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Abstract. Sustainable management of water-energy-food (WEF) nexus remains an urgent challenge, as interactions between

WEF and human sensitivity and reservoir operation in the water system are typically neglected. This study proposes a new10
approach for modeling WEF nexus by incorporating human sensitivity and reservoir operation into the system. The co-

evolution behaviors of the nexus across water, energy, food, and society (WEFS) were simulated using the system dynamic

model. Reservoir operation was simulated to determine the water supply for energy and food systems by the Interactive

River-Aquifer Simulation water resources allocation model. Shortage rates for water, energy, and food resulting from the

simulations were used to qualify their impacts on the WEFS nexus through environmental awareness in society system.15
Human sensitivity indicated by environmental awareness can then adjust the co-evolution behaviors of the WEFS nexus

through feedback loops. The proposed approach was applied to the mid-lower reaches of the Hanjiang river basin in China as

a case study. Results indicate environmental awareness shows potential to capture human sensitivity to shortages from water,

energy, and food systems. Parameters related to boundary conditions and critical values can dominate environmental

awareness feedback to regulate socioeconomic expansion to maintain the integrated system from constant resources20
shortages. The annual average energy shortage rate thereby decreased from 17.16% to 5.80% by taking environmental

awareness feedback, contributing to the sustainability of the WEFS nexus. Rational water resources allocation can ensure

water supply through reservoir operation. The annual average water shortage rate decreased from 15.89% to 7.20% as water

resources allocation was considered. Threats from water shortage on the concordant development of the WEFS nexus are

significantly alleviated, particularly for the area with limited regulating capacity of water project. Therefore, this study25
contributes to the understanding of interactions across the WEFS systems and helps in improving the efficiency of resources

management.

1 Introduction

Water, energy, and food are indispensable resources for sustainable development of society. With the growing population,

urbanization, globalization, and economic development, the expected global demands for water, food, and energy in 203030
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will increase by 40%, 50%, and 50%, respectively, compared to the 2010 levels (Alexandratos and Bruinsma, 2012;

Mckinsey & Company, 2009; International Energy Agency, 2012). Resource scarcity will be exacerbated by the single-

sector strategy in traditional water, energy, and food management (El Gafy et al., 2017). To increase resource use efficiency

and benefits in production and consumption, taking the inextricable interactions among sectors across water, energy, and

food into rational resources management has become an important strategy (Hsiao et al., 2007; Vörösmarty et al., 2000).35
Considering these interactions, the water-energy-food (WEF) nexus concept was first presented at the Bonn Conference in

2011 as an approach to determine synergies and trade-offs between WEF sectors to support sustainable development goals

(Hoff, 2011).

Various methods have been proposed for integrated systems to quantify the interactions in the WEF nexus. There are three

main types of methods: system of systems model (Eusgeld et al., 2011; Housh et al., 2015), agent-based model (Bonabeau,40
2002; Dawson et al., 2011), and system dynamic model (El Gafy, 2014; Swanson, 2002). The system of systems model

comprises several subsystems as a holistic system to address the nexus by optimizing system behavior. The agent-based

model simulates the interactions between agents and environments as well as different agents based on predefined rules

obtained from long-term observations. These two methods have been established to be capable of simulating the behaviors of

an integrated system. However, neither of them has emphasized feedback within the integrated systems, which is considered45
an important driving force for nexus system (Chiang et al., 2004; Kleinmuntz, 1993; Makindeodusola and Marino, 1989).

The results of these two methods for WEF security remain at risk. The system dynamic model explicitly focuses on feedback

connections between key elements in a model to determine the co-evolution process and long-term characteristics of

integrated systems (Liu, 2019; Simonovic, 2002). Therefore, system dynamic model was adopted in this study to simulate

the co-evolution process of the nexus system.50
System dynamic model has been widely used to analyze the WEF nexus worldwide at different spatial scales, such as global

(Davies and Simonovic, 2010; Susnik, 2018), national (Laspidou et al., 2020; Linderhof et al., 2020), and basin-scale

(Purwanto et al., 2021; Ravar et al., 2020). Most of these models perform the accounting and analysis of the WEF nexus,

focusing only on the physical process, while rarely highlighting the social process that indicates human responses to the

WEF nexus (Elshafei et al., 2014). As the connection between the WEF nexus and society is intensified under rapid55
socioeconomic development, both physical and social processes should be considered for the sustainability of the integrated

system in the future (Di Baldassarre et al., 2015; Di Baldassarre et al., 2019).

To simultaneously capture the physical and social processes of the integrated system, human sensitivity was considered as a

conceptual social state variable to identify environmental deterioration (Elshafei et al., 2014; Van Emmerik et al., 2014). Van

Emmerik et al. (2014) developed a socio-hydrologic model to understand the competition for water resources between60
agricultural development and environmental health in the Murrumbidgee river basin (Australia). Li et al. (2019) developed

an urban socio-hydrologic model to investigate future water sustainability from a holistic and dynamic perspective in Beijing

(China). Feng et al. (2016) used environmental awareness to indicate community’s attitude to influence the co-evolution

behaviors of the water-power-environment nexus in the Hehuang region (China). These studies have contributed to effective
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resources management by incorporating both physical and social processes. However, potential threats to WEF security exist,65
as few of the current studies have simultaneously considered the impacts of reservoir operation in water system on the

integrated system.

Reservoirs can adjust the uneven temporal and spatial distribution of available water resources and can ensure water supply

to reduce water shortage (Khare et al., 2007; Liu et al., 2019; Zeng et al., 2021; He et al., 2022). However, the available

water resources are typically adopted under historical natural water flow scenarios, while reservoirs are seldom considered,70
or their operational rules are significantly simplified in the WEF nexus. The assessment of water supply security based on

the WEF nexus should be improved. Thus, additional details regarding the reservoir operation should be incorporated into

the simulation of the WEF nexus.

The water resources allocation model can simultaneously incorporate reservoir operation and water acquisition, and it has

become an effective tool to quantitatively assess the impacts of reservoir operation on water supply security, as well as WEF75
security (Si et al., 2019; Zhou et al., 2019). Our study aims to establish a system dynamic model for the water-energy-food-

society (WEFS) nexus and assess the impacts of reservoir operation on the WEFS nexus by integrating the water resources

allocation model into the integrated system. The reminder of this paper is organized as follows: Section 2 introduces the

framework for modeling the WEFS nexus and assessing the impacts of water resources allocation on the WEFS nexus.

Section 3 describes the methodologies applied in the mid-lower reaches of the Hanjiang river basin in China, which is the80
study area. Section 4 presents the results of the co-evolution process and the sensitivity analysis of the WEFS nexus. The

impacts of water resources allocation on the WEFS nexus have also been discussed. The conclusions of this study are

presented in Section 5.

2 Methods

System dynamic modeling (SDM) simulates the dynamics among different systems using nonlinear ordinary differential85
equations and dynamic feedback loops (Wolstenholme and Coyle, 1983; Swanson, 2002). SDM has become an efficient

approach to facilitate the integrated analysis of sectors, processes, and interrelations among different system variables (Di

Baldassarre et al., 2015; Simonovic, 2002). The SDM for assessing the WEFS nexus comprises four modules (shown in

Figure 1): water system module, energy system module, food system module, and society system module.

In the water system module, socioeconomic water demand (i.e., municipal, rural, industrial, and agricultural water demand)90
and in-stream water demand are projected using the quota method and Tennant method (Tennant, 1976), respectively. The

water demands and available water resources are further inputted into the water resources allocation model to determine the

water supply and water shortage for every water use sector in each operational zone. The water supply for socioeconomic

water use sectors and agricultural water shortage rates as outputs from the water system module are taken as the inputs of the

energy system module and food system module to determine the energy consumption and food production, respectively.95
Considering the outputs of the energy and food system modules, the energy and food shortages can be estimated by
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comparing the planning energy availability and target food production, respectively. The function of the society module is to

capture human sensitivity to degradation in the WEF nexus (Elshafei et al., 2014). Environmental awareness is considered as

the conceptual social state variable to indicate human sensitivity (Van Emmerik et al., 2014). Environmental awareness is

composed of water shortage awareness, energy shortage awareness, and food shortage awareness that are determined by100
shortages of water, energy, and food, respectively. As environmental awareness accumulates over its critical value, negative

feedback on socioeconomic sectors (i.e., population, GDP, and crop area) will be triggered to constrain the increases in water

demand, and further energy consumption, and food production to sustain the WEFS nexus.

Figure 1. Structure of WEFS nexus model and its feedbacks.105

2.1 Water System Module

2.1.1 Water Demand Projection

Water user comprises socioeconomic (also called off-stream) user and in-stream user. Socioeconomic water users can be

classified into municipal, rural, industrial, and agricultural sectors. The quota method has been considered an efficient



5

approach to project the annual socioeconomic water demand (Brekke et al., 2002). The amount of water demand for the110
socioeconomic users can be estimated using equation (1).

WDi,jt =WQi,jt *Ai,jt /Ui,jt , (1)

where WDi,jt is the amount of water demand for the j-th user in the i-th operational zone in the t-th year; WQi,jt denotes the

water use quota unit of water user; Ai,jt is the amount of water units of water user; and Ui,jt represents the utilization rate of

water user. The water quota units represent the amount of water consumption per capita in municipal and rural users, the115
amount of water consumption per ten thousand Yuan in industrial user, and the amount of net irrigation water per unit area in

agricultural user, respectively. The amount of water units represents the projected population in municipal and rural users,

projected GDP in industrial user, and projected irrigated area in agricultural user.

As population, GDP, crop area, and water use quota are prerequisites for water demand projection, the dynamic equations for

these socioeconomic variables should be pre-determined. There are two types of methods which are popular in120
socioeconomic projection, Malthusian model (Bertalanffy, 1976; Malthus, 1798) and Logistic model (Law et al., 2003),

which are adopted for the socioeconomic projection. The growth rate in original Malthusian model is constant (Malthus,

1798), which is not consistent with previous studies that the socioeconomic expansion in the future would slow down (He et

al., 2017; Lin et al., 2016). Therefore, we used exponential terms to simulate the evolution of socioeconomic variables,

which increases with decreasing rate. And feedback functions, as well as environmental carrying capacities (indicating the125
maximum socioeconomic size that can be carried by the system) of socioeconomic variables are adopted to constrain the

evolution of these socioeconomic variables through equations (2)–(4) (Feng et al., 2016; Hritonenko and Yatsenko, 1999).

Socioeconomic factors in original Logistic model (Law et al., 2003) are prone to approach to their environmental carrying

capacities, while the constrains among subsystems in WEFS nexus are typically neglected, which will lead over-sized

socioeconomic projection. Therefore, feedback functions taken as constraints from subsystems are adopted in equation (5)–130
(7) (Li et al., 2019; Wu et al., 2022).

dNt
dt
=rP,t*Nt

rP,t=
rP,0*κP* exp (-φPt) +f1(E) Nt ≤ Ncap
Min(0, rP,0*κP* exp (-φPt) +f1(E)) Nt > Ncap

, (2)

dGt
dt
=rG,t*Gt

rG,t=
rG,0*κG* exp (-φGt) +f2(E) Gt ≤ Gcap
Min(0, rG,0*κG* exp (-φGt) +f2(E)) Gt > Gcap

, (3)

dCAt
dt

=rCA,t*CAt

rCA,t=
rCA,0*κCA* exp (-φCAt) +f3(E,FA) CAt ≤ CAcap
Min(0, rCA,0*κCA* exp (-φCAt) +f3(E,FA)) CAt > CAcap

, (4)
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dNt
dt
=Nt*(rP, 0*(1-

Nt
Ncap

)+f1(E)) , (5)135

dG
dt
=Gt*(rG, 0*(1-

Gt
Gcap

)+f2(E)) , (6)

dCAt
dt

=CAt*(rCA, 0*(1-
CAt
CAcap

)+f3(E,FA)) , (7)

where Nt, Gt, and CAt are the population, GDP, and crop area in the t-th year, respectively; Ncap, Gcap, and CAcap denote the

environmental carrying capacities of population, GDP, and crop area, respectively; rP, 0, rG, 0, and rCA, 0 represent the growth

rates of population, GDP, and crop area from historical observed data, respectively; rP, t, rG, t, and rCA, t are the growth rates of140
population, GDP, and crop area in the t-th year, respectively; κP*exp(-φPt), κG*exp(-φGt), and κCA*exp(-φCAt) are used to

depict the impacts of social development on the evolution of population, GDP, and crop area, respectively; E is

environmental awareness; FA is food shortage awareness; and f1, f2, and f3 represent the feedback functions. The equations

for E, FA, and feedback functions are described in detail in Sections 2.4 and 2.5.

Water use quotas are also assumed to decrease with the social development owing to the expansion economy (Blanke et al.,145
2007; Hsiao et al., 2007). As the difficulties in saving water by technological advancement are increasing, the changing rate

of water use quota is decreasing in equation (8) (Feng et al., 2019).

dWQi,j
t

dt
=WQi,jt *rqwu,t

rqwu,t=
rqwu,0*κqwu* exp (-φqwut) WQi,jt >WQi,jmin

0 else

, (8)

where WQi,jt denotes the water use quota of the j-th water user in the i-th operational zone in the t-th year; rqwu, 0 and rqwu, t are

the growth rates of water use quotas from historical observed data and t-th year, respectively; WQi,jmin is the minimum value of150

water use quotas; and κqwu*exp(-φqwut) is used to depict the water-saving effect of social development on the evolution of

water use quota.

2.1.2 Water Resources Allocation

Based on water availability and projected water demand, available water resources can be deployed to every water use sector

and in-stream water flows using a water resources allocation model. The Interactive River-Aquifer Simulation (IRAS) model155
is a rule-based water system simulation model developed by Cornell University (Loucks, 2002; Zeng et al., 2021; Matrosov

et al., 2011). The year is divided into user-defined time step, and each time step is broken into user-defined sub-time step,

based on which water resources allocation conducts. The IRAS model was adopted for water resources allocation owing to

its flexibility and accuracy in water system simulations.

As water system comprises water transfer, consumption, and loss components, it is typically delineated by node network160
topology for the application of the water resources allocation model. Reservoir nodes and demand nodes are the most
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important elements in the node network topology, as they directly correspond to the processes of water supply, acquisition,

and consumption. The water shortage at the demand node should first be determined based on its water demand and total

water supply. The total water supply comprises natural water inflow (i.e., local water availability) and water supply from

reservoir. In each sub-time step (except the first), the average natural water inflow in the previous sts-1 sub-time steps is165
estimated as the projected natural water inflow in the remaining sub-time steps using equation (9). The water shortage can

then be determined by deducting the demand reduction, total real-time water inflow, and projected natural water inflow from

water demand using equation (10). The total water shortage rate can then be determined using equation (11).

WEi,jsts=( 1
sts-1WTSupi, jsts� - 1

sts-1WRSupi, jsts� )* (Tsts-sts+1)
(sts-1)

, (9)

WSi,jsts=
WDi,j

ts 1-fred - 1
stsWTSupi, jsts-WEi,jsts�

Tsts-sts+1
, (10)170

WSRt=
i,jWSi,j

t�

i,jWDi,j
t�
= i,j ts stsWSi,j

sts���

i,j ts (WDi,j
ts*(1-fred))��

, (11)

where ts is the current time step; Tsts denotes the total number of the sub-time steps; sts is the current sub-time step; WEi,jsts

represents the projected natural water inflow for the j-th water use sector in the i-th operational zone; WTSupi, jsts is the total

water supply; WRSupi, jsts is the water supply from reservoir; WDi,jts is the water demand; fred is the demand reduction factor;

WSi,jsts is the water shortage; WSi,jt and WDi,jt are the total water shortage and water demand in the t-th year, respectively; and175

WSRt is the total water shortage rate.

The water shortage at the demand node requires water release from the corresponding reservoir nodes according to their

hydrological connections. The amount of water released from the reservoir depends on the water availability for demand-

driven reservoirs and operational rules for supply-driven reservoirs, respectively. The water release for the supply-driven

reservoir is linearly interpolated based on Figure 2 and equations (12)–(18). Additional details on the IRAS model can be180
found in Matrosov et al. (2011).

t
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t1 t2 t

qbmax
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Vbmin

Vemax
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qemax
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Figure 2. Water release rule for supply-driven reservoir.

Pt=(t-t1)/(t2-t1) , (12)
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Vmaxt =Vmaxb *(1-Pt)+Vmaxe *Pt , (13)185

Vmint =Vminb *(1-Pt)+Vmine *Pt , (14)

qmaxt =qmaxb *(1-Pt)+qmaxe *Pt , (15)

qmint =qminb *(1-Pt)+qmine *Pt , (16)

Pv=(Vt-Vmint )/(Vmaxt -Vmint ) , (17)

qt=qmint *(1-Pv)+qmaxt *Pv , (18)190

where t, t1, and t2 are the current time, initial time, and end time in the period, respectively; Pt denotes the ratio of current

time length to period length; Vmaxt , Vmint , Vmaxb , Vminb , Vmaxe , and Vmine represent the maximum and minimum storages at the

current time, beginning, and ending of the period, respectively; qmaxt , qmint , qmaxb , qminb , qmaxe , and qmine denote the maximum

and minimum releases, respectively; Pv is the ratio of current storage; and qt is the current release.

2.2 Energy System Module195

The energy system module focuses on the energy consumption during the water supply process for socioeconomic water

users to further investigate the energy co-benefits of water resources allocation schemes (Zhao et al., 2020; Smith et al.,

2016). Energy consumption for water heating and water end-use was not included in this study. Energy consumption is

determined by the energy use quota and amount of water supply for the water use sectors (Smith et al., 2016). As energy use

efficiency will be gradually improved with social development, the energy use quota is assumed to decrease with decreasing200
rate. The trajectory of the energy use is formulated in equation (19). The water supply for water use sectors derived from the

water system module is used to estimate energy consumption using equation (20). The energy shortage rate will be further

determined with planning energy availability using equation (21).

dEQi,j
t

dt
=EQi,jt *re,t

re,t=
re,0*κe* exp -φet EQi,jt >EQi,jmin

0 else

, (19)

ECt= i,jWTSupi,j
t� *EQi,jt , (20)205

ESRt=
ESt
ECt
= ECt-PEAt

ECt
, (21)

where EQi,jt is the energy use quotas of the j-th water user in the i-th operational zone in the t-th year; re, 0 and re, t denote the

growth rates of energy use quotas from historical observed data and the t-th year, respectively; EQi,jmin is the minimum value

of energy use quotas; κe*exp(-φet) depicts the energy-saving effect of social development; ECt is the total energy



9

consumption; WTSupi,jt is the total water supply of the j-th water user in the i-th operational zone; ESt and ESRt are the energy210

shortage and energy shortage rate, respectively; and PEAt is the planning energy availability.

2.3 Food System Module

The food system module focuses on estimating the amount of food production. As water is a crucial determinant for crop

yield, the agricultural water shortage rate can constrain the potential crop yield (French and Schultz, 1984; Lobell et al.,

2009). Owing to the technological advancements in irrigation, the amount of potential crop yield is assumed to increase with215
decreasing rate, as indicated by equation (22). With the target food production which has considered the local and exported

food demands of basin, the food shortage rate can then be estimated using equations (23) and (24).

dCYi,j
t

dt
=CYi,jt *rpro,t

rpro,t=rpro,0*κpro* exp -φprot
, (22)

FPt= i,jCYi,j
t� *CAi,jt ∗ (1-WSRi,4t ) , (23)

FSRt=
FSt
TFPt

= TFPt-FPt
TFPt

, (24)220

where CYi,jt is the potential crop yields of the j-th crop in the i-th operational zone in the t-th year; rpro, 0 and rpro, t are the

growth rates of crop yields from historical observed data and the t-th year, respectively; κpro*exp(-φprot) depicts the impacts of

social development on the evolution of crop yield; FPt denotes the total food production; CAi,jt is the crop area; WSRi,4t

represents the water shortage rate of agriculture sector; FSt and FSRt are the food shortage and food shortage rate,

respectively; and TFPt is the target food production.225

2.4 Society System Module

The society system module is deployed to simulate the social process of the integrated system. Environmental awareness and

community sensitivity are two primary terms of social state variables in socio-hydrologic modeling that indicate the

perceived level of threat to a community’s quality of life (Roobavannan et al., 2018). Environmental awareness describes

societal perceptions of environmental degradation within the prevailing value systems (Feng et al., 2019; Feng et al., 2016;230
Roobavannan et al., 2018; Van Emmerik et al., 2014). Community sensitivity indicates people’s attitudes towards not only

the environmental control, but also the environmental restoration (Chen et al., 2016; Elshafei et al., 2014; Roobavannan et al.,

2018). As this study focuses on societal perceptions on environmental degradation, environmental awareness based on the

concept described in Van Emmerik et al. (2014) was adopted as the social state variable. As water, energy, and food systems

are considered part of the environment in this study, environmental awareness is assumed to be determined by the shortage235
rates of water, energy, and food. Environmental awareness accumulates when the shortage rates of water, energy, and food
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exceed the given critical values, but decreases otherwise. The dynamics of environmental awareness can be described by

equations (25)–(28).

dE
dt
= dWA

dt
+ dEA

dt
+ dFA

dt
, (25)

dWA
dt
=
ηW*(exp(θW*(WSR-WSRcrit))-1) WSR>WSRcrit
-ωW*WA WSR≤WSRcrit

, (26)240

dEA
dt
=
ηE*(exp(θE*(ESR-ESRcrit))-1) ESR>ESRcrit
-ωE*EA ESR≤ESRcrit

, (27)

dFA
dt
=
ηF*(exp(θF*(FSR-FSRcrit))-1) FSR>FSRcrit
-ωF*FA FSR≤FSRcrit

, (28)

where E, WA, EA, and FA are environmental awareness, water shortage awareness, energy shortage awareness, and food

shortage awareness, respectively; WSR, ESR, and FSR denote the shortage rates of water, energy, and food, respectively;

WSRcrit, ESRcrit, and FSRcrit represent the corresponding critical values of shortage rates, above which environmental
245

deterioration can be perceived; ηW, ηE, and ηF are the perception factors describing the community’s ability to identify threats

of degradation; θW, θE, and θF are the auxiliary factors for environmental awareness accumulation; and ωW, ωE, and ωF

denote the lapse factors that represent the decreasing rate of the shortage awareness of water, energy, and food, respectively.

2.5 Respond Links

Respond links are used to link society and water system modules through feedback. Respond links are driven by250
environmental awareness and food shortage awareness. The terms of feedback functions are based on the studies of Feng et

al. (2019) and Van Emmerik et al. (2014), which have been established to have good performance and suitability, as they

have been successfully applied to simulate the human response to environmental degradation in the Murrumbidgee river

basin (Australia) and Hehuang region (China).

Environmental awareness increases with constant shortages in water, energy, and food. As environmental awareness255
accumulates above its critical value, negative feedback on socioeconomic factors is triggered (Figure 1). The growth of

population, GDP, and crop area will be constrained to alleviate the stress on the integrated system. Notably, positive

feedback on the expansion of crop area will be triggered to fill food shortage as food shortage awareness exceeds its critical

value (Figure 1). Although food shortage awareness is part of environmental awareness, the negative feedback driven by

environmental awareness on crop area can only be triggered with the prerequisite that food shortage awareness is below its260
threshold value, as food production should first be assured. The respond links deployed by assuming feedback functions are

expressed in equations (29)–(31).
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f1(E)=
δrpE *(1-exp(ζ1*(E-Ecrit))) E>Ecrit
0 else

, (29)

f2(E)=
δrgE *(1-exp(ζ2*(E-Ecrit))) E>Ecrit
0 else

, (30)265

f3(E,FA)=
δraF *exp(ζ3F*(FA-FAcrit))-1) FA>FAcrit
δraE *(1-exp(ζ3E*(E-Ecrit))) FA≤ FAcrit and E>Ecrit
0 else

, (31)

where Ecrit and FAcrit are the critical values for environmental awareness and food shortage awareness, respectively; δrpE , δrgE ,

and δraE denote the factors describing feedback capability from environmental awareness; δraF is the factor describing feedback

capability from food shortage awareness; ζ1 , ζ2 , and ζ3E represent the auxiliary factors for feedback functions driven by

environmental awareness; and ζ3F is the auxiliary factor for feedback functions driven by food shortage awareness.270

3 Case Study

3.1 Study Area

The Hanjiang river is the longest tributary of the Yangtze river. The total area of the Hanjiang river basin is 159,000 km2,

divided into upper and mid-lower reaches covering 95,200 and 63,800 km2, respectively (shown in Figure 3). The

Danjiangkou reservoir is located at the upper boundary of the mid-lower reaches of the Hanjiang river basin (MLHRB) and275
serves as the water source for the middle route of the South–North water transfer project in China. Thus, the water

availability in the MLHRB is remarkably affected by the reservoir operation. In terms of energy, as the population is large

and the industry is developed in the MLHRB, the energy consumption for urban water supply is high. For agriculture, as the

land is flat and fertile, MLHRB is considered an important grain-producing area, occupying one of the nine major

commodity grain bases in China (i.e., Jianghan plain) (Xu et al., 2019).280
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Figure 3. Location of mid-lower reaches of Hanjiang river basin.

However, owing to population expansion, rapid urbanization, and economic development, the local demand for water,

energy, and food is increasing enormously (Zeng et al., 2021; Zhang et al., 2018). The contradictions between increasing

demand and limited resources will be intensified. Therefore, improving use efficiencies for water, energy and food in285
MLHRB is urgent (Zhang et al., 2018; Liu et al., 2019). The strictest water resources control system for water resources

management policy, the total quantity control of water consumed policy, and the energy-saving and emission-reduction

policy in China are implemented in the MLHRB to promote the expansion of resource-saving technology and further

improve the resource use efficiencies in water, energy, and food systems. Therefore, the impacts of human activities on the

WEF nexus should be assessed to sustain the collaborative development of the integrated system.290
The socioeconomic data (i.e., population, GDP, and crop area) for water demand projection were collected based on

administrative units, whereas the hydrological data were typically collected based on river basins. To ensure that the

socioeconomic and hydrological data are consistent in operational zones, the study area was divided into 28 operational

zones based on the superimposition of administrative units and sub-basins. Seventeen existing medium or large size

reservoirs (the total storage volume is 37.3 billion m3) were considered to regulate water flows. Based on the water295
connections between operational zones and river systems, the study area is shown in Figure 4, including 2 water transfer

projects (the South–North and Changjiang–Hanjiang water transfer projects), 17 reservoirs, and 28 operational zones.
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Figure 4. Sketch of the water system for the mid-lower reaches of Hanjiang river basin.

3.2 Data Sources300

There are two main types of data: hydrological and socioeconomic data. The monthly historical discharge series of each

operational zone and inflow of reservoirs from 1956 to 2016 were provided by the Changjiang Water Resources Commission

(CWRC, 2016). The characteristics and operational rules of the 17 reservoirs listed in Table S1 in supplementary file were

retrieved from the Hubei Provincial Department of Water Resources (HPDWR 2014). Socioeconomic data, including

population, GDP, crop area, water use quota, energy use quota, and crop yield, during 2010–2019 were collected from the305
yearbooks of Hubei Province, which can be obtained from the Statistical Database of China’s Economic and Social

Development (http://data. cnki.net/). Notably, the agricultural water use quota was related to the annual effective

precipitation frequency. Based on the precipitation frequency series during 1956–2016, four typical exceedance frequencies

(i.e., P = 50%, 75%, 90%, and 95% are related to the wet, normal, dry, extreme dry years), were adopted to simplify

agricultural water demand series. These historical data were further used to predict the future trajectories of the WEFS nexus.310
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4 Results and Discussion

The SDM was applied to the MLHRB. Specifically, water availability from 1956 to 2016 was adopted as the future water

availability, while dynamic water demand was projected in water system module, both of which were inputted into water

resources allocation model. As the water resources allocation model in the water system module took a monthly time step in

the study (and the sub-time step was the default value: 1 day), the annual water supply and water shortage were first315
determined before being outputted to the energy system and food system modules, respectively. The annual shortage rates of

water, energy, and food were then used to determine environmental awareness and further the feedback. Table 1 lists the

initial settings of the external variables for the integrated system. The co-evolutionary behaviors of the WEFS nexus were

analyzed as follows: (1) the system dynamic model was calibrated using observed data, (2) co-evolution of the WEFS nexus

was then interpreted and analyzed, (3) the impacts of environmental awareness feedback and water resources allocation on320
the WEFS nexus were discussed, and (4) sensitivity analysis for WEFS nexus was tested.

Table 1 Model initial condition setup.
Notation Description Unit Value

N0 Population million capita 14.92

G0 GDP billion Yuan 419

CA0 Crop area km2 7,733

Ncap ECCa of population million capita 20.00

Gcap ECC of GDP billion Yuan 3,000

CAcap ECC of crop area km2 10,000

WQ●,1
0 , WQ●,1

min Initial and minimum municipal water use

quota
m3/(year*capita) 56, 28

WQ●,2
0 , WQ●,2

min Initial and minimum rural water use quota m3/(year*capita) 25, 12.5

WQ●,3
0 , WQ●,3

min Initial and minimum industrial water use

quota
m3/(10^4 Yuan) 109, 54.5

WQ●,40 , WQ●,4min (P = 50%,

70%, 90%, and 95%)

Initial and minimum agricultural water use

quota
million m3/km2

0.77, 0.80, 0.90, 0.97 and

0.38, 0.40, 0.45, 0.49

EQ●,j0 , EQ●,jmin (j = 1, 2, 3, and

4)

Energy use quotas for municipal, rural,

industry and agriculture sectors
kw*h/m3

0.29, 0.29, 0.29, 0b and

0.15, 0.15, 0.15 0

jCY●,j
0� (j = 1, 2) Crop yield t/km2 654

rP, 0 Growth rate of population [-] 0.003

rG, 0 Growth rate of GDP [-] 0.040

rCA, 0 Growth rate of crop area [-] 0.003

rqwu, 0 Growth rate of water use quota [-] -0.020

re, 0 Growth rate of energy use quota [-] -0.004



15

rpro,0 Growth rate of crop yield [-] 0.018

PEA Planning energy availability [million kw*h] 1,620

TFP Target food production [million t] 6,000
a ECC indicates the environmental carrying capacity. b As the primary source of water supply for agricultural use in the study area is surface water, rather than

groundwater, the energy consumption in the water supply process for agricultural water use is negligible, and the energy use quota for agricultural water use is set as 0.

4.1 Model Calibration325

As some parameters are adopted as auxiliary parameters, which are not equipped with exactly physical definitions, there is

no independent empirical data to calibrate them. Therefore, by reviewing previous studies (Feng et al., 2019; Feng et al.,

2016; Van Emmerik et al., 2014) and expert knowledge, we evaluated the order of magnitudes and rational boundaries for

these parameters. An initial parameter sensitivity analysis was then adopted to screen out the insensitive parameter, which

provided distinguishing 13 insensitive and 21 sensitive parameters. As the insensitive parameters are not able to remarkably330
alter the system, the empirical values in previous studies (Feng et al., 2019; Feng et al., 2016) were adopted. The sensitive

parameters in the model were then calibrated based on the observed data, and the calibrated values are presented in Table S2

in supplementary file. The Nash–Sutcliffe Efficiency (NSE) coefficient and percentage bias (PBIAS) (Krause et al., 2005;

Nash and Sutcliffe, 1970) were used to calibrate the model. When the NSE was >0.7 and absolute value of PBIAS was <15%,

the modeling performance was considered reliable. The simulated state variables, including annual water demand, energy335
consumption, food production, population, GDP, and crop area, were compared with their observed values during 2010–

2019. As shown in Table 2, the NSEs range from 0.74 to 0.97, and the corresponding PBIASs are from -4.2% to 5.2%,

indicating that both Malthusian model and Logistic model can effectively fit the observed data of WEFS nexus.

Table 2 NSE and PBIAS of state variables.

Model Indicator
Water

demand

Energy

consumption

Food

production
Population GDP

Crop

area

Malthusian

model

NSE 0.91 0.74 0.79 0.97 0.86 0.94

PBIAS (%) -0.7 1.9 -0.6 -4.2 0.2 -0.8

Logistic model
NSE 0.79 0.74 0.82 0.94 0.85 0.96

PBIAS (%) -1.0 2.0 -0.2 5.2 0.3 -0.1

It’s worth noting that the observed data can only cover the initial phase of WEFS nexus co-evolution. The environmental340
awareness stays at a low level and the feedback is not triggered, which indicates that feedback driven by high-level

environmental awareness hasn’t been calibrated yet. However, as environmental awareness is a subjective variable, there are

no empirical data to calibrate it, which requires more evidences to show adaptive human response to environmental

awareness. Hepburn et al. (2010) have reviewed studies on environmentally related human behavioral economics.

Substantial studies indicate that environmental awareness is considered as an important factor in modelling socioeconomic345
decisions and policies for water, energy and food systems (Li et al., 2019; Li et al., 2021; Lian et al., 2018; Rockson et al.,

2013; Xiong et al., 2016). For instance, Xiong et al. (2016) investigated the evolution newspaper coverage of water issues in
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China based on water-related articles in a major national newspaper, People’s Daily. They found that economic development

was the primary target of China before 2000. With the conflict between water demand and supply being intensified, concerns

about water security arisen in the newspaper since 2000, which indicated that environmental awareness towards water350
shortage emerged. Related policies (e.g., the strictest water resources control system for water resources management policy

in China) were thereby implemented to constrain the over-speed socioeconomic expansion and further ensure water security.

Therefore, the established model still has potential to simulate the co-evolution of WEFS nexus.

4.2 Co-evolution of WEFS Nexus

The calibrated system dynamic model was used to examine the properties of the integrated system by simulating the co-355
evolution of state variables in the WEFS nexus. Figure 5 shows the trajectories of population; GDP; crop area; water demand;

energy consumption; food production; shortage rates for water, energy, and food; awareness for water shortage, energy

shortage, and food shortage; and environmental awareness during 2010–2070.

360
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Figure 5. Trajectories of state variables in WEFS nexus: (a) population; (b) GDP; (c) crop area; (d) percentage variations370
(compared with initial values) of water use quota, energy use quota, and crop yield; (e) water demand; (f) energy consumption; (g)
food production; (h) shortage rates of water, energy, and food in Malthusian model; (i) water shortage awareness, energy shortage
awareness, food shortage awareness, and environmental awareness in Malthusian model; (j) shortage rates of water, energy, and
food in Logistic model; (k) water shortage awareness, energy shortage awareness, food shortage awareness, and environmental
awareness in Logistic model.375

Based on the trajectory of environmental awareness, the co-evolution processes of water demand and energy consumption in

Malthusian model were divided into four phases: expansion, contraction, recession, and recovery, which was consistent with
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the results in Feng et al. (2016) and Elshafei et al. (2014).. Food production was divided into five phases based on the

trajectory of food shortage awareness: accelerating expansion, natural expansion, contraction, recession, and recovery. The

four phases in the co-evolution process for water demand and energy consumption can be interpreted as follows.380
With environmental awareness below its critical value, the negative feedback on socioeconomic sectors is not triggered, and

water demand, as well as energy consumption, increases rapidly, which is defined as expansion phase (2010–2032). In the

beginning of co-evolution, the water and energy demands can be satisfied by water and energy availability. The shortage

rates of water and energy were typically below their critical values (Figure 5 (h)), and thus, shortage awareness of water and

energy remained at a low level as shown in Figure 5 (i). Despite food shortage struck the system in the beginning, the385
shortage rate of which was 0.153 and more than its critical value 0.05, the environmental awareness led by food shortage

awareness was still within its critical value 8.0. Therefore, environmental awareness feedback wasn’t triggered to constrain

socioeconomic sectors, and water demand, as well as energy consumption, thereby keeps increasing.

As environmental awareness exceeds its critical value, negative feedback on socioeconomic sectors is triggered, and water

demand and energy consumption is constrained, which is defined as contraction phase (2033–2039). Although quotas for390
water use and energy use decreased (Figure 5 (d)) with technological advancement, water demand and energy consumption

kept lowly increasing owing to the continuous socioeconomic expansion (Figure 5 (a), (b), and (c)). Shortage rates of water

and energy remained over their critical values (Figure 5 (h), and (i)), leading the increases of water shortage awareness and

energy shortage awareness, and further environmental awareness. Consequently, environmental awareness exceeded its

critical value in 2033 and continued to increase. Negative feedback on socioeconomic sectors was triggered and strengthened.395
Water demand and energy consumption gradually increased with decreasing rate and reached their maximum values of 19.2

billion m3 and 1,916 million kw*h, respectively, at the end of the contraction phase.

As environmental awareness accumulates to the maximum value, water demand, and energy consumption decrease

significantly, which is defined as recession phase (2040–2045). Environmental awareness feedback indeed constrained water

demand and energy consumption, which decreased but still exceeded local water and energy carrying capacities. Therefore,400
as the shortage rates of water and energy remained exceeding their critical values (Figure 5 (h)), environmental awareness

continued accumulating and reached the maximum value of 13.2 at the end of the recession phase, thereby decreasing water

demand and energy consumption.

As environmental awareness gradually decreases below its critical value, water demand and energy consumption decrease

slightly and then tend to stabilize, which is defined as recovery phase (2046–2070). With continuous decline of405
socioeconomic sectors, water demand and energy consumption gradually decreased within their carrying capacities. The

shortage rates of water and energy have then decreased to below their critical values since 2047, resulting in the decreases in

water shortage awareness and energy shortage awareness (Figure 5 (h) and (i)). As the environmental awareness decreased

below its critical value, negative feedback was removed, and the integrated system tended to stabilize.

The co-evolution process of food production can be interpreted in the similar way. It’s worth noting that the accelerating410
expansion phase (2010–2022) is unique for food production. As the food production cannot satisfy the target value in the
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beginning of co-evolution, food shortage emerged and led the increase of food shortage awareness (Figure 5 (h), and (i)).

With food shortage awareness increasing over its critical value, positive feedback on crop area was triggered, and further

accelerated the increase of food production.

For Logistic model, socioeconomic sectors kept increasing in the initial phase. The rapid socioeconomic expansion was415
slowed down until the negative feedback driven by environmental awareness was triggered. With the increasing

environmental awareness, socioeconomic recession was followed. Since the decreasing socioeconomic sectors were much

lower than their environmental capacities and feedback driven by environmental awareness was weakening, the variables

turned to increase again to approach to their environmental capacities, and rolled in cycles.

One of the major differences between results of Malthusian model and Logistic model is that state variable evolution in420
logistic model fluctuates remarkably and performs periodicity. However, it’s worth noting that the socioeconomic expansion

in the future will slow down and tend to stabilization (He et al., 2017; Lin et al., 2016), the growth rate of which will thereby

decrease as time goes. Moreover, the economic development in the study area is also expected to gradually grow and then

remains stable according to the Integrated Water Resources Planning of Hanjiang River Basin (CWRC, 2016). As the

periodic fluctuation for WEFS nexus evolution through Logistic model is not consistent with the slowed socioeconomic425
expansion in foreseeable future and cannot fitly satisfy the planning in the study area, Logistic model is not adopted.

Malthusian model can fitly meet the demand mentioned above, which is thereby applied for further analysis on WEFS nexus

in our study.

4.3 Impacts of Environmental Awareness Feedback and Water Resources Allocation on WEFS Nexus

To determine the potential impacts of environmental awareness feedback and water resources allocation on the WEFS nexus,430
four scenarios were set, the description of which is provided in Table 3. The Ecrit and FAcrit under scenario Ⅱ were set as

10,000 to ensure that the feedback cannot be triggered in the study, and the WSRcrit in scenarios Ⅲ and Ⅳ were set as 0.15

to avoid the explosion of water shortage awareness. The other parameters in scenarios II, III, and IV were consistent with the

calibrated values of scenario I, as listed in Table S2. Scenarios I and II and scenarios III and IV were used to investigate the

impacts of environmental awareness feedback and water resources allocation on the WEFS nexus, respectively. The average435
annual values of water demand, energy consumption, food production, and shortage rates for water, energy, and food are

listed in Table 4. Figure 6 shows the trajectories of key state variables of the integrated system, including water demand;

energy consumption; food production; shortage rates for water, energy, and food; awareness of water shortage, energy

shortage, and food shortage; and environmental awareness.

Table 3 Scenario description for assessing the impacts of environmental awareness feedback and water resources allocation on440
WEFS nexus.

Scenario
Environmental awareness

feedback

Water resources

allocation
Parameter setting

Ⅰ Yes Yes Calibrated values
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Ⅱ No Yes Ecrit, FAcrit: 10,000; others: calibrated values

Ⅲ Yes Yes WSRcrit: 0.15; others: calibrated values

Ⅳ Yes No WSRcrit: 0.15; others: calibrated values

Table 4 Average annual values for the state variables in WEFS nexus.

Scenario
Water demand

(billion m3)

Energy consumption

(million kw*h)

Food production

(million t)

Water

shortage rate

Energy

shortage rate

Food shortage

rate

Ⅰ 16.94 1,710 6,519 7.03% 5.80% 1.07%

Ⅱ 17.66 1,930 6,248 7.44% 17.16% 1.74%

Ⅲ 17.29 1,761 6,638 7.20% 8.25% 1.08%

Ⅳ 14.36 884 6,344 15.89% 0.00% 3.08%

445
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Figure 6. Trajectories of state variables in WEFS nexus under scenario Ⅰ , Ⅱ , Ⅲ , and Ⅳ : (a) water demand; (b) energy450
consumption; (c) food production; (d) and (e) shortage rates of water, energy, and food; (f) and (g) water shortage awareness,
energy shortage awareness, food shortage awareness, and environmental awareness.

4.3.1 WEFS Nexus Response to Environmental Awareness Feedback

Environmental awareness indicates societal perceptions of resources shortages and is the driving factor of feedback on

socioeconomic sectors. Both the average annual water demand and energy consumption increased from 16.94 billion m3 and455
1,710 million t under scenario Ⅰ to 17.66 billion m3 and 1,930 million t under scenario Ⅱ, respectively, as environmental

awareness feedback was removed, whereas the food production decreased slightly, from 6,519 million t to 6,248 million t.

Specifically, owing to high food shortage in the accelerating expansion phase of food production, the positive feedback on

crop area was triggered by food shortage awareness to accelerate the increase in crop area. Food production was thus

evidently larger when feedback was considered in Figure 6 (c). Food shortage was then alleviated, and the average shortage460
rate decreased from 1.74% to 1.07%. The increasing crop area meanwhile led to an increase in agricultural water demand

(Figure 6 (a)). However, as the increasing water demand remained within the carrying capacity, little difference in the water

shortage rate existed between scenarios I and II (i.e., 7.03% and 7.44%, respectively). As the water supply was efficiently

ensured, the impacts on urban water supply and the corresponding energy consumption were negligible. As water demand

and energy consumption increased rapidly in the expansion phase, environmental awareness increased remarkably owing to465
the constant water and energy shortages, as shown in Figure 6 (d) and (f). Negative feedback was triggered to constrain the

socioeconomic expansion. Compared with scenario Ⅱ, water demand and energy consumption decreased remarkably under

scenario Ⅰ. The stress on water and energy supplies was thus relieved, particularly for the energy system, the shortage rate of

which decreased from 17.16% to 5.80%. Therefore, environmental awareness can efficiently capture resources shortages and

regulate the pace of socioeconomic expansion through feedback, which can maintain the integrated system from constant470
resources shortages to sustain the concordant development of the WEFS nexus.
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4.3.2 WEFS Nexus Response to Water Resources Allocation

Water is considered the major driving factor for the WEFS nexus. Rational water resources management plays an important

role in the sustainable development of the WEFS nexus. Water resources allocation can regulate the water flow by reservoir

operation, which is considered one of the most effective tools for water resources management. Based on the Integrated475
Water Resources Planning of Hanjiang River Basin (CWRC, 2016), domesticity and ecology water uses should be ensured

first. The priorities for water use from high to low are municipal and rural domesticity, in-stream ecology, and industrial and

agricultural sectors, respectively. The average annual water demand, supply, and shortage under scenarios III and IV are

listed in Table 5.

Table 5 Water resources allocation results under scenarios Ⅲ and Ⅳ (million m3).480

Scenario Variables Municipal Rural Industry Agriculture
In-stream

ecology
Total

Ⅲ

Demand 388 181 6,504 6,433 3,779 17,286

Supply 387 181 5,785 6,034 3,654 16,042

Shortage 1 0 719 399 124 1,244

Shortage rate 0.24% 0.23% 11.05% 6.21% 3.29% 7.20%

Ⅳ

Demand 361 170 3,330 6,720 3,779 14,359

Supply 330 155 2,622 5,658 3,312 12,077

Shortage 31 15 708 1,062 466 2,282

Shortage rate 8.67% 8.69% 21.26% 15.80% 12.34% 15.89%

Despite the increase in water demand from 14,359 to 17,286 million m3 under scenario Ⅲ, the water supply also increased

from 12,077 to 16,042 million m3. The total water shortage rate decreased from 15.89% to 7.20% owing to rational water

resources allocation. As more available water resources can be stored in the flood season and then released in the dry season

through reservoir operation, the uneven temporal and spatial distributions of available water resources were remarkably

relieved, thereby increasing the water supply insurance. For water use sectors, water shortages were primarily found in485
industrial and agricultural sectors (719 and 399 million m3, respectively), and other sectors can be satisfied under scenario Ⅲ.

Water shortage became more serious under scenario IV, as the water shortage rates of these five sectors increased

significantly in Table 5, from 0.24%, 0.23%, 11.05%, 6.21%, and 3.29% to 8.67%, 8.69%, 21.26%, 15.80%, and 12.34%,

respectively. To analyze the spatial distribution of water shortage rates, Figure 7 shows the water shortage rate in each

operational zone under scenarios III and IV. The water shortage rates of the study area under scenario Ⅳ were evidently490
higher than those under scenario Ⅲ, particularly for the operational zones located at the basin boundaries (e.g., operational

zones Z1, Z2, Z8, Z12, Z13, Z21 and so on). As the boundary zones are far away from the mainstream of the Hanjiang river

and their local water availability is unevenly distributed, the regulating capacity of the water system is limited and is not

sufficiently strong to ensure the water supply.
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495
Figure 7. Distribution of water shortage rates.

For the co-evolution of WEFS nexus, a remarkable decrease in the average annual water demand and energy consumption

was observed as water resources allocation was removed from 17.29 billion m3 and 1,761 million t under scenario Ⅲ to

14.36 billion m3 and 884 million t under scenario Ⅳ, while the food production also decreased slightly from 6,638 million t

to 6,344 million t. Under scenario Ⅳ without considering water resources allocation, the average water shortage rate was500
15.89%, exceeding the critical value. Water shortage awareness continued to accumulate (Figure 6 (g)). As the water supply

could not be effectively ensured and remained at a low level, the energy consumption for urban water supply was small and

always within its planning value. No energy shortage awareness was accumulated at the beginning of the co-evolution shown

in Figure 6 (g). Meanwhile, as agricultural water demand cannot be ensured, food production was also lowered (Figure 6 (c)).

Higher food shortages then led to higher food shortage awareness (Figure 6 (e), and (g)). Thus, positive feedback to increase505
crop area was strengthened. As observed in Figure 6 (a) and (c), the water demand increased slightly and food production

increased rapidly. As environmental awareness accumulated over its critical value in 2015 and continued to increase,

negative feedback to constrain the socioeconomic expansion was triggered and continued to strengthen. The energy

consumption thereby continued to decrease in Figure 6 (b), accounting for the significant decrease in the energy shortage

rate (i.e., from 8.25% to 0). Environmental awareness increased and reached the maximum value of 21.6 in 2032 owing to510
the constant water shortage. With the strong negative feedback, the water demand and food production decreased remarkably

and remained at a low level, as shown in Figure 6 (a) and (c), which accounts for the increasing food shortage rate (i.e., from

1.08% to 3.08%).

With water resources allocation taken into account, water shortage was significantly alleviated under scenario Ⅳ, as

discussed in the water resources allocation results (from 15.89% scenario Ⅳ to 7.20% under scenario Ⅲ). The water515
shortage rate remained below its critical value in the entire co-evolution process (Figure 6 (e)). Thus, there was no

accumulation of water shortage awareness shown in Figure 6 (g). Energy consumption continued to increase as the water

supply was ensured. Environmental awareness accumulation was primarily due to energy shortage.
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Overall, water resources allocation can effectively alleviate water shortage to decrease water shortage awareness by

increasing the water supply. The increase in environmental awareness is primarily due to the constant high-level energy520
shortage rate. Therefore, planning energy availability is the primary boundary condition for sustainable development of the

WEFS nexus when water resources allocation is considered. Under the scenario without considering water resources

allocation, the risk of water shortage is high. Water shortage awareness continues to accumulate and remains at a high level

under scenario Ⅳ, which further contributes to high-level environmental awareness. The energy consumption and food

production will be decreased by negative feedback. Water availability becomes the vital resource constraining the525
concordant development of the WEFS nexus.

4.4 Sensitivity Analysis for WEFS Nexus

As is discussed above, both environmental awareness feedback and water resources allocation are of great significance to

WEFS nexus, the sensitivity analysis of which is conducted to help managers to identify the important parameters and

rational water resources allocation schemes for the integrated system.530
As environmental awareness feedback is dominated by the critical values and boundary conditions of the WEFS nexus,

seven parameters were selected for sensitivity analysis (i.e., parameter 1~7 in Table 6). For water resources allocation,

different reservoir operation schemes were adopted by adjusting water release from reservoir. Specifically, a multiplier for

water release was added as a parameter to demonstrate the ratio to water release in scenario I (i.e., parameter 8 in Table 6).

Each parameter was varied by the given increment, with the other parameters remaining unchanged. The maximum and535
minimum values, as well as the increments for the seven parameters, are listed in Table 6. Parameter sensitivity analysis was

then conducted by analyzing the trajectories of environmental awareness, water demand, energy consumption, and food

production, as shown in Figures 8, 9, 10, and 11.

Table 6 Parameter set for sensitivity analysis.
No. Parameter Description Min. Max. Increment

1 WSRcrit Critical water shortage rate 0.05 0.15 0.01

2 ESRcrit Critical energy shortage rate 0.05 0.15 0.01

3 FSRcrit Critical food shortage rate 0.05 0.15 0.01

4 PEA Planning energy availability 1,550 1,750 20

5 TFP Target food production 5,200 6,200 100

6 FAcrit Critical food shortage awareness 1 3 0.2

7 Ecrit Critical environmental awareness 5 10 0.5

8 Qmultiplier Multiplier of water release from reservoir 0.5 1.5 0.1
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540

Figure 8. Trajectories of environmental awareness with varied parameters.

Figure 9. Trajectories of water demand with varied parameters.545
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Figure 10. Trajectories of energy consumption with varied parameters.

550
Figure 11. Trajectories of food production with varied parameters.

4.4.1 Sensitivity Analysis of Environmental Awareness Feedback on WEFS Nexus

The variations in the parameters 1~7 can evidently change the trajectory of environmental awareness shown in Figure 8. The

socioeconomic sectors including water demand, energy consumption, and food production were then changed by feedback

driven by environmental awareness (Figure 9, 10, and 11), indicating that WEFS nexus is sensitive to the seven parameters.555
Specifically, the sensitive responses to parameters WSRcrit, ESRcrit, PEA, and Ecrit primarily occurred in the contraction

and recession phases of the co-evolution process for WEFS nexus. As demands from water and energy systems can always

be ensured by abundant resources availability in the expansion phase, limited water and energy shortages were observed.

Environmental awareness accumulated primarily from food shortage awareness but remained below its critical value (Figure

5 (i)). As the feedback due to environmental awareness was not sufficiently strong, the impacts on the co-evolution of WEFS560
nexus were negligible and were considered as the insensitivity. However, with social development, water demand and

energy consumption continued to grow and increase over the local carrying capability, leading an increase in environmental

awareness. Negative feedback on socioeconomic sectors was then triggered. WSRcrit and ESRcrit are the critical values that

determine the awareness of water and energy shortages to accumulate, and PEA indicates the amount of planning energy

availability, which directly determines the energy shortage. The environmental awareness accumulation can be thereby565
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accelerated by constraining WSRcrit, ESRcrit, and PEA (Figure 8 (a), (b), and (d)). Ecrit is the threshold for the negative

feedback triggering driven by environmental awareness. A lower Ecrit means community is more sensitive to resources

shortage and feedback is easier to trigger (Figure 8 (g)). Therefore, environmental awareness feedback to constrain

socioeconomic expansion can be advanced and strengthened by lowering WSRcrit, ESRcrit, PEA, and Ecrit, accounting for

the sensitive response of WEFS nexus in contraction and recession phases.570
FSRcrit, TFP, and FAcrit performed sensitivity during the entire co-evolution process for WEFS nexus. As food shortages

were considerable in the accelerating expansion phase, food shortage awareness increased rapidly, driving the feedback to

increase crop area. TFP can directly determine food shortage, and FSRcrit and FAcrit determine thresholds for food shortage

awareness accumulation and feedback triggering by food shortage awareness, respectively. Positive feedback on crop area to

increase food production can thus be advanced and strengthened by constraining FSRcrit, TFP, and FAcrit (Figure 8 (c), (e),575
and (f)). The crop area then continued increasing until environmental awareness feedback was triggered, resulting in the

increases in food production (Figure 11 (c), (e), and (f)) and water demand from agricultural sector (Figure 9 (c), (e), and (f)).

As the agricultural water use was directly drawn from river system, the energy use quota during water supply was small and

negligible. Energy consumption was thus not sensitive to FSRcrit, FAcrit, and TFP as shown in Figure 10. Therefore,

constraining FSRcrit, FAcrit, and TFP is an effective way to increase food production by advancing and strengthening the580
feedback driven by food shortage awareness, which accounts for the sensitive responses of environmental awareness, water

demand, and food production in expansion phase.

Simultaneously, it’s worth noting that although constraining WSRcrit, ESRcrit, PEA, and Ecrit can maintain the integrated

system from constant water shortage and energy shortage, the over-constrained condition can also sharply increase

environmental awareness (Figure 8 (a), (b), (d), and (e)). Environmental awareness feedback was remarkably advanced,585
which shortened the expansion phase and led to violent degradation of socioeconomic sectors (indicated by drastic decreases

of water demand, energy consumption and food production in Figure 9, 10, and 11, respectively). The sustainability of

WEFS nexus was seriously challenged. Similarly, despite food production can be effectively increased by constraining

FSRcrit, FAcrit, and TFP, the over-constrained condition will cause a considerable increase in water demand, as shown in

Figure 9 (c), (e), and (f), which will further put stress on the water supply. Moreover, the regulating capacity of the local590
system should also be considered during parameter selection. For example, there was an abrupt decrease when WSRcrit was

set to 0.05, as shown in Figure 9 (a), Figure 10 (a), and Figure 11 (a). Violent socioeconomic degradation dominated by

environmental awareness feedback was triggered to decrease environmental awareness, indicating that the WSRcrit was

over-constrained and exceeded the regulating capacity of the local water system. Therefore, a rational parameter setting

should be based on the sustainability of long-term co-evolution for socioeconomic sectors and the regulating capacity of the595
local system, which is of great significance for sustaining the stability of the WEFS nexus.

As each shortage is experienced by different users with different connections to basin development dynamics (e.g., shortages

from water, energy, and food are aggregated into environmental awareness, despite the food which is planned to be exported

is considered in target food production), it’s necessary to discuss the contributions to environmental awareness from water,
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energy, and food systems. Therefore, three weight factors were assigned to shortage awareness of water, energy, and food in600
equation (32) to adjust the over-estimated or under-estimated environmental awareness due to discordant scales. For instance,

considering the target food production comprises inner food demand and exported food, the environmental awareness within

the basin is over-estimated, and the weight factor for food shortage awareness can be set lower than 1.0 as a reduction factor

to decrease current food shortage awareness. Sensitivity analysis was then conducted. Each weight factor was varied by

given increment, while the other two weight factors were set to 1.0 as reference. The results are presented in Figure S1, S2,605
S3, and S4 in supplementary file.

dE
dt
=wf1*

dWA
dt
+wf2*

dEA
dt
+wf3*

dFA
dt

, (32)

where wf1, wf2, and wf3 are the weight factors for water, energy, and food shortage awareness, respectively.

WEFS nexus is sensitive to shortage awareness weight factors. Specifically, weight factors for water and energy shortage

awareness can remarkably impact the recession phases of water demand, energy consumption, and food production. Lower610
weight factor can delay environmental awareness accumulation, and thus extend the contraction phase. However, more

violent socioeconomic deterioration was also accompanied in the later recession phase, which consequently led the slightly

smaller socioeconomic size in recovery phase. Weight factor for food shortage awareness can effectively dominate the whole

evolution of water demand, and energy consumption. Lower weight factor indicated that smaller food shortage awareness

can be accumulated. Feedback to increase crop area was thereby weakened. Both agriculture water demand and food615
production were decreased. As energy use quota for agricultural water supply is negligible, little response of energy

consumption can be found.

4.4.2 Sensitivity Analysis of Water Resources Allocation Schemes on WEFS Nexus

The WEFS nexus in the study area was evidently constrained under water resources allocation schemes with smaller water

release from reservoir. The decreasing water supply directly increased water shortage, the average annual shortage rate of620
which increased from 6.41% to 8.01%. The rapid increase of water shortage awareness then accelerated environmental

awareness accumulation and further the feedback shown in Figure 8 (h). As the negative feedback on socioeconomic sectors

was strengthened, water demand decreased rapidly in recession phase (Figure 9 (h)). Water supply was thereby decreased

with decreasing water demand, which accounts for the decreasing energy consumption during water supply process shown in

Figure 10 (h). For food system, decreasing water release notably altered the stability of food production evolution (Figure 11625
(h)). Higher water shortage rate led smaller food production and further larger food shortage awareness. Feedback driven by

food shortage awareness was strengthened to increase crop area. Food production thereby increased in expansion phase.

However, increasing crop area was accompanied by increasing agricultural water demand, which brought increases of water

shortage and environmental awareness. With stronger environmental awareness feedback, food production in recession

phase thereby decreased rapidly.630
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To assess the impacts of water resources allocation schemes in different operational zones, the spatial distributions of water

shortage and socioeconomic variables including water demand, energy consumption, and food production were considered.

Operational zones were classified into four types as shown in Figure 12. The zone with small water shortage, and the water

shortage rate, and socioeconomic variables of which perform insensitivity, is defined as type A. If water shortage can be

almost removed and socioeconomic variables are sensitive, the zone is defined as type B. If water shortage can be partly635
alleviated and socioeconomic variables are sensitive, the zone is defined as type C. The zone with considerable water

shortage, and the water shortage rate, and socioeconomic variables of which perform insensitivity, is defined as type D. Four

representative zones including Z9 (Yichengmanhe) in type A, Z1 (Fangxian) in type B, Z8 (Nanzhang) in type C, and Z13

(Jingmenzhupi) in type D were selected to study the responses to different water resources allocation schemes. The water

shortages and socioeconomic variables are presented in Figure 13.640

Figure 12. Spatial distribution of A, B, C, and D types of operational zones.
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645
Figure 13. Socioeconomic variables with varied reservoir release multiplier in Z9, Z1, Z8, and Z13: (a) changing rates of water
demand; (b) changing rates of energy consumption; (c) changing rate of food production; (d) water shortage rates; (e) water
shortage rates of water users in Z1 (user 1, 2, 3, 4, and 5 are related to municipal, rural, in-stream ecology, industrial, and
agricultural users); (f) water shortage rates of water users in Z8.

As environmental awareness feedback on population, GDP, and crop area was conducted in the entire study area, the water650
demand variations in Z1, Z8, Z9, and Z13 were similar, and all of them were small (Figure 13 (a)), which indicated that

water supply was the primary factor affecting the integrated system.

No water shortage was observed in Z9 under different water resources allocation schemes (Figure 13 (d)), and the energy

consumption, and food production also exhibited insensitivity shown in Figure 13 (b), and (c). As Z9 located along the main

stream of Hanjiang river, the regulating capacity of water project was strong due to Danjiangkou reservoir (whose total655
storage is 33,910 million m3). Despite of the reduction of water release, the water demand can always be ensured, and the

energy consumption, and food production thereby remained stability. Water shortage rate in Z1 decreased evidently with the

increase of water release (Figure 13 (d)), and the energy consumption, and food production further increased remarkably, as

shown in Figure 13 (b), and (c). Z1 located at the boundary of study area, the water supply of which mainly depended on
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Sanliping reservoir (shown in Figure 3). The regulating capacity of water project was strong enough to cover most part of660
water demand. Therefore, the increasing water release remarkably relived water shortage (water shortage rate decreased from

12.56% to 4.20%), particularly in industrial and agricultural users, as shown in Figure 13 (e). Energy consumption during

water supply process thus increased, and food production also increased owing to the decreasing agricultural water shortage

rate. Response of Z8 to water resources allocation schemes was similar to Z1. The difference was that local reservoirs in Z8

can provide limited regulating capacity, which can only cover part of water demand. Water shortage was effectively665
alleviated, but still considerable (water shortage rates were always more than 18% shown in Figure 13(d)). Z13 was far away

from the mainstream and there was no local reservoir. The regulating capacity of water project was so weak that no response

to water resources allocation schemes was observed. Water was always the key resource constraining the development of

Z13 (Figure 13 (d)).

It’s worth noting that it doesn’t mean more water release from reservoir can always promote the development of the670
integrated system. As shown in Figure 13 (e), and (f), remarkable decreases of water shortage were no longer observed, since

reservoir release multiplier was more than 1.2. As excessive water release may decrease reservoir storage in dry season, even

more water shortages were found, as shown in Figure 13 (e), and (f), which further constrained socioeconomic expansion

(Figure 13 (b), and (c)). Therefore, regulating capacity of water project is an important factor to ensure the stability of water

system to sustain WEFS nexus. In the area equipped with strong regulating capacity of water project, water demand can675
always be covered and the integrated system is not sensitive to varied water release from reservoir. While in the area with

certain regulating capacity of water project but can not totally cover the water demand, regulating the water release from

reservoir by rational water resources allocation schemes can effectively ensure water supply and thereby contributes to the

sustainable development of the integrated system.

5 Conclusions680

The sustainable management of the WEF nexus remains an urgent challenge, as human sensitivity and reservoir operation

are seldom considered in recent studies. This study used environmental awareness to capture human sensitivity and

simultaneously incorporated reservoir operation in the form of water resources allocation model (i.e., IRAS model) into

water system to develop a system dynamic model for the WEFS nexus. The proposed approach was applied to the MLHRB

in China. The conclusions drawn from the study are as follows.685
The proposed approach provides a valid analytical tool for exploring the long-term co-evolution of the nexus across the

water, energy, food, and society systems. Environmental awareness in the society system shows potential to capture human

sensitivity to shortages from water, energy, and food systems. The feedback driven by environmental awareness can regulate

the pace of socioeconomic expansion to maintain the integrated system from constant resources shortages, which contributes

to the sustainability of the WEFS nexus. The co-evolution of water demand, energy consumption, and food production can690
be divided into expansion (accelerating and natural expansion for food production), contraction, recession, and recovery



34

phases based on environmental awareness. Rational parameter setting of boundary conditions and critical values can

effectively control environmental awareness feedback to help managers to keep the socioeconomic sectors from violent

expansion and deterioration in contraction and recession phases. Water resources allocation can effectively relieve water

shortage by increasing water supply. As high-level environmental awareness led by water shortage is remarkably alleviated,695
environmental awareness feedback is weakened and the socioeconomic sectors develop rapidly. Threats from water shortage

on the concordant development of WEFS nexus are significantly alleviated. Regulating capacity of water project is an

important factor in water resources allocation to ensure the stability of water system to sustain WEFS nexus. Particularly for

the area with certain regulating capacity of water project but cannot totally cover the water demand, regulating the water

release from reservoir by rational water resources allocation schemes can further ensure water supply and is of great700
significance for the sustainable development of the WEFS nexus.

We acknowledge that environmental awareness feedback functionality remains to be further improved. Indeed,

environmental awareness also has potential to contribute to socioeconomic expansion by promoting resources-saving

technology. It’s the function of the level and duration of environmental awareness, and the sizes of socioeconomic factors,

which will become the focus of our further study. The model calibration is also challenging, as the data series is not705
sufficiently long and the forms and parameters of the feedback function are not prescribed. We consider that sufficient case

studies will gradually emerge over time, which could gradually cover a range of scenarios and slowly provide reliability in

the WEFS nexus modeling. Moreover, as the primary input of the proposed WEFS nexus model, water availability was

adopted based on the historical scenario in this study. Future climate change has not been considered for the sake of

simplicity. The considerable uncertainties in water availability can be brought into the water system in the WEFS nexus due710
to climate change (Chen et al., 2011). The propagation of the uncertainties can also be complicated, with interactions among

water, energy, food, and society systems during the co-evolution process. Therefore, more attention should be paid to the

uncertainty analysis on the WEFS nexus under climate change. However, the proposed framework and our research results

not only provide useful guidelines for local sustainable development but also demonstrate the potential for effective

application in other basins.715
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