty to the calculation results, which is usually 

called “transferability” (Fu et al., 2018). 730 

Although the new quantitative framework proposed in this study considers the uncertainties in hydrological simulations, the 

framework is still based on traditional hydrological simulation methods to separate the CR of CC to streamflow change, and then 

to deduce the CR of HAs. Therefore, inevitably, there are still uncertainties in the calculation process. For example, the 

construction of large-scale reservoirs and changes in land use/land cover (urbanization, etc.) are important factors that alter the 

climatic state of a local region, specifically in that they change the temporal and spatial distribution characteristics of local regional 735 

hydrometeorological elements (Li et al., 2017c; Degu et al., 2011). This change in meteorological elements was regarded as part 

of the impact of CC in this study; however, it was also caused by both HAs (reservoir construction) and CC. On the other hand, 

there are uncertainties in the division of the natural period and the impacted period in this study, which assumed that the impact 

of HAs on streamflow changes in the natural period was negligible; however, there were almost no periods within a watershed 

that were completely unaffected by HAs, and the impact of HAs on streamflow variations in the natural period was ignored in 740 

these studies. In this study, there was also strong disturbance of HAs during the natural period (i.e., reservoir construction: Manwan 

and Dachaoshan) (Table 1). In addition, our study selected the NSE as the objective function to calibrate the SWAT model, which 

may also bring uncertainties in the quantitative results. As indicated by (Gupta et al., 2009) and Gupta and Kling (2011), using 

the NSE as an objective function to calibrate a hydrological model may tend to underestimate the peak streamflow. Although the 

CR in our study was calculated by the average streamflow over multiple years, it still brought a given amount of uncertainty to 745 

the quantitative results. Therefore, follow-up research should strengthen the optimization of the objective function and benefit 

from field investigation of the actual meaning of the parameters. Since the impacts of CC and HAs on the hydrological processes 

of the watershed are complicated and interconnected, it is still a challenge to completely separate the impacts of CC and HAs on 

streamflow variations (Xin et al., 2019). Further consideration should be given to quantify the impact of specific HAs, such as 

land use change and water withdrawal, and then to separate the impact of CC and HAs on streamflow changes as completely as 750 

possible.  

6. Conclusions 

In this study, we proposed a new framework that considered the uncertainties of model simulations to quantify the CR of CC 

and HAs to streamflow changes. This framework was developed based on the posterior histogram frequency distribution (PHD) 

of the CR of CC and HAs. Then, we selected the LR Basin for the case study. Over the past three decades, after the construction 755 

of the Manwan Reservoir in 1987, six large reservoirs were constructed within the basin before 2014. The streamflow process in 

the watershed also has significant changes on multiyear average and monthly scales. The Mann-Kendall monotonic trend test and 

the Mann-Kendall break point test were used to test the trend and identify the break point of the annual streamflow data at 

Yunjinghong station within the period of 1961 to 2015. Then, the available period was divided into the natural period (before the 
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break point) and the impacted period (after the break point). Afterwards, the SWAT model and the SUFI-2 method were used to 760 

construct the Posterior Histogram Distribution (PHD) of the CR of CC and HAs. Finally, the Budyko framework and the basin 

wide gridded monthly sectoral water use (GMSWU) data set were used to compare with the newly proposed framework. The main 

conclusions of this study are as follows: 

1) The new proposed framework can be used to quantify the CR of CC and HAs in the LR Basin which can fully solve the local 

optimal solution for hydrological simulation parameters in current related studies. The results of comparison using the Budyko 765 

framework and Gridded Monthly Sectoral Water Use (GMSWU) data set also showed that the new framework has high accuracy 

(the error range is within 6%).  

2) The break point of the streamflow sequence during 1961-2015 at Yunjinghong station was identified in 2005. The streamflow 

significantly decreased (~ -22%) after 2005 compared with that of the natural period (1961 - 2004), which was mainly due to the 

construction of the Xiaowan Reservoir in October 2004. Significantly reduced streamflow in the flood period and significantly 770 

increased streamflow during the dry period also occurred, which was mainly due to the capacity adjustment of the constructed 

reservoirs. The trend test results also showed that from 1961 to 2015, the annual streamflow in the LR Basin showed a significant 

decreasing trend at the α = 0.01 significance level, precipitation showed a nonsignificant decreasing trend, and mean temperature 

showed a significant increasing trend at the α = 0.01 significance level. 

3) The quantification results calculated using the new proposed framework showed that, on an annual scale, compared with the 775 

natural period of 1961 – 2004, the CR of CC and HAs (CR of CC and HAs) were 40 - 45% (with an average CR of 42.6%) and 

55 – 60% (with an average CR of 57.4%), respectively. The CR of CC and HAs derived from the Budyko framework were 37.2% 

and 62.8%, respectively, and the error between the two calculation results was 5.4%. The CR of HAs calculated using the GMSWU 

data and the reservoirs dead capacities was 58.0%, which also proved that the new proposed framework in this study can be used 

in the LR Basin. 780 

4) Quantitative analysis results on a monthly scale in the LR Basin showed that, except for June and November, streamflow 

changes in other months were caused by HAs. Further analysis showed that the streamflow in June during the impacted period 

decreased by 6.9 mm compared with that in the natural period, while the precipitation and potential evapotranspiration decreased 

and increased by 20.2 mm and 8.83 mm, respectively; the streamflow decreased by 5.34 mm in November, while the 

corresponding precipitation and potential evapotranspiration changed by -7.43 mm and 5.52 mm, respectively.  785 

In summary, this study provides a new calculation framework that considers the uncertainty of hydrological simulations to 

quantify the CR of CC and HAs to streamflow changes. The results of this case study also provide a reference for understanding 

the dominant factors of streamflow changes in the LR Basin and improving water resource management measures for the 

transboundary Lancang-Mekong River Basin. Of course, this new proposed framework also needs to be applied and verified in 

more research areas. In addition, this framework only considers the dual impacts of CC and HAs. However, in practical 790 

applications, water resource decision makers are more willing to understand the specific impacts of HAs such as irrigation water 

and land use changes. Therefore, in future research, efforts should be made to expand the framework to quantify the CRs of 

individual items of CC and HAs. 
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AE – Actual Evaporation; CC – Climate Change; CGDPA – China Gauge-based Daily Precipitation Analysis; CMA – China 795 

Meteorological Administration; CR – Contribution Rate; CREST - Coupled Routing and Excess Storage; DEM - Digital Elevation 

Model; GMSWU - Global gridded Monthly Sectoral Water Use data set; HA – Human Activity; HRU – Hydrologic Response 

Unit; HWSD V1.2 – Harmonized World Soil Database Version 1.2; LR – Lancang River; NSE – Nash-Sutcliffe Efficiency 

coefficient; PET - Potential Evapotranspiration; PHD - Posterior Histogram Distribution; RE – Relative Error; SRTM - Shuttle 

Radar Topography Mission; SUFI -2: Sequential Uncertainty Fitting Procedure version 2; SWAT – Soil & Water Assessment 800 

Tool; USDA - US Department of Agriculture Research Service. 
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