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Abstract. Excessive nutrient loading is a major cause of water quality problems worldwide, includingoften leading to harmful 

algal blooms and hypoxia in North Carolina (NC), where reservoirslakes and coastal systems are often subject to excessive 

algae and hypoxia. Efficient nutrient management requires that loading sources are accurately quantified. However, loading 

rates from various urban and rural non-point sources remain highly uncertain especially with respect to climatological 10 

variation. Furthermore, statistical calibration of loading models does not always yield plausible resultscalibrated using 

statistical techniques (i.e., hybrid models) often have limited capacity to differentiate export rates among various source types, 

given the noisiness and paucity of observational data common to many locations. To address these issues, we leverage data 

for two large NCNorth Carolina Piedmont river basins collected over three decades (1982-2017) using a mechanistically 

parsimonious watershed loading and transport model calibrated within a Bayesian hierarchical framework. We explore 15 

temporal drivers of loading by incorporating annual changes in precipitation, land use, livestock, and point sources within the 

model formulation. Also, different representations of urban development are compared based on how they constrain model 

uncertainties. Results show that urban lands built before 1980 are the largest source of nutrients, exporting over twice as much 

nitrogen per hectare than agricultural and post-1980 urban lands. In addition, pre-1980 urban lands are the most hydrologically 

constant source of nutrients, while agricultural lands show the most variation among high and low flow years. Finally, 20 

undeveloped lands export an order of magnitude (~ 7-13x) less nitrogen than built environments.  

1 Introduction 

Eutrophication stimulated by anthropogenic nutrient loading is a common cause of water quality problems worldwide (Smith 

et al., 1999).  In North Carolina (NC, USA), watershed-level nutrient management strategies have been developed for major 

reservoirs like Jordan Lake (JL) and Falls Lake (FL) using various process-based models (NC DWR, 2009; Tetra Tech 2014). 25 

Such models can operate on fine temporal scales (i.e., days) and characterize various mechanistic processes related to the 

transfer of water and nutrients through watersheds. However, due to the large number of uncertain parameters (i.e., rates, 

coefficients) included in these models, multiple parameter sets may appear to fit the observational data equally well (Beven, 

2006) without benefits to predictive performance (Jackson-Blake et al., 2017). Related to these issues, there is critical need for 
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systematic model calibration and uncertainty quantification, if modeling results are to inform management decisions 30 

(Reckhow, 1994; NRC, 2001; Reichert, 2020).  

Hybrid (empirical-mechanistic) watershed models, which represent nutrient loading, transport, and retention with fewer 

parameters but using probabilisticusing simple mechanistic relationships and statistical calibration techniques, (e.g., nonlinear 

regression, Bayesian inference), have also been developed for nutrient source apportionment. For example, numerous 

applications of the SPAtially Referenced Regressions of contaminant transport On Watershed attributes (SPARROW) 35 

modelsmodel have been applied throughout the USto many large river basins (Preston et al., 2011; Hoos and McMahon, 2009; 

Garcia et al., 2011).  SPARROW is calibrated in a statistical frameworkusing nonlinear regression that allows for parameter 

uncertainty quantification (i.e.., confidence intervals). A limitation of SPARROW is that it models long-term average 

conditions, and does not directly consider variability due to changes in precipitation (e.g., wet versus dry years) and watershed 

development, which have been shown to greatly affect nutrient loading (Howarth et al., 2012; Sinha and Michalak, 2016; 40 

Strickling and Obenour, 2018).   

Methodological enhancements to SPARROW and similar hybrid watershed models have been proposed over time (Qian et al., 

2005; Wellen et al., 2012; Xia et al., 2016). Recently, a Bayesian -hierarchical hybrid watershed model was developed to 

leverage temporal (interannual) variability in source distributions, and precipitation, and nutrient loading to improve source 

characterization (Strickling and Obenour, 2018). By modeling interannual variability over multiple decades, this approach 45 

providesproviding an assessment of how land use change and hydroclimatological variations have affected nutrient loading. 

over time (Strickling and Obenour, 2018). Additionally, itthis approach systematically incorporatesincorporated and 

updatesupdated prior information on nutrient export and retention rates from previous studies through Bayesian inference, 

which helps reduce parameter and prediction uncertainty (Strickling & Obenour, 2018).. At the same time, Bayesian hybrid 

models often show limited capacity to differentiate loading rates among multiple source types (e.g., different land uses). 50 

Previous applications typically included only a small number of source types or had wide posterior credible intervals for export 

rates (e.g., Qian et al. 2005; Wellen et al., 2012; Strickling & Obenour 2018).      

The goal of this study is to improve our understanding of nitrogen export within two highly managed NC basins that feed 

critical water supply reservoirs using over 30 years of loading data (1982-2017).  We . Using a Bayesian hybrid watershed 

modelling approach, we characterize nitrogen export rates from several different land uses, livestock types, and point sources, 55 

and test. In particular, we explore how nitrogen -loading rates fromestimates vary among different types of urban lands based 

on their density and the age of urbanization.construction, considering how improved regulations and building practices may 

influence nutrient export. In addition, we determine variationsdemonstrate a novel approach for characterizing interannual 

variability in annualboth nitrogen loadingsexport and stream and waterbody retention rates, based on hydro-climatological 

conditions. Compared to Strickling and Obenour (2018), we focus on a smaller study area with relatively dense monitoring, 60 

improve and compare different measures of land urbanization, and more realistically quantify inter-annual loading variations 

due to mean annual precipitation. This study benefits from a relatively high-resolution monitoring network (with a mean 

watershed monitoring unit of just 321 km2, compared to 1535 km2 in Strickling & Obenour, 2018) and over 30 years of loading 
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data (1982-2017).  Finally, we characterize instream nutrient retention rates and partition reservoir loading into various 

upstream sources based on varying hydro-climatological conditions to help inform currentwatershed management decisions. 65 

2 Methods 

2.1 Study Area 

JL and FL, located in the Piedmont region of NC (Fig. 1), were impounded by the US Army Corps of Engineers in the early 

1980s. Portions of each reservoir have exceeded NC water quality criteria, particularly for algae (chlorophyll a; NC DWR, 

2020).  JL watershed planning has been ongoing since the early 2000s, and initial TN reductions were set at 35%  for the  New 70 

Hope (NH) Creek basin and 8% for the Haw River (HR) basin. FL watershed planning was formalized in 2011, and Phase I 

goals of the Falls Lake Rules included a TN reduction of 40% from major sources in the watershed 

(http://portal.ncdenr.org/web/fallslake/). JL and FL fall within the Cape Fear River basin and Neuse River basin respectively, 

but both share similar underlying hydroclimatic and soil conditions and comparable levels of anthropogenic development 

(Markewich et al., 1990; Strickling & Obenour, 2018). 75 

2.2 Load monitoring sites (LMSs) 

Nutrient load monitoring sites (LMSs) were identified based on locations that had sufficient flow and nutrient sampling data 

to calculate yearly TN loads. To be included, a site needed a minimum of five years of daily flow records and at least 50 water 

quality samples during that period of record. TheseWhile somewhat context specific, these minimum conditions are generally 

consistent with previous studies using USGS WRTDS for load estimates and model defaults (estimation (Chanat et al., 2012; 80 

Hirsch and De Cicco, 2015; Chanat et al., 2012). All flow data were obtained from the United States Geological Survey 

(USGS), whereas nutrient data were obtained from the Water Quality Portal (WQP; Read et al., 2017) as well as local city 

managers (e.g., city of Durham). The two largest sources of nutrient data (from the WQP) came from the USGS and the NC 

Department of Environmental Quality (NCDEQ). Sites from these different entities were often located in close proximity. 

Data from water quality sites with less than 5% deviations in watershed area and no intervening point sources were compiled 85 

together (Table 1). 

In many cases, ample water quality data were available at the location of the USGS flow monitoring station. However, if little 

or no water quality data were located at the flow station, a nearby water quality station was used instead, assuming there was 

less than a 20% change in watershed area between the flow and water quality monitoring stations. If multiple water quality 

sites were located close to the flow station, only the site with the longest record was chosen. In one exception, two water 90 

quality sites utilized the same flow monitoring station (NH1 and NH6; Table 1), which was done to include two substantial 

data records collected above and below a major point source on Morgan Creek. In such cases, the LMSs were represented at 

the location of the water quality monitoring sites, and flows were adjusted based on the drainage area ratio between the two 

sites adjusting for any intervening wastewater flow.  

http://portal.ncdenr.org/web/fallslake/
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There were 25 LMSs in our study area (Fig. 1; Table 1). Stations were split into three major basins for classification purposes: 95 

the Haw RiverHR basin of JL, the NH Creek basin of JL, and the FL basin. LMSs captured 85% of the HR basin, 49% of the 

NH basin, and 62% of the FL basin.  Three LMSs were located directly downstream of major impoundments (HR4, FL6, and 

FL 9; Fig. 1; Table 1).  

2.3 Watershed Delineations 

LMS watersheds2.3 Delineation of Incremental Watersheds and Subwatersheds 100 

Watersheds for LMSs were delineated using Spatial Analyst tools in ArcMap 10.6.1 (ESRI, 2018). Watershed drainage areas 

ranged from 11 km2 to over 3000 km2 (Table 1) with a median value of 106 km2. Often, LMS watersheds had one or more 

LMS contained within their upstream watershed (Fig. 1). In order to accommodate nested LMS watersheds, we determined 

incremental LMS watersheds by subtracting out any upstream LMS watersheds that were contained in a larger (downstream) 

LMS watershed. (Schwarz et al., 2006). If a LMS did not have anany upstream LMSLMSs in its watershed, its incremental 105 

watershed was equal to its total watershed. Note that the loads associated with these incremental watersheds formed the main 

response variable in our model (Section 2.7). 

To more accurately account for nitrogen transport and retention, incremental LMS watersheds were divided into subwatersheds 

(Fig. 1). Most data (e.g., land use, precipitation, livestock) were compiled at the subwatershed level. The largest possible 

subwatershed corresponded to a USGS 12-digit hydraulic unit code (HUC; https://water.usgs.gov/GIS/huc.html). If a LMS 110 

was located in the middle of a HUC, the HUC was split into two. Seventy-nine subwatersheds were located within the study 

area, with a mean drainage area of 63 km2, minimum of 11 km2, and maximum of 146 km2. 

2.4 Anthropogenic Factors 

2.4.1 Land Uses 

Land use variables were derived from the U.S. conterminous Wall-to-wall Anthropogenic Land use Trends (NWALT) dataset 115 

(Falcone 2015). We aggregated NWALT land use designations into three major categories: urban (including residential, 

transportation, industrial, and commercial development), agriculture (pasture and crop), and undeveloped (semi-developed, 

low use, and wetlands). Semi-developed land was included with undeveloped because it is mostly comprised of forested land 

in central NC (Miller et al., 2019). We further split urbanization constructed before and after a given date (e.g., 1980, 2000) 

and between low and high density. In order toTo determine when urbanization occurred in the region, we interpolated available 120 

NWALT data (1974, 1982, 1992, 2002, and 2012) to obtain year-specific land use values for each subwatershed. Since our 

study extended beyond 2012, we also used linear extrapolation for years 2013-2017 based on 2002 and 2012 values. Land use 

trends throughout the study period were generally gradual, such that modest linear extrapolation was considered reasonable 

(Fig. 2; top row).  

https://water.usgs.gov/GIS/huc.html
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2.4.2 Point Sources 125 

Point sources included major (> 0.044 m3/s) and minor wastewater treatment plants (WWTPs) (Fig. 1, Fig. S1, Table S1). 

Discharge data were obtained from NC DEQ and included monthly TN and flow values. However, many WWTPs had 

numerous missing months, so we determined annual loads as the product of yearly median concentrations and flows for each 

WWTP. LMSs with major WWTPs in their watersheds were only modeled starting in 1994 due to a lack of discharge data 

before that year (i.e., HR1,3,5, NH1-3, and FL1,3,10), while LMSs without major WWTPs were modeled from 1982 depending 130 

on data availability. Only one LMS (HR4) with pre-1994 monitoring data included a minor WWTP in its watershed. Since the 

minor WWTP represented < 3% of the LMS mean load, we assumed the pre-1994 load was equal to the mean post-1994 load. 

TN trends of point source discharges aggregated by basin are shown in Fig. 2.2 (middle row). 

2.4.3 Livestock 

The livestock in subwatersheds were estimated from county-level US Department of Agriculture (USDA) census and survey 135 

reports (https://www.nass.usda.gov/). Cow and hogswine data covered our entire study period (1982-2017) while chicken data 

were available every five years beginning in 1997. For missing years between census dates, chicken counts were interpolated, 

whereas chicken counts before 1997 were assumed to be equal to 1997 values. Only two incremental watersheds (HR1, 3) had 

large chicken counts (> 1,000,000 and > 150,000, respectively) and these watersheds were not modeled before 1994 (as they 

were also missing major WWTP discharge data). 140 

To represent the locations of livestock throughout the region, county-level data were assigned to incremental watersheds based 

on an area ratio. Major urban areas were excluded when calculating these proportions, as livestock were assumed to be located 

outside cities. Livestock counts were then divided into the subwatersheds (using area ratios). However, chickens in Chatham 

County were accounted for differently because a majority of Chatham’s chicken farms (>90%) are located outside of the JL 

basin, and the county has a relatively high chicken count (>3,000,000; USDA). Chatham County records (opendata-145 

chathamncgis.opendata.arcgis.com) were used to estimate that 8.2% of the county’s chickens were within the JL basin. Basin 

level trends of livestock are shown in Fig. 2.2 (bottom row).  

2.5 Precipitation 

Monthly precipitation estimates for this study were obtained from the PRISM Climate Group 

(http://www.prism.oregonstate.edu/). These data were processed using the R package “raster” (Hijmans et al., 2015; R Core 150 

Team, 2019) to determine mean annual precipitation for each subwatershed. There was substantial variation in precipitation 

among years (0.82 – 1.59 m/yr) and among different subwatersheds within the same year (Fig. S2).  

https://www.nass.usda.gov/
http://www.prism.oregonstate.edu/
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2.6 Nutrient Load Calculations 

Our model required yearly TN loadings at each LMS for Bayesian inference (i.e., calibration). Most riverine monitoring 

programs measure streamflow daily, whereas nutrient concentrations are sampled less frequently (e.g., monthly). In this study, 155 

daily TN concentrations were estimated using the USGS Weighted Regressions on Time, Discharge, and Season (WRTDS;  

(Hirsch et al., 2010). WRTDS develops a semi-parametric regression for each day in the estimation period where observations 

that are collected under similar conditions to the estimation date (in terms of time, discharge, and season) are more heavily 

weighted. For some LMS sites, there were rapidabrupt temporal changes in nutrient loading associated with WWTP plant 

upgrades. In order to not biasthese cases, WRTDS loading estimates near these events,was run separately before and after the 160 

period of record was split into twoupgrade date to avoid smoothing out these transitions (Table S2).  

Some LMSs had incomplete monitoring data (daily flow or water quality samples) during our study period (Table 1). If a LMS 

was missing flow data for a given year, that year was omitted. However, nutrientWRTDS is able to calculate loads could be 

estimated by WRTDS for years with missing water quality data. Gaps in water quality samples of up to one year were 

considered acceptable in our study, as preliminary analysis (removing single years of observational data at random) showed 165 

that a one-year gap affected loading estimates by less than 1%.% and this is more conservative than WRTDS guidelines (Hirsch 

and De Cicco, 2015). In addition, at least 6 samples were required in both the beginning and ending year of each loading 

record.  

UncertaintyUncertainties in loading estimates were determined through subsampling of three NC stations that had nearly daily 

TN observations for at least 7 consecutive years (Strickling and Obenour, 2018). By comparing TN loads based on the full 170 

dataset and different subsets, we estimated the coefficient of variation (and consequently the standard deviation, SD) of 

WRTDS estimates based on the number of water quality samples available for a given year (Fig. S3).S3). Accounting for these 

uncertainties allowed us to give more weight to loading estimates based on a larger number of nutrient samples (Section 2.7).  

The response variable in our model was the change in nutrient load across an incremental watershed, defined as the difference 

between the load at an incremental watershed’s downstream LMS and the cumulative load from any upstream LMSs. For sites 175 

with no upstream LMSs, the incremental load iswas equal to its total load. The uncertainties of incremental loads for LMSs 

with upstream LMSs were calculated based on the relationship between correlated random variables (Eq. (1); Kottegoda & 

Rosso, 2008): 

   𝜎̃𝑖,𝑡
2  = 𝜎𝑖,𝑡

2 − 2 ∑ 𝜌𝑖,𝑘𝜎𝑖,𝑡𝜎𝑘,𝑡
𝑛
𝑘=1 + ∑ ∑ 𝜌𝑘,𝑙𝜎𝑘,𝑡𝜎𝑙,𝑡

𝑛
𝑙=1

𝑛
𝑘=1      (1) 

Wherewhere 𝜎̃𝑖,𝑡
2  is the incremental load variance for a given incremental LMS watershed (i) in year (t), with n upstream LMSs 180 

(k, lmax n=3 for HR3; Fig. 1; Table 1). Here, 𝜎𝑖,𝑡
2  is the error variance at the downstream LMS, 𝜎𝑘,𝑡 and 𝜎𝑙,𝑡 are the WRTDS 

standard deviationsSDs at upstream LMSs, and 𝜌𝑖,𝑘  and 𝜌𝑘,𝑙 are correlation coefficients between LMS loadings. 
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2.7 Model Construction 

Our model is formulated similar to Strickling and Obenour (2018). Within a Bayesian framework, we relate deterministically 

predicted incremental loads (𝑦̂i,t; Eq. (2)) to an inferred incremental load (yi,t). The watershed-level random effect (αi; Gelman 185 

et al., 2014) accounts for spatial variability not explained by the deterministic prediction (𝑦̂i,t), and the residual error (with 

standard deviation,SD σε) primarily accounts for temporal variability unexplained by the deterministic prediction. The 

hyperdistribution of the normally distributed watershed-level random effect is centered on zero, with variance 𝜎𝐿𝑀𝑆
2 .    

    L(yi,t) ~ N( L(𝑦̂i,t + αi), σε)      (2) 

     αi ~ N(0, 𝜎𝐿𝑀𝑆) 190 

L(y) is the natural log transformation of y + 105 (kg/yearyr of TN). This transformation reduces heteroscedasticity in residuals 

while accounting for any negative incremental loads that would produce non-real values when log transformed. Negative 

incremental loads are possible in this model, especially for incremental watersheds with large impoundments that retain a 

substantial portion of the load from upstream LMSs. The largest negative loads were on the order of 5 x 104 kg/yr. 

The inferred incremental load (yi,t; Eq. (2)) is related to the WRTDS incremental estimates (𝑦̃i,t; Eq. (3)) by taking into account 195 

the uncertainty of those loading estimates (𝜎̃i,t; Eq. (1)).  

     𝑦̃i,t ~ N(yi,t, 𝜎̃i,t)      (3) 

Within the model, the deterministic prediction (𝑦̂i,t) is calculated by aggregating incremental watershed source contributions 

and subtracting in-stream losses from upstream LMS loads (Eq. (4)).  

  𝑦̂i,t =   Li,t,ur1 + Li,t,ur2 + Li,t,ag + Li,t,und + Li,t,ps + Li,t,ch + Li,t,hsw + Li,t,cw – Ui,t * rirt,z + ԑi,t        (4) 200 

Contributions are calculated for two urban (Li,t,ur1; Li,t,ur2), agricultural (Li,t,ag), and undeveloped (Li,t,und) lands, point sources 

(Li,t,ps), chickens (Li,t,ch), hogsswines (Li,t,hsw), and cows (Li,t,cw). Loads from upstream incremental watersheds (Ui,t) are reduced 

by their expected in-stream and reservoir losses (rirt,z; Eq. (6); see Nitrogen Retention). Each source-specific load is calculated 

as follows: 

   Li,t,x = βx (𝑝̃𝑖,𝑡  𝛾𝑥 ) * aTi,t,x * (1 - ri,t)        (5a) (land use) 205 

  Li,t,x = βx (𝑝̃𝑖,𝑡  𝛾𝑥) * hTi,t,x * (1 - ri,t)        (5b) (livestock) 

  Li,t,x = βps  * wTi,t * (1 - ri,t)        (5c) (point source) 

where Li,t,x (kg/yr) represents the total contributed load for a given LMS (i), source (x), and year (t). Parameter βx represents a 

land or livestock export coefficient (EC; kg/ha/yr or kg/an/yr) or the point source (i.e., WWTP) delivery coefficient (unitless, 

0-1). Parameter γx is the precipitation impact coefficient (PIC, unitless) for a given nonpoint source, which is parameterized 210 

as a power relationship with the export coefficient (Eq. (5)). PICs differ by source, but are related to each other through a 

common hyperdistribution with mean µ𝛾 and standard deviationSD 𝜎𝛾 (Table S3).  This formulation differs from the linear 

relationship between precipitation and loading used in Strickling and Obenour (2018) and avoids potentially negative loading 

values during extremely low flow years. Point sources do not have a PIC term (Eq.(5c)) as the WWTP data already account 
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for yearly variation. Scaled annual precipitation (𝑝𝑖,𝑡 )  for each incremental watershed is determined by dividing by the mean 215 

precipitation of the study area. Often, a given source type was distributed among multiple locations (e.g., 

subbasinssubwatersheds) within an incremental watershed. To account for this, aT
i,t,x, hT

i,t,x, and wT
i,t,x are transposed vectors 

of sources (i.e., ha of land use, counts of livestock, and load from WWTPs, respectively) across different locations that are 

multiplied by a vector (ri,t) of location-specific stream and reservoir retention losses. 

2.8 Nutrient Retention 220 

Nitrogen retention in streams is represented based on a first-order decay rate (−𝜅, d-1) and mean stream residence time (𝜏𝑧, d) 

for each path (z) from a given source (subwatershed or point source) to its downstream LMS. Estimated mean stream velocities 

are from the National Hydrography Dataset Plus (NHD+ (; Moore and Dewald, 2016). Travel distance was estimated as half 

the distance of the longest flow path within the source subwatershed plus the distance from the subwatershed to the downstream 

LMS. Nitrogen retention in reservoirs is modeled as a function of hydraulic loading rates (ratio of flow to surface area, 𝑞𝑤, 225 

m/yr) for each waterbody (w) and a mass transfer coefficient, (ω; m/yr.; Kelly, 1987). An overall retention rate (rt,z), combining 

streams and reservoirs, for each path (z) and year (t) is determined as:  

    𝑟𝑡,𝑧= 1– exp(−𝜅 ∗ 𝜏′
𝑡,𝑧) ∗ ∏ exp (

−𝜔

𝑞′ 
𝑡,𝑤

)𝑤     (6) 

allowing for multiple waterbodies along each flow path (i.e., the product function). While Strickling and Obenour (2018) used 

constant retention rates, here we allow rates to vary interannually by relating travel time and hydraulic loading to annual 230 

precipitation. Specifically, annual stream travel times (𝜏′ 
𝑡,𝑧) and reservoir hydraulic loading rates (𝑞′ 

𝑡,𝑤
) are determined based 

on a retention PIC (γret) and normalized yearly precipitation (pt; yearly precipitation minus mean precipitation divided by 

standard deviationSD), specific to each incremental watershed and year (Eq. (7a,b)):  

     𝜏′ 
𝑡,𝑧=   

𝜏𝑧

(1+𝛾,𝑟𝑒𝑡∗ 𝑝𝑡)
         (7a) 

            𝑞′ 
𝑡,𝑤

 = 𝑞 
𝑤

 * (1+ 𝛾𝑟𝑒𝑡  * 𝑝𝑡)        (7b) 235 

2.9 Bayesian Inference 

All model parameters were assigned a prior probability distributiondistributions (Table S3). Informative priors were used when 

previous studies reporting similar parameters were available. Prior distributions for land export rates were taken from Dodd 

(1992), while stream retention rates were adapted from previous SPARROW studies (Hoos and McHahon, 2009; Garcia et al., 

2011). Prior distributions for chicken and hogswine TN export coefficients were adapted from Strickling and Obenour (2018) 240 

to represent kilograms of TN per animal per year. Essentially uninformative priors (i.e., wide uniform priors) were used for 

the remaining parameters. 

For comparison, models were calibrated with urban lands split in four different ways: 1) pre and post-1980 urban lands, 2) pre 

and post-2000 urban lands, 3) low versus high density urban (high-density residential only), and 4) low vs. high density urban 

Formatted: Font: Italic
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(high- density residential, industrial, and commercial). Cut-offs of 1980 and 2000 were chosen to represent urban areas built 245 

before and after changing NC environmental regulations related to erosion and sediment control (1980) and stormwater quality 

control measures (2000) that have come into effect over the past 50 years (Howell 1990; USEPA 2005, NC DEQ, 2017). In 

order to evaluate the best representation, we compared model fit and the degree of overlap between the marginal posterior 

parameter distributions of the two different urban export coefficients within each model. 

Models were parameterized within the Bayesian framework using RStan software in R (R Core Team, 2019; Stan Development 250 

Team, 2020). RStan uses Hamiltonian Monte Carlo sampling of the posterior distribution and often converges faster than other 

samplers (Gelman et al., 2015). Three parallel chains of 20,000 iterations with a burn-in period of 5,000 iterations (that were 

discarded), creating 9,000 posterior samples after thinning (accepting every fifth iteration). Parameters were considered to 

have converged when their scale reduction coefficient (𝑅̂) was below 1.1 (Gelman and Rubin, 1992).  

2.10 Model Assessment and Validation 255 

Predictive performance was assessed using the coefficient of determination (i.e., variance explained, R2, Faraway, 2016) for 

incremental nutrient loads. Predicted incremental loading estimates (𝑦̂i,t) were derived using the Bayesian mean posterior 

values and compared to WRTDS loading estimates (𝑦̃i,t). Model performance was assessed for LMSs in the HR, NH, and FL 

watersheds with and without their watershed-level random effects. To test the ability of the model to make out-of-sample 

predictions, we performed a 3-fold cross-validation (Elsner and Schmertmann, 1994). The data were split into three groups by 260 

major watershedbasin (HR, NH, and FL),) and the model was trained on 2 of the 3 watersheds, in turn. Predictions were then 

made on the excluded major watershedbasin (in turn).  

3 Results 

3.1 In-stream Nutrient Loading Estimates 

WRTDS-derived annual loading estimates are quite noisy (Fig. 3; Fig. S4) due largely to hydrologic variability, while flow-265 

normalized estimates help illustrate long-term trends (Hirsch et al., 2010). TN loads in all basins decreaseddecrease 

substantially from 1980 to the late 1990s. However, post-2000 loading patterns are inconsistent both within and across basins. 

(Fig. 3). In the HR watershed, TN loading has steadily increased since 2000. In the NH watershed, substantial increases in 

loads wereare seen after 1995, though subsequent WWTP improvements reduced loading in some tributaries. (Fig. 3; Fig. S4). 

In FL, large post-2000 TN reductions occurredappear in FL1 and FL10, (Fig. 3), both of which have major WWTP discharges, 270 

while loadings in other FL watersheds have remained constant or trended upwards. 
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3.2 Comparing Different Urban Land Classifications 

The hybrid watershed model explains the spatial and temporal variability of in-stream (WRTDS-derived) TN loads based on 

precipitation and nutrient source distributions. To explore urban TN sources in more detail, we compare model variations 

withthe posterior parameter distributions of  different classifications of urban land use consideringthat consider the age, 275 

density, and type of urban development (Table 2). We find that a classification based on a pre/post 1980 split results in 

significantly different export rates, with the pre-1980 urban lands exporting more than twice the amount of post-1980 urban 

lands. Here, “significantly different” implies a >95% probability based on samples from the joint posterior parameter 

distribution. In addition, the pre/post 1980 division leads to the highest R2 values for individual LMSs. None of the other urban 

splits result in significantly different parameter estimates at a 95% credible level.. However, export rates from high-density 280 

and older urbanization are consistently higher than the less dense and newer urban lands. Among the two splits based on 

density, combining high-density residential, industrial, and commercial lands has higher predictive power than just separating 

high-density residential from other urbanization (R2= 0.47 vs. 0.44; Table 2). 

3.3 Model Posterior Parameter Estimates 

The posterior ECs (βx) of the preferred model (with the pre/post 1980 urban split) show that urban and agricultural lands both 285 

contribute substantial TN per unit areahectare (Table 3; Fig. 4). In particular, pre-1980 urban development exports 9.4 

kilograms per hectare per year (kg/ha/yr) of TN, (coefficient of variation (CV) of 11%; Table 3), while post-1980 development 

exports 3.9 kg/ha/yr, though with a relatively wide credible interval. (CV=41%). Agriculture also contributes a substantial 4.0 

kg/ha/yr, (CV=21%), while undeveloped lands export a relatively low 0.7 kg/ha/yr. In addition to pre-1980 urban export being 

significantly greater than other forms of development, undeveloped land has significantly less export than all developed lands, 290 

despite having a high CV (50%; Table 3). Model posterior distributions indicate that parameter uncertainties are reduced 

substantially relative to the prior distributions (Fig. 4). In addition to pre-1980 urban export being significantly greater than 

other forms of development (at 95% credible level), undeveloped land has significantly less export than all developed lands 

(Table 3).4), consistent with Strickling & Obenour (2018), who found that priors had a relatively small influence on parameter 

estimates relative to the data (i.e., the likelihood).  295 

Land use ECs represent expected nutrient export for a year with mean annual precipitation (i.e., 𝑝𝑖,𝑡 = 1; Eq. (5a)). Because 

the relationship between export and precipitation is nonlinear, the export coefficients represent median (but not mean) loading 

rates. The precipitation impact coefficients (PICs) can be used to calculate TN export during low and high flow years. 

Agriculture has the largest PIC (4.0; Table 3) implying that export from agricultural lands (crop and pasture) vary the most 

due to rainfall. During a high flow year (90th percentile 𝑝̃𝑖,𝑡=1.18), nutrient export for agriculture would almost double from 300 

4.0 to 7.7 kg/ha/yr. For a low flow year (10th percentile 𝑝𝑖,𝑡=0.81), nutrient export for agriculture (1.7 kg/ha/yr) is less than 

half the median export. Pre-1980 urban lands showedshow the lowest variation due to precipitation, ranging from 81% of 

normalmedian export in low flow years up to 122% in high flow years. 
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3.4 Spatial Variation in Nutrient Export and Retention 

The TN export from nonpoint sources (i.e., land use and livestock) wasis calculated for each subwatershed (Fig. 5a) using 305 

mean precipitation, and mean posterior land and livestock ECs (βec; Table 3). Since the most intensive nutrient export comes 

from pre-1980 urban lands, subwatersheds intersecting the urban cores of major cities (Fig. 5a) have the largest expected 

export. Predominantly rural watersheds export between 1-3 kg/ha/yr of TN, while urban cores export over 6 kg/ha/yr.  

On average, 13% of TN is retained within the JLstreams and FL stream and waterbody networkswaterbodies (Fig. 5b). Little 

TN is retained in subwatersheds close to JL and FL and along higher order streams, while large TN removal rates (> 70%) 310 

occur for subwatersheds located upstream of reservoirs in the upper northwest portions of the JL basin. Overall, more TN 

retention occurs in reservoirs than in streams. Residence times and hydraulic loading rates are also affected by precipitation as 

modulated by the PIC for stream retention (γret; 0.07; Table 3). For one standard deviationSD increase in yearly precipitation 

(17.1 cm), expected stream residence times and hydraulic loading rates decrease roughly 7% (Table 3; Eq. (7a,b)). During low 

precipitation years (lower 33%), 15% of TN is retained in the JL and FL networks, while 12% is retained during normal and 315 

high precipitation years (upper 67%). 

Watershed-level random effects account for unexplained spatial variations in nutrient loading. For example, the negative 

random effects for small watersheds comprised of mostly pre-1980 urban development (NH7, NH8, FL2) imply these 

watersheds export less TN (-2.5, -1.8, and -1.2 kg/ha/yr, respectively; Fig. S5) than typical pre-1980 urban lands (9.4 kg/ha/yr; 

Table 3). Similarly, two LMSs (FL6, FL9) located directly downstream of large impoundments had negative random effects, 320 

implying these impoundments may be particularly efficient at trapping nutrients. On the other hand, three watersheds (NH1, 

HR5, and FL1) located just downstream of major WWTP discharges have elevated TN watershed-level effects, suggesting 

loads may be underestimated by the available point source data (Fig. S5).   

Watershed random effects were also compared to regional soil distributions (Fig. S6) since soil and geologic properties have 

been linked to both nutrient loading and transport (Preston et al., 2011). Triassic soils, in particular, have a dist inct geologic 325 

history (NC Geol. Surv, 2019) with lower infiltration rates that result in higher erosion potential and lower baseflows in streams 

(Tetra Tech 2014). Six LMS watersheds had predominantly Triassic soils but random effects associated with these watersheds 

are inconsistent in sign and magnitude (Fig. S5). Thus, soil conditions do not appear to play a major role in determining 

nitrogen export in our study area. 

3.5 Nutrient Source Allocations Over Time 330 

Yearly TN loadings from 1994-2017 were calculatedare reported based on mean model parameters, land use, livestock counts, 

and precipitation. Only the NH watershed shows a clear downward trend in TN loading, which appears to be largely driven by 

WWTP discharge reductions (Fig. 6). In both the HR and FL watersheds, annual loadings nearly tripled from the lowest to 

highest precipitation years due to high levels of agricultural lands which substantially increase export during wet years (Fig. 
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6). This high-level of interannual variation, makes it difficult to distinguish any positive or negative trends in these basins over 335 

the study period. Additionally, model residuals were plotted against time withshow no noteworthy temporal trends (Fig. S7S6).   

3.6 Model Skill Assessment 

The full hybrid model, including random effects, explains 95% of the variation in the WRTDS loading estimates at LMSs (Fig. 

S8S7). Discounting the random effects, the model still explains 93% of TN loading variability. The model (with watershed-

level random effects) explains 96% of the variation in the HR, 92% in NH, and 83% in FL (Fig. S8S7), suggesting some spatial 340 

variability in model performance. In cross validation, the predictive ability of the model remainedremains high, with the R2 of 

the full TN model (without watershed-level random effects) lowereddropping slightly from 93% to 90%. R2 wasvalues are 

also tabulatedreported for individual LMSs to assesscharacterize the model’s ability to predict the temporal variability of 

loadings for a specific LMS.. These R2 rangedvalues range greatly from below 0 (FL2, JL2, JL7) to above 0.80 (JL4, FL7, 

FL10) with a mean R2 beingof 0.48 (as in Table 2). 345 

4 Discussion 

4.1 Nutrient Export Rates and Discharge Coefficients 

In this study, we aim to enhance our understanding of nitrogen export, especially as it relates to land use and different types 

of urbanization. Variation in urban TN export has often been associated directly with population density (Bales et al., 1999; 

Burns et al., 2005; Line, 2013; Tetra Tech, 2014) or with proxies for density like net food imports (Hong et al., 2011; Sinha 350 

and Michalak, 2016). In this study, we compare variations in urban export due to the age of the urbanization versus different 

urban land covers (e.g., high and low-density residential, commercial). Pre-1980 urban lands and high-density residential are 

moderately correlated in our study area (r2=0.64), yet Bayesian posterior parameter estimates show that export from low and 

high density urban areas wereare not statistically different from each other. However, TN export from pre and post-1980 

urban areas are statistically significantly different (Table 3). This suggests that urban infrastructure age and historical 355 

development practices are more important than population density.   

Various mechanisms, beyond density, could explain why older urban areas export more TN than recently constructed urban 

areas. Increased impervious connectivity in pre-1980 urban areas may lead to elevated runoff and nutrient washoff (Wolheim 

et al., 2005). In addition, pre-1980 urban development generally lacked stormwater management and erosion control measures 

(Howells, 1990; NC DEMLR, 2019). Therefore, streams in these areas have legacy sediments and often exhibit the urban 360 

stream syndrome with elevated banks, eroded channels,altered geomorphology and low biological health (Paul and Meyer, 

2001; Bernhardt and Palmer, 2007; Miller et al., 2019).) which can affect downstream nutrient loads and uptake (Meyer et al. 

2005).  Older neighborhoods are also likely to have larger trees and thus more leaf litter over impervious surfaces, which can 

also increase nutrient export (Janke et al. 2017). In additionFinally, leaky sewer infrastructure in pre-1980 urban areas might 
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be a substantial source of nutrients (Kaushal et al., 2011; Pennino et al., 2016) as compared to newer and more reliable 365 

infrastructure in post-1980 urban areas.  

Model results indicate that post-1980 urban and agricultural lands exported similar amounts of nitrogen (3.9 and 4.0 kg/ha/yr, 

respectively; Table 3). Our estimated agricultural export rate is lower than previous studies (Dodd et al. 1992; Strickling and 

Obenour 2018), which may be related to the fact that over 90% of agricultural lands in our study area are pasturelands, rather 

than croplands (Falcone 2015). Post-1980 urban export shows the most uncertainty in model posteriors (Table 3; Fig. 4). This 370 

might be due to the inconsistency of regulations being applied both temporally and spatially from 1980 to the present, and it 

might also indicate variation in the best management practices (BMPs) used in the region. Finally, undeveloped lands have 

very low export (0.7 kg/ha/yr; Table 3) with moderate uncertainty (0.1-1.5 95% interval; Table 3). This mean value is roughly 

three times lower than previous studies in the region (Tetra Tech 2014; Strickling and Obenour 2018).  

Livestock export coefficients for chickens, hogsswine, and cows (0.01, 0.04, and 0.50 kg/yr, respectively) imply that less than 375 

1% of the TN produced by these animals (i.e., 0.6, 9.9, and 54.8 kg/an/yr, respectively; Ruddy et al., 2006) results in excess 

TN pollution. Thus in our study area. Overall, livestock-related nutrient export appears to account for <2% of nutrient loading 

in our study areato the downstream reservoirs (Fig. 6; Table S4). At the same time, itPer hectare of agricultural land, livestock 

export averages just 0.5 kg/ha/yr, about an order of magnitude less than the baseline agricultural land use export. It is important 

to note that livestock waste that is used to replace other (e.g., synthetic) fertilizers is generally represented by the agricultural 380 

land export term.. The livestock rates reported here represent TN export in excess of typical pasture and cropland export.  

Our point source coefficient discounts WWTP loads by nearly 20% (βps=0.83; Table 3). One potential explanation for this 

result is that TN from WWTPWWTPs (primarily nitrate) is processed and retained in stream networks more efficiently than 

TN from nonpoint sources. For example, increased denitrification rates have been observed downstream of WWTPs due to 

altered biochemical conditions (Wakelin et al. 2008; Rahm et al. 2016). 385 

4.2 Inter-AnnualInterannual Variability 

Our analysis of interannual variability wasis facilitated through threetwo enhancements to the hybrid watershed modeling 

approach of Strickling and Obenour (2018). First, we allow for retention to vary across years due to changes in 

hydrologyprecipitation, represented parsimoniously by a PIC for stream residence times and reservoir hydraulic loading rates  

(γ,ret; Eq. (7a,b)). This modification allows in-stream nitrogen retention to vary interannually (~ produces a +/-8% variation in 390 

retention for -/+1 SD change in annual precipitation). Consequently, stream and reservoir retention rates (κ, ω; Table 3) 

represent retention during mean precipitation years.. In this region, we find that the majority of retention in the stream network 

occurs in reservoirs, as opposed to in streams.. Our mean stream retention rates arerate (0.04 d-1; Table 3) is comparable in 

magnitude (0.04 d-1; Table 3) to regional hybrid models (Strickling and Obenour, 2018; Gurley et al., 2019), but lower than 

previous watershed process models (Tetra Tech, 2014). Accurately quantifying stream retention rates is important to operators 395 

of WWTPs and regulators in order to accurately determine nutrient offsets for projects, which are often valued in millions of 

dollars (personal communication Jim Hawhee, NC DEQ, 2020).  
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Second, we modeledmodel the effects of precipitation variability on land use export using power functions (γ ,x; Eq. (5)) instead 

of linear relationships (Strickling and Obenour, 2018). The new formulation recognizes that as precipitation increases, its 

marginal effect on nutrient loading may intensify, as infiltration and evapo-transpiration rates are exceeded (Chin, 2013). 400 

Consistent with this explanation, agriculture has the highest PIC (4.0; Table 3), indicating that when annual precipitation is 

20% higher than the mean, TN export from agricultural lands will approximately double. On the other hand, pre -1980 urban 

lands, which are substantially impervious, have the lowest PIC values and only export 24% more TN for a 20% increase in 

annual precipitation. Third, we used a higher spatial resolution monitoring network than Strickling & Obenour (mean 

incremental watershed of 321 km2 vs. 1535 km2; 2018) which allowed us to account for export in both small and large 405 

watersheds.  

Finally, we compiled allBy compiling nitrogen loadings for 20+ yearsloads throughout the JL and FLmajor basins (1994- 

2017; Fig. 6) to analyze), we can analyse interannual trends. Inter-annual and variability in TN sourcing. Interannual variation 

wasis large (~ 3x difference from lowest to highest year) in both HR and FL, yet NH loadings showedshow relatively little 

variation. This wasis due to high levelspercentages of agricultural lands in HR and FL, which have the highest PIC valuesPICs. 410 

NH loadings, in contrast, wereare dominated by pre-1980 urbanization (lowest PIC) and point sources (no PIC).. By separating 

TN loadings into their sources, we wereare able to identify trends in specific nitrogen sources that could help inform 

management of individual watersheds. For example, though loadings in the NH watershed declinedappear to decline over the 

study period from 6 x 105 kg/yr to 4 x 105 kg/yr, this overall trend was driven by a nearly 50% reduction ofin point source 

dischargessources (4 x 105 down to 2.1 x 105 kg/yr). At the same time, loadloading attributable to post-1980 urbanization 415 

increased almost two-fold, from 0.2 x 105 up to 0.4 x 105 kg/yr (Fig. 6).  

4.3 Potential Nutrient Reductions 

Model results strongly indicate that the majority of nutrient inputs to JL and FL are from anthropogenic sources. Based on 

identified sources of TN in the watershed, four management strategies would potentially lead to large nutrient load reductions: 

1) reduction of point source loadings (i.e., WWTPs), which remain the largest individual source of TN, 2) retrofitting or 420 

replacing infrastructure in older urban environments (i.e. pre-1980 urban), which are the largest nonpoint source of TN per 

unit area, 3) mitigating TN loading from agricultural lands, especially during wet conditions, and 4) limiting, reducing, or 

offsetting the removal of undeveloped land, which hashave the lowest export rate. 

The effectiveness of these nutrient control strategies will vary across different hydrologic conditions. For example, point 

sources are responsible for 44% of TN loadings to JL, and 14% to FL from 1994 to 2017. However, these percentages rise to 425 

55% and 24%, respectively, during dry years (Table S4). On the other hand, agricultural TN export accounts for 18% of JL 

loadings and 30% of FL loadings during normal flow years, but that number increasesthose numbers increase to 27% and 37% 

during high flow years (Table S4). Therefore, strategies aimed at mitigating point source loadings will affect lake loadings 

more in low flow years, while agricultural strategies will have a larger effect in high flow years.  
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Undeveloped lands have the lowest nutrient export of all land-use sources (Table 3), which is consistent with findings from 430 

targeted water quality monitoring recently done in JL (NC Policy Collaboratory, 2019). However, undeveloped areas are 

decreasing in this region (1.5 km2/yr, 3 km2/yr, and 2 km2/yr in HR, NH, and FL basins, respectively, from 1995 to 2015). 

Even though more recent development (post-1980) has significantly lower TN export when compared to pre-1980 

development, it still exports approximately six times more TN than undeveloped lands (3.9 vs. 0.7 kg/ha/yr; Table 3). At the 

same time, post-1980 urban export rates are similar to agricultural rates, implying that new urban construction in agricultural 435 

areas may have limited impact on total nutrient loading. 

4.4 Summary and Future Directions 

To efficiently manage watershed nutrient loadingwatersheds, it is critical to identify the major sources and locations of 

nutrientpollutant loading under differingvarying hydroclimatological conditions. We enhanced and applied a “hybrid” 

watershed modeling approach within a Bayesian framework to characterize TN loading rates from point and nonpoint sources 440 

and tested different classifications of urban land. By modeling interannual variability, the model provides an assessment ofwe 

assessed how land use change and hydroclimatological variations have affected nutrient loading over time. Process-based and 

hybrid modeling approaches (e.g., SPARROW; Gurley et al. 2019) have been widely used to determine nitrogen loading rates, 

but these applications are often limited by an inability to capture interannual variations in loading and/or provide holistic  

parameter calibration with uncertainty quantification. Compared to previous Bayesian hybrid watershed modeling studies 445 

(Qian et al., 2005; Wellen et al., 2012; Strickling & Obenour, 2018), this study advances our ability to account for interannual 

variability in both export and retention. The study also discriminates how export rates vary across a relatively large number of 

source typessources (4 land uses, 3 livestock types, and point sources). Our ability to resolve 18 process-based parameters 

within the Bayesian framework is facilitated, in part, by a relatively dense stream monitoring network and modern tools for 

Bayesian inference (Monnahan et al., 2017).  The efficacy of the proposed approach for characterizing nutrient export in larger 450 

but less densely monitored watersheds could be explored in future research. 

In this study, we identify areas of elevated TN export. In particular, we find that pre-1980 urban areas are hot spots for nonpoint 

TN loading. In addition, watershed-level random effects help identify outlier watersheds that export significantly more or less 

TN than the source distribution data would otherwise imply. Great costs have been incurred to protect waterways in the last 

30-40 years without a clear understanding of how effective current policies have been in reducing nutrient loading (Parr et al.,  455 

2016; Utz et al., 2016). Our results suggest that post-1980 construction and land development BMPs have helped to reduce 

TN loadings from the built environment. We hope these findings will stimulate further research into the specific mechanisms 

that result in lower TN export from newer development. Enhancing the hybrid model with BMP and wastewater infrastructure 

data, in addition to more detailed land use and hydrography data, could be one approach for refining our understanding of how 

specific development practices influence watershed-scale nutrient loading. Given that even newer (post-1980) development is 460 

found to increase TN export by a factor of five or more, relative to undeveloped lands, further efforts are required to understand 

and mitigate the adverse impacts of urban development on nutrient loading. 
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Code/Data Availability 

Hydrometeorological and water quality data can be obtained from the public sources described in the methods (e.g., USGS, 

Water Quality Portal).  A complete set of compiled input data can be provided upon request to the authors 465 

(jwmille7@ncsu.edu).RStan code is included in the SI (Text S1). A complete input dataset for the code is available here: 

https://github.com/obelab/FallsJordanWshHESS 
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Figure 1: The load monitoring sites (LMSs) in Jordan and Falls Lake watersheds shown with their incremental watersheds. Also 

shown are the 79 subwatersheds along with point sources (major and minor wastewater treatment plants (WWTP)). Major basins 

are delineated by thick black lines.  
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 630 

Figure 2: Land use, point sources, and livestock trends from 1994-2017 in the Haw River, New Hope, and Falls Lake basins.  
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Figure 3: Weighted-regression on Time, Discharge, and Season (WRTDS) annual nutrient loading estimates (points) and flow-

normalized estimates (lines) for TN. in the Haw River (HR) and New Hope Creek (NH) basins of Jordan Lake (JL) and Falls Lake 

(FL). For clarity, results are only shown for the most downstream load monitoring site (LMS) of each tributary to Jordan and Falls 

Lake. The only downstream LMS for Haw River is HR1. WRTDS loading estimates for other LMSs are provided in supporting 640 
information (Fig. S4).   
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Figure 4: Prior (dotted lines) and posterior (solid lines) distributions for selected model parameters.  Note that priors and 645 
posteriors are provided for all parameters in Tables 4 and S3. 
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Figure 5: TN export (A) from land use and livestock by subwatershed; fraction of TN export from each subwatershed that is retained 650 
(B) in streams and reservoirs prior to reaching Jordan and Falls Lakes. Point source loads are shown separately as dots. 
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Figure 6: Total nitrogen export by year and major watershedbasin separated by source. The star (*) represents the total TN load 

that reached Jordan or Falls Lake. 
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Table 1: Load monitoring stations (LMSs) located in the Jordan (JL) and Falls Lake (FL) basins along with their complete drainage 

areas. LMSs belong to either New Hope Creek (NH) or Haw River basins of JL or FL. Years of record corresponds to time that 

loadings could be estimated (i.e., when daily flow and monthly water quality sampling was performed). The number of total nitrogen 

(TN) samples available is also shown.  

   

LMS Name  Res 

Drainage  

area (km2) 

Years of 

record 

# TN 

samples 

NH1 Morgan Creek, Jordan Lake JL 121.4 1994-2017 578 

NH2 New Hope Creek JL 203.9 1994-2017 575 

NH3 Northeast Creek JL 53.6 1996-2017 430 

NH4 White Oak Creek JL 31.1 2000-2017 106 

NH5 Morgan Creek, White Cross JL 21.4 2000-2017 116 

NH6 Morgan Creek, Chapel Hill JL 103.2 2001-2013 141 

NH7 Sandy Creek, Cornwallis JL 12.1 2009-2017 133 

NH8 Third Fork Creek JL 41.2 2009-2017 107 

HR1 Haw River, Bynum JL 3296.4 1994-2017 590 

HR2 Cane Creek JL 19.6 1989-2017 227 

HR3 Haw River, Burlington JL 1562.1 1994-2017 268 

HR4 Reedy Fork , Gibsonville JL 316.6 
1981-1986 

2001-2017 
341 

HR5 N. Buffalo Creek JL 96.2 1999-2017 394 

HR6 S. Buffalo Creek JL 88.6 2000-2017 343 

HR7 Reedy Fork, Oak Ridge JL 53.4 2001-2017 255 

FL1 Ellerbe Creek, Gorman FL 54.8 
 

2006-2017 
280 

FL2 Ellerbe Creek, Murray FL 11.2 2009-2013 100 

FL3 Eno River, Durham FL 367.2 
1994-2000 

2004-2017 
375 

FL4 Eno River, Hillsborough FL 171.0 1990-2017 223 

FL5 Little River, Orange Factory FL 202.7 
1988-2000 

2005-2017 
381 

FL6 Little River, Fairntosh FL 246.4 1996-2011 196 

FL7 Mountain Creek FL 20.8 1995-2011 156 

FL8 Flat River, Bahama FL 385.9 1981-2011 472 

FL9 Flat River, Dam FL 434.4 
1983-1990 

2003-2017 
225 

FL10 Knap of Reeds Creek FL 111.4 2006-2017 142 
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Table 2: Posterior distributions and 95% credible intervals (CI) of urban export coefficients (EC) split by age and development 

density.   (low-density (LD) vs. high-density (HD) urbanization.). The probability (P) that older urban lands (or HD urbanization) 

exportsexport more nitrogen than other urban lands was calculated by comparing Bayesian posterior draws. R2 represents the 

ability of the model to predict temporal variability of loading at each LMS. Mean R2 was determined by averaging the R2 of all 25 

LMSs. HD vs. LD (1) compares high-density residential vs. other urban lands while HD vs. LD (2) defines HD as high-density 665 
residential, industrial, and commercial lands. 

 

 

Case Export Coefficient (EC) 
Mean 

(TN/ha/yr) 
95% CI P(EC1 > EC2) Mean R2 

A 
1. Pre 1980 urban 9.4 7.3-11.3 

98% 0.476 
2. Post 1980 urban 3.9 0.9-7.3 

B 
1. Pre 2000 urban 8.1 6.0-9.9 

71% 0.471 
2. Post 2000 urban 6.5 2.3-10.8 

C 
1. HD residential 8.2 4.5-12.0 

57% 0.439 
2. Other urban 7.6 4.9-10.1 

D 
1. All HD urban 7.9 5.6-10.0 

72% 0.468 
2. Other urban 6.5 3.0-10.0 
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Table 3: Mean posterior parameter estimates for export and delivery coefficients (β; EC, DC), retention rates (κ, ω), and 

precipitation impact coefficients (γ; PIC) along with 95% credible intervals (CI).  Note that subscripts are same as defined in Eq. 

(4). 

 

EC, DC, and retention  PIC 

Parameter Mean 95% CI  Parameter Mean 95% CI 

βag 4.0 2.3-5.6  γa  4.0 2.8-5.1 

βur1 9.4 7.3-11.3  γur1 1.2 0.7-1.8 

βur2 3.9 0.9-7.3  γur2 2.2 0.5-4.1 

βund 0.7 0.1-1.5  γund 2.9 0.8-5.2 

βch 0.01 0-0.02  γch 2.0 0.4-3.9 

βhβsw 0.04 0.01-0.07  γhγsw 2.0 0.3-3.8 

βcw 0.52 0.06-0.95  γcw 1.9 0.3-3.8 

βps 0.83 0.73-0.92  γret 0.07 0-0.16 

κ 0.04 0.01-0.07  µγ 1.8 1.1-2.4 

ω 11.2 8.7-13.7  σγ 1.1 0.7-1.6 

σε 0.07 0.07-0.08     

σLMS 1.34 0.90-1.91         
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