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Abstract 10 
Hillslope similarity is an active topic in hydrology because of its importance to improve 11 

our understanding of hydrologic processes and enable comparisons and paired studies. In this 12 

study, we propose a holistic bottom-up hillslope similarity classification based on a region’s 13 

integrative hydrodynamic response quantified by the seasonal changes in groundwater levels. 14 

The main advantage of the proposed classification is its ability to describe recharge and 15 

discharge processes. We test the performance of the proposed classification by comparing it to 16 

seven other common hillslope similarity classifications. These include simple classifications 17 

based on the aridity index, topographic wetness index, elevation, land cover, and more 18 

sophisticated machine-learning classifications that jointly integrate all these data. We assess the 19 

ability of these classifications to identify and categorize hillslopes with similar static 20 

characteristics, hydroclimatic behaviors, land surface processes, and subsurface dynamics in a 21 

mountainous watershed, the East River, located in the headwaters of the Upper Colorado River 22 

Basin. The proposed classification is robust as it reasonably identifies and categorizes hillslopes 23 

with similar elevation, land cover, hydroclimate, land surface processes, and subsurface 24 

hydrodynamics (and hence hillslopes with similar hydrologic function). In general, the other 25 

approaches are good in identifying similarity in a single characteristic, which is usually close to 26 

the selected variable. We further demonstrate the robustness of the proposed classification by 27 

testing its ability to predict hillslope responses to wet and dry hydrologic conditions, of which it 28 

performs well when based on average conditions.  29 

Keywords: Hillslope, similarity, seasonal groundwater variations, integrated hydrologic 30 

modeling, hillslope classification, hydrologic function 31 
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1. Introduction 34 
 35 

The ability to delineate areas into spatially defined regions for their use in characterizing 36 

hydrologic flow and transport behavior is important for several reasons, including the 37 

assessment, monitoring, and modeling of water quantity and quality. Hillslopes are the scale at 38 

which hydrologic flow and transport processes can be tractably and frequently measured. It is 39 

also the scale at which water transfer and travel time are quantified and the instrumentation, 40 

conceptualization, and modeling of hydrologic processes occur (Fan et al., 2019). While 41 

advancements have been made in the general understanding of hillslope dynamics over the last 42 

several decades, there is yet to be a globally agreed-upon classification system for this important 43 

scale of interest in hydrology. Hydrologic signatures within hillslopes are the results of several 44 

simultaneous and nonlinear above- and below-ground processes. The uniqueness of a given 45 

location’s characteristics (for example, the topography, geology, vegetation, etc.) limits our 46 

ability to draw general hypotheses and to develop a similarity framework (Beven, 2000). 47 

Nevertheless, a classification is needed to provide guidance on catchments and hillslopes 48 

comparisons (McDonnell & Woods, 2004), paired studies (Andréassian et al., 2012; Bosch & 49 

Hewlett, 1982; Brown et al., 2005), and improve our understanding of the changes in hydrologic 50 

processes across the world. By simplifying the complexities of the hydrologic dynamics, 51 

classification provides a better understanding of these processes. Further, hillslope similarity 52 

grouping is potentially an important step toward developing reduced-order models and machine 53 

learning algorithms, where grouping regions based on their similarities or dissimilarities can 54 

substantially reduce computational costs (Chaney et al., 2018). The scaling of hillslope to 55 

catchment classifications can also be useful in the prediction of hydrologic behavior in ungauged 56 

basins (Sivapalan et al., 2003), an exceedingly important challenge. 57 
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Classical definitions of hillslope similarity include the Topographic Wetness Index TWI 58 

(Beven & Kirby, 1979), which was proposed to quantify the topographic control on hydrology as 59 

topography plays a key role in the movement of water. Many other variants of this index have 60 

been later proposed to improve the definition of topographic similarity (Grabs et al., 2009; Hjerdt 61 

et al., 2004; Loritz et al., 2019). Other classifications include similarities based on hydroclimate 62 

(Carrillo et al., 2011), soil type and texture (Bormann, 2010), and land cover type (e.g., forest, 63 

urban, etc. (Wagener et al., 2007)). These indices assume that hillslopes with similar elevation 64 

and land cover will have similar hydrologic responses. However, given that hydrologic processes 65 

are governed by many characteristics of the hillslope, similarity patterns have also been proposed 66 

based on the simultaneous accounting of multiple landscape characteristics. These classifications 67 

are usually based on clustering which aims to integrate all these data layers to identify and 68 

categorize similar hillslopes (Aryal et al., 2002; Sawicz et al., 2011). These top-down 69 

classifications assume that areas with similar static characteristics will lead to similar hydrologic 70 

processes and functions. This often-overlooked assumption presumes that an apparent physical 71 

similarity equates to a similarity in hydrologic processes (Oudin et al., 2010). Other 72 

classifications use a bottom-up approach, where similarity is defined based on the hydrologic 73 

process or functional response of interest. A process-based classification enables the analysis of 74 

different hydrologic responses and the identification of the hydrologic function itself. It also 75 

allows the estimation of the “hidden” hillslope characteristics such as soil texture, and geology 76 

that may drive similar hydrologic responses (Carrillo et al., 2011). Among the process-based 77 

classification existing in the literature we can cite: the Péclet number characterizing the diffusive 78 

and advective transfer of water at hillslope scale (Berne et al., 2005; S. W. Lyon & Troch, 2007; 79 

Steve W. Lyon & Troch, 2010) and the catchment seasonal water balance (Berghuijs et al., 80 
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2014). Other authors have derived hillslope similarities from subsurface flow dynamics (Harman 81 

& Sivapalan, 2009).  82 

One challenge in developing a similarity framework is the inherent heterogeneity of a 83 

given hillslope. For example, hillslope Snow Water Equivalent (SWE) distribution can vary up 84 

to 300 mm; similarly, infiltration (I) and actual evapotranspiration (ET) rates can range over an 85 

order of magnitude within a single hillslope. Defining a single integrative measure that can 86 

capture this spatio-temporal variability is difficult. However, groundwater fluctuations are often 87 

tightly linked to seasonal changes in weather and have been shown to play an important role in 88 

surficial processes such as ET (Maina & Siirila-Woodburn, 2020; Maxwell & Condon, 2016). 89 

Thus, groundwater measures may serve as a good proxy for the aggregated hydrologic response. 90 

Groundwater dynamics could help overcome the issue of uniqueness of place because even if 91 

there are strong differences in the characteristics of the hillslope, the integrated response may be 92 

similar as some of the processes might not be important. Finally, the implications of groundwater 93 

changes are also important. For example, many regions are characterized by groundwater-94 

dependent ecosystems or are hypothesized to have water table fluctuations affecting bedrock 95 

weathering rates and therefore the concentration and fluxes of metals and nutrients exports (e.g., 96 

Winnick et al., 2017).	97 

In this study, we define a holistic bottom-up hillslope similarity framework based on a 98 

region’s integrative hydrodynamic response quantified by the seasonal changes in groundwater 99 

levels, hereafter referred to as a region’s functional zonation. A caveat to this approach is that 100 

groundwater dynamics are difficult to quantify, and their measurements are frequently scarce. 101 

Hence, there are very few studies that use this variable to develop a hillslope similarity 102 

framework (Aryal et al., 2002; S. W. Lyon & Troch, 2007). However, today, thanks to advances 103 
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in integrated hydrologic modeling (Brunner & Simmons, 2012; Maxwell & Miller, 2005), 104 

accurate quantification of the groundwater dynamics at high resolution in both time and space, as 105 

well as their interaction with the key land surface processes and features, is now feasible. These 106 

models account for the two-way interactions between groundwater and land surface processes. 107 

Spatially resolved hydrologic flow models also enable us to jointly quantify other hydrologic 108 

variables of interest, namely trends in ET, SWE, and I. These variables may be useful to define 109 

functional zonation (i.e., areas with similar hydrologic functions) and can be constrained by 110 

measurements at ultra-high resolutions through aerial or remote sensing (i.e., drones, planes, or 111 

satellites).  112 

We test the proposed hillslope similarity approach on the site of the Department of 113 

Energy’s (DOE) Watershed Function Scientific Focus Area (SFA) located in the headwaters of 114 

the Upper Colorado River Basin. The East River watershed is not only representative of many 115 

headwater catchments in the western United States in terms of its spatial heterogeneity of above 116 

and below-ground characteristics but also serves as an important proxy of water quantity and 117 

quality trends which ultimately impact a large population of water supply in the western US (for 118 

municipal, agriculture, and industrial use). The East River mountainous headwater catchment, 119 

characterized by high spatial and temporal variabilities in above-ground and below-ground 120 

hydrologic responses (Hubbard et al., 2018), is a good candidate site to demonstrate our 121 

approach. We test the robustness of the proposed hillslope similarity framework by comparing it 122 

to seven other common hillslope similarity measures. These include approaches based on single 123 

data layers (aridity index (AI), TWI, elevation, and land cover) and more sophisticated machine-124 

learning approaches that jointly integrate multiple input data layers such as elevation, land cover, 125 

and geology, and model outputs including ET, and SWE. We assess the ability of these 126 
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approaches to identify and categorize hillslopes with similar characteristics (land cover and 127 

elevation), hydroclimate (precipitation and temperature), land surface processes (ET and SWE), 128 

and subsurface dynamics (soil saturation, water table depth, and seasonal changes in 129 

groundwater). We aim to provide answers to the following questions: 130 

● What are the best classifications for identifying hillslopes with similar hydrologic 131 

functions? 132 

● Is a similarity index based on the seasonal groundwater variations sufficient to 133 

capture all the complex processes taking place at a hillslope scale? 134 

 	135 

2. Methods 136 
2.1. Numerical model 137 

The integrated hydrologic model, ParFlow, solves the subsurface flow using the three-138 

dimensional mixed form of the Richards equation (Richards, 1931) given by the following 139 

equation:  140 

𝑆!𝑆"(𝜓#)
$%!
$&

+ 𝜙 $!"(%!)
$&

= 𝛻. [𝐾(𝑥)𝑘)(𝜓#)𝛻(𝜓# − 𝑧)] + 𝑞*           (1) 141 

Where is 𝑆!	the specific storage [L-1], 𝑆"(𝜓#) is the degree of saturation [-] associated 142 

with the subsurface pressure head 𝜓# [L], t is the time [T], 𝜙 is the porosity [-], 𝑘) is the relative 143 

permeability [-], z is the depth [L], 𝑞*	is the source/sink term [T-1] and 𝐾(𝑥) is the saturated 144 

hydraulic conductivity [L T-1] which is assumed to be a diagonal tensor with entries given as: 145 

𝑘+(𝑥), 𝑘,(𝑥)	and 𝑘-(𝑥). We assumed in this work that the domain is isotropic, and that the 146 

tensor is equal to 1 for all the three directions at each cell of the discretized model. In the 147 

unsaturated zone, both 𝑆"	and 𝑘) 	depend on the 𝜓. The relationships between 𝑆"	and 𝑘) 	and 𝜓 148 

are described by the van Genuchten model (van Genuchten, 1980). 149 

Overland flow (equation 2) is solved by the kinematic wave equation in two dimensions. 150 
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−𝑘(𝑥)𝑘)(𝜓.)𝛻(𝜓. − 𝑧) =
$‖%#,.‖

$&
− 𝛻. 𝜐⃗‖𝜓., 0‖ − 𝑞)(𝑥)           (2) 151 

Where 𝜓. is the ponding depth, ‖𝜓., 0‖ indicates the greater term between 𝜓. and 0, 𝜐⃗ is 152 

the depth averaged velocity vector of surface runoff [L T-1],	𝑞) is a source/sink term representing 153 

rainfall and evaporative fluxes [L T-1] Surface water velocity at the surface in x and y directions, 154 

(𝜐+) and (𝜐,) respectively, is computed using the following set of equations: 155 

𝜐+ =
1!$,&
2

𝜓.
'
(	and   𝜐, =

1!$,)
2

𝜓.
'
(                         (3) 156 

Where 𝑆3,+ and 𝑆3,, friction slopes along x and y respectively and 𝑚 is the manning’s coefficient. 157 

ParFlow employs a cell-centered finite difference scheme along with an implicit backward Euler 158 

scheme and the Newton Krylow linearization method to solve these nonlinear equations. The 159 

computational grid follows the terrain to mimic the slope of the domain (Maxwell, 2013). 160 

ParFlow is coupled to the Community Land Model (CLM, (Dai et al., 2003)) which 161 

allows for the simulation of important land surface processes such as ET and SWE and the 162 

quantification of water leaving or entering the surface and subsurface (𝑞* and 𝑞) respectively in 163 

the Richards and kinematic wave equations). CLM models the thermal processes by closing the 164 

energy balance at the land surface given by: 165 

𝑅4(𝜃) = 𝐿𝐸(𝜃) + 𝐻(𝜃) + 𝐺(𝜃)               (4) 166 

Where 𝑅4is the net radiation at the land surface [E/LT] a balance between the shortwave 167 

and longwave radiation, 𝐿𝐸 is the latent heat flux [E/LT] which captures the energy required to 168 

change the phase of water to or from vapor, H is the sensible heat flux [E/LT] and G is the 169 

ground heat flux [E/LT]. All terms are a function of 𝜃, the water content, which is computed by 170 

ParFlow. 171 

Computing the different components of the energy balance requires meteorological 172 

forcing, vegetative parameters, and soil moisture. The latter is computed by ParFlow using 173 
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equations 1 and 2. Meteorological forcing includes precipitation, temperature, east to west and 174 

north to south wind speed, longwave and shortwave solar radiation, air pressure, and relative 175 

humidity. Vegetative parameters include maximum and minimum leaf area index, stem area 176 

index, aerodynamic roughness height, optical properties, stomatal physiology, roughness length, 177 

and displacement height. More details about the coupling between ParFlow and CLM as well as 178 

the equations governing the snow dynamics and ET can be found in the following papers: 179 

Jefferson et al., (2015); Maxwell & Miller, (2005); Ryken et al., (2020). 180 

 181 
2.2. East River watershed model set-up 182 

 183 
The East River watershed (Figure 1), located in the Upper Colorado Basin, is one of the 184 

two major tributaries that form the Gunnison River, which in turn accounts for just under half of 185 

the Colorado River’s discharge at the Colorado-Utah border. The total area of this watershed is 186 

approximately 255 km2 and the elevation varies from approximately 3900 to 2700 m. The 187 

watershed is characterized by strong heterogeneities in vegetation, geomorphology, and bedrock 188 

composition (Hubbard et al., 2018). The vegetation includes grasses, conifers, mixed conifers, 189 

aspens, and meadows and lies on a complex geologic terrain, which is comprised of a diverse 190 

collection of Paleozoic and Mesozoic sedimentary and unconsolidated rocks. The watershed is 191 

also characterized by a strong hydroclimate gradient. The average precipitation is 1200 mm/year 192 

while the average temperature is around 0°C. Because of its very low cold winter with 193 

temperature below 0°C, most of the winter precipitation is in the form of snow.  194 
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 195 

Figure 1: (a) location of the East River watershed, (b) land cover (NEON dataset, 2020), (c) 196 

LiDAR Digital elevation, and (d) elevation distribution within the East River. 197 

 198 

ParFlow-CLM used here is based on a previous version of the East River watershed 199 

model, as described by Foster and Maxwell (2019). 5 layers constitute the model in the vertical 200 

direction with varying thickness from 0.1 m at the land surface to 21 m at the bottom of the 201 

domain. The land use and land cover are derived from the high-resolution airborne remote 202 

sensing NEON campaign (NEON dataset, 2020). From the hyperspectral spectrometer and 203 

LiDAR readings, 4 major types of land cover are grouped as follows: forests (i.e. conifers and 204 

aspens), mixed forests, grasses, and bare soil. Parameterization of these different land cover 205 

types is derived from the IGBP database (IGBP, 2018). 206 

The subsurface of the study area is heterogeneous in both vertical and horizontal 207 

directions. The subsurface of the top 1 m corresponds to three soil layers as defined by the 208 
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SSURGO database and then corrected based on the land cover and geologic maps to include the 209 

outcropping of the bedrock. Two main types of soil are distinguished within the area: sandy loam 210 

and clay loam. The geology of the subsurface between 1 m and 8 m below the ground was 211 

defined with USGS maps, which were further improved by local knowledge by Pribulick et al., 212 

(2016). This subsurface region is highly heterogeneous with different formations such as 213 

crystalline, sedimentary rocks, unconsolidated rocks, alluvial deposits, and debris flow. The 214 

bottom layer of the domain (extending from 8 m below the ground surface to the bottom of the 215 

model) is assumed homogeneous and represents the fractured bedrock.  216 

We simulated the water year (WY) 2015, a relatively average WY in the region based on 217 

average precipitation and temperature patterns. The meteorological forcing of the model has a 218 

resolution of an hour and is derived from two gridded datasets: PRISM and NLDAS. The PRISM 219 

dataset (Daly et al., 2008) is used for precipitation and temperature because of their accuracy and 220 

high spatial resolution (800m). However, the daily resolution of PRISM impedes its ability to be 221 

used to reproduce diurnal cycles, an important factor when studying land surface processes 222 

requiring hourly forcing. The phase 2 of the North America Land Data Assimilation System 223 

NLDAS-2 forcing (Cosgrove et al., 2003) on the contrary provides hourly changes in 224 

precipitation and temperature yet are only available at coarser, 1/8 degree, resolutions. As such, 225 

we employ a mass-conservative temporal interpolation, which disaggregates the total daily 226 

PRISM precipitation into an hourly time series based on the signal of the NLDAS-2 precipitation 227 

and temperature trends. For the other forcing variables (i.e. shortwave and longwave radiation, 228 

wind speed, atmospheric pressure, and specific humidity), we use NLDAS-2 forcing, (Cosgrove 229 

et al., 2003). 230 

 231 
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3. Results and discussions 232 
3.1. Hillslope functional zonation 233 

 234 

As shown in Figure 1b, 127 hillslopes are delineated in the East River watershed based 235 

on the elevation following (Noël et al., 2014) and using Topotoolbox developed by 236 

(Schwanghart & Scherler, 2014). A threshold of flow accumulation was set to match the stream 237 

observations at major tributaries of the East River (Carroll et al., 2018). Because the hillslope 238 

delineation could be sensitive to the threshold of the drainage area, we tested different threshold 239 

values to find that the selected threshold value represents the scale of hillslope at which the 240 

within-hillslope variability of key properties (such as elevation and aspect) is minimized and 241 

hillslope-averaged properties can account for the majority of watershed-scale variability 242 

(Wainwright et al., 2021). Figure 2 shows the temporal variations of SWE and water table depth 243 

at a selected hillslope (see its location in Figure 1) in the watershed. All hydrologic variables 244 

have been computed at a hillslope scale by computing the arithmetic average of all cells in each 245 

hillslope. In this mountainous watershed, where the largest changes in groundwater are mostly a 246 

result of snowmelt, groundwater decreases from the beginning of the WY (i.e. October) to the 247 

beginning of snowmelt (i.e. May) period. As the snow starts to melt, groundwater levels start to 248 

raise. The peak discharge is mostly observed in June and July when the snow melts over shallow 249 

water tables. This period also corresponds to the period of high ET, as both the evaporative 250 

demand and the water availability are high. To characterize these groundwater dynamics, we 251 

define two variables:  252 

●  DP1 represents the changes in groundwater levels between the initial and the 253 

minimum groundwater levels during the baseflow conditions. This variable 254 

indicates the ability of the hillslope to release water. 255 
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● DP2 quantifies the changes in groundwater levels between the peak flow (i.e. the 256 

period with the shallowest water table depth) and the baseflow conditions and 257 

hence contains information about the storage and the recharge capacity of the 258 

hillslope. 259 

 260 

Figure 2: Temporal variations of water table depth (WTD) and SWE at an example hillslope. The 261 

location of the hillslope is shown in Figure 1. 262 

 263 

These two key variables define the ability of the hillslope to recharge, store, and release 264 

water, a key “hydrologic function”. The ability of a hillslope to release water as described by ΔP1 265 

mainly depends on ET and discharge while the recharge quantified by ΔP2 is mostly a function 266 

of precipitation and later on snowmelt in this mountainous watershed.  267 

Figure 3 shows the classification of some key processes controlling the releases and 268 

recharges of water at a hillslope scale: temperature, precipitation, SWE, and ET. As expected, 269 

the hillslopes characterized by high SWE have high precipitation rates and low temperatures in 270 

contrast to the hillslopes with low SWE. However, ET shows a different pattern, because it 271 
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depends on both water availability but also the ET demands, which depends on the type of land 272 

cover.  273 

 274 

Figure 3: Spatial distributions of hillslope annual average values of (a) temperature, (b) 275 

precipitation, (c) snow water equivalent (SWE), (d) evapotranspiration, (e) water table depth 276 

(WTD) and (e) seasonal changes in groundwater levels ΔP1 277 

 278 

The spatial variability in ΔP1 and annual average Water Table Depth (WTD) across 279 

different hillslopes are also depicted in Figure 3. These two patterns are different from each 280 

other, and they are also different from the ones associated with the land surface processes which 281 

eventually control the recharge and release of water (SWE and ET). Nevertheless, the spatial 282 
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distributions of WTD and ΔP1 provide complementary information, with areas with high ΔP1 283 

having low WTD because the strong changes in groundwater levels, as quantified by ΔP1, lead to 284 

a deep WTD. We also note that the variabilities of these variables within hillslopes are smaller 285 

than the ones across hillslopes, which is consistent with Wainwright et al. (2021). 286 

To better understand the relationship between ΔP1 and the factors controlling the recharge 287 

and release of water at a hillslope scale, we study the Pearson correlation coefficient between 288 

ΔP1 and the elevation, the percent of the dominant land cover, TWI, AI, ET, SWE, and WTD 289 

(Figure 4).  290 

 291 

Figure 4: Pearson’s correlations between the selected variables for hillslope similarity 292 

classifications: elevation, percent of the main land cover type (forest, grassland, and bare soil), 293 

topographic wetness index (TWI), aridity index (AI), evapotranspiration (ET), snow water 294 

equivalent (SWE), water table depth (WTD), and seasonal changes in groundwater ΔP1.  295 
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 296 

Results for ΔP2 are not shown because it is strongly correlated to ΔP1 and the two 297 

variables provide the same information. TWI, AI, SWE, WTD, and ΔP1 are significantly 298 

correlated with elevation.  In particular, elevation has a dominant control on AI and SWE with a 299 

correlation coefficient higher than 0.9. We observe nonlinearity such that TWI increases in the 300 

lower elevation and that AI becomes constant at the lower elevation. The percentage of forest 301 

cover has a quadratic relationship with elevation. A high correlation between the percent of 302 

forests and the elevation is found in the mid-elevation whereas grassland shows a high 303 

correlation in low and high elevations. ET is well correlated to the percent of forests, where 304 

hillslopes with high ET have a high percent of forests. ΔP1 is, in general, well correlated to all 305 

these variables; it, therefore, indicates that the selected variable contains valuable information 306 

about these variables. Specifically, ΔP1 shows a high correlation with SWE, elevation, AI, and 307 

WTD with a Pearson correlation coefficient greater than 0.7. Changes in groundwater levels in 308 

this mountainous watershed are mostly controlled by the snow dynamics. The two variables with 309 

low correlations with ΔP1 are the ET and the percent of forests. ET is related to groundwater 310 

dynamics in a nonlinear way (Condon et al., 2013; Ferguson & Maxwell, 2010; Rahman et al., 311 

2016). Regions with shallow WTDs have the highest ET fluxes and this flux typically decreases 312 

exponentially with the depth, where after a certain threshold a disconnection between the 313 

groundwater and the atmosphere occurs, and changes in WTD do not impact ET.  314 

We examine eight different hillslope classifications using the variables listed below. For 315 

each method, three functional zones are delineated (see Figure 5). Except for the clustering 316 

approaches, grouping was made based on the manual selection of natural grouping in the 317 

probability density function. 318 
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 319 

Figure 5: Hillslope zonations based on (a) ΔP1, (b) elevation, (c) land cover (LULC), (d) 320 

topographic wetness index (TWI), (e) aridity index (AI), and clustering with (f) inputs, (g) 321 

outputs, and (h) inputs and outputs variables. 322 

 323 

● DP1: a preliminary analysis of the seasonal changes in groundwater levels allows 324 

distinguishing three main hillslope categories with similar DP1. Zone 1 comprises 325 

hillslopes whose DP1 are less than 1.5 m, DP1 of hillslopes of zone 2 are 326 

comprised between 1.5 m and 2.5 m, and Zone 3 group all hillslopes with DP1 327 

greater than 2.5 m. 328 

● Elevation: in mountainous watersheds, because the differences in hydroclimate 329 

are primarily driven by elevation, hillslopes with similar elevations will 330 

potentially have similar land surface signatures. Using elevation, we define three 331 

zones, characterizing low (Zone 1, average hillslope elevation less than 3000 m), 332 

mid (Zone 2, average hillslope elevation comprises between 3000 m and 3500 m), 333 

and high elevation (Zone 3, hillslope with an average elevation greater than 3500 334 

m). 335 

LULCΔP1 Elevation TWI

Zone 1

Zone 2

Zone 3

(a) (b) (d)(c)

AI(e) Clustering OutputsClustering Inputs Clustering Inputs/Outputs(f) (h)(g)
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● Land cover and land use (LULC): hillslopes can also be classified based on their 336 

dominant land cover. Land cover shapes land surface processes, which in turn 337 

affect subsurface dynamics and the water balance at the hillslope scale. In this 338 

study, we define three different types of hillslopes based on their dominant land 339 

cover: Zone 1 describes hillslopes that have predominantly grasses as land cover, 340 

Zone 2 for hillslopes with more than 50% of forest, and Zone 3 for hillslopes 341 

where bare soil is the dominant land cover.  342 

● TWI: The Topographic Wetness index commonly used to classify hillslopes is 343 

given by: 𝑙𝑛	( 5
&64(7)

	). Where 𝛼 is the upslope draining area and 𝛽 the local angle. 344 

We define 3 zones with high (TWI>1, Zone 1), mid (TWI comprises between 1 345 

and 0.2 Zone 2), and low (TWI<0.2, Zone 3) TWI. 346 

● Aridity index (AI): the AI (ETP/Precipitation, where ETP is the potential 347 

evapotranspiration) represents the ratio of the average demand for moisture to the 348 

average supply of moisture. We derive the spatial distribution of the aridity index 349 

in the East River from the Global Aridity Index dataset (CGIAR-CSI, 2019). We 350 

then define three zones. Zone 1 comprises hillslopes with AI less than 0.45, Zone 351 

2 describes hillslopes with AI between 0.45 and 0.55, and hillslopes of Zone 3 352 

have an AI greater than 0.55.  353 

● Clustering: we define the hillslope similarity based on clustering of ParFlow-354 

CLM input and output data layers. Clustering was performed in three different 355 

ways, using the following data: (1) model input (elevation, percentage of the main 356 

land cover type, TWI, and AI), referred to hereafter as the “clustering input” (C.I.) 357 

method, (2) model output (ET, SWE, WTD, and DP1), referred to hereafter as the 358 
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“clustering output” (C.O.) method, and (3) both model input and output data 359 

layers, referred to hereafter as the “clustering input-output” (C.I.O.) method. We 360 

use hierarchical clustering, which is a decision-tree-based method that divides 361 

data points based on a series of binary splits (Devadoss et al., 2020; Kassambara, 362 

2017). We define the linkage (or the distance) between any two clusters based on 363 

the Euclidian distance and the Ward method that computes the variance within 364 

each cluster, measuring the distance between each observation and the cluster’s 365 

mean, and then taking the sum of the distances’ squares.  366 

3.2. Comparisons  367 
 368 

To test the ability of the eight selected classifications to identify and categorize hillslopes 369 

with similar static characteristics and hydrologic functions, we assess each method’s ability to 370 

describe several characteristics of the hillslope.  These include a spectrum of datasets varying 371 

from those which are widely available (e.g. LULC and elevation) to those which are time-variant 372 

(e.g. hydroclimatic data such as temperature and precipitation), and modeled descriptions (e.g. 373 

water and energy fluxes). For each variable, zone, and classification scheme, we compute the 374 

mean (𝜇)	of the hillslope values and the corresponding coefficient of variation (CV), see Table 375 

1. We also calculate the mean of the CV of the different zones for each variable and 376 

classification scheme. This allows us to determine the classification scheme that categorizes 377 

zones with the least variability, an important metric that provides a degree of performance for the 378 

method’s ability to delineate zones.  379 

 380 

 381 

 382 
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Variable: Elevation 

 

Variable: Precipitation 

 

Variable: Temperature 

 

Variable: SWE 

 

Variable: ET 
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Variable: Saturation 

 

Variable: WTD 

 

Variable: ΔP2 

 

Table 1: Mean	𝜇	 and coefficient of variation CV of each variable and zone derived from the 8 383 

classifications. 384 
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 385 

3.2.1. Similarities in hillslope structure 386 
 387 

Elevation plays an important role in shaping the hydroclimate of a given region 388 

especially in mountainous watersheds where it controls snow accumulation, the principal driver 389 

of the downstream hydrology. Figure 6 shows the elevation distributions associated with the 390 

different zones derived from the 8 classifications.  391 

 392 

Figure 6: Distributions of hillslope elevation of the three zones derived from ΔP1, 393 

elevation, land cover (LULC), topographic wetness index (TWI), aridity index (AI), and 394 

clustering (clustering with inputs C.I., clustering with outputs C.O., and clustering with inputs 395 

and outputs C.I.O) hillslope classifications. 396 

 397 

By classifying the hillslopes based on their similarity in ΔP1, we observe that hillslopes 398 

with low ΔP have the lowest elevation while the hillslopes of zone 3 (high ΔP1) have the highest 399 
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elevation. Unsurprisingly, the second classification scheme (i.e. elevation-based) clearly 400 

distinguishes the hillslopes based on their elevation, as it is the essence of that classification 401 

scheme. The AI is also an excellent index for identifying hillslopes with similar elevation as 402 

discussed and shown in Figures 4 and 6. The TWI classification performs moderately, where 403 

zone 1 and 2 are characterized by similar elevation distributions. Hillslopes with lower TWI are 404 

mostly located in high elevation areas on the contrary to the low elevation hillslopes. In the land 405 

cover-based classification, most of the grassed hillslopes (zone 1) are in low elevation, forests 406 

(zone 2) in mid-elevation, and hillslopes whose landscape is mainly bare soil (zone 3) are in high 407 

elevation areas above the tree line. The three clustering classifications allow distinguishing zones 408 

with similar elevation, their coefficients of variation are of the same order as the elevation based 409 

classification. These three classifications lead to similar results indicating that both inputs and 410 

outputs yield the same results.  411 

Table 2 describes the average percentage of the main land cover type at the hillslope 412 

scale for each zone and classification. The selected classifications lead to similar conclusions, 413 

hillslopes associated with zone 1 have mainly grasses, while hillslopes of zone 2 have mostly 414 

identical percentage of forest and grasses in the ΔP1, AI, and elevation classifications. LULC 415 

classification allows clearly distinguishing zone 1 (grasses) from zone 2 (hillslopes of these 416 

zones have more than 70% of forest). For ΔP1, elevation, AI, and LULC classifications, zone 3 is 417 

mostly comprised of bare soil, as this zone is mostly located in high elevation areas above the 418 

tree line. In the TWI classification, zone 1 is characterized by grasses whereas zone 3’s land 419 

cover located in high elevation with low TWI is bare soil.  420 

 421 

 422 
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ΔP1 Forest Grassland Bare Soil 
Zone 1 0.35 0.55 0.10 
Zone 2 0.35 0.43 0.22 
Zone 3 0.11 0.27 0.62 
CV 0.97 0.56 0.69 

    
Elevation Forest Grassland Bare Soil 
Zone 1 0.28 0.56 0.15 
Zone 2 0.41 0.42 0.17 
Zone 3 0.07 0.26 0.68 
CV 1.33 0.76 1.07 

    
Land Cover Forest Grassland Bare Soil 
Zone 1 0.23 0.67 0.14 
Zone 2 0.72 0.26 0.12 
Zone 3 0.12 0.22 0.66 
CV 0.67 0.45 0.64 

    
Topographic Wetness Index (TWI) Forest Grasslands Bare Soil 
Zone 1 0.24 0.66 0.10 
Zone 2 0.35 0.51 0.14 
Zone 3 0.32 0.35 0.33 
CV 1.47 0.49 0.95 

    
Aridity Index Forest Grassland Bare Soil 
Zone 1 0.34 0.57 0.09 
Zone 2 0.37 0.41 0.22 
Zone 3 0.07 0.32 0.61 
CV 0.91 0.56 0.69 

    
Clustering with input layers Forest Grassland Bare Soil 
Zone 1 0.44 0.42 0.14 
Zone 2 0.11 0.83 0.06 
Zone 3 0.12 0.25 0.63 
CV 0.83 0.38 0.62 

    
Clustering with output layers Forest Grasslands Bare Soil 
Zone 1 0.14 0.77 0.09 
Zone 2 0.52 0.34 0.15 
Zone 3 0.11 0.25 0.64 
CV 0.77 0.38 0.61 
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Clustering with inputs and outputs Forest Grassland Bare Soil 
Zone 1 0.42 0.40 0.18 
Zone 2 0.12 0.82 0.06 
Zone 3 0.05 0.24 0.70 
CV 0.87 0.41 0.65 

Table 2: Average values of hillslope percentage of forests, grasslands, and bare soils for each 423 

zone and classification  424 

 425 

3.2.2. Similarities in hydroclimate 426 
 427 

Figures 7a and b depict the distributions of precipitation and temperature obtained with 428 

the eight selected classifications. The classifications based on elevation and AI allows clearly 429 

distinguishing the hydroclimate associated with each zone. Zone 1 located in low elevation has 430 

low precipitation rates and high temperatures, contrary to zone 3. Zone 2 is characterized by an 431 

intermediate climate. Our approach based on seasonal variation in groundwater changes leads to 432 

conclusions similar to the clustering and AI based classifications. The resulting average CV of 433 

these three types of classifications are similar. These three classifications remain the only 434 

methods that allow characterizing each zone by its hydroclimate. Although, we note that in the 435 

three clustering classifications as well as in the ΔP approach, Zones 1 and 2 have similar 436 

hydroclimate, which is not the case in the AI based classification. While the classification based 437 

on the land cover clearly identifies the typical hydroclimate of the hillslopes of zone 3 (bare 438 

soil), the two remaining zones have the same hydroclimate. The classification based on the TWI 439 

does not regroup hillslopes based on their hydroclimates; again this type of classification mainly 440 

describes how a given hillslope release water based on its topographic structure. Nevertheless, it 441 

is important to account for the hydroclimate of hillslopes in a classification.  442 
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Figure 7: Distributions of hillslope (a) annual average daily rates of precipitation and (b) annual 443 

average temperature of the three zones derived from ΔP1, elevation, land cover (LULC), 444 

topographic wetness index (TWI), aridity index (AI), and clustering (clustering with inputs C.I., 445 

clustering with outputs C.O., and clustering with inputs and outputs C.I.O) hillslope 446 

classifications. 447 

 448 

3.2.3. Similarities in hydrologic function 449 
 450 

A hillslope hydrologic function should aim to describe how a hillslope partitions, stores, 451 

retains, and releases water. Many hydrologic processes, both at the land surface and in the 452 

subsurface, are simultaneously occurring, which typically result in non-linear dynamics. In this 453 

section, we show the performance of the classification schemes to delineate regions exhibiting 454 

different surface and subsurface hydrologic behavior.  455 

 456 

3.2.3.1.  Land surface processes 457 
 458 
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A robust classification of hillslopes in mountainous watersheds should integrate the 459 

similarity in snow dynamics. Figure 8a illustrates the SWE distribution associated with each 460 

zone and classification. Because SWE dynamics are primarily driven by elevation and the 461 

precipitation, the classifications based on the AI and clustering have the lowest average of the 462 

CV followed by the land cover and the ΔP1 based classification. The land cover spatial 463 

distribution contains information about elevation especially in high elevation areas where some 464 

hillslopes are located above the tree line. The ΔP1 approach accounts for SWE dynamics because 465 

the seasonal changes in groundwater depend on the snowmelt, ΔP1 is highly correlated to SWE 466 

as discussed in section 3.1.  467 

  

 

 

Figure 8: Distributions of hillslope land surface variables (a) annual average SWE and (b) annual 468 

average daily rates of ET of the three zones derived from ΔP1, elevation, land cover (LULC), 469 

topographic wetness index (TWI), aridity index (AI), and clustering (clustering with inputs C.I., 470 

clustering with outputs C.O., and clustering with inputs and outputs C.I.O) hillslope 471 

classifications.  472 
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The spatial distribution of ET is controlled by many factors, including soil moisture, land 474 

cover, and subsurface flow. As a result, the land cover based classification performs well at 475 

delineating hillslopes with similar ET rates (Figure 8b). Consistent with the aforementioned 476 

results, the other classification schemes performing well are the ones based on clustering, 477 

followed by the AI based classification. To some extent, the TWI and elevation classifications 478 

poorly distinguish hillslopes with similar ET. The average CV associated with the ΔP1 479 

classification is close to that of the classifications based on land cover and AI. As stated in many 480 

studies (Ferguson & Maxwell, 2010; Maina & Siirila‐Woodburn, 2020), subsurface flow affects 481 

ET, as such information about subsurface flow contains valuable information about the ET even 482 

if the correlation between ΔP1 and ET is nonlinear.  483 

 484 

3.2.3.2. Similarities in subsurface flow 485 
 486 

We investigate the ability of the eight selected classifications to identify hillslopes with 487 

similar subsurface hydrodynamics. We study the average saturation of the first 10 cm of the soil 488 

throughout the WY, the yearly average of water table depth, and the seasonal changes in 489 

groundwater levels ΔP2. Soil saturation is a key feature in both subsurface and atmospheric 490 

dynamics; it controls ET and groundwater recharge. Therefore, an appropriate hillslope 491 

classification should be able to identify and categorize hillslope with similar soil moisture 492 

patterns. The averages of the CV associated with the classifications based on ΔP1, TWI, AI, land 493 

cover, and clustering are very similar (Figure 9a). As the land cover based classification 494 

adequately regroups hillslopes with similar ET, it also allows regrouping hillslopes with similar 495 

soil saturation. Because the TWI approach describes water transfer, it serves as a good indicator 496 

of soil saturation like the AI. Similar to the results above, the clustering based approaches 497 
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perform well in the classification of hillslopes based on their similarity in saturation. The ΔP1 498 

based classification has one of the lowest averages of CV due to the strong connection between 499 

the changes in groundwater and soil saturation. Elevation based classification fails to identify 500 

hillslope with similar soil saturation, where the distributions of the three defined zones show 501 

overlap.  502 
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Figure 9: Distributions of hillslope (a) saturation, (b) WTD, and ΔP2 of the three zones derived 503 

from ΔP1, elevation, land cover (LULC), topographic wetness index (TWI), aridity index (AI), 504 

and clustering (clustering with inputs C.I., clustering with outputs C.O., and clustering with 505 

inputs and outputs C.I.O) hillslope classifications.  506 

 507 

Groundwater storage is mostly quantified in terms of WTD. WTD is an important 508 

variable for determining water storage at a hillslope scale. Here, we quantify the average WTD 509 

throughout the year. As expected, the ΔP1 based classification groups hillslopes with similar 510 

WTD (Figure 9b). Zone 1 located in low elevation has the shallowest WTD and the lowest ΔP1, 511 

contrary to zone 3. Zone 2 exhibits an intermediary behavior. The TWI and land cover 512 

classification schemes also are good methods for identifying hillslope with similar changes in 513 

WTD. Hillslopes with low TWI (Zone 3) have the deepest WTD, contrary to the hillslopes of 514 

Zone 1. The land cover based classification indicates that most of the forest (Zone 2) and bare 515 

soil (Zone 3) hillslopes have deep WTD whereas grasses (Zone 1) hillslopes have the shallowest 516 

0

2

4

6

ΔP
2 
(m
)

ΔP
1

CV
=0
.26

El
ev

at
ion

CV
=0
.5 TW

I
CV
=0
.45 C.
 I.

CV
=0
.34

LU
LC

CV
=0
.36 AI

CV
=0
.36

C.
 O

.
CV
=0
.32

C.
 I.

 O
.

CV
=0
.3

0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25

(c)

Frequency (-)

https://doi.org/10.5194/hess-2021-520
Preprint. Discussion started: 26 October 2021
c© Author(s) 2021. CC BY 4.0 License.



31 
 

WTD. The elevation-based classification scheme doesn’t accurately regroup hillslopes with 517 

similar WTD, and its average CV remains higher than the 4 other classification schemes. The AI 518 

method, like the elevation method, isn’t a good variable for identifying hillslopes with similar 519 

WTD. In fact, all the three zones overlap in terms of WTD even if their AIs are distinct. Results 520 

from the clustering approach are similar to the ΔP1 based classification with a CV of the same 521 

order, yet there isn’t a clear distinction between Zone 1 and 2 in these approaches. 522 

Figure 9c illustrates the distributions of the seasonal changes in groundwater levels for 523 

each classification and zone. The classification based on ΔP1 groups hillslopes with similar ΔP2 524 

as expected. Another suitable approach to group hillslopes with similar ΔP2 is the land cover 525 

classification. Zone 3 characterizing bare soil hillslopes has the highest ΔP2, unlike zones 1 and 526 

2. The AI classification shows that the majority of zone 3 hillslopes have high ΔP2 whereas zone 527 

2 hillslopes have low ΔP2, followed by zone 1 hillslopes. In terms of ΔP2 similarity, the 528 

elevation-based classification outperforms the TWI. The clustering approaches area good way of 529 

grouping with hillslopes with similar ΔP2 especially the clustering approach based on inputs 530 

variables CI. The two other clustering approaches (outputs and inputs and outputs) do not 531 

distinguish zone 1 from zone 2.  532 

 533 

3.2.4.  Advantages of a similarity index based ΔP 534 
 535 

Depending on the purpose of the identification of similar hillslopes, the appropriate 536 

classification scheme may change. Nonetheless, it is important for any classification to identify 537 

hillslopes with similar hydrologic functions. As demonstrated here, the advantage of using ΔP1 to 538 

identify similar hillslopes is that many hydrologic processes are embedded in the seasonal 539 

changes in groundwater. Our comparisons have shown that by using a ΔP1 classification scheme 540 
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to identify hillslopes of similar nature, one is able to group regions based on not only similar 541 

subsurface hydrodynamics but also similar land surface dynamics. Because these processes are 542 

intimately linked to the structure, the static characteristics, and the physical properties of the 543 

hillslope, its hydroclimate, and its land cover, the ΔP1 approach also allows for the identification 544 

of hillslopes with similar topographic structures, land cover, and hydroclimates. For these 545 

reasons, ΔP1 could be considered as an integrated variable for hillslope similarity that does not 546 

solely depend on a particular hydrologic process or hillslope characteristics. 547 

We, however, highlight that other classifications may outperform the ΔP1 when looking 548 

at a single process or a single characteristic. For instance, our results show that the elevation and 549 

AI classifications may be excellent approaches to group hillslopes with similar hydroclimates 550 

and snow dynamics. The land cover based classification allows for better identification of 551 

hillslopes with similar land surface processes such as ET and soil saturation. Lastly, the TWI 552 

classification scheme allows the grouping of hillslopes with similar groundwater dynamics and 553 

soil saturation values as it describes the water transfer. In terms of overall performance, our 554 

results show that for the study site considered here, the clustering approach is also a very good 555 

approach for hillslope classification.  556 

 557 

3.2.5. Similarities in hydrologic responses to wet and dry conditions 558 
 559 

According to McDonnell & Woods, (2004) and Wagener et al., (2007), any classification 560 

should be able to predict the dynamics of the hillslopes. We test the ability of the ΔP1 based 561 

classification to predict the dynamics of the hillslopes in wet and dry conditions. A possible 562 

limitation of a classification based on a hydrologic process is that the latter may be linked to the 563 

conditions of the selected year. Hydrologic responses are by essence nonlinear and may strongly 564 
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change from year to year. In addition, compared to the intrinsic characteristics of the hillslope 565 

(elevation, topographic index, and land cover), which are only variable if long periods of time 566 

are considered; the scale at which hydrologic processes change is much shorter. Therefore, a 567 

classification scheme based on a process-based approach may be time-dependent. We previously 568 

quantified ΔP1 using the seasonal changes in groundwater in an average WY. In this section, we 569 

compare the response of each zone to dry and wet conditions. We extend our simulation from the 570 

WY 2015 to include the WYs 2016, 2017, and 2018, then we analyze WYs 2017 and 2018. This 571 

4-year simulation covers a relatively wet (2017) and dry (2018) WY. The annual average 572 

precipitation in 2017 was ~15% higher than the annual average precipitation in 2015. After this 573 

wet WY, the watershed is characterized by a dry climate in 2018, with average precipitation 574 

almost 50% below the normal conditions. Figure 10 shows the distributions of hillslope annual 575 

average values of precipitation and ET, and the hillslope ΔP2 associated with the defined ΔP1 576 

zones and for both the wet WY 2017 and the dry WY 2018. We have selected the key variables 577 

describing the hydroclimate (Precipitation), land surface processes (ET), and subsurface 578 

hydrodynamics (ΔP2).  579 
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 580 

Figure 10: Distributions of hillslope annual average daily rates of precipitation and 581 

evapotranspiration (ET), and the hillslope seasonal changes in groundwater levels (ΔP2) in 2017 582 

(wet WY) and 2018 (dry WY) of the three zones derived from the WY 2015 ΔP1 583 

 584 

At first glance, for both dry and wet years and selected processes, all zones remain 585 

distinct. Zone 1 regrouping hillslopes with low seasonal changes in groundwater located in low 586 

elevation remains with low precipitation, high ET, and low seasonal changes in groundwater 587 

through both wet and dry years. Zone 3 describing hillslopes with high seasonal changes in 588 

groundwater has the highest precipitation in the area during both the wet and dry years. 589 

Hillslopes of zone 2, located in mid-elevation, have most of their hydrologic dynamics in 590 

between those of zone 1 and 3 except their ET, which is the highest in the area due to the 591 

presence of forest. Our results show that although we defined hillslopes classification based on a 592 

hydrologic process during an average WY, our classification can predict the similarity of the 593 

dynamics of these hillslopes in wet and dry conditions. The ΔP1 based classification approach is, 594 
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therefore, robust in predicting similarity in hydrologic responses under both wet and dry 595 

conditions. 596 

 597 

4. Summary and conclusions 598 
 599 

In this study, we use the seasonal changes in groundwater levels, termed ΔP1 (see 600 

definition in Figure 2), to identify and categorize similar hillslopes. The seasonal change in 601 

groundwater is an important and unique variable as many hydrologic processes including land 602 

surface processes and hydroclimatic effects propagate to affect this variable. Our results show 603 

that the ΔP1 classification allows transcending the uniqueness of place inherent in traditional 604 

classifications. We defined three zones based on their similarity in ΔP1. For a test case site in the 605 

East River watershed, zone 1 characterizes hillslopes with low ΔP1; these hillslopes are mostly 606 

located in low elevation areas, their main land cover is grassland, and their ET is high because 607 

their WTDs are shallow. Zone 3, on the opposite of zone 1 is located in high elevation areas and 608 

has high ΔP1; the hydroclimate leads to high snow accumulation and low ET. Hillslopes of zone 609 

3 are mostly bare soil. Zone 2 is in-between these two zones, most of the hillslopes of this zone 610 

are covered by forests.  611 

We tested the ability of the proposed ΔP1 based classification to identify and group 612 

hillslopes with similar static characteristics and hydrologic processes by comparing it with other 613 

existing approaches based on elevation, land cover, aridity index, a topographic wetting index, 614 

and three clusterings which uses multiple data layers, including model inputs and outputs. Our 615 

results show that the ΔP1 based classification is robust, as it reasonably identifies and categorizes 616 

hillslopes with similar elevation, land cover, hydroclimate characteristics, land surface processes 617 

(ET and SWE), and subsurface hydrodynamics (water table depths, soil moisture, and seasonal 618 
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changes in water table fluctuations). In general, the other approaches are good in identifying 619 

similarity in a single characteristic, a characteristic that is related to the selected variable which 620 

determines the classification scheme. Our work also demonstrates that a clustering approach, 621 

either based on top-down (inputs) or bottom-up (outputs) performs well. Nevertheless, these 622 

approaches like the ΔP1 based classification, require multiple datasets, each one with its own 623 

associated uncertainty. We further demonstrate the robustness of the proposed ΔP1 based 624 

classification by testing its ability to predict hillslope responses to wet and dry hydrologic 625 

conditions. The ΔP1 values used in this demonstration are derived from a model and could be a 626 

limitation for sites where simulated outputs are unavailable, or the spatio-temporal resolution of 627 

groundwater observations are limited.  628 

This study demonstrates the need for an integrated variable such as groundwater changes 629 

to identify and group similar hillslopes. Future studies could aim to define functional zones 630 

based on their seasonal changes in groundwater using sophisticated machine learning approaches 631 

or optimization procedures. Our results are limited to one catchment, which has snow-dominated 632 

hydrology. Future studies could expand the comparison shown here to other watersheds, to 633 

include additional classifications, and for different hydroclimate and durations of time (for 634 

example, sub-annual or multi-annual classifications).  635 
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