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Abstract. A comprehensive evaluation of the impacts of climate change on water resources of the West Africa Volta River 

basin is conducted in this study, as the region is expected to be hardest hit by global warming. A large ensemble of twelve 

general circulation models (GCM) from CMIP5 that are dynamically downscaled by five regional climate models (RCM) from 

CORDEX-Africa is used. In total, 43 RCM-GCM combinations are considered under three representative concentration 

pathways (RCP2.6, RCP4.5 and RCP8.5). The reliability of each of the climate datasets is first evaluated with satellite and 20 

reanalysis reference datasets. Subsequently, the Rank Resampling for Distributions and Dependences (R2D2) multivariate bias 

correction method is applied to the climate datasets. The corrected simulations are then used as input to the fully distributed 

mesoscale Hydrologic Model (mHM) for hydrological projections over the twenty-first century (1991-2100). The bias-

corrected climate projections are then used as input to the mesoscale Hydrologic Model (mHM) for hydrological projections 

over the twenty-first century (1991-2100). 25 

Results reveal contrasting changes in the seasonality of rainfall depending on the selected greenhouse gas emission scenarios 

and the future projection periods. Although air temperature and potential evaporation increase under all RCPs, an increase in 

the magnitude of all hydrological variables (actual evaporation, total runoff, groundwater recharge, soil moisture and terrestrial 

water storage) is only projected under RCP8.5. High and low flow analysis suggests an increased flood risk under RCP8.5, 

particularly in the Black Volta, while hydrological droughts would be recurrent under RCP2.6 and RCP4.5, particularly in the 30 

White Volta. The evolutions of streamflow indicate a future delay in the date of occurrence of low flows up to 11 days under 

RCP8.5, while high flows could occur 6 days earlier (RCP2.6) or 5 days later (RCP8.5), as compared to the historical period. 

Disparities are observed in the spatial patterns of hydroclimatic variables across climatic zones, with higher warming in the 

Sahelian zone. Therefore, climate change would have severe implications for future water availability with concerns for rain-
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fed agriculture, thereby weakening the water-energy-food security nexus and amplifying the vulnerability of the local 35 

population. The variability between climate models highlights uncertainties in the projections and indicates a need to better 

represent complex climate features in regional models. These findings could serve as a guideline for both the scientific 

community to improve climate change projections and for decision makers to elaborate adaptation and mitigation strategies to 

cope with the consequences of climate change and strengthen regional socio-economic development. 

1 Introduction 40 

Climate warming is projected to occur at a faster ratefaster in West Africa than the global average during the twenty-first 

century (Todzo et al., 2020). Anthropogenic greenhouse gas emissions have led to an unprecedented increase in surface air 

temperature, which has resulted in the intensification of the hydrological cycle (Sylla et al., 2016). Therefore, recurrent floods 

and droughts could persist in the future because rainfall is projected to decrease in frequency but increase in intensity (Aich et 

al., 2014;Dosio et al., 2020;Chagnaud et al., 2022). In the face of climate change and variability, West Africa is particularly 45 

vulnerable because of its high reliance on rain-fed agriculture and limited institutional capacities to cope with climate change 

and variability (Karambiri et al., 2011;Sultan and Gaetani, 2016;Yira et al., 2017). Climate change and anthropogenic pressures 

pose an increasingincrease stress on water resources (Sood et al., 2013). Freshwater shortages that lead to a decline in basin-

scale irrigation water availability could have dire consequences for sustainable agriculture (Sylla et al., 2018b). Consequently, 

global warming is a serious threat for to water and food security in West Africa. However, addressing this threat is currently 50 

difficult given the high variability in climate projections, which can impose very different hydrological implications for West 

Africa (Dosio et al., 2020), thus imposing greater urgency for further investigations on the impacts of climate change on 

hydrological processes. 

In the transboundary Volta River Basin (VRB) located in West Africa, water resources are fundamental for agriculture, 

hydropower generation, fisheries and other ecosystem services (Williams et al., 2016). Most of the agriculture is rain-fed but 55 

many regions rely on irrigated agriculture (Roudier et al., 2014). Hydropower is a major source of electricity production with 

the potential to grant more access to energy in the region (Kling et al., 2016;Stanzel et al., 2018). Future water resource 

developments in the VRB focus primarily on hydroelectricity and irrigation (McCartney et al., 2012). However, severe impacts 

of climate change on water resources in the VRB will impede future socio-economic development (Sood et al., 2013). 

Anticipation of the future evolution of the hydrological cycle in the VRB is essential to ensuring the adaptive capacities of the 60 

riparian countries to the regional consequences of global warming (Jin et al., 2018). However, there is relatively little 

knowledge of the impacts of climate change on the future water resources in West Africa in general (e.g., Kasei, 2010;Oyerinde 

et al., 2016;Yira et al., 2017), and only a few studies targeted the VRB (Jung et al., 2012;Okafor et al., 2019;Roudier et al., 

2014). These studies usually focused on climatic variables (i.e. precipitation and temperature), and when considering 

hydrological modelling, they focused usually focused on one variable (e.g. streamflow). The limitations of climate change 65 

impacts studies on water resources in West Africa arise from the lack of hydrological and meteorological observations to drive 
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models, in addition to uncertainties related to climate projection data as well as hydrological models (Dembélé et al., 

2019;Oyerinde et al., 2016;Sidibe et al., 2020;Sylla et al., 2018a). Despite considerable progress in improving climate 

projections and the efforts in investigating climate change in West Africa (e.g., Diallo et al., 2016;Kebe et al., 2017;Mahé et 

al., 2013;Nikiema et al., 2017), the need for understanding the future evolution of the hydrological cycle under varying 70 

scenarios still exists (Eyring et al., 2019;Sidibe et al., 2020;Sylla et al., 2016).  

The goal of this study is to analyse the repercussions of projected changes of rainfall and temperature on the seasonal and 

annual trends of various components of the hydrological cycle (i.e., streamflow, total runoff, potential and actual evaporation, 

groundwater recharge, soil moisture and terrestrial water storage) and water availability in the twenty-first century, under 

multiple future scenarios. Therefore, this study investigates the dynamics evolutions of various hydrological processes in the 75 

VRB under a changing climate and the implications for water availability and extreme events like floods and droughts. The 

results can provide knowledge to inform research and water planning to develop and implement adaptation and mitigation 

measures that alleviate the impacts of global warming in the VRB. 

2 Study area 

The Volta River Basin (VRB) is a major transboundary basin in West Africa (Figure 1), and the ninth largest drainage basin 80 

in sub-Saharan Africa (UNEP-GEF, 2013). It is located between latitudes 5°40’ N and 14°55’ N and longitudes 5°25’ W and 

2°20’ E, and covers approximately 415,600 km2 shared among six countries (Benin, Burkina Faso, Côte d’Ivoire, Ghana, Mali, 

and Togo). The population of the VRB was estimated to 23.8 million people in 2010 and it is projected to reach 56.1 million 

in 2050 (Williams et al., 2016). The altitude ranges from zero to 940 m a.s.l., but the topography is predominantly flat with a 

mean altitude of about 255 m a.s.l., as most of the basin lies below 400 m a.s.l. (Dembélé et al., 2020c). The land cover of the 85 

basin area is composed of savannah (75%), cropland (13%), forest (9%), water bodies (2%) and bare land and settlements 

(1%). The climate is driven by the latitudinal and seasonal oscillation of the Inter-Tropical Convergence Zone (ITCZ), which 

governs rainfall occurrence in the VRB. Rainfall depicts a south-north gradient of increasing aridity, with four eco-climatic 

zones (i.e. Sahelian, Sudano-Sahelian, Sudanian and Guinean), and it is characterized by interannual and multidecadal 

variabilities (Nicholson et al., 2018). The Volta River flows north-south over 1,850 km and drains into the Atlantic Ocean at 90 

the Gulf of Guinea after transiting into the Lake Volta formed by the Akosombo dam. The drainage system is composed of 

four sub-basins known as Black Volta (152,800 km2), White Volta (113,400 km2), Oti (74,500 km2) and Lower Volta (74,900 

km2) (Dembélé, 2020). 
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Figure 1. Physical and hydroclimatic characteristics of the Volta River basin. (a) hydrographic network and climatic zones, (b) 95 
digital elevation model, (c) land cover. 

3 Data and Methods 

 Overview of the methodology 

The methodology adopted for the assessment ofassessing climate change impacts on water resources in the VRB is summarized 

in Figure 2. The main steps consist of the bias correction of the RCMs forced by the GCMs, the modelling of hydrological 100 

processes based on the climate projection datasets, and the analysis of the future changes in the modelled hydrological 

processes. 

Uncertainties in the climate projections are addressed by employing a large ensemble of twelve General Circulation Models 

(GCMs) downscaled by five Regional Climate Models (RCMs) under three Representative Concentration Pathways (RCPs; 

Moss et al., 2010;Van Vuuren et al., 2011). The RCMs are obtained from the Coordinated Regional-climate Downscaling 105 

Experiment (CORDEX) for Africa (Giorgi et al., 2009). Only considering the highest RCP8.5 scenario as the “business as 

usual” scenario in climate change studies is increasingly criticized because the assumption of the heavy use of coal in RCP8.5 

is unrealistic (Hausfather and Peters, 2020;Ritchie and Dowlatabadi, 2017). However, the current emissions are found to be in 
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line with the RCP8.5 scenario (Peters et al., 2013), and there are suggestions for giving RCP8.5 a high priority (O'Neill et al., 

2016).  110 
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Figure 2. Overview of the procedure for assessing the impacts of climate change on hydrological processes.  

 115 

The RCM-GCM datasets are first evaluated by comparing them to the best performing satellite and reanalysis datasets of 

rainfall and temperature for hydrological modelling in the VRB. Subsequently, a multivariate bias correction is applied to the 

climate projection datasets using the Rank Resampling for Distributions and Dependences (R2D2) method (Vrac and Thao, 

2020). Finally, the bias corrected climate projection datasets are used as input in the fully distributed mesoscale Hydrologic 

Model (mHM) to assess the impact of climate change on multiple hydrological fluxes and state variables. Although the 120 

performance of a model during past and present conditions does not guarantee its reliability for future projections (Stanzel et 

al., 2018), having a well performing model that simulates realistic hydrological processes is a prerequisite for any sound impact 

study (Krysanova et al., 2018).  

 Climate projection datasets 

CORDEX generates high-resolution historical and future climate projections for regional domains, by downscaling GCMs 125 

participating in the fifth Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012). Based on data availability on 

the Earth System Grid Federation (ESGF) platform (https://esgf-data.dkrz.de, last accessed on 22.03.2020), twelve GCMs 
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from CMIP5 dynamically downscaled with five RCMs available from the CORDEX-Africa initiative are selected for this 

study (Table 1). The spatial resolution of the RCMs is 0.44° (~ 50 km) in latitude and longitude. As the RCMs do not downscale 

all the GCMsAs not all GCMs are downscaled by the RCMs, there are 21 RCM-GCM combinations available for the global 130 

runs in the historical period (1951-2005), while 43 RCM-GCM combinations are available for the future projections (2006-

2100) under various representative concentration pathways (RCP2.6, RCP4.5 and RCP8.5). The RCPs correspond to different 

scenarios of future concentrations and emissions of greenhouse gases and air pollutants, and land-use change until 2100, 

relative to the pre-industrial times (Moss et al., 2010;Van Vuuren et al., 2011). The three RCPs used in this study are (i) RCP2.6 

corresponding to a mitigation scenario with a very low radiative forcing level that peaks at ~3 W m-2 (~490 ppm CO2 135 

equivalent) and declines to ~2.6 W m-2 by 2100; (ii) RCP4.5 representing a medium stabilization scenario without overshoot 

pathway to 4.5 W m-2 (~650 ppm CO2 equivalent) at stabilization after 2100; and (iii) RCP8.5 corresponding to a very high 

emission scenario with rising radiative forcing pathway leading to 8.5 W m-2 (~1370 ppm CO2 equivalent) by 2100. 

Approximatively, RCP2.6 corresponds to a +2 °C global temperature stabilization by 2100, while RCP4.5 and RCP8.5 

correspond to +3.5 °C and +5 °C increase in global temperature by 2100 (Konapala et al., 2020). The climate variables used 140 

in this study are daily data of rainfall and minimum, maximum and average air temperature, which are obtained for the climate 

model realization r1i1p1. 

Table 1. List of the CORDEX-Africa General Circulation Models (GCMs) datasets downscaled by Regional Climate Models (RCMs) 
and their availability per Representative Concentration Pathways (RCP) marked with a cross (x). 

RCMs GCMs RCP2.6 RCP4.5 RCP8.5 

CCLM4-8-17 

CNRM-CM5  x x 

HadGEM2-ES  x x 

MPI-ESM-LR  x x 

CRCM5 
CanESM2  x  

MPI-ESM-LR  x  

RACMO22T EC-EARTH  x x 

RCA4 

CanESM2  x x 

CNRM-CM5  x x 

CSIRO-Mk3-6-0  x x 

EC-EARTH   x 

IPSL-CM5A-MR  x x 

MIROC5 x x x 

HadGEM2-ES x x x 

MPI-ESM-LR x x x 

NorESM1-M x x x 

GFDL-ESM2M  x x 

REMO2009 

IPSL-CM5A-LR x  x 

MIROC5 x  x 

HadGEM2-ES x  x 
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MPI-ESM-LR x x x 

GFDL-ESM2G x   

 Multivariate bias correction of climate data 145 

Assessing the reliability of climate projections data in reproducing observations is a precondition to impact studies (Eyring et 

al., 2019). However, observations are also subject to uncertainties. To address these uncertainties, the climate projection 

datasets are evaluated with respect to ten satellite-based and reanalysis-based rainfall datasets and six temperature datasets 

(Table 2). The selected satellite-based and reanalysis-based rainfall datasets demonstrated the best performances for large-

scale hydrological modelling in the VRB as shown by Dembélé et al. (2020c). Hereafter, the datasets composed of both satellite 150 

and reanalysis products will be referred to as observations. 

Table 2. Satellite-based and reanalysis-based rainfall and temperature products for climate projection data evaluation. P: rainfall, 
T: temperature, NP: near-present. 

Datasets Name/ website 
Used 
variables 

Temporal 
coverage 

References 

TAMSAT 
v3.0 

Tropical Applications of Meteorology using SATellite 
(TAMSAT), African Rainfall Climatology and Time-series 
(TARCAT) https://www.tamsat.org.uk/data/archive  

P 1983-NP 

Maidment et 
al. (2017), 
Tarnavsky et 
al. (2014) 

CHIRPS 
v2.0 

Climate Hazards group InfraRed Precipitation with Stations 
(CHIRPS) V2.0 http://chg.ucsb.edu/data/chirps/  

P 1981-NP 
Funk et al. 
(2015)  

ARC v2.0 
Africa Rainfall Estimate Climatology (ARC 2.0) 
https://www.cpc.ncep.noaa.gov/products/international/data.shtml  

P 1983-NP 
Novella and 
Thiaw (2013) 

MSWEP 

v2.2 

Multi-Source Weighted-Ensemble Precipitation (MSWEP) V2.2 
http://www.gloh2o.org/ 

P 1979-NP 
Beck et al. 
(2017) 

PERSIANN-
CDR v1r1 

Precipitation Estimation from Remotely Sensed Information 
using Artificial Neural Networks (PERSIANN) Climate Data 
Record (CDR) V1R1 http://chrsdata.eng.uci.edu/ 

P 1983-2016 
Ashouri et al. 
(2015) 

WFDEI-
CRU 

WATCH Forcing Data ERA-Interim (WFDEI) corrected using 
Climatic Research Unit (CRU) dataset  
www.eu-watch.org 

P 1979-2018 
Weedon et al. 
(2014) 

WFDEI-
GPCC 

WATCH Forcing Data ERA-Interim (WFDEI) corrected using 
Global Precipitation Climatology Centre (GPCC) dataset 
ftp://rfdata:forceDATA@ftp.iiasa.ac.at/  

P, T 1979-2016 
Weedon et al. 
(2014) 

PGF v3 
Princeton University global meteorological forcing (PGF) 
http://hydrology.princeton.edu/data/pgf/ 

P, T 1948-2012 
Sheffield et 
al. (2006) 

ERA5 
European Centre for Medium-range Weather Forecasts 
ReAnalysis 5 (ERA5) hourly data on single levels 
https://cds.climate.copernicus.eu/  

P, T 1979-NP 
Hersbach et 
al. (2020) 

MERRA-2 
Modern-Era Retrospective Analysis for Research and 
Applications 2 (rainfall: M2T1NXFLX_V5.12.4; temperature: 
M2SDNXSLV_V5.12.4) https://disc.gsfc.nasa.gov/datasets/ 

P, T 1980-NP 

Gelaro et al. 
(2017), 
Reichle et al. 
(2017) 

EWEMBI 
v1.1 

EartH2Observe, WFDEI and ERA-Interim data Merged and 
Bias-corrected for ISIMIP (EWEMBI) 
http://doi.org/10.5880/pik.2016.004  

T 1976-2013 Lange (2016) 

JRA-55 
Japanese 55 year ReAnalysis (JRA-55); rainfall: fcst_phy2m125; 
temperature: anl_surf125  

T 1959-NP 
Kobayashi et 
al. (2015) 
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https://jra.kishou.go.jp/JRA-55/index_en.html  

 

As discrepancies are observed between the cumulative distribution functions of the observations and the climate projection 155 

datasets (Figure 3), a bias correction is applied before using the climate datasets for hydrological modelling, as usually 

recommended  (Hakala et al., 2018;Teutschbein and Seibert, 2012). The R2D2 method (Vrac and Thao, 2020) is adopted for 

a multivariate bias correction of the climatic variables. R2D2 is a rank analogue-based method that adjusts not only the 

univariate distributions of climatic variables, but also the inter-variable and inter-site dependence structures (Vrac, 2018). Bias 

correction with the R2D2 approach is achieved in two steps. First, the marginal distributions of univariate time series are 160 

adjusted using any univariate bias correction method. Here, the “cumulative distribution function transform” (CDF-t) approach 

(e.g., Vrac et al., 2012) is used to adjust the marginal properties of the univariate time series. Second, R2D2 is used to adjust 

the dependence structure between several variables, independently of their marginal distribution (i.e. empirical copula 

function). R2D2 has performed better compared to other bias correction methods as demonstrated by François et al. (2020). 

In the current multivariate bias correction, rainfall and temperature datasets are corrected simultaneously to preserve the 165 

temporal and spatial dependences between the climatic variables. The bias correction is done using only one of the 

observational datasets as reference data, the WFDEI, because it has both rainfall and temperature data over a long period 

(1979-2016). Furthermore, the WFDEI dataset previously demonstrated good performances in the VRB (Dembélé et al., 

2020b). Therefore, it is chosen as reference data to limit uncertainties in the bias correction (Tarek et al., 2021). The period 

1981-2005 is taken as the reference period for training the bias correction of the climate projection datasets, whose time series 170 

are divided into several 25-year periods over the period 1951-2100 to correspond to the length of the reference period. The 

multivariate bias correction is applied by grouping the data per calendar month in each sub-period of 25 years, which improves 

seasonality in the corrected data.  

 Hydrological Modelling 

3.4.1 Model set-up and modelling period 175 

The fully distributed mesoscale Hydrologic Model (mHM) simulates dominant hydrological processes with seamless 

spatiotemporal patterns in the modelling domain (Kumar et al., 2013;Samaniego et al., 2010;Samaniego et al., 2017). Telteu 

et al. (2021) provide a description of the formulation of hydrological processes in mHM. The model configuration is similar 

to the study of Dembélé et al. (2020b), which provides full details on the model setup, calibration, evaluation and performance 

across scales (cf. Figure 8). The study also demonstrates the ability of the mHM model to reproduce reliable spatiotemporal 180 

patterns of various hydrological processes after a robust multivariate model calibration with streamflow and satellite data of 

evaporation, soil moisture and water storage. 

The calibrated model is run over the entire data availability period (1951-2100) of the RCM-GCM datasets, with 1951-1960 

as spin-up period. The baseline or historical period for climate change impact assessment is 1991-2020, which is chosen to 
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have a more recent context for understanding climate change (Hawkins and Sutton, 2016). Projections are assessed for the 185 

near-term future (2021-2050), the long-term future (2051-2080) and the late-century (2071-2100). In total, 21 RCM-GCM 

combinations are available for the historical runs, while for future projections, 9 RCM-GCM combinations are available for 

the RCP2.6, 16 for RCP4.5 and 18 for RCP8.5 (Table 1). Although future land use and land cover (LULC) scenarios are not 

used in this study, the temporal dynamic of LULC is accounted for by using different maps over the modelling period. Based 

on high-resolution LULC data available between 1992 and 2015 from the European Space Agency Climate Change Initiative 190 

(ESA, 2017), LULC maps for 1992, 2005 and 2015 are used for the periods 1951-1990, 1991-2020 and 2021-2100, 

respectively. 

3.4.2 Model reliability 

The realism of the hydrological simulations is verified with the Budyko framework (Budyko, 1974), which helps to estimate 

mean annual water availability as a function of aridity. The supply-demand framework, which is increasingly used in 195 

hydrological modelling (Greve et al., 2020;Wang et al., 2016), is valid for large catchments under a steady state, considering 

long-term water balance and energy balance (Donohue et al., 2010;McVicar et al., 2012). The exercise consists of verifying if 

the ratio of the long-term mean annual potential evaporation to precipitation (aridity index) and the ratio of long-term mean 

actual evaporation to precipitation (evaporative index) of the climate projections are coherent with the energy and water limits 

for a given climate (Sposito, 2017;Donohue et al., 2011). Here, the term evaporation involves all sources of evaporation 200 

including transpiration (Miralles et al., 2020;Savenije, 2004). The Budyko curve is formulated with equation 1, after Budyko 

(1974), as follows: 

  𝐸ୟ
തതത

𝑃ത
= ൤𝜙tanh ൬

1

𝜙
൰ ൫1 − exp(−𝜙)൯൨

ଵ ଶ⁄

 (1) 

where 𝑃ത is the long-term mean annual precipitation, 𝐸ୟ
തതത is the long-term mean annual actual evaporation and 𝜙 is the aridity 

index. 

 205 

3.4.3 Timing of high and low flows 

The streamflow (Q) projections at the outlets of the sub-basins in the VRB are used for the analysis of high and low flows. 

Here, high flows correspond to streamflow with a return period of 10 years, i.e.  streamflow peaks that are equalled or exceeded 

for 10 percent of the time (Q10). Low flows represent streamflow that is equalled or exceeded for 90 percent of the time (Q90). 

Therefore, Q90 and Q10 are the tenth and ninetieth percentiles of daily streamflow, corresponding to the 90% and 10% 210 

probability of exceedance, respectively. An increase in Q10 implies an increase in flood risk, whereas a decrease in Q90 

represents a higher risk for river drought (Aich et al., 2014). The streamflow gauges are Bui-Amont, Daboya and Saboba at 

the outlets of the Black Volta, White Volta and Oti sub-basins (Figure 1), respectively. No gauge at the outlet of the Lower 

Volta sub-basin was available for the study. 
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The timing of high and low flows is assessed by first estimating the dates on which the annual Q10 and Q90 occurred for each 215 

of the individual 30-year historical period and future periods. Subsequently, the method of circular statistics (Mardia, 1972, 

1975) is used to calculate the mean date of occurrence (measure of average seasonality) and the interannual variation of the 

date of occurrence (measure of dispersion of events) of Q10 and Q90 (e.g., Blöschl et al., 2017;Laaha and Blöschl, 2006;Vlach 

et al., 2020). The approach of circular statistics converts Julian dates into angular values corresponding to locations on the 

circumference of a circle and avoids problems with calculating the mean date when the dates of occurrence fall around the end 220 

or the beginning of a calendar year (Chen et al., 2013;Young et al., 2000;Hanus et al., 2021). The calendar date of occurrence 

is converted to an angular value as follows: 

 𝜃୧ = 𝐷୧ ∙
2𝜋

𝑚୧

,         0 ≤ 𝜃୧ ≤ 2𝜋 (2) 

where 𝜃୧ is the angular date of occurrence in radians, Di varies between 1 and 365 (366 for leap years) and corresponds to the 

Julian date of occurrence of the flow event (e.g. Q10 or Q90) in the calendar year i, and mi is the number of days in that year. 

The average date of occurrence 𝐷ഥ is calculated as: 225 

 𝐷ഥ =

⎩
⎪
⎨

⎪
⎧tanିଵ ൬

𝑦ത

𝑥̅
൰ ∙

𝑚ഥ

2𝜋
,                   𝑥̅ > 0, 𝑦ത ≥ 0

tanିଵ ൬
𝑦ത

𝑥̅
൰ ∙

𝑚ഥ

2𝜋
+ 𝜋 ,           𝑥̅ ≤ 0

tanିଵ ൬
𝑦ത

𝑥̅
൰ ∙

𝑚ഥ

2𝜋
+ 2𝜋, 𝑥̅ > 0, 𝑦ത < 0

 (3) 

with 

 (𝑥̅, 𝑦ത) = ൭
1

𝑛
෍ cos 𝜃୧

௡

௜ୀଵ

,
1

𝑛
෍ sin 𝜃୧

௡

௜ୀଵ

൱ (4) 

 𝑚ഥ =
1

𝑛
෍ 𝑚୧

௡

௜ୀଵ

 (5) 

where 𝑥̅ and 𝑦ത represent the cosine and sine components of the average date, respectively, 𝑚ഥ  is the average number of days 

per year, and n is the total number of years. 

The concentration of the dates of occurrence around the average date is given by the mean resultant R, as follows: 

 𝑅 = ඥ𝑥̅ଶ + 𝑦തଶ,         0 ≤ 𝑅 ≤ 1 (6) 

When R approaches 1, the timing of the flow event (Q10 or Q90) is highly seasonal (the events occur on the same day of the 230 

year), but a small value of R near 0 indicates a high interannual variability of the date of occurrence (events are evenly 

distributed over the year). 

 

 Analysis of changes and variability 

Uncertainties in the model inputs and outputs are assessed in terms of vVariability in the model inputs and outputs between 235 

the simulations corresponding toresulting from different climate models are assessed using the second order coefficient of 
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variation (V2), which addresses the limitations of the classical coefficient of variation (Kvålseth, 2017), and is defined as 

follows: 

 𝑉ଶ = ቆ
𝑠ଶ

𝑠ଶ + 𝑥̅ଶ
ቇ

ଵ ଶ⁄

 (7) 

where s is the standard deviation and 𝑥̅ is the mean of a sample data x = (x1,…, xn) ∈ Rn. V2 represents the distance between x 

and 𝑥̅ relative to the distance between x and the origin zero, and it varies from 0 to 1 or 0% to 100%. 240 

The relative changes in hydroclimatic variables between the various future periods and the historical period are calculated as 

follows: 

 ∆𝑋௙௨௧௨௥௘ =
𝑋ത௙௨௧௨௥௘ − 𝑋ത௕௔௦௘௟௜௡௘

𝑋ത௕௔௦௘௟௜௡௘

 (8) 

 

where ∆X corresponds to the relative future change in the average variable X over a given future period (2021-2050; 2051-

2080; 2071-2100) as compared to the baseline or historical period (1991-2020). Only the numerator of equation 8 is considered 245 

for the calculation of absolute changes.  

Finally, the percentage of RCM-GCM agreement is calculated as the number of models agreeing on the same direction of 

change (i.e. increase or decrease) relative to the total number of models, which shows the robustness of the ensemble of climate 

projections. 

4 Results 250 

 Multivariate bias correction 

The raw RCM-GCM datasets are evaluated by comparing their cumulative distribution functions to those of the observations 

over the period 1983-2005 corresponding to the concomitant availability period of all the observation datasets (Figure 3). The 

distribution of most of the raw RCM-GCM datasets presents discrepancies with the observations, with larger gaps for 

temperature than rainfall. The multivariate bias correction with the R2D2 method visually performs well by adjusting the 255 

distributions of the RCM-GCM datasets to the WFDEI reference dataset for all the climatic variables. Therefore, the corrected 

RCM-GCM datasets are expected to provide reliable hydrological simulations in the VRB. 
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Figure 3. Cumulative distribution functions (CDF) of daily rainfall (P) and average, maximum and minimum daily air temperature 
(Tavg, Tmax and Tmin) before and after multivariate bias correction of various RCM-GCM datasets, over the 1983-2005 historical 260 
period. The black line and grey-shaded area represent the mean and the 90% confidence interval of the satellite and reanalysis 
datasets of rainfall (10 datasets) and temperature (6 datasets). 

 Plausibility of hydrological simulations 

The general plausibility, here used to mean water and energy balance consistency within the Budyko framework, of the 

hydrological simulations using various RCM-GCM datasets as inputs to the mHM model under various RCPs and various 265 

periods is illustrated in Figure 4. 
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All the RCM-GCM datasets provide plausible hydrological simulations, at least in terms of water and energy balance, as they 

respect the water and energy limits imposed within the Budyko framework. On average, the evaporative index (Ea/P) is 

between 0.86 and 0.97, while the aridity index (Ep/P) is between 2.2 and 4.4, which corresponds to expected values for sub-

humid and semi-arid environments such as the VRB (Gunkel and Lange, 2017). It is noteworthy that future projections are 270 

shifted towards a lower evaporative index and they large model dependent variability in aridity ranges, particularly under 

RCP4.5 and RCP8.5. 

 

Figure 4. Plausibility of hydrological processes with the Budyko framework representing the evaporative index, i.e. ratio of actual 
evaporation to rainfall (Ea/P), as a function of the aridity index, i.e. ratio of potential evaporation to rainfall (Ep/P). The black dashed 275 
line represents the limit where precipitation equals potential evaporation. 

 Seasonal changes in hydroclimatic variables 

The annual cycles of climatic and hydrological variables are illustrated in Figure 5 for RCP 8.5 (see Figures S1-S10 for other 

RCPs). The hydroclimatic variables analysed are rainfall (P), average air temperature (Tavg), potential evaporation (Ep), actual 

evaporation (Ea), root-zone soil moisture (Su), terrestrial water storage (St), total runoff (Qrun) and groundwater recharge (Rr). 280 

It is noteworthy that Tavg and Ep show a clear bimodal annual cycle in the VRB, with the first mode peaking between March 

and April, corresponding to the hottest period, while the second mode starts in September and peaks around October and 

November. For the hydroclimatic variables depicting a unimodal annual cycle, the peak of the cycle is observed around August 

and September, corresponding to the rainiest period. 
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 285 

Figure 5. Annual cycles of climatic and hydrological variables under RCP8.5 over the historical and future periods (under RCP8.5). 
Each boxplot represents the spread among the RCM-GCMs combinations (18 models). P: rainfall, Tavg: average air temperature, 
Ep: potential evaporation, Ea: actual evaporation, Su: root-zone soil moisture, St: terrestrial water storage, Qrun: total runoff and Rr: 
groundwater recharge. P and Tavg are RCM-GCM simulated while the other variables come from the hydrological model. 

The hydroclimatic variables depict contrasting seasonal changes across the RCPs over the future projection periods (Figure 6 290 

and Figure 7). The mean monthly changes are calculated as the differences between the future periods and the historical period. 

Figures S11-S30 illustrate the distribution of changes in the seasonal cycle of the hydroclimatic variables across RCM-GCM 

combinations. Overall, monthly P is projected to increase between +2.9% (RCP2.6) and +136.7% (RCP8.5) on average in the 

dry months (November-March) and decrease between -14% (RCP8.5) and -0.6% (RCP2.6) in the wet months (May-

September) over the twenty-first century. However, the reduction in rainfall over the wet months is more accentuated from the 295 

beginning to the middle of the rainy season (May-July), whereas there is an increase in rainfall intensity over the late rainy 

season (August-September). Consequently, monthly rainfall is projected to be more concentrated at the end of the rainy season, 

i.e. in August and September, as compared to the baseline period. All RCM-GCM models agree for air temperature on the 

increasing trend across all RCPs over the twenty-first century. There is a clear increase for Tavg in all months with a similar 

pattern for each month, depicting an increase with time from 2021 to 2100 and with increasing radiative forcing level from 300 

RCP2.6 to RCP8.5. On average, Tavg increases between +2.4% and 16.3% (i.e., +0.6 °C and +4.4 °C) across RCPs and over 

the twenty-first century. Similar to future projections of Tavg, monthly Ep also shows a consistent increase across RCPs and for 
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different periods in the twenty-first century. The average changes in Ep are projected from +1.1% in 2021-2050 for RCP2.6 to 

+10.2% in 2071-2100 under RCP8.5 (Figure 6). The changes in simulated monthly Ea follow a similar pattern to P, with an 

average increase between +0.2% under RCP2.6 and +8.1% under RCP8.5 for Ea in the dry months and a reduction of -0.2% 305 

and -9.9%, respectively under RCP2.6 and RCP8.5, in the wet months (Figure 7).  
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Figure 6. Mean seasonal changes (percentage) in climatic variables (P, Tavg, Ep) over the future periods (2021-2050, 2051-2080 and 
2071-2100) relative to the historical period (1991-2020).  310 

Projected monthly Su and monthly St (the sum of all water stored below and above land) denote a clear decline in the future 

for all RCPs except for some months in the period 2021-2050, and in the period 2071-2100 under RCP8.5 (Figure 7). The 

average decrease varies between -4.1% and -0.1% for Su and between -3.6% and -0.2% for St. The monthly Qrun and Rr mainly 

increase with the exception of some scenarios in some months. The projected monthly changes vary between -16.5% and 

+173.9% for Qrun and between -21.8% and +344.3% for Rr. The strong increases in Qrun and Rr are identified in April, when 315 

all RCM-GCMs project a decrease in Ea (Figure 7). 
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Figure 7. Mean seasonal changes (percentage) in hydrological variables (Ea, Qrun, Rr, Su, St) over the future periods (2021-2050, 2051-
2080 and 2071-2100) relative to the historical period (1991-2020). 320 

Overall, the inter-model (i.e., RCM-GCMs) variability is lower for the historical period than for the future periods and increases 

with increasing radiative forcing level from RCP2.6 to RCP8.5 (Figure 8). Among the climatic variables, low inter-model 

variabilities are simulated for monthly temperatures and potential evaporation, with an average V2 varying from 1% to 4% 

over the twenty-first century. However, P shows higher inter-model variabilities with V2 ranging between 30% and 44%, which 

have a direct repercussion on the projected hydrological variables. The highest inter-model variabilities are projected for 325 

groundwater recharge, exceeding V2 of 48%. The monthly inter-model variability for all the hydroclimatic variables and all 

the RCPs are illustrated in Figure S31. It is noteworthy that the inter-model variability for monthly rainfall, actual evaporation, 

total runoff and groundwater recharge is lower during the wet months (May-September) than the dry months (November-

March), while an almost constant trend across months is simulated for the other variables (Figure S31). 

 330 

Figure 8. Average inter-model (i.e., RCM-GCMs) variability expressed with the second-order coefficient of variation (V2) for 
monthly hydroclimatic variables (Tmax, Tmin, Tavg, P, Ep, Ea, Qrun, Rr, Su, and St) over the historical period (1991-2020) and the future 
period (2021-2100) under various RCPs. 

 Annual changes in hydroclimatic variables and water availability 

Considering all RCPs over the historical period in the VRB, the multi-model ensemble mean of long-term annual estimates of 335 

climatic variables is as follows: Tavg = 28.4 °C, Ep = 2580 mm/year, P = 994 mm/year. The trends in annual estimates of 

projected hydroclimatic variables and water availability are illustrated in Figure S32. Water availability is assessed as the net 

water flux into the land surface, using a proxy metric that is the difference between rainfall and actual evaporation (P-Ea) 

(Konapala et al., 2020;Greve and Seneviratne, 2015;Mishra et al., 2017). The largest uncertainty in annual climate projections 

over the historical period is observed for rainfall with a V2 of 3.2% for the inter-model variability. 340 

The changes in the future projections of annual climatic and hydrological processes over the twenty-first century (2021-2100) 

as compared to the historical period (1991-2020) show contrasting trends between RCPs and between projection periods 
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(Figure 9). All climatic variables (rainfall, temperature and potential evaporation) are projected to increase over the twenty-

first century for all RCPs and projection periods, at the exception of rainfall that is expected to decrease under RCP2.6 and 

RCP4.5, and increase under RCP8.5.  345 

 

Figure 9. Annual changes in future hydroclimatic variables and water availability (P-Ea) relative to the historical period for RCP2.6 
(9 models), RCP4.5 (16 models) and RCP8.5 (18 models). 

The median annual changes in climatic variables over 2021-2100 are amplified with increasing radiative forcing levels, and 

vary between RCP2.6 (Tavg = +1 °C, Ep = +2.3%, P = -1.6%), RCP4.5 (Tavg = +1.6 °C, Ep = +3.5%, P = -0.5%) and RCP8.5 350 

(Tavg = +2.7 °C, Ep = +5.3%, P = +2.82%). More importantly, there is a 100% agreement among the RCM-GCM models 

concerning the increase in air temperature across all the RCPs and projection periods. Therefore, there is a high confidence in 

future climate warming of the VRB region in West Africa during the twenty-first century. These findings align with previous 

studies in West Africa (Dosio et al., 2020;Todzo et al., 2020;Jin et al., 2018;Yeboah et al., 2022). Similar to Dosio et al. (2019), 

a lower RCM-GCM agreement of 63% is found for future changes in rainfall, thereby highlighting the complexity of modelling 355 

climate in West Africa (Fitzpatrick et al., 2020;Panthou et al., 2012).  

In contrast to the climatic variables, the hydrological variables (total runoff, actual evaporation, groundwater recharge, soil 

moisture and terrestrial water storage) decrease under RCP2.6 and RCP4.5, and only increase under the RCP8.5 scenario 

during the period 2021-2100 (Figure 9), thereby following the patterns of the projected changes in rainfall. The multi-model 

ensemble mean of long-term annual estimates of hydrological variables for all RCPs over the historical period is as follows:  360 

Ea = 929 mm/year, Qrun = 71 mm/year, Rr = 11.4 mm/year, Su = 0.58 mm/mm and St = 490 mm (Figure S32). The median 
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annual changes in hydrological variables over 2021-2100 vary between RCP2.6 (Ea = -1.2%, Qrun = -9.9%, Rr = -10.9%, Su = 

-1.7%, St = -1.9%), RCP4.5 (Ea = -0.8%, Qrun = -2.9%, Rr = -4.2%, Su = -1.9%, St = -1.7%) and RCP8.5 (Ea = +1.3%, Qrun = 

+21.4%, Rr = +18.3%, Su = +0.3%, St = +1.1%). It can be concluded from these findings that an intensification of the 

hydrological cycle (i.e., increase in the magnitude of hydrological variables) in the VRB is projected only under the RCP8.5 365 

scenario. 

The multi-model ensemble mean of water availability is 65 mm/year over the historical period. The changes in water 

availability are driven by the variations in rainfall, with a projected median increase of +20.3% only under RCP8.5 over the 

twenty-first century, and a reduction of -11.3% under RCP2.6 and -0.6% under RCP4.5. 

 Spatial patterns of hydroclimatic variables across climatic zones 370 

The spatial patterns of the inter-model median of annual climatic variables show a north-south gradient of increasing rainfall 

and decreasing air temperature and decreasing potential evaporation (Figure 10), in line with the aridity gradient of the eco-

climatic zones in the VRB (Figure 1). The spatial average of the multi-model ensemble of hydroclimatic variables per climatic 

zones in the VRB considering all RCPs over the historical period is given in Table 3. Table 3. Annual average of hydroclimatic 

variables per climatic zones corresponding to the median of all RCM-GCM combinations and all RCPs over the historical 375 

period. 

 



25 
 

Figure 10. Spatial patterns of the long-term average of annual climatic variables over the historical period (1991-2020) and changes 
over future periods (2021-2100) under RCP8.5 (median of 18 models).  

The changes in spatial patterns of climatic variables under RCP8.5 illustrate a clear increase in air temperature and potential 380 

evaporation over the twenty-first century, with higher increase rates in the Sahelian zone and the northern regions of the VRB 

(Figure 10, see other RCPs in Figures S33-S37). The future projections show a decrease in rainfall under RCP2.6 and RCP4.5 

from the Sahelian to the Sudanian zones, which correspond to the northern and central parts of the VRB (Figures S33-S37). 

The increase in rainfall is projected mainly under RCP8.5, with higher increase rates localized from the Guinean to the Sudano-

Sahelian zones, which correspond to the south and central regions of the VRB (Figure 10). 385 

Table 3. Annual average of hydroclimatic variables per climatic zones corresponding to the median of all RCM-GCM combinations 
and all RCPs over the historical period. 

  Climatic zones in the VRB 
 VRB Sahelian Sudano-Sahelian Sudanian Guinean 

Aridity index (Ep/P) 2.6 5.6 3.6 2.5 1.8 

P (mm/year) 991 516 782 1035 1243 

Tavg (°C) 28.4 29.7 29.0 28.3 27.8 

Ep (mm/year) 2580 2915 2849 2577 2248 

Ea (mm/year) 927 498 754 977 1110 

Qrun (mm/year) 69 17 27 57 132 

Su (mm/mm) 0.58 0.32 0.50 0.59 0.67 

St (mm) 490 148 408 506 593 

Rr (mm/year) 11 5 5 10 21 

P- Ea (mm/year) 70 17 28 59 133 

 

The spatial patterns of the hydrological variables under RCP8.5 are depicted in Figure 11 (see Figures S38-S43 for other 

RCPs). Changes in annual actual evaporation, total runoff, groundwater recharge depict similar spatial patterns to those of 390 

rainfall, with the exception that total runoff and groundwater recharge tend to increase in the Sahelian zone. Soil moisture and 

terrestrial water storage projections show a persistent decrease over most of the VRB area and particularly over the eastern 

regions. The analysis of projected future water availability per climatic zones in the VRB reveals an opposite pattern to the 

“dry gets drier, wet gets wetter” paradigm (Byrne and O’Gorman, 2015;Greve et al., 2014). The dry regions of the VRB 

(Sahelian and Soudano-Sahelian zones) are projected to become wetter, while the wet (Sudanian and Guinean zones) are 395 

projected to become drier under RCP2.6 and RCP4.5. However, all climatic zones in the VRB are projected to become wetter 

under RCP8.5. 

The spatial inter-model variability depicts different patterns across hydroclimatic variables and across RCPs and projection 

periods (Figures S44-S54). For RCP8.5, theThe highest differences among the simulations from climatic models are found 
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generally in the northern dry regions (Sahelian zone) and in the forested southwestern wet region (Guinean zone) of the VRB 400 

under RCP8.5(Figure 12). 
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Figure 11. Spatial patterns of the long-term average of annual hydrological variables and water availability over the historical period 
(1991-2020) and changes over future periods (2021-2100) under RCP8.5 (median of 18 models). 405 
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Figure 12. Spatial patterns of inter-model variability of hydroclimatic variables under RCP8.5 (18 models). P: rainfall, Tavg: average 
air temperature, Ep: potential evaporation, Ea: actual evaporation, Su: root-zone soil moisture, St: terrestrial water storage, Qrun: 
total runoff and Rr: groundwater recharge. 

 Changes in high and low flows 410 

The streamflow (Q) projections at the outlets of the sub-basins in the VRB are used for the analysis of high and low flows. 

Here, high flows correspond to streamflow with a return period of 10 years, i.e.  streamflow peaks that are equalled or exceeded 

for 10 percent of the time (Q10). Low flows represent streamflow that is equalled or exceeded for 90 percent of the time (Q90). 

Therefore, Q90 and Q10 are the tenth and ninetieth percentiles of daily streamflow, corresponding to the 90% and 10% 

probability of exceedance, respectively. An increase in Q10 implies an increase in flood risk, whereas a decrease in Q90 415 

represents a higher risk for river drought (Aich et al., 2014). The streamflow gauges are Bui-Amont, Daboya and Saboba at 

the outlets of the Black Volta, White Volta and Oti sub-basins (Figure 1), respectively. No gauge at the outlet of the Lower 

Volta sub-basin was available for the study. 

The historical and future projections of high and low flows are illustrated in Figure S55. The projected future changes in high 

and low flows are summarized in Figure 12 (Figure S55 illustrates historical and future changes). Changes in low flows indicate 420 

an overall median increase in Q90 in all the sub-basins under RCP8.5 as follows: Black Volta (+30%), White Volta (+16%) 

and Oti (+14%), with an RCM-GCM agreement on the direction of change of 69%, 63% and 57%, respectively. It is noteworthy 

that median Q90 is projected to decrease by -4% in the White Volta over the period 2051-2080 under RCP8.5. The trends in 

the median changes in Q90 are contrasted across the future periods for RCP2.6 and RCP4.5. Table S1-S2 provide details on the 

direction of change between the RCM-GCM combinations, which in average varies between 50% and 78% for Q90, and 425 

between 56% and 75% for Q10, depending on RCPs and climate projection periods. 

For high flows, Q10 is projected to increase in all the sub-basins under RCP8.5 on average by +20% in the Black Volta, +2% 

in the White Volta and + 6% in the Oti over the period 2021-2100, with an RCM-GCM agreement on the direction of change 

of 65%, 63% and 59%, respectively. However, it is noteworthy that Q10 for the period 2051-2080 under RCP8.5 is projected 

to decrease by -14% in the White Volta and by -10% in the Oti. Under RCP2.6 and RCP4.5, a decrease in Q10 is projected 430 

from 2051 to 2100 in all the sub-basins. The highest median decrease in Q10 over the twenty-first century in the sub-basins is 

-6% in the Black Volta under RCP4.5, -16% in the White Volta under RCP2.6 and -20% in the Oti under RCP2.6. Both high 

and low flows are projected to increase with different magnitudes under all RCPs in the Black Volta and the White Volta over 

the period 2021-2050, while low flows are projected to increase under all RCPs in the Oti over the period 2051-2080. 

Among the sub-basins, the Black Volta presents the highest probability of an increase in the 10-year flood over the twenty-435 

first century. The White Volta is prone to an increase in flood risk in the period 2021-2050, while river drought risk is projected 

to increase over the period 2051-2100. 
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Figure 12. Changes in future high flows (Q10) and low flows (Q90) in the major sub-basins of the VRB (Black Volta, White Volta, 
Oti). The changes in percentage over the future periods are relative to the historical period (1991-2021). 440 

The evolutions of the dates of occurrence and the concentration of the date of occurrence of Q10 and Q90 are illustrated in Figure 

13 and Figure S57. The median date of occurrence of Q10 (DQ10) varies between the Julian calendar days 254 and 261 (second 

dekad of September) on average across the three sub-basins (Black Volta, White Volta, Oti) over the historical period, and it 

is projected to drop by -2 days under RCP2.6 and RCP4.5 and increase by +2 days under RCP8.5 over the twenty-first century. 

However, higher changes are projected in the Black Volta (∆DQ10 = -4 days under RCP2.6), White Volta (∆DQ10 = -6 days 445 

under RCP2.6) and the Oti (∆DQ10 = +5 days under RCP8.5) over 2051-2080. The concentration of the date of occurrence (R) 

of DQ10 shows a high seasonality in the occurrence of high flows (RQ10 = 0.94) across sub-basins, which does not change 

considerably over the twenty-first century (Figure S57). 

In contrast to DQ10, the median DQ90 varies between 126 and 132 (first to second dekad of May) over the historical period and 

rises on average by +5 days over future periods and across sub-basins. However, notable rises in DQ90 are observed in each 450 

sub-basins during 2071-2100 as follows: Black Volta (∆DQ90 = +9 days under RCP8.5), White Volta (∆DQ90 = +11 days under 

RCP8.5) and Oti (∆DQ90 = +10 days under RCP2.6), which might be explained by the forward shift of the rainy season. The 

median RQ90 is 0.74 on average across sub-basins and slightly drops in the future, denoting a higher variation in the seasonality 

of low flows. 

 455 
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Figure 13. Mean Julian dates of occurrence (D) of annual high flows (Q10) and low flows (Q90) over the historical (1991-2020) and 
future periods in the major sub-basins of the VRB (Black Volta, White Volta, Oti). 

 

 Climate sensitivity 460 

The sensitivity of selected hydrological variables to changes in climatic variables over the historical and future periods is 

illustrated in Figure 14 (see Figure S586 for additional variables). The relative changes in hydroclimatic variables are estimated 

in percentage over the three future periods compared to the historical period. Larger changes in hydroclimatic variables are 

simulated with increasing radiative forcing levels over the future period.  

The VRB illustrates highly nonlinear behavior. An increase in annual rainfall by 10% results in an increase in total runoff by 465 

~50%, and an increase in actual evaporation by ~6%. A 10% decrease in annual rainfall leads to ~30% decrease in total runoff, 

and ~7% decrease in actual evaporation. Annual actual evaporation represents 93% of annual rainfall, while total runoff 

represents 7% of annual rainfall. However, small changes in the rainfall regime might strongly affect the total runoff regime. 

A 5% increase in annual average air temperature leads to an increase of ~3% in potential evaporation. However, 

heteroscedasticity is observed for changes in air temperature and potential evaporation as the variability increases with higher 470 

rates of change (Figure 14f). This analysis reveals a high sensitivity of major fluxes (Qrun  and Ea) to even small changes in P 

in the VRB, a finding consistent with previous studies in the region (Roudier et al., 2014), and more generally in dryland 

regions globally (Berghuijs et al., 2017). 
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                     Baseline (1991-2020)                   Future changes (2021-2100) 
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Figure 14. Climate sensitivity of hydrological processes in the VRB over the historical period ((a), (c) and (e)) with associated future 475 
changes ((b), (d) and (f)). The coloured dots represent RCM-GCM combinations per RCP and the colour dashed lines represent the 
fitted linear regression. 

5 Discussion 

A direct comparison of our results to previous studies in the region is restricted by the differences in the choice of RCM-GCM 

models, RCPs, future projections periods, and the baseline period, which alone might lead to different outcomes (Liersch et 480 

al., 2020). However, our results generally corroborate with comparable previous studies in the region (Aich et al., 2016;Roudier 

et al., 2014;Sidibe et al., 2020;Rameshwaran et al., 2021). It is noteworthy that total runoff is projected to increase while 

rainfall decreases under the RCP2.6 and RCP4.5 during the period 2021-2050. This paradoxical phenomenon of rainfall-runoff 

negative correlation is commonly referred to as the “Sahelian paradox” (Mahé and Paturel, 2009). The percentage of agreement 

of 63% for hydrological projections between the climate models is similar to that of rainfall, which supports that rainfall is the 485 

key driver of hydrological processes in the VRB, thereby confirming the findings of Roudier et al. (2014). Vetter et al. (2015) 

also found a high variability in rainfall projections among climate models in the Upper Niger basin. Therefore, the 

improvement of rainfall representation in climate models, which hardly represent the West African monsoon (Akinsanola et 

al., 2020;Philippon et al., 2010;Xue et al., 2010), would ultimately enhance the reliability of the assessment of climate change 

impacts on water resources (Dosio et al., 2021). The development of convection-permitting climate models to better capture 490 

complex climate features in the region at higher resolutions would help (Berthou et al., 2019;Kendon et al., 2017;Kendon et 

al., 2019). The projected decrease of rainfall under RCP2.6 and RCP4.5, whereas an increase is projected under RCP8.5, can 

be explained by the higher warming level under RCP8.5. Higher warming would lead to increased evaporation, resulting in 

increased water vapour in the atmosphere, which would turn into increased precipitation (Donat et al., 2016;Trenberth, 2011). 

As the number of models varies among RCPs, bootstrapping could be used to randomly select a common number of models 495 

but that would limit our analyses to five RCM-GCM combinations, and might not lead to substantial changes in the results.  

The large ensemble of RCM and GCM datasets used in this study allows the quantification of model-related projection 

uncertainties in terms of inter-model variabilities. In general, the selection of the best-performing climate models for 

hydrological modelling is not straightforward (Dosio et al., 2019;Hakala et al., 2019). Therefore, all the RCM-GCM 

combinations are used in this study without weighting or excluding models because the performance of models in the future 500 

is not necessarily related to their performance in the present (Dosio et al., 2020). More detailed analyses using methods for 

climate model selection (Kiesel et al., 2020;Ross and Najjar, 2019;Merrifield et al., 2020;Abramowitz et al., 2019;Ahmed et 

al., 2019) with the updated CMIP6 models (Eyring et al., 2016) and the new Shared Socioeconomic Pathways (SSPs) (O’Neill 

et al., 2017;O’Neill et al., 2014;Riahi et al., 2017) are left for future work. For uncertainty dependence on ensemble 

composition, further attention should be given to single-model initial condition large ensembles (SMILEs) (Milinski et al., 505 

2020;Maher et al., 2021). 
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A further potential limitation arises from the imposed stationarity of the dependences between variables related to the used 

bias-correction method, although the used R2D2 method assumes some non-stationarity in the marginals (i.e., univariate 

distributions). However, predicting non-stationarity of dependence biases under climate change is not straightforward. With 

advances in multivariate bias correction methods (François et al., 2020), the added value of methods that consider non-510 

stationarity in climate (e.g., dOTC; Robin et al., 2019) could be investigated in climate impact studies on water resources 

(Yang et al., 2021b).  

Although multiple RCMs, GCMs and RCPs are used in this study, a single hydrological model is used for the hydrological 

projections. Therefore, the results are also subject to potential deficiencies of the mHM model, as hydrological models are 

known to be a source of uncertainty in climate change impact studies (Vetter et al., 2017;Hattermann et al., 2018;Mendoza et 515 

al., 2015;Giuntoli et al., 2015;Hagemann et al., 2013). For instance, mHM does not explicitly consider the effect of vegetation 

dynamics associated with climate change that would modify runoff processes, which can be a limitation that is also observed 

in previous studies (Duethmann et al., 2020;Hanus et al., 2021;Wu et al., 2016). However, the mHM model used in this study 

has been thoroughly calibrated to provide realistic simulations of hydrological state variables and fluxes in the VRB (Dembélé 

et al., 2020a). 520 

In addition to the hydrological model itself, the choice of the method for the calculation of potential evaporation can introduce 

uncertainties in the hydrological projections as reported in previous studies (Prudhomme and Williamson, 2013;Seiller and 

Anctil, 2016). Here, the Hargreaves and Samani (1985) method is used to calculate potential evaporation. The lack of 

atmospheric coupling between purely temperature driven potential evaporation and the hydrological cycle in the hydrological 

model projections means some important feedbacks, such as surface resistance, may be missing (Milly and Dunne, 2016;Yang 525 

et al., 2019), and will not incorporate other mechanisms important in atmospheric demand. However, it is worth noting that 

the importance of this missing feedback has thus far only been evaluated for conditions in which water availability is not a 

limiting factor, a condition that is rarely met in the VRB. Moreover, even a more suitable method for estimating potential 

evaporation (e.g. Penman-Monteith), which can also be adjusted for surface resistance changes in future climates (Yang et al., 

2019), is to the first order still expected to generate potential evaporation rates higher than precipitation. Therefore, the increase 530 

in soil moisture and actual evaporation will likely still be very large in response to the increase in precipitation. Nonetheless, 

the long-term CO2 – vegetation driven evaporation feedbacks not considered here could be very important for lower flow and 

drought conditions and need consideration in future work. The use of RCMs to downscale, which generally do not have the 

appropriate CO2 – vegetation feedbacks in contrast to GCMs, is also an issue that needs to be addressed in future downscaling 

projects.   535 

Furthermore, the hydrological projections generated in this study focus on changes in climate and do not explicitly account for 

land use and land cover change or changes in water management practices in the VRB. Although, land use and land cover 

changes play an important role in the hydrological processes, the primary focus in this study is constraining the impact of 

climate change alone. However, land use changes are assumed to be accounted for to some extent in the RCPs, as their 

development is based on assumptions regarding future evolution of land use and land cover (Van Vuuren et al., 2011). 540 
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Nevertheless, given the dominance of the evaporation response, future work accounting for potential land use and land cover 

changes in response to the climate scenarios provided here will be needed. Finally, large basins studies of climate change 

impacts on water resources need to consider human interactions with the hydrological cycle to better integrate the co-evolution 

of the human–water systems across scales (Yang et al., 2021a). 

6 Conclusion 545 

A large ensemble of twelve GCMs from CMIP5 and five RCMs from CORDEX-Africa is used to investigate the impacts of 

climate change on water resources in the Volta River basin under three RCPs. The climate projection datasets are used to force 

the fully distributed mesoscale Hydrologic Model (mHM) over the twenty first century. Changes in hydrological processes 

over the future periods 2021-2050, 2051-2080 and 2071-2100 are estimated relatively to the historical period 1991-2020. The 

results reveal contrasting changes in the hydrological cycle depending on RCPs and future projection periods. The key findings 550 

are summarized as follows: 

- Climate warming is projected in the Volta basin as all RCM-GCM projections predict an increase in air temperature 

under all RCPs, accompanied by an increase in annual potential evaporation. 

- Rainfall is projected to decrease under RCP2.6 and RCP4.5, while an increase is projected under RCP8.5, with a 

direct correlated and contrasting impact on water availability in the Volta River basin. Compared to temperature, 555 

there are more uncertainties in the trend of the changes in rainfall projections as there is only an agreement of 63% 

on the direction of change between the RCM-GCM models, which leads to more uncertainty in the prediction of 

hydrological variables. 

- The seasonality of rainfall is projected to shift forward in the future, with the concentration period of the rainy season 

moving towards the months of August and September. 560 

- Annual actual evaporation, total runoff, groundwater recharge, soil moisture and terrestrial water storage decline 

under RCP2.6 and RCP4.5, while they increase under RCP8.5 following the trends in rainfall. In fact, a strong 

sensitivity of hydrological processes to climate variability is found. 

- The analysis of high and low flows suggests an increased risk for floods under RCP8.5 over the twenty-first century, 

while an increased risk for hydrological drought is projected under RCP2.6 and RCP4.5 from the mid-twenty-first 565 

century. 

- There is a higher variation in the seasonality of low flows as compared to high flows, with a delay of up to 11 days 

in the future occurrence of low flows. High flows could occur on average 6 days earlier or later under RCP2.6 and 

RCP8.5, respectively. 

- The spatial projections of future water availability per climatic zones depict a “dry gets wet and wet gets dry” pattern 570 

under RCP2.6 and RCP4.5. 
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- Contrary to the other RCPs, under RCP8.5, the projected climate changes lead to a clear intensification of the entire 

hydrological cycle, i.e. an increase in the magnitude of hydroclimatic variables. 

The changes in the hydrological cycle have important implications for future floods and droughts in the Volta basin, thereby 

amplifying the vulnerability of the local population to climate change. These findings can contribute to the elaboration of 575 

regional adaptation and mitigation strategies of climate change. However, significant inter-model variabilities of the climate 

models and low to moderate agreement between RCM-GCM combinations on the direction of changes highlight the 

complexity and uncertainties related to the assessment of climate change impacts on water resources. Therefore, more work is 

required to improve climate modelling in West Africa. A strong collaboration between climate and water resources scientists, 

practitioners and policymakers is key for advancing knowledge and development. 580 
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