

1 **A system dynamic model to quantify the impacts of water**
2 **resources allocation on water-energy-food-society (WEFS)**
3 **nexus**

4 *Yujie Zeng¹, Dedi Liu^{1,2*}, Shenglian Guo¹, Lihua Xiong¹, Pan Liu¹, Jiabo Yin^{1,2},*
5 *Zhenhui Wu¹*

6

7 ¹ State Key Laboratory of Water Resources and Hydropower Engineering Science,
8 Wuhan University, Wuhan 430072, China

9 ² Hubei Province Key Lab of Water System Science for Sponge City Construction,
10 Wuhan University, Wuhan 430072, China

11

12

13

14 *Correspondence to: Dedi Liu (dediliu@whu.edu.cn)*

15 **Abstract:** Sustainable management of the water-energy-food (WEF) nexus remains
16 an urgent challenge, as interactions between WEF and human sensitivity and reservoir
17 operation in the water system are typically neglected. This study proposes a new
18 approach for modeling the WEF nexus by incorporating human sensitivity and
19 reservoir operation into the system. The co-evolution behaviors of the nexus across
20 the water, energy, food, and society (WEFS) were simulated using the system
21 dynamic model. The reservoir operation was simulated to determine the water supply
22 for energy and food systems by the Interactive River-Aquifer Simulation water
23 resources allocation model. Shortage rates for water, energy, and food resulting from
24 the simulations were used to qualify their impacts on the WEFS nexus through
25 environmental awareness in the society system. The human sensitivity indicated by
26 environmental awareness can adjust the co-evolution behaviors of the WEFS nexus
27 through feedback loops. The proposed approach was applied to the mid-lower reaches
28 of the Hanjiang river basin in China as a case study. The results show that
29 environmental awareness can effectively capture the human sensitivity to shortages
30 from water, energy, and food systems. The feedback driven by environmental
31 awareness regulates the socioeconomic expansion to maintain the integrated system
32 from constant resources shortages, thereby decreasing the energy shortage rate from
33 17.16% to 5.80% and contributing to the sustainability of the WEFS nexus. Water
34 resources allocation can ensure water supply through reservoir operation, decreasing
35 the water shortage rate from 15.89% to 7.20%. The resource constraining the WEFS
36 nexus is transferred from water to energy. Therefore, this study contributes to the

37 understanding of interactions across the WEFS systems and helps in improving the
38 efficiency of resources management.

39 **Keywords:** water-energy-food-society nexus; system dynamic; water resources
40 allocation; human sensitivity

41 **1. Introduction**

42 Water, energy, and food are indispensable resources for sustainable development
43 of society. With the growing population, urbanization, globalization, and economic
44 development, the expected global demands for water, food, and energy in 2030 will
45 increase by 40%, 50%, and 50%, respectively, compared to the 2010 levels
46 (Alexandratos and Bruinsma, 2012; Mckinsey & Company, 2009; International
47 Energy Agency, 2012). Resource scarcity will be exacerbated by the single-sector
48 strategy in traditional water, energy, and food management (El Gafy et al., 2017). To
49 increase resource use efficiency and benefits in production and consumption, taking
50 the inextricable interactions among sectors across water, energy, and food into rational
51 resources management has become an important strategy (Hsiao et al., 2007;
52 Vörösmarty et al., 2000). Considering these interactions, the water-energy-food (WEF)
53 nexus concept was first presented at the Bonn Conference in 2011 as an approach to
54 determine synergies and trade-offs between WEF sectors to support sustainable
55 development goals (Hoff, 2011).

56 Various methods have been proposed for integrated systems to quantify the
57 interactions in the WEF nexus. There are three main types of methods: system of

58 systems model (Eusgeld et al., 2011; Housh et al., 2015), agent-based model
59 (Bonabeau, 2002; Dawson et al., 2011), and system dynamic model (El Gafy, 2014;
60 Swanson, 2002). The system of systems model comprises several subsystems as a
61 holistic system to address the nexus by optimizing system behavior. The agent-based
62 model simulates the interactions between agents and environments as well as different
63 agents based on predefined rules obtained from long-term observations. These two
64 methods have been established to be capable of simulating the behaviors of an
65 integrated system. However, neither of them has emphasized feedback within the
66 integrated systems, which is considered an important driving force for nexus system
67 (Chiang et al., 2004; Klelmuntz, 1993; Makindeodusola and Marino, 1989). The
68 results of these two methods for WEF security remain at risk. The system dynamic
69 model explicitly focuses on feedback connections between key elements in a model to
70 determine the co-evolution process and long-term characteristics of integrated
71 systems (Liu, 2019; Simonovic, 2002). Therefore, system dynamic model was
72 adopted in this study to simulate the co-evolution process of the nexus system.

73 System dynamic model has been widely used to analyze the WEF nexus
74 worldwide at different spatial scales, such as global (Davies and Simonovic, 2010;
75 Susnik, 2018), national (Laspidou et al., 2020; Linderhof et al., 2020), and basin-scale
76 (Purwanto et al., 2021; Ravar et al., 2020). Most of these models perform the
77 accounting and analysis of the WEF nexus, focusing only on the physical process,
78 while rarely highlighting the social process that indicates human responses to the
79 WEF nexus (Elshafei et al., 2014). As the connection between the WEF nexus and

80 society is intensified under rapid socioeconomic development, both physical and
81 social processes should be considered for the sustainability of the integrated system in
82 the future (Di Baldassarre et al., 2015; Di Baldassarre et al., 2019).

83 To simultaneously capture the physical and social processes of the integrated
84 system, human sensitivity was considered as a conceptual social state variable to
85 identify environmental deterioration (Elshafei et al., 2014; Van Emmerik et al., 2014).
86 Van Emmerik et al. (2014) developed a socio-hydrologic model to understand the
87 competition for water resources between agricultural development and environmental
88 health in the Murrumbidgee river basin (Australia). Li et al. (2019) developed an
89 urban socio-hydrologic model to investigate future water sustainability from a holistic
90 and dynamic perspective in Beijing (China). Feng et al. (2016) used environmental
91 awareness to indicate community's attitude to influence the co-evolution behaviors of
92 the water-power-environment nexus in the Hehuang region (China). These studies
93 have contributed to effective resources management by incorporating both physical
94 and social processes. However, potential threats to WEF security exist, as few of the
95 current studies have simultaneously considered the impacts of reservoir operation in
96 water system on the integrated system.

97 Reservoirs can adjust the uneven temporal and spatial distribution of available
98 water resources and can ensure water supply to reduce water shortage (Khare et al.,
99 2007; Liu et al., 2019; Zeng et al., 2021; He et al., 2022). However, the available
100 water resources are typically adopted under historical natural water flow scenarios,
101 while reservoirs are seldom considered, or their operational rules are significantly

102 simplified in the WEF nexus. The assessment of water supply security based on the
103 WEF nexus should be improved. Thus, additional details regarding the reservoir
104 operation should be incorporated into the simulation of the WEF nexus.

105 The water resources allocation model can simultaneously incorporate reservoir
106 operation and water acquisition, and it has become an effective tool to quantitatively
107 assess the impacts of reservoir operation on water supply security, as well as WEF
108 security (Si et al., 2019; Zhou et al., 2019). Our study aims to establish a system
109 dynamic model for the water-energy-food-society (WEFS) nexus and assess the
110 impacts of reservoir operation on the WEFS nexus by integrating the water resources
111 allocation model into the integrated system. The reminder of this paper is organized as
112 follows: Section 2 introduces the framework for modeling the WEFS nexus and
113 assessing the impacts of water resources allocation on the WEFS nexus. Section 3
114 describes the methodologies applied in the mid-lower reaches of the Hanjiang river
115 basin in China, which is the study area. Section 4 presents the results of the
116 co-evolution process and the sensitivity analysis of the WEFS nexus. The impacts of
117 water resources allocation on the WEFS nexus have also been discussed. The
118 conclusions of this study are presented in Section 5.

119 **2 Methods**

120 System dynamic modeling (SDM) simulates the dynamics among different
121 systems using nonlinear ordinary differential equations and dynamic feedback loops
122 (Wolstenholme and Coyle, 1983; Swanson, 2002). SDM has become an efficient

123 approach to facilitate the integrated analysis of sectors, processes, and interrelations
124 among different system variables (Di Baldassarre et al., 2015; Simonovic, 2002). The
125 SDM for assessing the WEFS nexus comprises four modules (shown in Figure 1):
126 water system module, energy system module, food system module, and society
127 system module.

128 In the water system module, socioeconomic water demand (i.e., municipal, rural,
129 industrial, and agricultural water demand) and in-stream water demand are projected
130 using the quota method and Tennant method (Tennant, 1976), respectively. The water
131 demands and available water resources are further inputted into the water resources
132 allocation model to determine the water supply and water shortage for every water use
133 sector in each operational zone. The water supply for socioeconomic water use sectors
134 and agricultural water shortage rates as outputs from the water system module are
135 taken as the inputs of the energy system module and food system module to determine
136 the energy consumption and food production, respectively. Considering the outputs of
137 the energy and food system modules, the energy and food shortages can be estimated
138 by comparing the planning energy availability and planning food production,
139 respectively. The function of the society module is to capture human sensitivity to
140 degradation in the WEF nexus (Elshafei et al., 2014). Environmental awareness is
141 considered as the conceptual social state variable to indicate human sensitivity (Van
142 Emmerik et al., 2014). Environmental awareness is composed of water shortage
143 awareness, energy shortage awareness, and food shortage awareness that are
144 determined by shortages of water, energy, and food, respectively. As environmental

145 awareness accumulates over its critical value, negative feedback on socioeconomic
 146 sectors (i.e., population, GDP, and crop area) will be triggered to constrain the
 147 increases in water demand, and further energy consumption, and food production to
 148 sustain the WEFS nexus.

150 **Figure 1. Structure of WEFS nexus model and its feedbacks.**

151 **2.1 Water System Module**

152 **2.1.1 Water Demand Projection**

153 Water user comprises socioeconomic (also called off-stream) user and in-stream
 154 user. Socioeconomic water users can be classified into municipal, rural, industrial,
 155 and agricultural sectors. The quota method has been considered an efficient approach

156 to project the annual socioeconomic water demand (Brekke et al., 2002). The amount
157 of water demand for the socioeconomic users can be estimated using equation (1).
158

$$WD_{i,j}^t = WQ_{i,j}^t * A_{i,j}^t / U_{i,j}^t \quad (1)$$

159 where $WD_{i,j}^t$ is the amount of water demand for the j -th user in the i -th operational
160 zone in the t -th year; $WQ_{i,j}^t$ denotes the water use quota unit of water user; $A_{i,j}^t$ is the
161 amount of water units of water user; and $U_{i,j}^t$ represents the utilization rate of water
162 user. The water quota units represent the amount of water consumption per capita in
163 municipal and rural users, the amount of water consumption per ten thousand Yuan in
164 industrial user, and the amount of net irrigation water per unit area in agricultural user,
165 respectively. The amount of water units represents the projected population in
166 municipal and rural users, projected GDP in industrial user, and projected irrigated
167 area in agricultural user.

168 As population, GDP, crop area, and water use quota are prerequisites for water
169 demand projection, the dynamic equations for these socioeconomic variables should
170 be pre-determined. The Malthusian growth model is a succinct approach that has been
171 widely applied to socioeconomic projections (Bertalanffy, 1976; Malthus, 1798). As
172 the growth rate in the original Malthusian growth model is adopted as a constant,
173 socioeconomic factors will reach infinity in a long-time evolution. Therefore, we
174 assume that population, GDP, and crop area increase with decreasing rates over time,
175 based on previous studies (He et al., 2017; Lin et al., 2016). And feedback functions,
176 as well as environmental capacities of socioeconomic variables, are adopted to
177 constrain the infinite evolution of these socioeconomic variables through equations

178 (2)–(4) (Feng et al., 2016; Hritonenko and Yatsenko, 1999).

179

$$\begin{cases} \frac{dN_t}{dt} = r_{P,t} * N_t \\ r_{P,t} = \begin{cases} r_{P,0} * (1 + \kappa_P * \exp(-\varphi_P t)) + f_1(E) & N_t \leq N_{cap} \\ \text{Min}(0, r_{P,0} * (1 + \kappa_P * \exp(-\varphi_P t)) + f_1(E)) & N_t > N_{cap} \end{cases} \end{cases} \quad (2)$$

180

$$\begin{cases} \frac{dG_t}{dt} = r_{G,t} * G_t \\ r_{G,t} = \begin{cases} r_{G,0} * (1 + \kappa_G * \exp(-\varphi_G t)) + f_2(E) & G_t \leq G_{cap} \\ \text{Min}(0, r_{G,0} * (1 + \kappa_G * \exp(-\varphi_G t)) + f_2(E)) & G_t > G_{cap} \end{cases} \end{cases} \quad (3)$$

181

$$\begin{cases} \frac{dCA_t}{dt} = r_{CA,t} * CA_t \\ r_{CA,t} = \begin{cases} r_{CA,0} * (1 + \kappa_{CA} * \exp(-\varphi_{CA} t)) + f_3(E, FA) & CA_t \leq CA_{cap} \\ \text{Min}(0, r_{CA,0} * (1 + \kappa_{CA} * \exp(-\varphi_{CA} t)) + f_3(E, FA)) & CA_t > CA_{cap} \end{cases} \end{cases} \quad (4)$$

182 where N_t , G_t , and CA_t are the population, GDP, and crop area in the t -th year,

183 respectively; N_{cap} , G_{cap} , and CA_{cap} denote the environmental capacities of population,

184 GDP, and crop area, respectively; $r_{P,0}$, $r_{G,0}$, and $r_{CA,0}$ represent the growth rates of

185 population, GDP, and crop area in the baseline year, respectively, which are observed

186 from historical data; $r_{P,t}$, $r_{G,t}$, and $r_{CA,t}$ are the growth rates of population, GDP, and

187 crop area in the t -th year, respectively; $\kappa_P * \exp(-\varphi_P t)$, $\kappa_G * \exp(-\varphi_G t)$, and $\kappa_{CA} * \exp(-\varphi_{CA} t)$

188 are used to depict the impacts of technological development on the evolution of

189 population, GDP, and crop area, respectively; E is environmental awareness; FA is

190 food shortage awareness; and f_1 , f_2 , and f_3 represent the feedback functions. The

191 equations for E , FA , and feedback functions are described in detail in Sections 2.4 and

192 2.5.

193 Water use quotas are also assumed to decrease with the technological

194 development owing to the expansion economy (Blanke et al., 2007; Hsiao et al.,

195 2007). As the difficulties in saving water by technological advancement are increasing,

196 the changing rate of water use quota is decreasing in equation (5) (Feng et al., 2019).

197

$$\begin{cases} \frac{dWQ_{i,j}^t}{dt} = WQ_{i,j}^t * r_{qwu,t} \\ r_{qwu,t} = r_{qwu,0} (1 - \kappa_{qwu} * \exp(-\varphi_{qwu} t)) \end{cases} \quad (5)$$

198 where $WQ_{i,j}^t$ denotes the water use quota of the j -th water user in the i -th operational
199 zone in the t -th year; $r_{qwu,0}$ and $r_{qwu,t}$ are the growth rates of water use quotas in the
200 baseline year and t -th year, respectively; and $\kappa_{qwu} * \exp(-\varphi_{qwu} t)$ is used to depict the
201 water-saving effect of technological development on the evolution of water use quota.

202 2.1.2 Water Resources Allocation

203 Based on water availability and projected water demand, available water
204 resources can be deployed to every water use sector and in-stream water flows using a
205 water resources allocation model. The Interactive River-Aquifer Simulation (IRAS)
206 model is a rule-based water system simulation model developed by Cornell University
207 (Loucks, 2002; Zeng et al., 2021; Matrosov et al., 2011). The IRAS model runs on a
208 yearly loop. The year is divided into user-defined time step, and each time step is
209 broken into user-defined sub-time step, based on which water resources allocation
210 conducts. The IRAS model was adopted for water resources allocation owing to its
211 flexibility and accuracy in water system simulations.

212 As water system comprises water transfer, consumption, and loss components, it
213 is typically delineated by node network topology for the application of the water
214 resources allocation model. Reservoir nodes and demand nodes are the most
215 important elements in the node network topology, as they directly correspond to the
216 processes of water supply, acquisition, and consumption. The water shortage at the

217 demand node should first be determined based on its water demand and total water
 218 supply. The total water supply comprises natural water inflow (i.e., local water
 219 availability) and water supply from reservoir. In each sub-time step (except the first),
 220 the average natural water inflow in the previous $sts-1$ sub-time steps is estimated as
 221 the extrapolated natural water inflow in the remaining sub-time steps using equation
 222 (6). The water shortage can then be determined by deducting the demand reduction,
 223 total real-time water inflow, and extrapolated natural water inflow from water demand
 224 using equation (7). The total water shortage rate can then be determined using
 225 equation (8).

$$226 \quad WE_{i,j}^{sts} = \left(\sum_1^{sts-1} WTSup_{i,j}^{sts} - \sum_1^{sts-1} WRSup_{i,j}^{sts} \right) * \frac{(Tsts - sts + 1)}{(sts - 1)} \quad (6)$$

$$227 \quad WS_{i,j}^{sts} = \frac{WD_{i,j}^{ts} (1 - f_{red}) - \sum_1^{sts} WTSup_{in}^{sts} - WE_{i,j}^{sts}}{Tsts - sts + 1} \quad (7)$$

$$228 \quad WSR_{i,j}^t = \frac{\sum_{ts}^{sts} \sum_{sts}^{ts} WS_{i,j}^{sts}}{\sum_{ts}^{sts} WD_{i,j}^{ts}} \quad (8)$$

229 where ts is the current time step; $Tsts$ denotes the total number of the sub-time steps;
 230 sts is the current sub-time step; $WE_{i,j}^{sts}$ represents the extrapolated natural water inflow
 231 for the j -th water use sector in the i -th operational zone; $WTSup_{i,j}^{sts}$ is the total water
 232 supply; $WRSup_{i,j}^{sts}$ is the water supply from reservoir; $WD_{i,j}^{ts}$ is the water demand; f_{red}
 233 is the demand reduction factor; $WS_{i,j}^{st}$ is the water shortage; and $WSR_{i,j}^t$ is the water
 234 shortage rate in the t -th year.

235 The water shortage at the demand node requires water release from the
 236 corresponding reservoir nodes according to their hydrological connections. The
 237 amount of water released from the reservoir depends on the water availability for

238 demand-driven reservoirs and operational rules for supply-driven reservoirs,
 239 respectively. The water release for the supply-driven reservoir is linearly interpolated
 240 based on Figure 2 and equations (9)–(15). Additional details on the IRAS model can
 241 be found in Matrosov et al. (2011).

242

243 **Figure 2. Water release rule for supply-driven reservoir.**

244
$$P_t = (t - t_1) / (t_2 - t_1) \quad (9)$$

245
$$V_{\max}^t = V_{\max}^b * (1 - P_t) + V_{\max}^e * P_t \quad (10)$$

246
$$V_{\min}^t = V_{\min}^b * (1 - P_t) + V_{\min}^e * P_t \quad (11)$$

247
$$q_{\max}^t = q_{\max}^b * (1 - P_t) + q_{\max}^e * P_t \quad (12)$$

248
$$q_{\min}^t = q_{\min}^b * (1 - P_t) + q_{\min}^e * P_t \quad (13)$$

249
$$P_v = (V^t - V_{\min}^t) / (V_{\max}^t - V_{\min}^t) \quad (14)$$

250
$$q^t = q_{\min}^t * (1 - P_v) + q_{\max}^t * P_v \quad (15)$$

251 where t , t_1 , and t_2 are the current time, initial time, and end time in the period,
 252 respectively; P_t denotes the ratio of current time length to period length; V_{\max}^t , V_{\min}^t ,
 253 V_{\max}^b , V_{\min}^b , V_{\max}^e , and V_{\min}^e represent the maximum and minimum storages at the
 254 current time, beginning, and ending of the period, respectively; q_{\max}^t , q_{\min}^t , q_{\max}^b ,
 255 q_{\min}^b , q_{\max}^e , and q_{\min}^e denote the maximum and minimum releases, respectively; P_v
 256 is the ratio of current storage; and q_t is the current release.

257 **2.2 Energy System Module**

258 The energy system module focuses on the energy consumption during the water
 259 supply process for socioeconomic water users to further investigate the energy
 260 co-benefits of water resources allocation schemes (Zhao et al., 2020; Smith et al.,
 261 2016). Energy consumption for water heating and water end-use was not included in
 262 this study. Energy consumption is determined by the energy use quota and amount of
 263 water supply for the water use sectors (Smith et al., 2016). As energy use efficiency
 264 will be gradually improved with technological development, the energy use quota is
 265 assumed to decrease with decreasing rate. The trajectory of the energy use is
 266 formulated in equation (16). The water supply for water use sectors derived from the
 267 water system module is used to estimate energy consumption using equation (17). The
 268 energy shortage rate will be further determined with planning energy availability
 269 using equation (18).

$$270 \quad \begin{cases} \frac{dEQ_{i,j}^t}{dt} = EQ_{i,j}^t * r_{e,t} \\ r_{e,t} = r_{e,0} * (1 - \kappa_e \exp(-\varphi_e t)) \end{cases} \quad (16)$$

$$271 \quad EC_t = \sum_{i,j} WTSup_{i,j}^t * EQ_{i,j}^t \quad (17)$$

$$272 \quad ESR_t = \frac{ES_t}{EC_t} = \frac{EC_t - PEA_t}{EC_t} \quad (18)$$

273 where $EQ_{i,j}^t$ is the energy use quotas of the j -th water user in the i -th operational zone
 274 in the t -th year; $r_{e,0}$ and $r_{e,t}$ denote the growth rates of energy use quotas in baseline
 275 year and the t -th year, respectively; $\kappa_e * \exp(-\varphi_e t)$ depicts the energy-saving effect of
 276 technological development; EC_t is the total energy consumption; $WTSup_{i,j}^t$ is the
 277 total water supply of the j -th water user in the i -th operational zone; ES_t and ESR_t

278 are the energy shortage and energy shortage rate, respectively; and PEA_t is the
 279 planning energy availability.

280 **2.3 Food System Module**

281 The food system module focuses on estimating the amount of food production.
 282 As water is a crucial determinant for crop yield, the agricultural water shortage rate
 283 can constrain the potential crop yield (French and Schultz, 1984; Lobell et al., 2009).
 284 Owing to the technological advancements in irrigation, the amount of potential crop
 285 yield is assumed to increase with decreasing rate, as indicated by equation (19). With
 286 the planning food production, the food shortage rate can then be estimated using
 287 equations (20) and (21).

$$288 \quad \begin{cases} \frac{dCY_{i,j}^t}{dt} = CY_{i,j}^t * r_{pro,t} \\ r_{pro,t} = r_{pro,0} * (1 + \kappa_{pro} \exp(-\varphi_{pro} t)) \end{cases} \quad (19)$$

$$289 \quad FP_t = \sum_{i,j} CY_{i,j}^t * CA_{i,j}^t * (1 - WSR_{i,4}^t) \quad (20)$$

$$290 \quad FSR_t = \frac{FS_t}{PFP_t} = \frac{PFP_t - FP_t}{PFP_t} \quad (21)$$

291 where $CY_{i,j}^t$ is the potential crop yields of the j -th crop in the i -th operational zone in
 292 the t -th year; $r_{pro,0}$ and $r_{pro,t}$ are the growth rates of crop yields in baseline year and the
 293 t -th year, respectively; $\kappa_{pro} * \exp(-\varphi_{pro} t)$ depicts the impacts of technological
 294 development on the evolution of crop yield; FP_t denotes the total food production;
 295 $CA_{i,j}^t$ is the crop area; $WSR_{i,4}^t$ represents the water shortage rate of agriculture sector;
 296 FS_t and FSR_t are the food shortage and food shortage rate, respectively; and PFP_t
 297 is the planning food production.

298 **2.4 Society System Module**

299 The society system module is deployed to simulate the social process of the
 300 integrated system. Environmental awareness and community sensitivity are two
 301 primary terms of social state variables in socio-hydrologic modeling that indicate the
 302 perceived level of threat to a community's quality of life (Roobavannan et al., 2018).
 303 Environmental awareness describes societal perceptions of environmental degradation
 304 within the prevailing value systems (Feng et al., 2019; Feng et al., 2016;
 305 Roobavannan et al., 2018; Van Emmerik et al., 2014). Community sensitivity
 306 indicates people's attitudes towards not only the environmental control, but also the
 307 environmental restoration (Chen et al., 2016; Elshafei et al., 2014; Roobavannan et al.,
 308 2018). As this study focuses on societal perceptions on environmental degradation,
 309 environmental awareness based on the concept described in Van Emmerik et al. (2014)
 310 was adopted as the social state variable. As water, energy, and food systems are
 311 considered part of the environment in this study, environmental awareness is assumed
 312 to be determined by the shortage rates of water, energy, and food. Environmental
 313 awareness accumulates when the shortage rates of water, energy, and food exceed the
 314 given critical values, but decreases otherwise. The dynamics of environmental
 315 awareness can be described by equations (22)–(25).

$$316 \quad \frac{dE}{dt} = \frac{dWA}{dt} + \frac{dEA}{dt} + \frac{dFA}{dt} \quad (22)$$

$$317 \quad \frac{dWA}{dt} = \begin{cases} \eta_W * (\exp(\theta_W * (WSR - WSR_{crit})) - 1) & WSR > WSR_{crit} \\ -\omega_W * WA & WSR \leq WSR_{crit} \end{cases} \quad (23)$$

$$318 \quad \frac{dEA}{dt} = \begin{cases} \eta_E * (\exp(\theta_E * (ESR - ESR_{crit})) - 1) & ESR \geq ESR_{crit} \\ -\omega_E * EA & ESR < ESR_{crit} \end{cases} \quad (24)$$

$$319 \quad \frac{dFA}{dt} = \begin{cases} \eta_F * (\exp(\theta_F * (FSR - FSR_{crit})) - 1) & FDR \geq FDR_{crit} \\ -\omega_F * FA & FDR < FDR_{crit} \end{cases} \quad (25)$$

320 where E , WA , EA , and FA are environmental awareness, water shortage awareness,
 321 energy shortage awareness, and food shortage awareness, respectively; WSR , ESR ,
 322 and FSR denote the shortage rates of water, energy, and food, respectively; WSR_{crit} ,
 323 ESR_{crit} , and FSR_{crit} represent the corresponding critical values of shortage rates, above
 324 which environmental deterioration can be perceived; η_W , η_E , and η_F are the perception
 325 factors describing the community's ability to identify threats of degradation; θ_W , θ_E ,
 326 and θ_F are the auxiliary factors for environmental awareness accumulation; and ω_W ,
 327 ω_E , and ω_F denote the lapse factors that represent the decreasing rate of the shortage
 328 awareness of water, energy, and food, respectively.

329 **2.5 Respond Links**

330 Respond links are used to link society and water system modules through
 331 feedback. Respond links are driven by environmental awareness and food shortage
 332 awareness. The terms of feedback functions are based on the studies of Feng et al.
 333 (2019) and Van Emmerik et al. (2014), which have been established to have good
 334 performance and suitability, as they have been successfully applied to simulate the
 335 human response to environmental degradation in the Murrumbidgee river basin
 336 (Australia) and Hehuang region (China).

337 Environmental awareness increases with constant shortages in water, energy, and
 338 food. As environmental awareness accumulates above its critical value, negative
 339 feedback on socioeconomic factors is triggered (Figure 1). The growth of population,

340 GDP, and crop area will be constrained to alleviate the stress on the integrated system.
 341 Notably, positive feedback on the expansion of crop area will be triggered to fill food
 342 shortage as food shortage awareness exceeds its critical value (Figure 1). Although
 343 food shortage awareness is part of environmental awareness, the negative feedback
 344 driven by environmental awareness on crop area can only be triggered with the
 345 prerequisite that food shortage awareness is below its threshold value, as food
 346 production should first be assured. The respond links deployed by assuming feedback
 347 functions are expressed in equations (26)–(28).

$$348 \quad f_1(E) = \begin{cases} \delta_{rp}^E * (1 - \exp(\zeta_1 * (E - E_{crit}))) & E > E_{crit} \\ 0 & \text{else} \end{cases} \quad (26)$$

$$349 \quad f_2(E) = \begin{cases} \delta_{rg}^E * (1 - \exp(\zeta_2 * (E - E_{crit}))) & E > E_{crit} \\ 0 & \text{else} \end{cases} \quad (27)$$

$$350 \quad f_3(E, FA) = \begin{cases} \delta_{ra}^F * (\exp(\zeta_3^F * (FA - FA_{crit})) - 1) & FA > FA_{crit} \\ \delta_{ra}^E * (1 - \exp(\zeta_3^E * (E - E_{crit}))) & FA < FA_{crit} \& E > E_{crit} \\ 0 & \text{else} \end{cases} \quad (28)$$

351 where E_{crit} and FA_{crit} are the critical values for environmental awareness and food
 352 shortage awareness, respectively; δ_{rp}^E , δ_{rg}^E , and δ_{ra}^E denote the factors describing
 353 feedback capability from environmental awareness; δ_{ra}^F is the factor describing
 354 feedback capability from food shortage awareness; ζ_1 , ζ_2 , and ζ_3^E represent the
 355 auxiliary factors for feedback functions driven by environmental awareness; and ζ_3^F
 356 is the auxiliary factor for feedback functions driven by food shortage awareness.

357 **3 Case Study**

358 **3.1 Study Area**

359 The Hanjiang river is the longest tributary of the Yangtze river. The total area of
360 the Hanjiang river basin is 159,000 km², divided into upper and mid-lower reaches
361 covering 95,200 and 63,800 km², respectively (shown in Figure 3). The Danjiangkou
362 reservoir is located at the upper boundary of the mid-lower reaches of the Hanjiang
363 river basin (MLHRB) and serves as the water source for the middle route of the
364 South–North water transfer project in China. Thus, the water availability in the
365 MLHRB is remarkably affected by the reservoir operation. In terms of energy, as the
366 population is large and the industry is developed in the MLHRB, the energy
367 consumption for urban water supply is high. For agriculture, as the land is flat and
368 fertile, MLHRB is considered an important grain-producing area, occupying one of
369 the nine major commodity grain bases in China (i.e., Jianghan plain) (Xu et al., 2019).

371 **Figure 3. Location of mid-lower reaches of Hanjiang river basin.**

372 However, owing to population expansion, rapid urbanization, and economic
 373 development, the local demand for water, energy, and food is increasing enormously
 374 (Zeng et al., 2021; Zhang et al., 2018). The contradictions between increasing demand
 375 and limited resources will be intensified. Therefore, improving use efficiencies for
 376 water, energy and food in MLHRB is urgent (Zhang et al., 2018; Liu et al., 2019). The
 377 strictest water resources control system for water resources management policy, the
 378 total quantity control of water consumed policy, and the energy-saving and
 379 emission-reduction policy in China are implemented in the MLHRB to promote the
 380 expansion of resource-saving technology and further improve the resource use
 381 efficiencies in water, energy, and food systems. Therefore, the impacts of human
 382 activities on the WEF nexus should be assessed to sustain the collaborative
 383 development of the integrated system.

384 The socioeconomic data (i.e., population, GDP, and crop area) for water demand
 385 projection were collected based on administrative units, whereas the hydrological data
 386 were typically collected based on river basins. To ensure that the socioeconomic and
 387 hydrological data are consistent in operational zones, the study area was divided into
 388 28 operational zones based on the superimposition of administrative units and
 389 sub-basins. Seventeen existing medium or large size reservoirs (the total storage
 390 volume is 37.3 billion m³) were considered to regulate water flows. Based on the
 391 water connections between operational zones and river systems, the study area is
 392 shown in Figure 4, including 2 water transfer projects (the South–North and
 393 Changjiang–Hanjiang water transfer projects), 17 reservoirs, and 28 operational
 394 zones.

395

396 **Figure 4. Sketch of the water system for the mid-lower reaches of Hanjiang river basin.**

397 **3.2 Data Sources**

398 There are two main types of data: hydrological and socioeconomic data. The
399 monthly historical discharge series of each operational zone and inflow of reservoirs
400 from 1956 to 2016 were provided by the Changjiang Water Resources Commission
401 (CWRC, 2016). The characteristics and operational rules of the 17 reservoirs listed in
402 Table 1 were retrieved from the Hubei Provincial Department of Water Resources
403 (HPDWR, 2014). Socioeconomic data, including population, GDP, crop area, water
404 use quota, energy use quota, and crop yield, during 2010–2019 were collected from
405 the yearbooks of Hubei Province, which can be obtained from the Statistical Database
406 of China's Economic and Social Development (<http://data.cnki.net/>). Notably, the
407 agricultural water use quota was related to the annual effective precipitation frequency.
408 Four typical exceedance frequencies, defined as $P = 50\%$, 75% , 90% , and 95% , were
409 adopted to determine agricultural water demand. These historical data were further
410 used to predict the future trajectories of the WEFS nexus.

411 **Table 1 Characteristics of the seventeen reservoirs (million m³).**

No.	Name	Total	Storage at normal	Dead	Storage at flood limiting
		storage	water level	storage	water level
R1	Sanliping	510.0	211.0	261.0	389.0/468.5
R2	Siping	269.0	247.0	10.2	127.0
R3	Danjiangkou	33,910.0	27,781.0	12,690.0	22,910.0/25,790.0
R4	Mengqiaochuan	110.3	88.2	2.7	90.9

R5	Huayanghe	107.0	70.8	1.4	72.2
R6	Xionghe	195.9	115.9	20.0	135.9
R7	Xipaizihe	220.4	122.0	2.2	124.2
R8	Hongshuihe	103.6	58.9	5.4	64.3
R9	Shimenji	154.0	114.7	1.9	99.0
R10	Sandaohe	154.6	127.4	0.0	127.4
R11	Yuntaishan	123.0	89.0	5.0	89.0
R12	Yinghe	121.6	76.3	3.6	79.9
R13	Huangpi	125.6	70.3	10.1	63.6
R14	Wenxiakou	520.0	269.0	176.0	388.0
R15	Shimen	159.1	68.6	13.0	81.6
R16	Gaoguan	201.1	154.3	30.9	145.9
R17	Huiting	313.4	173.5	32.50	206.0

4 Results and Discussion

The SDM was applied to the MLHRB. The established WEFS nexus ran on a yearly loop. Specifically, as the water resources allocation model in the water system module took a monthly time step in the study (and the sub-time step was the default value: 1 day), the annual water supply and water shortage were first determined before being output to the energy system and food system modules, respectively. The annual shortage rates of water, energy, and food were then used to determine environmental awareness and further the feedback. Table 2 lists the initial settings of

420 the external variables for the integrated system. The co-evolutionary behaviors of the
 421 WEFS nexus were analyzed as follows: (1) the system dynamic model was calibrated
 422 using observed data, (2) co-evolution of the WEFS nexus was then interpreted and
 423 analyzed, (3) parameter sensitivity was tested to identify the most important
 424 parameters for the model, and (4) the impacts of environmental awareness feedback
 425 and water resources allocation on the WEFS nexus were discussed.

426 **Table 2 Model initial condition setup.^a**

Notation	Description	Unit	Value
N_0	Population	million capita	14.92
G_0	GDP	billion Yuan	419
CA_0	Crop area	km ²	7,733
N_{cap}	Environmental capacity of population	million capita	20.00
G_{cap}	Environmental capacity of GDP	billion Yuan	3,000
CA_{cap}	Environmental capacity of crop area	km ²	10,000
$WQ_{\bullet,1}^0$	Municipal water use quota	m ³ /(year*capita)	56
$WQ_{\bullet,2}^0$	Rural water use quota	m ³ /(year*capita)	25
$WQ_{\bullet,3}^0$	Industrial water use quota	m ³ /(10 ⁴ Yuan)	109
$WQ_{\bullet,4}^0$ (P = 50%, 70%, 90%, and 95%)	Agricultural water use quota	million m ³ /km ²	0.77, 0.80, 0.90, 0.97
$EQ_{\bullet,j}^0$ (j = 1, 2, 3, and 4)	Energy use quotas for municipal, rural, industry and agriculture water uses	kw*h/m ³	0.29, 0.29, 0.29, 0
$\sum_j CY_{\bullet,j}^0$ (j = 1, 2)	Crop yield	t/km ²	654

$r_{P,0}$	Initial growth rate of population	[-]	0.003
$r_{G,0}$	Initial growth rate of GDP	[-]	0.040
$r_{CA,0}$	Initial growth rate of crop area	[-]	0.003
$r_{qwu,0}$	Initial growth rate of water use quota	[-]	-0.020
$r_{e,0}$	Initial growth rate of energy use quota	[-]	-0.004
$r_{pro,0}$	Initial growth rate of crop yield	[-]	0.018
<i>PEA</i>	Planning energy availability	[million kw*h]	1,620
<i>PFP</i>	Planning food production	[million t]	6,000

427 ^a As the primary source of water supply for agricultural use in the study area is surface water, rather than
 428 groundwater, the energy consumption in the water supply process for agricultural water use is negligible, and the
 429 energy use quota for agricultural water use is set as 0.

430 **4.1 Model Calibration**

431 An initial parameter sensitivity analysis was adopted to screen out the insensitive
 432 parameter, which provided distinguishing 13 insensitive and 21 sensitive parameters.
 433 The setting of the insensitive parameter was based on expert knowledge and the study
 434 of Feng et al. (2019), which has been established to have good performance and
 435 suitability. The sensitive parameters in the model were then calibrated based on expert
 436 knowledge and the observed data, and the calibrated values are presented in Table 3
 437 (insensitive parameters are set to 0.0856). The Nash–Sutcliffe Efficiency (NSE)
 438 coefficient and percentage bias (PBIAS) (Krause et al., 2005; Nash and Sutcliffe,
 439 1970) were used to calibrate the model. When the NSE was >0.7 and absolute value

440 of PBIAS was <15%, the modeling performance was considered reliable. The
 441 simulated state variables, including annual water demand, energy consumption, food
 442 production, population, GDP, and crop area, were compared with their observed
 443 values during 2010–2019. As shown in Table 4, the NSEs (i.e., 0.91, 0.74, 0.79, 0.97,
 444 0.86, and 0.94, respectively) range from 0.74 to 0.97, and the corresponding PBIASs
 445 (i.e., -0.7%, 1.9%, -0.6%, -4.2%, -0.2%, and -0.8%, respectively) are within -15% to
 446 15%, suggesting that the established model is reliable for simulating the co-evolution
 447 of the WEFS nexus.

448 **Table 3 Calibrated parameters for the WEFS model.**

Notation	Description	Unit	Value
κ_P, φ_P	Auxiliary parameters for population evolution	[-]	1.0, 0.0856
κ_G, φ_G	Auxiliary parameters for GDP evolution	[-]	3.3, 0.0856
$\kappa_{CA}, \varphi_{CA}$	Auxiliary parameters for crop area evolution	[-]	6.0, 0.0856
$\kappa_{qwu}, \varphi_{qwu}$	Auxiliary parameters for water use quota simulation	[-]	3.8, 0.0856
κ_e, φ_e	Auxiliary parameters for energy use quota evolution	[-]	15.0, 0.0856
$\kappa_{pro}, \varphi_{pro}$	Auxiliary parameters for crop yield evolution	[-]	24.5, 0.0856
η_W	Perception factors describing the community's ability to identify the threats of degradation in water system	[-]	450
η_E	Perception factors describing the community's ability to identify the threats of degradation in energy system	[-]	50
η_F	Perception factors describing the community's ability to identify the threats of degradation in food system	[-]	120

θ_W	Accumulation factor for water shortage awareness	[-]	0.0856
θ_E	Accumulation factor for energy shortage awareness	[-]	0.0856
θ_F	Accumulation factor for food shortage awareness	[-]	0.0856
ω_W	Lapse factor for water shortage awareness	[-]	0.1
ω_E	Lapse factor for energy shortage awareness	[-]	0.1
ω_F	Lapse factor for food shortage awareness	[-]	0.1
WSR_{crit}	Critical water shortage rate	[-]	0.07
ESR_{crit}	Critical energy shortage rate	[-]	0.05
FSR_{crit}	Critical food shortage rate	[-]	0.05
FA_{crit}	Critical food shortage awareness	[-]	1.5
E_{crit}	Critical environmental awareness	[-]	8
ζ_1	Auxiliary factors for feedback on population	[-]	0.0856
ζ_2	Auxiliary factors for feedback on GDP	[-]	0.0856
ζ_3^E	Auxiliary factors for feedback on crop area by E	[-]	0.0856
ζ_3^F	Auxiliary factors for feedback on crop area by FA	[-]	0.0856
δ_{rp}^E	Factor describing feedback capability of environmental awareness to population	[-]	0.005
δ_{rg}^E	Factor describing feedback capability of environmental awareness to GDP	[-]	0.05
δ_{ra}^E	Factors describing feedback capability of environmental awareness to crop area	[-]	0.03
δ_{ra}^F	Factors describing feedback capability of food	[-]	0.1

449

Table 4 NSE and PBIAS of state variables.

	Water	Energy	Food	Population	GDP	Crop area
	demand	consumption	production			
NSE	0.91	0.74	0.79	0.97	0.86	0.94
PBIAS (%)	-0.7	1.9	-0.6	-4.2	0.2	-0.8

450 **4.2 Co-evolution of WEFS Nexus**

451 The calibrated system dynamic model was used to examine the properties of the
 452 integrated system by simulating the co-evolution of state variables in the WEFS nexus.
 453 Figure 5 shows the trajectories of population; GDP; crop area; water demand; energy
 454 consumption; food production; shortage rates for water, energy, and food; awareness
 455 for water shortage, energy shortage, and food shortage; and environmental awareness
 456 during 2010–2070. Based on the trajectory of environmental awareness, the
 457 co-evolution processes of water demand and energy consumption can be divided into
 458 four phases: expansion, contraction, recession, and recovery. Food production can be
 459 divided into five phases based on the trajectory of food shortage awareness:
 460 accelerating expansion, natural expansion, contraction, recession, and recovery.

461

462

463

464

465

466

467

468

469

470 **Figure 5. Trajectories of state variables in WEFS nexus: (a) population; (b) GDP; (c) crop**
471 **area; (d) percentage variations (compared with initial values) of water use quota, energy use**
472 **quota, and crop yield; (e) water demand; (f) energy consumption; (g) food production; (h)**
473 **shortage rates of water, energy, and food; (i) water shortage awareness, energy shortage**
474 **awareness, food shortage awareness, and environmental awareness.**

475 The four phases in the co-evolution process for water demand and energy
476 consumption can be interpreted as follows.

477 With environmental awareness below its critical value, the negative feedback on
478 socioeconomic sectors is not triggered, and water demand, as well as energy
479 consumption, increases rapidly, which is defined as the expansion phase (2010–2032).

480 At the beginning of co-evolution, the water demand from the socioeconomic sectors
481 can be satisfied owing to abundant water availability. The water shortage rate was

482 typically <0.07 and below its critical value (Figure 5 (h)), and thus, water shortage
483 awareness remained at a low level, which was less than 5.0, as shown in Figure 5 (i).
484 As water use increased with increasing water demand (Figure 5 (e)), energy
485 consumption increased but within its planning value. A small energy shortage was
486 observed, and thus, no energy shortage awareness was accumulated, as shown in
487 Figure 5 (h) and (i). Energy shortage awareness has accumulated gradually as the
488 energy shortage rate slightly exceeded its critical value since 2022. Food production
489 was less than its planning value at the beginning of co-evolution. The initial food
490 shortage rate was 0.153 and more than its critical value of 0.05, accounting for the
491 rapid increase in food shortage awareness in Figure 5 (i). With food shortage
492 awareness increasing over its critical value of 1.5 (but less than critical environmental
493 awareness 8.0), positive feedback was triggered to increase crop area, as observed in
494 Figure 5 (c). Meanwhile, crop yield increased with the technological advancement
495 under rapid economic expansion (Figure 4 (d)). Food production was thus increased,
496 and planning food production can be ensured further. Food shortage awareness
497 decreased below its critical value in 2023 and remained at a low level in Figure 5 (i).
498 Therefore, as environmental awareness remained below its critical value, negative
499 feedback to constrain the expansion of socioeconomic sectors was not triggered, and
500 water demand, as well as energy consumption, increased remarkably in the expansion
501 phase.

502 As environmental awareness exceeds its critical value, negative feedback on
503 socioeconomic sectors is triggered, and the increase in water demand and energy

504 consumption is constrained, which is defined as the contraction phase (2033–2039).
505 With technological advancement, the quotas for water use and energy use have been
506 decreasing, as shown in Figure 5 (d). However, there were minor increases in water
507 demand and energy consumption owing to the continuous expansion of population,
508 GDP, and crop area (Figure 5 (a), (b), and (c)), which can exceed the local water and
509 energy carrying capacities. Thus, water shortage awareness and energy shortage
510 awareness continued to increase, as their shortage rates remained over the
511 corresponding critical values, as shown in Figure 5 (h) and (i). The environmental
512 awareness thereby exceeded its critical value in 2033 and continued to increase.
513 Negative feedback on socioeconomic sectors was triggered and strengthened. The
514 water demand and energy consumption gradually increased with decreasing rate and
515 reached their maximum values of 19.2 billion m³ and 1,916 million kw*h,
516 respectively, at the end of the contraction phase.

517 Environmental awareness accumulates to the maximum value and water demand,
518 and energy consumption decrease significantly, which can be defined as the recession
519 phase (2040–2045). With the negative feedback due to environmental awareness, the
520 population, GDP, and crop area were constrained to decrease in Figure 5 (a), (b), and
521 (c). The water demand and energy consumption thereby decreased, but still exceeded
522 the local water and energy carrying capacities. Therefore, as the shortage rates of
523 water and energy decreased but remained exceeding the corresponding critical values
524 (Figure 5 (h)), environmental awareness continued accumulating at a decreasing rate
525 and reached the maximum value of 13.2 at the end of the recession phase, thereby

526 decreasing water demand and energy consumption.

527 As environmental awareness gradually decreases below its critical value, water
528 demand and energy consumption decrease slightly and then tend to stabilize, which is
529 defined as the recovery phase (2046–2070). With the continuous decline of
530 socioeconomic sectors, water demand and energy consumption rapidly decreased
531 within their carrying capacities. The shortage rates of water and energy have then
532 decreased to below the corresponding critical values since 2047, resulting in the
533 decreases in water shortage awareness and energy shortage awareness, as shown in
534 Figure 5 (h) and (i). As the environmental awareness decreased below its critical value,
535 negative feedback was removed, and the integrated system tended to stabilize.

536 For food production, the co-evolution process comprises accelerating expansion,
537 natural expansion, contraction, recession, and recovery phases. With food shortage
538 awareness exceeding its critical value, positive feedback on crop area is triggered to
539 accelerate the increase in food production, which is defined as the accelerating
540 expansion phase (2010–2022). A comprehensive analysis was demonstrated in the
541 expansion phase during the co-evolution of the water demand and energy
542 consumption. After the increase in food production in the accelerating expansion
543 phase, both food shortage awareness and environmental awareness were lower than
544 their critical values. Food production can cover its planning value and thereby
545 increased slightly without any feedback during 2023–2032, which is defined as the
546 natural expansion phase. As environmental awareness increased over its critical value
547 owing to the rapid expansion of water demand and energy consumption, negative

548 feedback to constrain the increase in crop area was triggered, which is defined as the
549 contraction phase (2033–2039). Food production reached the maximum value of
550 7,052 million t in the contraction phase. Under the impacts of environmental
551 awareness, food production then began decreasing in the recession phase (2040–2045)
552 and stabilized in the recovery phase (2046–2070) as discussed in the co-evolution of
553 water demand and energy consumption. Although the decreasing crop area to alleviate
554 stress on water supply decreased food production, food production can still ensure its
555 planning value sustaining the integrated system.

556 According to the analysis on the co-evolution process of the WEFS nexus,
557 available water and energy are the vital resources constraining the long-term
558 concordant development of the integrated system. Specifically, the recession phase for
559 water demand and energy consumption is accompanied by the most violent
560 deterioration. This means that severe socioeconomic degeneration likely occurs after
561 the rapid development of the expansion phase, which will hinder the sustainable
562 development of the integrated system. Moreover, a time lag exists in the contraction
563 phase when the community responds to the deterioration of the WEFS nexus system.
564 As the water demand and energy consumption cannot immediately decrease within
565 the local water and energy carrying capacities, environmental awareness will continue
566 increasing in a short time. Negative feedback will keep on socioeconomic sectors with
567 a durative time lag, which may lead to the violent degradation of the WEFS nexus.
568 Therefore, more attention should be paid to the time lag of the community's response
569 to the deterioration WEFS nexus to prevent the integrated system from collapsing,

570 particularly after the rapid expansion of water demand and energy consumption.

571 **4.3 Sensitivity Analysis for WEFS Nexus**

572 Sensitivity analysis was conducted to assess the impacts of the parameters on the
573 WEFS nexus co-evolution process. As the critical values and boundary conditions of
574 the WEFS nexus are considered vital factors for policymakers and managers to
575 control the integrated system to achieve the concordant development goals, seven
576 parameters were selected for sensitivity analysis (Table 5). Each parameter was varied
577 by the given increment, with the other parameters remaining unchanged. The
578 maximum and minimum values, as well as the increments for the seven parameters,
579 are listed in Table 5. Parameter sensitivity analysis was then conducted by analyzing
580 the trajectories of water demand, energy consumption, food production, and
581 environmental awareness, as shown in Figures 6, 7, 8, and 9.

582 **Table 5 Parameter set for sensitivity analysis.**

No.	Parameter	Description	Min.	Max.	Increment
1	WSR_{crit}	Critical water shortage rate	0.05	0.15	0.01
2	ESR_{crit}	Critical energy shortage rate	0.05	0.15	0.01
3	FSR_{crit}	Critical food shortage rate	0.05	0.15	0.01
4	PEA	Planning energy availability	1,550	1,750	20
5	PFP	Planning food production	5,200	6,200	100
6	$FAcrit$	Critical food shortage awareness	1	3	0.2
7	$Ecrit$	Critical environmental awareness	5	10	0.5

583

584

585

Figure 6. Trajectories of water demand with varied parameters.

587

588

589

590

Figure 7. Trajectories of energy consumption with varied parameters.

591

592

593

594

Figure 8. Trajectories of food production with varied parameters.

595

596

597

598 **Figure 9. Trajectories of environmental awareness with varied parameters.**

599 The variations in the seven parameters can remarkably change the trajectory of
 600 water demand, as shown in Figure 6, indicating that water demand is sensitive to the
 601 seven parameters. Specifically, the sensitive responses to parameters $WSRcrit$, $ESRcrit$,
 602 PEA , and $Ecrit$ primarily occur in the contraction and recession phases of the
 603 co-evolution process for water demand. Limited water and energy shortages were
 604 observed in the expansion phase, as the demand can always be ensured by abundant
 605 resources availability. Environmental awareness was accumulated primarily from
 606 food shortage awareness but remained below its critical value (Figure 5 (i)). As the
 607 feedback due to environmental awareness was not sufficiently strong, the impacts on
 608 the co-evolution were negligible and were considered as the insensitivity of water
 609 demand in the expansion phase. However, with social development, water demand
 610 and energy consumption continued to grow and increase over the local carrying
 611 capability, leading to an increase in environmental awareness and negative feedback
 612 on socioeconomic expansion. $WSRcrit$ and $ESRcrit$ are the critical values that
 613 determine the awareness of water and energy shortages to accumulate, and PEA
 614 indicates the amount of planning energy availability, which directly determines the
 615 energy shortage. The environmental awareness accumulation can be advanced and
 616 strengthened by constraining $WSRcrit$, $ESRcrit$, and PEA , as shown in Figure 9 (a),

617 (b), and (d). $Ecrit$ is the threshold for the negative feedback triggering driven by
618 environmental awareness. A lower $Ecrit$ indicates that feedback is triggered more
619 easily. Therefore, water demand exhibits sensitivity and decreases more remarkably
620 with lower $WSRcrit$, $ESRcrit$, PEA , and $Ecrit$ in the contraction and recession phases,
621 as shown in Figure 6 (a), (b), (d), and (g). Parameters like $FSRcrit$, PFP , and $FAcrit$
622 are always sensitive during the entire co-evolution process. As food shortages were
623 remarkable in the accelerating expansion phase of food production, food shortage
624 awareness increased rapidly, and feedback to increase crop area was triggered. PFP
625 can directly determine food shortages, and $FSRcrit$ and $FAcrit$ determine thresholds
626 for food shortage awareness accumulation and feedback triggering by food shortage
627 awareness, respectively. Positive feedback on crop area to increase food production
628 can thus be advanced and strengthened by constraining $FSRcrit$, PFP , and $FAcrit$. The
629 crop area then continued increasing until negative feedback driven by environmental
630 awareness was triggered, resulting in an increase in food production and agricultural
631 water demand. Therefore, water demand exhibits sensitivity and increases more
632 remarkably with lower $FSRcrit$, $FAcrit$, or higher PFP during the entire co-evolution
633 process, as shown in Figure 6 (c), (e), and (f).

634 Similarly, sensitivity analysis for energy consumption, food production, and
635 environmental awareness (Figures 7, 8, and 9) can be interpreted. Notably, energy
636 consumption is not sensitive to parameters $FSRcrit$, $FAcrit$, and PFP , despite the
637 increase in agricultural water demand by constraining $FSRcrit$, $FAcrit$, and PFP . As
638 the primary source of water supply for agricultural use in the study area is surface

639 water, rather than groundwater, the energy consumption in the water supply process
640 for agricultural water use is negligible.

641 Therefore, parameters like $WSRcrit$, $ESRcrit$, PEA , and $Ecrit$ can regulate the
642 negative feedback on socioeconomic sectors driven by environmental awareness,
643 impacting the contraction and recession phases in the co-evolution of water demand
644 and energy consumption. Parameters such as $FSRcrit$, $FAcrit$, and PFP can regulate
645 the positive feedback on crop area driven by food shortage awareness, which impacts
646 the entire co-evolution of water demand and food production. Notably, although
647 constraining $WSRcrit$, $ESRcrit$, PEA , and $Ecrit$ can maintain the integrated system
648 from constant water shortage and energy shortage, the over-constrained condition can
649 also lead to violent degradation of socioeconomic sectors (indicated by a drastic
650 decrease in water demand in Figure 6 (a), (b), (d), and (g)), which will challenge the
651 stability of society. Similarly, despite food production can be effectively increased by
652 constraining $FSRcrit$, $FAcrit$, and PFP , the over-constrained condition will cause a
653 remarkable increase in water demand, as shown in Figure 6 (c), (e), and (f), which
654 will further put stress on the water supply. Moreover, the regulating capacity of the
655 local system should be simultaneously considered during parameter selection. For
656 example, there was an abrupt decrease when $WSRcrit$ was set to 0.05, as shown in
657 Figure 6 (a), Figure 7 (a), and Figure 8 (a). Violent socioeconomic degradation is
658 triggered to decrease environmental awareness, indicating that the $WSRcrit$ is
659 over-constrained and has exceeded the regulating capacity of the local water system.
660 Therefore, a rational parameter setting should be based on the sustainability of

661 long-term co-evolution for socioeconomic sectors and the regulating capacity of the
662 local system, which is of great significance for sustaining the stability of the WEFS
663 nexus.

664 **4.4 Impacts of Environmental Awareness Feedback and Water Resources**

665 **Allocation on WEFS Nexus**

666 To determine the potential impacts of environmental awareness feedback and
667 water resources allocation on the WEFS nexus, four scenarios were set, the
668 description of which is provided in Table 6. The *Ecrit* and *FAcrit* under scenario II
669 were set as 10,000 to ensure that the feedback cannot be triggered in the study, and the
670 *WSRcrit* in scenarios III and IV were set as 0.15 to avoid the explosion of water
671 shortage awareness. The other parameters in scenarios II, III, and IV were consistent
672 with the calibrated values of scenario I, as listed in Table 3. Scenarios I and II and
673 scenarios III and IV were used to investigate the impacts of environmental awareness
674 feedback and water resources allocation on the WEFS nexus, respectively. The
675 average annual values of water demand, energy consumption, food production, and
676 shortage rates for water, energy, and food are listed in Table 7. Figure 10 shows the
677 trajectories of key state variables of the integrated system, including water demand;
678 energy consumption; food production; shortage rates for water, energy, and food;
679 awareness of water shortage, energy shortage, and food shortage; and environmental
680 awareness.

681 **Table 6 Scenario description for assessing the impacts of environmental awareness feedback**

Scenario	Environmental awareness feedback	Water resources allocation	Parameter setting
I	Yes	Yes	Calibrated values
II	No	Yes	$Ecrit, FAcrit: 10,000$; others: calibrated values
III	Yes	Yes	$WSRcrit: 0.15$; others: calibrated values
IV	Yes	No	$WSRcrit: 0.15$; others: calibrated values

Table 7 Average annual values for the state variables in WEFS nexus.

Scenario	Water demand	Energy consumption	Food production	Water shortage	Energy shortage	Food shortage
	(billion m ³)	(million kw*h)	(million t)	rate	rate	rate
I	16.94	1,710	6,519	7.03%	5.80%	1.07%
II	17.66	1,930	6,248	7.44%	17.16%	1.74%
III	17.29	1,761	6,638	7.20%	8.25%	1.08%
IV	14.36	884	6,344	15.89%	0.00%	3.08%

685

686

687

688

689

690

691 **Figure 10. Trajectories of state variables in WEFS nexus under scenario I, II, III, and IV: (a)**
 692 **(b)** energy consumption; **(c)** food production; **(d)** and **(e)** shortage rates of
 693 **water, energy, and food; (f) and (g)** water shortage awareness, energy shortage awareness,
 694 **food shortage awareness, and environmental awareness.**

695 **4.4.1 WEFS Nexus Response to Environmental Awareness Feedback**

696 Environmental awareness indicates societal perceptions of resources shortages
 697 and is the driving factor of feedback on socioeconomic sectors. Both the average
 698 annual water demand and energy consumption increased from 16.94 billion m³ and
 699 1,710 million t under scenario I to 17.66 billion m³ and 1,930 million t under scenario
 700 II, respectively, as environmental awareness feedback was removed, whereas the food

701 production decreased slightly, from 6,519 million t to 6,248 million t. Specifically,
702 owing to high food shortage in the accelerating expansion phase of food production,
703 the positive feedback on crop area was triggered by food shortage awareness to
704 accelerate the increase in crop area. Food production was thus evidently larger when
705 feedback was considered in Figure 10 (c). Food shortage was then alleviated, and the
706 average shortage rate decreased from 1.74% to 1.07%. The increasing crop area
707 meanwhile led to an increase in agricultural water demand, as shown in Figure 10 (a).
708 However, as the increasing water demand remained within the carrying capacity, little
709 difference in the water shortage rate existed between scenarios I and II (i.e., 7.03%
710 and 7.44%, respectively). As the water supply was efficiently ensured, the impacts on
711 urban water supply and the corresponding energy consumption were negligible. As
712 water demand and energy consumption increased rapidly in the expansion phase,
713 environmental awareness increased remarkably owing to the constant water and
714 energy shortages, as shown in Figure 10 (d) and (f). Negative feedback was triggered
715 to constrain the socioeconomic expansion. Compared with scenario II, water demand
716 and energy consumption decreased remarkably under scenario I. The stress on water
717 and energy supplies was thus relieved, particularly for the energy system, the shortage
718 rate of which decreased from 17.16% to 5.80%. Therefore, environmental awareness
719 can efficiently capture resources shortages and regulate the pace of socioeconomic
720 expansion through feedback, which can maintain the integrated system from constant
721 resources shortages to sustain the concordant development of the WEFS nexus.

4.4.2 WEFS Nexus Response to Water Resources Allocation

Water is considered the major driving factor for the WEFS nexus. Rational water resources management plays an important role in the sustainable development of the WEFS nexus. Water resources allocation can regulate the water flow by reservoir operation, which is considered one of the most effective tools for water resources management. Based on the Integrated Water Resources Planning of Hanjiang River Basin (CWRC, 2016), domesticity and ecology water uses should be ensured first.

The priorities for water use from high to low are municipal and rural domesticity, in-stream ecology, and industrial and agricultural sectors, respectively. The average annual water demand, supply, and shortage under scenarios III and IV are listed in Table 8.

Table 8 Water resources allocation results under scenarios III and IV (million m³).

Scenario	Variables	Municipal	Rural	Industry	Agriculture	In-stream		Total
						ecology		
III	Demand	388	181	6,504	6,433	3,779	17,286	
	Supply	387	181	5,785	6,034	3,654	16,042	
	Shortage	1	0	719	399	124	1,244	
IV	Shortage rate	0.24%	0.23%	11.05%	6.21%	3.29%	7.20%	
	Demand	361	170	3,330	6,720	3,779	14,359	
	Supply	330	155	2,622	5,658	3,312	12,077	
	Shortage	31	15	708	1,062	466	2,282	
	Shortage rate	8.67%	8.69%	21.26%	15.80%	12.34%	15.89%	

Despite the increase in water demand from 14,359 to 17,286 million m³ under scenario III, the water supply also increased from 12,077 to 16,042 million m³. The total water shortage rate decreased from 15.89% to 7.20% owing to the proper water resources allocation. As more available water resources can be stored in the flood season and then released in the dry season through reservoir operation, the uneven temporal and spatial distributions of available water resources were remarkably relieved, thereby increasing the water supply insurance. For water use sectors, water shortages were primarily found in industrial and agricultural sectors (719 and 399 million m³, respectively), and other sectors can be satisfied under scenario III. Water shortage became more serious under scenario IV, as the water shortage rates of these five sectors increased significantly in Table 8, from 0.24%, 0.23%, 11.05%, 6.21%, and 3.29% to 8.67%, 8.69%, 21.26%, 15.80%, and 12.34%, respectively. To analyze the spatial distribution of water shortage rates, Figure 11 shows the water shortage rate in each operational zone under scenarios III and IV. The water shortage rates of the study area under scenario IV were evidently higher than those under scenario III, particularly for the operational zones located at the basin boundaries (e.g., operational zones Z1, Z2, Z8, Z12, Z13, Z21 and so on). As the boundary zones are far away from the mainstream of the Hanjiang river and their local water availability is unevenly distributed, the regulating capacity of the water system is limited and is not sufficiently strong to ensure the water supply.

754

755

Figure 11. Distribution of water shortage rates.

756 For the co-evolution of WEFS nexus, a remarkable decrease in the average
 757 annual water demand and energy consumption was observed as water resources
 758 allocation was removed from 17.29 billion m³ and 1,761 million t under scenario III
 759 to 14.36 billion m³ and 884 million t under scenario IV, while the food production
 760 also decreased slightly from 6,638 million t to 6,344 million t. Under scenario IV
 761 without considering water resources allocation, the average water shortage rate was
 762 15.89%, exceeding the critical value. Water shortage awareness continued to
 763 accumulate, as shown in Figure 10 (g). As the water supply could not be effectively
 764 ensured and remained at a low level, the energy consumption for urban water supply
 765 was small and always within its planning value. No energy shortage awareness was
 766 accumulated at the beginning of the co-evolution, as shown in Figure 10 (g).
 767 Meanwhile, as agricultural water demand cannot be ensured, food production was
 768 also lowered, as shown in Figure 10 (c). Higher food shortages then led to higher food
 769 shortage awareness, as shown in Figure 10 (e) and (g). Thus, positive feedback to
 770 increase crop area was strengthened. As observed in Figure 10 (a) and (c), the water
 771 demand increased slightly and food production increased rapidly. As environmental
 772 awareness accumulated over its critical value in 2015 and continued to increase,

773 negative feedback to constrain the socioeconomic expansion was triggered and
774 continued to strengthen. The energy consumption thereby continued to decrease in
775 Figure 10 (b), accounting for the significant decrease in the energy shortage rate (i.e.,
776 from 8.25% to 0). Environmental awareness increased and reached the maximum
777 value of 21.6 in 2032 owing to the constant water shortage. With the strong negative
778 feedback, the water demand and food production decreased remarkably and remained
779 at a low level, as shown in Figure 10 (a) and (c), which accounts for the increasing
780 food shortage rate (i.e., from 1.08% to 3.08%).

781 With water resources allocation taken into account, water shortage was
782 significantly alleviated under scenario IV, as discussed in the water resources
783 allocation results (from 15.89% scenario IV to 7.20% under scenario III). The water
784 shortage rate remained below its critical value in the entire co-evolution process
785 (Figure 10 (e)). Thus, there was no accumulation of water shortage awareness (Figure
786 10 (g)). Energy consumption continued to increase as the water supply was ensured.
787 Environmental awareness accumulation was primarily due to energy shortage.

788 Overall, water resources allocation can effectively alleviate water shortage to
789 decrease water shortage awareness by increasing the water supply. The increase in
790 environmental awareness is primarily due to the constant high-level energy shortage
791 rate. Therefore, planning energy availability is the primary boundary condition for
792 sustainable development of the WEFS nexus when water resources allocation is
793 considered. Under the scenario without considering water resources allocation, the
794 risk of water shortage is high. Water shortage awareness continues to accumulate and

795 remains at a high level under scenario IV, which further contributes to high-level
796 environmental awareness. The energy consumption and food production will be
797 decreased by negative feedback. Water availability becomes the vital resource
798 constraining the concordant development of the WEFS nexus.

799 **5. Conclusions**

800 The sustainable management of the WEF nexus remains an urgent challenge, as
801 human sensitivity and reservoir operation are seldom considered in recent studies.
802 This study used environmental awareness to capture human sensitivity and
803 simultaneously incorporated reservoir operation in the form of water resources
804 allocation model (i.e., IRAS model) into water system to develop a system dynamic
805 model for the WEFS nexus. The proposed approach was applied to the MLHRB in
806 China. The conclusions drawn from the study are as follows.

807 The proposed approach provides a valid analytical tool for exploring the
808 long-term co-evolution of the nexus across the water, energy, food, and society
809 systems. Environmental awareness in the society system can effectively capture
810 human sensitivity to shortages from water, energy, and food systems. The feedback
811 caused by environmental awareness can regulate the pace of socioeconomic
812 expansion to maintain the integrated system from constant resources shortages, which
813 contributes to the sustainability of the WEFS nexus co-evolution. The co-evolution of
814 water demand, energy consumption, and food production can be divided into
815 expansion (accelerating and natural expansion for food production), contraction,

816 recession, and recovery phases based on environmental awareness. The co-evolution
817 mode of the WEFS nexus functioning strongly depends on the selection of certain
818 parameter values. The rational parameter setting of boundary conditions and critical
819 values is important for managers to keep the socioeconomic sectors from violent
820 expansion and deterioration, particularly in contraction and recession phases. Water
821 shortage can be effectively relieved by the increased water supply through reservoir
822 operation. Thus, the high-level environmental awareness caused by water shortage is
823 remarkably alleviated. As negative feedback due to environmental awareness is
824 weakened, the socioeconomic sectors develop rapidly. Water is no longer the vital
825 factor constraining the concordant development of the WEFS nexus in the expansion
826 phase. Therefore, water resources allocation is of great significance for the sustainable
827 development of the WEFS nexus.

828 We acknowledge that the model calibration is challenging, as the data series is
829 not sufficiently long and the forms and parameters of the feedback function are not
830 prescribed. We consider that sufficient case studies will gradually emerge over time,
831 which could gradually cover a range of scenarios and slowly provide reliability in the
832 WEFS nexus modeling. Moreover, as the primary input of the proposed WEFS nexus
833 model, water availability was adopted based on the historical scenario in this study.
834 Future climate change has not been considered for the sake of simplicity. The
835 considerable uncertainties in water availability can be brought into the water system
836 in the WEFS nexus due to climate change (Chen et al., 2011). The propagation of the
837 uncertainties can also be complicated, with interactions among water, energy, food,

838 and society systems during the co-evolution process. Therefore, more attention should
839 be paid to the uncertainty analysis on the WEFS nexus under climate change.
840 However, the proposed framework and our research results not only provide useful
841 guidelines for local sustainable development but also demonstrate the potential for
842 effective application in other basins.

843

844 **Data availability:** The socioeconomic data used in producing this paper are
845 available at <http://data.cnki.net/>

846

847 **Author contributions:** Conceptualization, DL and YZ; Methodology, YZ;
848 Software, YZ; Data Curation, YZ, ZW and LD; Formal analysis, YZ and DL;
849 Writing-Original Draft preparation, YZ and LD; Writing-Review and Editing, SG, LX,
850 PL, JY and DL; Funding acquisition, DL.

851

852 **Competing interests:** The authors declare that they have no conflict of interest.

853

854 **Acknowledgement:** The authors gratefully acknowledge the financial support
855 from the National Natural Science Foundation of China (Nos. 51879194, 91647106
856 and 51579183). This work is also partly funded by the Ministry of Foreign Affairs of
857 Denmark and administered by Danida Fellowship Centre (File number:
858 18-M01-DTU).

859

860

861 **References**

862 Alexandratos, N. and Bruinsma, J.: World agriculture towards 2030/2050, 2012.

863 Bertalanffy, L. V.: General System Theory: Foundations, Development, Applications, 3, George
864 Braziller, New York, America1976.

865 Blanke, A., Rozelle, S., Lohmar, B., Wang, J., and Huang, J.: Water saving technology and saving
866 water in China, *Agric. Water Manag.*, 87, 139-150, 10.1016/j.agwat.2006.06.025, 2007.

867 Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems,
868 *Proc. Natl. Acad. Sci. U. S. A.*, 99, 7280-7287, 10.1073/pnas.082080899, 2002.

869 Brekke, L., Larsen, M. D., Ausburn, M., and Takaichi, L.: Suburban water demand modeling using
870 stepwise regression, *Journal American Water Works Association*, 94, 65-75, 2002.

871 Chen, J., Brissette, F. P., and Leconte, R.: Uncertainty of downscaling method in quantifying the
872 impact of climate change on hydrology, *Journal of Hydrology*, 401, 190-202,
873 10.1016/j.jhydrol.2011.02.020, 2011.

874 Chen, X., Wang, D., Tian, F., and Sivapalan, M.: From channelization to restoration:
875 Sociohydrologic modeling with changing community preferences in the Kissimmee River
876 Basin, Florida, *Water Resour. Res.*, 52, 1227-1244, 10.1002/2015wr018194, 2016.

877 Chiang, Y. M., Chang, L. C., and Chang, F. J.: Comparison of static-feedforward and
878 dynamic-feedback neural networks for rainfall-runoff modeling, *Journal of Hydrology*, 290,
879 297-311, 10.1016/j.jhydrol.2003.12.033, 2004.

880 Changjiang Water Resources Commission (CWRC): Integrated Water Resources Planning of
881 Hanjiang River Basin, Wuhan, China, 2016. (in Chinese)

882 Davies, E. G. R. and Simonovic, S. P.: ANEMI: a new model for integrated assessment of global
883 change, *Interdisciplinary Environmental Review*, 11, 127, 10.1504/ier.2010.037903, 2010.

884 Dawson, R. J., Peppe, R., and Wang, M.: An agent-based model for risk-based flood incident
885 management, *Natural Hazards*, 59, 167-189, 10.1007/s11069-011-9745-4, 2011.

886 Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte, L., and Bloeschl, G.:
887 DebatesPerspectives on socio-hydrology: Capturing feedbacks between physical and social
888 processes, *Water Resour. Res.*, 51, 4770-4781, 10.1002/2014wr016416, 2015.

889 Di Baldassarre, G., Sivapalan, M., Rusca, M., Cudennec, C., Garcia, M., Kreibich, H., Konar, M.,
890 Mondino, E., Mard, J., Pande, S., Sanderson, M. R., Tian, F., Viglione, A., Wei, J., Wei, Y.,
891 Yu, D. J., Srinivasan, V., and Bloeschl, G.: Sociohydrology: Scientific Challenges in
892 Addressing the Sustainable Development Goals, *Water Resour. Res.*, 55, 6327-6355,
893 10.1029/2018wr023901, 2019.

894 El Gafy, I., Grigg, N., and Reagan, W.: Dynamic Behaviour of the Water-Food-Energy Nexus:
895 Focus on Crop Production and Consumption, Irrigation and Drainage, 66, 19-33,
896 10.1002/ird.2060, 2017.

897 El Gafy, I. K.: System Dynamic Model for Crop Production, Water Footprint, and Virtual Water
898 Nexus, *Water Resources Management*, 28, 4467-4490, 10.1007/s11269-014-0667-2, 2014.

899 Elshafei, Y., Sivapalan, M., Tonts, M., and Hipsey, M. R.: A prototype framework for models of
900 socio-hydrology: identification of key feedback loops and parameterisation approach,
901 *Hydrology and Earth System Sciences*, 18, 2141-2166, 10.5194/hess-18-2141-2014, 2014.

902 Eusgeld, I., Nan, C., and Dietz, S.: "System-of-systems" approach for interdependent critical

903 infrastructures, Reliability Engineering & System Safety, 96, 679-686,
904 10.1016/j.ress.2010.12.010, 2011.

905 Feng, M., Liu, P., Li, Z., Zhang, J., Liu, D., and Xiong, L.: Modeling the nexus across water
906 supply, power generation and environment systems using the system dynamics approach:
907 Hehuang Region, China, *Journal of Hydrology*, 543, 344-359, 10.1016/j.jhydrol.2016.10.011,
908 2016.

909 Feng, M., Liu, P., Guo, S., Yu, D. J., Cheng, L., Yang, G., and Xie, A.: Adapting reservoir
910 operations to the nexus across water supply, power generation, and environment systems: An
911 explanatory tool for policy makers, *Journal of Hydrology*, 574, 257-275,
912 10.1016/j.jhydrol.2019.04.048, 2019.

913 French, R. J. and Schultz, J. E.: Water-use efficiency of wheat in a mediterranean-type
914 environment. 1. The relation between yield, water-use and climate, *Aust. J. Agric. Res.*, 35,
915 743-764, 10.1071/ar9840743, 1984.

916 He, S., Guo, S., Yin, J., Liao, Z., Li, H., and Liu, Z.: A novel impoundment framework for a mega
917 reservoir system in the upper Yangtze River basin, *Appl. Energy*, 305,
918 10.1016/j.apenergy.2021.117792, 2022.

919 He, S. Y., Lee, J., Zhou, T., and Wu, D.: Shrinking cities and resource-based economy: The
920 economic restructuring in China's mining cities, *Cities*, 60, 75-83,
921 10.1016/j.cities.2016.07.009, 2017.

922 Hoff, H.: Understanding the nexus. In: *Background Paper for the Bonn 2011 Conference. The*
923 *Water, Energy and Food Security Nexus.*, Stockholm Environment Institute, 2011.

924 Housh, M., Cai, X., Ng, T. L., McIsaac, G. F., Ouyang, Y., Khanna, M., Sivapalan, M., Jain, A. K.,
925 Eckhoff, S., Gasteyer, S., Al-Qadi, I., Bai, Y., Yaeger, M. A., Ma, S., and Song, Y.: System of
926 Systems Model for Analysis of Biofuel Development, *Journal of Infrastructure Systems*, 21,
927 10.1061/(asce)is.1943-555x.0000238, 2015.

928 Hubei Provincial Department of Water Resources (HPDWR): Dispatching schedules of Hubei
929 provincial large reservoirs, Wuhan, China, 2014. (in Chinese)

930 Hritonenko, N. and Yatsenko, Y.: *Mathematical Modeling in Economics, Ecology and the*
931 *Environment*, Kluwer Academic Publishers, Dordrecht/Boston/London1999.

932 Hsiao, T. C., Steduto, P., and Fereres, E.: A systematic and quantitative approach to improve water
933 use efficiency in agriculture, *Irrig. Sci.*, 25, 209-231, 10.1007/s00271-007-0063-2, 2007.

934 International Energy Agency: *World Energy Outlook 2012*, International Energy Agency, Paris,
935 France, 2012.

936 Khare, D., Jat, M. K., and Sunder, J. D.: Assessment of water resources allocation options:
937 Conjunctive use planning in a link canal command, *Resour. Conserv. Recycl.*, 51, 487-506,
938 10.1016/j.resconrec.2006.09.011, 2007.

939 Kleinmuntz, D. N.: Information-processing and misperceptions of the implications of feedback in
940 dynamic decision-making, *System Dynamics Review*, 9, 223-237, 10.1002/sdr.4260090302,
941 1993.

942 Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency criteria for hydrological
943 model assessment, *Advances in Geosciences*, 5, 89-97, 10.5194/adgeo-5-89-2005., 2005.

944 Laspidou, C. S., Mellios, N. K., Spyropoulou, A. E., Kofinas, D. T., and Papadopoulou, M. P.:
945 Systems thinking on the resource nexus: Modeling and visualisation tools to identify critical
946 interlinkages for resilient and sustainable societies and institutions, *Sci. Total Environ.*, 717,

947 10.1016/j.scitotenv.2020.137264, 2020.

948 Li, B., Sivapalan, M., and Xu, X.: An Urban Sociohydrologic Model for Exploration of Beijing's
949 Water Sustainability Challenges and Solution Spaces, *Water Resour. Res.*, 55, 5918-5940,
950 10.1029/2018wr023816, 2019.

951 Lin, J. Y., Wan, G., and Morgan, P. J.: Prospects for a re-acceleration of economic growth in the
952 PRC, *J. Comp. Econ.*, 44, 842-853, 10.1016/j.jce.2016.08.006, 2016.

953 Linderhof, V., Dekkers, K., and Polman, N.: The Role of Mitigation Options for Achieving a
954 Low-Carbon Economy in the Netherlands in 2050 Using a System Dynamics Modelling
955 Approach, *Climate*, 8, 10.3390/cl8110132, 2020.

956 Liu, D.: Evaluating the dynamic resilience process of a regional water resource system through the
957 nexus approach and resilience routing analysis, *Journal of Hydrology*, 578,
958 10.1016/j.jhydrol.2019.124028, 2019.

959 Liu, D., Guo, S., Liu, P., Xiong, L., Zou, H., Tian, J., Zeng, Y., Shen, Y., and Zhang, J.:
960 Optimisation of water-energy nexus based on its diagram in cascade reservoir system, *Journal
961 of Hydrology*, 569, 347-358, 10.1016/j.jhydrol.2018.12.010, 2019.

962 Lobell, D. B., Cassman, K. G., and Field, C. B.: Crop Yield Gaps: Their Importance, Magnitudes,
963 and Causes, *Annual Review of Environment and Resources*, 34, 179-204,
964 10.1146/annurev.environ.041008.093740, 2009.

965 Loucks, D. P.: Interactive River-Aquifer Simulation and Stochastic Analyses for Predicting and
966 Evaluating the Ecologic Impacts of Alternative Land and Water Management Policies;,
967 Kluwer Academic Publishers, Dordrecht, The Netherlands2002.

968 Makindeodusola, B. A. and Marino, M. A.: Optimal-control of groundwater by the feedback
969 method of control, *Water Resour. Res.*, 25, 1341-1352, 10.1029/WR025i006p01341, 1989.

970 Malthus, T.: An Essay on the Principle of Population, Penguin, Harmondsworth, England1798.

971 Matrosov, E. S., Harou, J. J., and Loucks, D. P.: A computationally efficient open-source water
972 resource system simulator - Application to London and the Thames Basin, *Environmental
973 Modelling & Software*, 26, 1599-1610, 10.1016/j.envsoft.2011.07.013, 2011.

974 McKinsey & Company: Charting our water future: economic frameworks to inform
975 decision-making, 2030 Water Resources Group, 2009.

976 Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I — A
977 discussion of principles, *Journal of Hydrology*, 10, 282-290, 10.1016/0022-1694(70)90255-6.,
978 1970.

979 Purwanto, A., Susnik, J., Suryadi, F. X., and de Fraiture, C.: Quantitative simulation of the
980 water-energy-food (WEF) security nexus in a local planning context in indonesia, *Sustainable
981 Production and Consumption*, 25, 198-216, 10.1016/j.spc.2020.08.009, 2021.

982 Ravar, Z., Zahraie, B., Sharifinejad, A., Gozini, H., and Jafari, S.: System dynamics modeling for
983 assessment of water-food-energy resources security and nexus in Gavkhuni basin in Iran,
984 *Ecological Indicators*, 108, 10.1016/j.ecolind.2019.105682, 2020.

985 Roobavannan, M., van Emmerik, T. H. M., Elshafei, Y., Kandasamy, J., Sanderson, M. R.,
986 Vigneswaran, S., Pande, S., and Sivapalan, M.: Norms and values in sociohydrological
987 models, *Hydrology and Earth System Sciences*, 22, 1337-1349, 10.5194/hess-22-1337-2018,
988 2018.

989 Si, Y., Li, X., Yin, D., Li, T., Cai, X., Wei, J., and Wang, G.: Revealing the water-energy-food
990 nexus in the Upper Yellow River Basin through multi-objective optimization for reservoir

991 system, *Sci. Total Environ.*, 682, 1-18, 10.1016/j.scitotenv.2019.04.427, 2019.

992 Simonovic, S. P.: World water dynamics: global modeling of water resources, *J. Environ. Manag.*,
993 66, 249-267, 10.1006/jema.2002.0585, 2002.

994 Smith, K., Liu, S., Liu, Y., Savic, D., Olsson, G., Chang, T., and Wu, X.: Impact of urban water
995 supply on energy use in China: a provincial and national comparison, *Mitigation and*
996 *Adaptation Strategies for Global Change*, 21, 1213-1233, 10.1007/s11027-015-9648-x, 2016.

997 Susnik, J.: Data-driven quantification of the global water-energy-food system, *Resour. Conserv.*
998 *Recycl.*, 133, 179-190, 10.1016/j.resconrec.2018.02.023, 2018.

999 Swanson, J.: Business dynamics - Systems thinking and modeling for a complex world, *J. Oper.*
1000 *Res. Soc.*, 53, 472-473, 10.1057/palgrave.jors.2601336, 2002.

1001 Tennant, D. L.: Instream flow regimens for fish, wildlife, recreation and related environmental
1002 resources, *Fisheries*, 1, 6-10, 10.1577/1548-8446(1976)001<0006:ifrrfw>2.0.co;2, 1976.

1003 Van Emmerik, T. H. M., Li, Z., Sivapalan, M., Pande, S., Kandasamy, J., Savenije, H. H. G.,
1004 Chanan, A., and Vigneswaran, S.: Socio-hydrologic modeling to understand and mediate the
1005 competition for water between agriculture development and environmental health:
1006 Murrumbidgee River basin, Australia, *Hydrology and Earth System Sciences*, 18, 4239-4259,
1007 10.5194/hess-18-4239-2014, 2014.

1008 Vörösmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B.: Global water resources:
1009 Vulnerability from climate change and population growth, *Science*, 289, 284-288,
1010 10.1126/science.289.5477.284, 2000.

1011 Wolstenholme, E. F. and Coyle, R. G.: The development of system dynamics as a methodology for
1012 system description and qualitative analysis, *J. Oper. Res. Soc.*, 34, 569-581,
1013 10.1057/jors.1983.137, 1983.

1014 Xu, X. B., Hu, H. Z., Tan, Y., Yang, G. S., Zhu, P., and Jiang, B.: Quantifying the impacts of
1015 climate variability and human interventions on crop production and food security in the
1016 Yangtze River Basin, China, 1990-2015, *Sci. Total Environ.*, 665, 379-389,
1017 10.1016/j.scitotenv.2019.02.118, 2019.

1018 Zeng, Y., Liu, D., Guo, S., Xiong, L., Liu, P., Yin, J., Tian, J., Deng, L., and Zhang, J.: Impacts of
1019 Water Resources Allocation on Water Environmental Capacity under Climate Change, *Water*,
1020 13, 10.3390/w13091187, 2021.

1021 Zhang, P., Zhang, Y. Y., Ren, S. C., Chen, B., Luo, D., Shao, J. A., Zhang, S. H., and Li, J. S.:
1022 Trade reshapes the regional energy related mercury emissions: A case study on Hubei
1023 Province based on a multi-scale input-output analysis, *Journal of Cleaner Production*, 185,
1024 75-85, 10.1016/j.jclepro.2018.03.013, 2018.

1025 Zhao, S., Liu, Y., Liang, S., Wang, C., Smith, K., Jia, N., and Arora, M.: Effects of urban forms on
1026 energy consumption of water supply in China, *Journal of Cleaner Production*, 253,
1027 10.1016/j.jclepro.2020.119960, 2020.

1028 Zhou, Y., Chang, L., Uen, T., Guo, S., Xu, C., and Chang, F.: Prospect for small-hydropower
1029 installation settled upon optimal water allocation: An action to stimulate synergies of
1030 water-food-energy nexus, *Appl. Energy*, 238, 668-682, 10.1016/j.apenergy.2019.01.069,
1031 2019.

1032