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Editor 

Comments to the authors: 

—--------------------------------------------------- 

Dear authors, I would like to thank you for your interest in HESS. I have carefully read the 

manuscript and find it well written, and would consider it to be an interesting contribution that fits 

within the scope of HESS. I would therefore propose to accept this for the discussion phase. 

There are some aspects that I am sure will be addressed by the reviewers. One comment I had 

to the geographic regions where the statistical model developed by the authors exhibited skill, is 

that while some regions that would be expected to have reasonable predictability indeed showed 

this, others did not; notably North-Western South America, the Horn of Africa, and Eastern 

Southern Africa. This may be due to the small sample size of dams in these regions, but it may 

warrant some additional comment. 

—--------------------------------------------------- 

Dear authors, thanks again for the submission of your manuscript to HESS, which received very 

positive comments from the two appointed reviewers. The reviewers have, however, suggested 

some minor changes and clarifications. I would like to recommend that you consider these in 

revising the manuscript, and am looking forward to that revision. 

—--------------------------------------------------- 

We would like to thank the Editor for the positive response and opportunity to revise our work. 

Following the reviewers’ suggestions, we: 

● Clarified a few important aspects related to our inflow prediction model (Section 3.1), as 

recommended by reviewer #1 and reviewer #2; 

● Expanded the discussion (Section 5.2) to account for a few points mentioned by the 

reviewers. In particular, we elaborated on the uncertainties in streamflow forecasting; 

● Better framed our inflow prediction model–and associated assumptions–in the current 

scene of streamflow forecasting (Section 3.1 and 5.2); 

● Expanded the analysis to account for (1) the potential relationship between KGE and 

forecast value, and (2) an alternative classification of dams based on the hydro-climate 

classification introduced by Knoben et al. (2018) (instead of the Köppen-Geiger climate 

classification). Both points (raised by reviewer #1) did not lead to a major change in our 

results and conclusions, so we preferred to leave these analyses in the Supplement. 

● Carried out a qualitative comparison between our forecast skill and the one achieved by 

the Global Flood Awareness System. In our response to reviewer #2, we also explain 

why we preferred to confine such comparison to our response-to-reviewers.  

As for your comment concerning the regions that do not demonstrate effective forecast skill 

(e.g., Horn of Africa), we agree that this is not necessarily expected based on known 

teleconnections with precipitation; however, as you have noted, the limited number of dams 



included in this study (unfortunately) contributes to the relatively low predictive skill presented. 

To clarify this point, we have added the following sentence at Line 347-349: 

For some regions that often exhibit skillful precipitation predictability based on well-known 

teleconnections and hydroclimate mechanisms, such as Northwestern South America, East 

Africa, and eastern Southern Africa (Lee et al., 2018), this is not readily apparent on the KGE 

maps (Figure 3), owing primarily to the regions’ low dam density, and thus a small sample size. 

Finally, please note that our replies are highlighted in blue, while the revised sentences reported 

here are highlighted in blue and italics. Line numbers refer to the track-and-changes version of 

the manuscript. 

  



Reply to RC1: 'Comment on hess-2021-518', Anonymous Referee #1, 12 Jan 2022 

Summary 

The manuscript by Lee et al. explores the relationship between forecast skill and value in the case 

of the management of hydropower dams. The authors use dam characteristics and forecast skill 

to identify categories of dams that (1) show potential for improvement or not over climatology-

based operating rules, and (2) show improvement or not based on realistic forecasts. A climate 

classification is further used to “regionalize” the added value of long-term forecasts for the 

hydropower sector and identify regions where improvements of currently low quality forecasts 

would translate into added value for dam management. 

The paper is of very high quality, is well referenced, well written and scientifically sound. It will be 

undeniably valuable for the forecasting community, but also has potential to reach hydropower 

production managers. Along with the manuscript come supplemental materials that further detail 

the methodology and the results, as well as a dataset and an R script that allow readers to access 

the datasets for each dam. 

For these reasons, I strongly recommend this manuscript for publication. Hereafter, I list some 

questions to the authors, some recommendations for improving explanations, and mostly minor 

points. 

We thank the reviewer for the positive comments and further critical comments that we believe 

have enhanced the overall quality of the manuscript. 

General comments 

Sections 2.1 and 4.4: You decided to use the Köppen-Geiger climate classification. Since you are 

working with hydropower and inflows which are influenced not only by climate patterns but also 

hydrological ones, a classification based on hydro-climate characteristics and not only climate 

characteristics would seem more relevant for the goal you are trying to achieve. Please consider 

using the hydro-climate classification proposed by Knoben et al. (2018). 

Knoben, W. J. M., Woods, R. A., and Freer, J. E.: A Quantitative Hydrological Climate 

Classification Evaluated With Independent Streamflow Data, Water Resources Research, 54, 

5088–5109,https://doi.org/10.1029/2018WR022913, 2018. 

Thanks for suggesting to use the HydroIogical Climate Classification (HCC) (Knoben et al., 2018). 

We looked into the key features of the HCC and identified two important points. First, the HCC is 

derived from climate variables, such as precipitation, temperature, and potential 

evapotranspiration (CRU TS v3.23), and then is evaluated with independent streamflow data. 

Therefore, the HCC could still be seen as a “climate-based” classification, although Knoben et al. 

(2018) showed that the HCC better represents streamflow characteristics in terms of grouping 

catchments. Second, the HCC is not a categorized classification like the Köppen-Geiger climate, 

but rather a set of three-dimensional numerical climate indices, that is, aridity, moisture 

seasonality, and snow fraction. As a result, categorizing dams according to their HCC is not a 



straightforward process. Moreover, carrying out an analysis based on the HCC would go beyond 

our original intent, which was to complement the analysis of the four groups of dams we created. 

This said, we agree that the HCC might reveal some additional insights, so we analyzed the 

relationships between HCC indices and forecast skills of 735 dams (see the figure below). For 

this analysis, we used averaged HCC values in the grids upstream of each dam. The analysis 

reveals a few interesting patterns: for example, dams in snowing regions (snow ≥ 0.2) tend to 

have good forecasts when seasonality is larger than 0.4 (panel b) or aridity is below 0.4 (panel c). 

Because of the reasons outlined in the previous paragraph we preferred to include the analysis 

in the supplementary information (please refer to Text S7 and Figure S5). 

 

Figure 1.1. Scatterplots contrasting values of the HydroIogical Climate Classification indices 

(Knoben et al., 2018) for 735 dams: (a) seasonality vs aridity, (b) snow vs seasonality, and (c) 

aridity vs snow. Blue up-pointing (red down-pointing) triangles represent dams with good (poor) 

forecast skill based on 𝑋𝑀𝑑𝐴𝑃𝐸  cutoff value.  

Section 3.1, Figure 1: It is not clear to me why the authors allow future inflows (t+1, t+2, ...t+7) to 

be predicted based on future climate indicators (1-8 months ahead). In a true forecasting setting, 

the ENSO, PDO, NAO and AMO indices for the 1-8 months ahead would not be available, only 

forecasts of these indices would. Some clarifications would be needed on this aspect. For 

instance, the authors could re-use the very clear notation t, t+1, …, t+8 to define which time steps 

they use in terms of climate teleconnection indices with respect to the forecast month t. 

We apologize for the misunderstanding. We used historical (t-8 to t-1) climate indices (ENSO, 

PDO, NAO and AMO). To clarify this point, we changed Lines 164-165 and updated Figure 1, as 

shown below:  

“Then, we estimate the lag-correlations between future monthly inflows over the next 7 months 

(t+1 to t+7) and historical climate indices (t-1 to t-8), snowfall (t to t-8), and inflow and soil moisture 

in current month (t).” 



 

Figure 1.2. Graphical representation of the monthly prediction (MP) model scheme. At each 

calendar month t, we develop seven independent models to predict monthly inflows for the next 

seven months: MP1 (t+1), MP2 (t+2), ..., MP7 (t+7). 

Section 3.3.2: Even though the authors argue that MdAPE has a higher correlation and that it 

provides a value at each time step, KGE, and in particular its components, may have given 

insights into the forecast characteristics (correct timing, volumes, variations) that influence value. 

This information would be extremely valuable to guide further model and forecast developments 

for the hydropower sector, in the same way your investigation of dam characteristics informs dam 

managers of potential forecast value. I wonder whether this would be something to explore also 

to address the limitation you note in the Results section L.341 “For dams with poor IDF and high 

KGE, two features are noteworthy: first, KGE may not fully capture the relationship between 

forecast skill and value”. 

Thanks for pointing this out. We agree that KGE and its components may provide meaningful 

characteristics of forecasts, hence we looked into the correlation between these forecast 

characteristics and the performance metric I (Table 1.1). The correlation drops with longer lead-

times, which is expected, suggesting that better prediction for immediate months tends to lead to 

higher forecast value. However, this trend is not observed for the bias ratio (beta), which suggests 

that accurate prediction in inflow volumes for all seven future months contributes to higher 

forecast value. Yet, the correlation values here are still lower compared to other indicators of 

forecast skill presented in Table S4 (e.g., correlation between I and MdAPE is -0.4). We think 

including these results in the Supplement may therefore be the best option (please refer to Text 

S5 and Table S5). 



 

Table 1.1. Correlation between performance metric I and forecast skill for the 269 dams that are 

classified as success cases. Forecast skill is represented by KGE and its three components, r 

(correlation), beta (bias ratio of mean inflow), and gamma (variability ratio). The columns 

correspond to the prediction model with 1 to 7 months lead-time.   

Forecasts with horizons up to 7 months are generally probabilistic to account for uncertainties at 

such long lead times. The authors should discuss the role of uncertainties in their study design, 

i.e. how realistic it is to consider the value of deterministic long-range forecasts depending on the 

current state of hydro-climate long-range forecasts, but also on the capacity for hydropower dam 

managers (whose actions are hypothesized in this study) to inform their decisions based on 

probabilistic information. 

We agree this is a point worth discussing. We did so by expanding Section 5.2: 

“Finally, the investigation of alternative forecast approaches may be warranted. In particular, our 

deterministic long-range forecasts could be replaced by probabilistic ones, based for example on 

ensemble dynamical forecasts or statistical models including a stochastic representation of the 

residuals. By adopting probabilistic forecasts, one could represent additional operational aspects, 

such as the capacity of hydropower dam managers to inform their decisions based on probabilistic 

information. Such extension to our study could possibly uncover greater potential for improving 

dam operations (Zhao et al. 2011) and allow for a more nuanced quantification of forecast value.” 

Specific comments 

L.132-135 There is a range of models that fall between statistical prediction models and 

physically-based models. For instance, conceptual models do not fit in these two broad 

categories. I invite the authors to revise this statement. 

We modified Lines 134-138 as follows: 

“Seasonal streamflow forecasting approaches include physically-based (mechanistic) models, 

such as GloFAS (a global-scale forecasting system; Emerton et al. (2018); Harrigan et al. (2020)), 

empirical or statistical (data-based) models that leverage the relationship between large-scale 

climate drivers and local hydro-meteorological processes (Block, 2011; Gelati et al., 2014; Giuliani 

et al., 2019), and conceptual (parametric) models that integrate hydrological processes at the 

catchment scale (Lindström et al., 2010; Devia et al., 2015).” 

L.137-140 The arguments for choosing a statistical model rather than a physically-based one 

seem too general. In fact, the statement “the prediction horizon of most physically-based 



approaches (a few days to 3-4 months) falls short of our preferred lead times up to seven months” 

only holds when considering currently openly available global reforecasts, and not reforecasts 

from physically-based (or rainfall-runoff) models in general. There already exists, for instance, 

global reforecasts up to 7 months ahead and with hindcast periods for at least 30 years 

(https://hypeweb.smhi.se/explore-water/forecasts/seasonal-forecasts-global/). As the authors 

rightfully mention in the section on opportunities, “global-scale forecasting systems are gaining 

momentum”, and therefore this part should be rewritten to highlight the impermanence  of the 

statements. 

Thanks for the suggestion, which we reflected in Lines 143-150: 

“Here, we select the second approach because of two reasons. First, the prediction horizon of 

most openly-available global re-forecasts (from a few days to 3-4 months) falls short of our 

preferred lead time (up to seven months), which is needed to test the potential of realistic forecasts 

for a broad spectrum of reservoirs—including those characterized by slow storage dynamics. 

Second, re-forecasts issued by global-scale forecasting systems are only available for a relatively-

short hindcast period (typically two decades; Harrigan et al. (2020)), whereas the time series of 

globally-available hydro-climatological data are significantly longer. It should be noted that these 

two statements may change in the near future as the boundaries of global-scale forecasting 

systems keep getting extended (see Section 5.2). For example, there already exist global re-

forecasts from physically-based models with a prediction horizon of seven months and hindcast 

periods of about 30 years (https://hypeweb.smhi.se/explore-water/forecasts/seasonal-forecasts-

global/).” 

L.141 “Our long-range inflow prediction model uses…” 

L.145 “For example, forecasts issued…” 

Thanks for spotting these two typos. We corrected them. 

L.174 Isn’t it the goal of the dam inflow prediction model to feed the reservoir model? If so, isn’t 

𝑄𝑡 not only retrieved from WaterGAP but also from the proposed statistical dam inflow model? 

At month t, the prediction model gives estimates of 𝑄𝑡 to 𝑄𝑡+6, which consequently determine the 

release sequence 𝑅𝑡 to 𝑅𝑡+6 (in Eq. 4). Then, only the decision 𝑅𝑡 is implemented. When 

simulating the reservoir dynamics, the observed inflow 𝑄𝑡 retrieved from WaterGAP is used. 

Section 3.2.1 Is there any need for initialization of this reservoir model, and if so, how do you 

handle this aspect? e.g. which initial values do you use for instance for the reservoir storage? 

All reservoirs begin at full storage at the start of the simulation period (i.e., 1958). We clarified this 

point in Section 3.2.3. 

L.227 ”… may influence ...” 

L.234 “It is reasonable to hypothesize that the value…” 



Thanks for spotting these typos. We corrected them. 

L.251-253 “Note that failure implies that the control rules and perfect forecast-informed operations 

generate a similar amount of hydropower, meaning that information on storage and previous-

month inflow are sufficient for near-optimal release decisions.” Wouldn’t that correspond to an 𝐼𝑃𝐹 

value of 0 rather than to the mean 𝐼𝑃𝐹? If this statement is based on the mean 𝐼𝑃𝐹 value, the 

reader does not have this information yet, and this sentence is confusing. 

We agree that this statement is confusing, since ‘failure’ in this case actually means that the 

reservoir has 𝐼𝑃𝐹 value < mean 𝐼𝑃𝐹 which could be (and in most cases, is) greater than 0. We thus 

changed the term from “success/failure” to “case/non-case” and removed Lines 281-283 to avoid 

the confusion. The text has thus been changed as follows: 

“First, for each dam, we label it as case (also referred to as success) if it has the desired property 

of an 𝐼𝑃𝐹 value larger than the mean value of 𝐼𝑃𝐹 across all dams. Otherwise, the dam is labeled 

as non-case.” 

L.320-321 “Considering the superior performance of the MP1 model, the forecast skill of MP1 

only is retained to represent the overall forecast skill in the following analyses.” Since the 

optimisation uses all forecast horizons, the speed with which skill decreases with the forecast 

horizon may play a role in the optimization and could have been considered as well. 

Thank you for raising this point. It is indeed true that the speed with which forecast skill 

decreases may play a role. To investigate this, we first fit a linear regression between KGE and 

prediction lead time for each of the 269 dams classified as success cases. We then use the 

slope of the regression to represent the speed with which forecast skill decreases (i.e., a highly 

negative slope means forecast skill drops quickly with longer lead-times). We then plot the 

performance metric I against the slope. A shown in Figure 1.3, there is no clear trend of 

correlation between the speed with which forecast skill decreases and forecast value. Given this 

result, we preferred to report this analysis in the supplemental material (Text S6 and Figure S4). 

 

  



 
Figure 1.3. Scatter plot of performance metric I and slope of KGE against forecast lead time for 

the 269 dams classified as success cases. The blue line represents the local polynomial 

regression fitting performed on the data points (i.e., fit at point x is done using points in the 

neighborhood of point x).  

 

L.327-329 “Small negative values of 𝐼𝑃𝐹 are likely a result of the discretization needed by dynamic 

programming to optimize the release sequence (eq. (4)), hence allowing control rules to 

outperform perfect forecast-informed operations.” Could you please further explain what you 

mean to help understand the counter-intuitive negative 𝐼𝑃𝐹 values? 

Thank you for raising this point. First of all, this point made us realize that our explanation of the 

discretization process for stochastic and deterministic dynamic programming (for benchmark 

control rules and forecast-informed scheme) was not described with sufficient details. Such 

discretization is required when implementing dynamic programming algorithms, so we somewhat 

gave it for granted. However, we realize that many readers may not be familiar with this concept, 

which is now introduced in Lines 239-247 (when describing the experimental setup). 

Having introduced the discretization process, we can now explain how it may affect the 

performance of forecast-informed operations. To begin the explanation, let’s first of all consider 

that release decisions are discretized into 20 levels while storage is discretized into 500 levels. 

When the storage level falls between two discrete levels, the closer level is selected and the 

optimum release decision for that discrete level is implemented. This decision may sometimes be 

suboptimal, giving rise to negative 𝐼𝑃𝐹 values. (To give an example in terms of specific values, let 

us consider a case in which the storage levels are discretized into 10, 20, 30, 40, etc. units of 

volume. Now, suppose that optimal release at storage = 30 is 1 unit volume and that optimal 

release at storage = 40 is 2 units of volume. Then, when the reservoir is at 34 units of volume, 

our policy would suggest releasing 1 unit of volume. However, the optimal decision at storage = 

34 could be 2 units volume. This leads to suboptimality.) Note that the 𝐼𝑃𝐹 values are small in 



absolute terms and do not affect the interpretation of our results. We clarified this point in the 

revised version of the manuscript (please refer to Lines 363-365). 

L355-357 “This is attributed to the weekly operations, suggesting that more frequent release 

decisions may reduce forecast value, since the benchmark operating rules have more 

opportunities to adjust release decisions.” Isn’t it the case for all the dams below the horizontal 

line? Why should these ones (the failing ones) behave differently? 

Our original intention was to make a comparison between weekly operations and monthly 

operations. For all dams below the horizontal line, weekly operations reduce forecast value as 

shown in the figure below. We did not mean to make a comparison between the failing dams and 

the successful ones below the horizontal line. We realize that this statement can be misleading, 

hence we revised it to clarify our point:  

“This is because weekly operations decrease 𝐼𝑃𝐹 for some of these dams to below the mean 𝐼𝑃𝐹, 

turning them from cases (if operated on a monthly basis) into non-cases. This suggests that more 

frequent release decisions may reduce forecast value, since the benchmark operating rules have 

more opportunities to adjust release decisions.” 

 

Figure 1.4. Probability of success estimated using logistic regression when all dams adopt 

monthly operations (left) and when smaller dams (below the dashed line) adopt weekly operations 

(right, same as Figure 5 in the manuscript). Weekly operations tend to reduce forecast value as 

shown by the smaller blue circles and greater number of non-cases (triangles) in the right panel.  

L.446 “… a number of assumptions that must be properly contextualized.” 

Thanks for spotting this. 

Figure 2 It would be more correct to change the caption to “Percentage of dams whose inflow is 

significantly correlated with…” since a dam in itself is not correlated to anything. 

Revised as suggested. 



Figures 3 and S2. The titles for the color scales in the second and third lines of this figure are 

confusing. If my understanding is correct, I would suggest changing titles in the first column to 

“Change in number of predicted months”, and in the second column “Change in KGE”, with “(b) 

MP4-MP1” and “(c) MP7-MP1” on the left-hand side. 

Thanks for your suggestion. We modified both figures as suggested (please refer to the figures 

reported below). 

Figure 5 “red triangles represent failures” 

Figure 6 “meaning that the performance of realistic forecasts is worse than the one attained by 

control rules” 

Thanks for spotting these typos. We corrected them. 
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Figure 1.5. Number of months in which a predictive model is developed (left) and corresponding 

KGE (right). Taking a model with a lead-time of 1 month (MP1) as reference (a), we report the 

difference between MP1 and MP4 (b) and MP1 and MP7 (c). 



 

Figure 1.6. MSESS (left) and GSS (right) values for 735 dams. Taking a model with a lead-time 

of 1 month (MP1) as reference (a), we report the difference between MP1 and MP4 (b) and MP1 

and MP7 (c). 

  



Reply to RC2: 'Comment on hess-2021-518', Anonymous Referee #2, 31 Jan 2022 

The paper contributes a global analysis about the value of long-term forecast for hydropower 

reservoirs. Specifically, the authors contrast the performance of three alternative operating 

schemes, basic control rules, perfect forecast-informed, and realistic forecast-informed. The latter 

use forecast information generated with a statistical prediction model based on four large-scale 

climate drivers along with local drivers (inflow and soil moisture). Results obtained for 735 

hydropower reservoirs show that most dams could benefit from perfect forecasts, with these gains 

that strongly depend on dam characteristics; only a small number of dams however attains a 

performance improvement when realistic forecasts are used. The topic of the paper is absolutely 

timely and important, and fits nicely within HESS scope. The numerical analysis is robust and well 

designed, and the manuscript is clearly written. Overall, I think the paper could be a strong 

contribution to the ongoing debate about the relationship between forecast skill and value. Below 

I'm suggesting a few points to further improve the paper before accepting it for publication. 

We thank the reviewer for the positive comments and further critical comments that we believe 

have enhanced the overall quality of the manuscript. 

1) the description of the dam inflow prediction model in section 3.1 is not totally clear: 

1a. I did not understand is the determination of the optimal set of lead-months at line 155. Does 

this mean that, for each station/HP reservoir, you constructed 7 forecasts (i.e. M1 to M7) and then 

selected the best lead-time as the one characterized by the minimum MSE? If this interpretation 

is correct, how can you then run a Model Predictive Control with a 7-month prediction horizon in 

case the best lead-time is shorter than 7? Moreover, since forecast accuracy generally decreases 

with lead-time, how likely will be then selecting a lead-time longer than one month? 

We apologize for the misunderstanding. We constructed 7 forecast models (MP1 to MP7) for 

each dam, and the lead-month here refers to the lag-time of each predictor. For example, after 

we select four (statistically significant) predictors from lag-correlations, we choose an optimal 

combination of four lag-times of the predictors based on the minimum mean squared error. This 

applies to all 7 models independently and does not affect the prediction horizon. For clarifying 

this, Lines 171-173 have been changed to: 

“To select the optimal lag-times of the predictors, we apply a leave-one-out cross-validation 

(LOOCV) scheme. Specifically, all combinations of lag-times of the predictors are cross-validated; 

then, the optimal set of lag-times is determined based on the minimum mean squared error 

(MSE).” 

Regarding the forecast skill over lead-time, we found that the highest Kling-Gupta efficiency 

(KGE) appears in 68% of MP1, 5% of MP4, and 2% MP7 models. This is illustrated in Figure 3 

and Figure 2S and explained in Lines 341-344. 

1b. At line 142 the authors mention the generation of streamflow forecast for 1,200 stations, but 

the HP reservoirs are 735. Why are you generating a higher number of forecasts wrt the 



reservoirs? Moreover, is it correct to say you built 1,200 independent forecast models, one for 

each station, right? 

We apologize for the misunderstanding. The term “1,200 stations” refers to the prior study (Lee 

et al., 2018). Also, we built 7 independent MP models for each dam. To clarifying that, Lines 155-

160 have been changed to: 

“Our long-range inflow prediction model uses Principal Component Regression (PCR) and 

includes four lagged large-scale climate drivers, snowfall, and prior inflow and soil moisture 

conditions to predict future inflows at 735 dams. This approach is readily implemented globally 

and has demonstrated fair (realistic) predictive skill at 1,200 streamflow stations (Lee et al., 2018). 

While Lee et al. (2018) predict seasonal (3-month) streamflow averages, here we develop 

independent monthly prediction (MP) models for the subsequent seven calendar months. For 

example, forecasts issued at the end of February include monthly inflows from March (MP1) to 

September (MP7).” 

1c. at line 138 you say that state-of-the-art physically-based forecasts fall short on lead-times up 

to 7 months, but actually these lead-times are covered by existing products such as ECMWF 

seasonal forecasts available on the Copernicus Data Store. I would thus recommend to better 

contextualize this point. 

This is a point that was also raised by reviewer #1. We agree with this comment and have thus 

modified the first paragraph of Section 3.1 as follows:  

“Seasonal streamflow forecasting approaches include physically-based (mechanistic) models, 

such as GloFAS (a global-scale forecasting system; Emerton et al. (2018); Harrigan et al. (2020)), 

empirical or statistical (data-based) models that leverage the relationship between large-scale 

climate drivers and local hydro-meteorological processes (Block, 2011; Gelati et al., 2014; Giuliani 

et al., 2019), and conceptual (parametric) models that integrate hydrological processes at the 

catchment scale (Lindström et al., 2010; Devia et al., 2015). Here, we select the second approach 

for two reasons. First, the prediction horizon of most openly-available global reforecasts (from a 

few days to 3-4 months) falls short of our preferred lead times (up to seven months), needed to 

test the potential of realistic forecasts for a broad spectrum of reservoirs—including those 

characterized by slow storage dynamics. Second, re-forecasts issued by global-scale forecasting 

systems are only available for a relatively-short hindcast period (typically two decades; Harrigan 

et al. (2020)), whereas the time series of globally-available hydro-climatological data are 

significantly longer. It should be noted that these two statements may change in the near future 

as the boundaries of global-scale forecasting systems keep getting extended (see Section 5.2). 

For example, there already exist global re-forecasts from physically-based models with a 

prediction horizon of seven months and hindcast periods of about 30 years 

(https://hypeweb.smhi.se/explore-water/forecasts/seasonal-forecasts-global/).” 

2) The labeling of dams in success/failure (section 3.3.1) based on the comparison of IPF against 

the average IPF raises the following question: while the definition of IPF implies that forecast-

informed operation is beneficial when IPF>0, I don't understand why a failure (i.e. IPF < 



mean(IPF)) implies that basic control rules and perfect forecast-informed operations generate 

similar amounts of hydropower (lines 251-252). According to this condition, I guess a dam can be 

classified as failure even if IPF > 0, right? 

We agree that this statement is confusing, since you rightly pointed out that a dam can be 

classified as ‘failure’ when its IPF value is positive. We thus changed the term from 

“success/failure” to “case/non-case” and removed Lines 281-283 to avoid the confusion. 

3) While I fully trust the statistical forecast model used by the author, I think the paper could benefit 

from some benchmarking of the resulting forecast skill against existing, physically-based forecast 

products. This is likely not necessary for all the models, but it could be a useful complementary 

information for some representative cases, possibly selected across different climate regions. 

We agree with the reviewer’s point on a comparison of forecast skill with physically-based 

forecast products. However, there are two challenges that may hinder the comparison: 1) At the 

majority of dams, both our statistical model and physically-based prediction methods (or 

products) may predict different "simulated" streamflows rather than the actual "observed" 

streamflows. For instance, we used streamflow data predicted by the WaterGAP model. In other 

words, the result of such comparison may be affected by the different characteristics of 

streamflow simulations (e.g., forcing data). 2) The outcome of such analysis may vary 

significantly depending on the composition of the subset of skilled or unskilled regions. Other 

minor issues include obtaining data for the exact grids of dam locations, supporting finer spatial 

resolution for headwater dams, and forecasting the same time period with the same lead-time.  

 

Because of these reasons, we believe a qualitative comparison may be the best choice. To this 

purpose, we retrieved the performance of the Global Flood Awareness System (GloFAS), one of 

the most advanced physically-based streamflow forecasting systems. Figure 2.1 shows the 

Kling–Gupta efficiency skill score (KGESS) for GloFAS-ERA5 river discharge reanalysis against 

1,801 observation stations. While KGESS values are higher than the initial KGE values 

(Harrigan et al., 2020), the KGE scores generated in our study are comparable to or slightly 

higher than GloFAS scores (Figure 2.2). Even though the GloFAS's KGESS is calculated using 

observed streamflow, similar patterns of forecast skills can be found in our statistical forecasts, 

such as relatively lower forecast skills in central southern USA, southern South America, and 

southern East Africa, and relatively higher forecast skills in northwest North America, central 

South America, Europe, and South Asia.  

 

Because of the reasons outlined above, we believe that adding such analysis to the revised 

version of the manuscript is not necessary, so we preferred to confine it to our response to the 

reviewers. 



 
Figure 2.1. Modified Kling–Gupta efficiency skill score (KGESS) for GloFAS-ERA5 river 

discharge reanalysis against 1,801 observation stations. Optimum value of KGESS is 1. Blue 

(red) dots show catchments with positive (negative) skill (Harrigan et al., 2020). 

 

 

 
Figure 2.2. KGE scores of 1-month lead (MP1) inflow forecasts developed in our study. The 

original figure is Figure 3 in the manuscript. 

 

4) the results show how the overall value of forecast information for hydropower production is 

(unfortunately) relatively small. Did the author consider how much is the potential influence of the 

experimental settings, particularly in terms of (A) informing the operation with monthly inflow 

forecasts and (B) assuming the reservoirs are operated to maximize total (or average) 

hydropower production. About (A), the work by Bertoni et al. 2021 shows how some reservoirs 

could benefit more from predicting the inflow peak over a given horizon, rather than the average 

inflow, as this information is useful in hydropower operations to avoid spilling water. About (B), I 



was wondering if in this context the maximization of the firm energy could benefit more than the 

maximization of total production as it is more related to extreme conditions. 

Yes, these are two points that we considered when conceptualizing the study and setting up the 

experiments. However, we preferred to proceed with the current setup because of a few reasons. 

Starting with point (A), the nature and intent of a global study require us to create a realistic setup 

for all reservoirs of our study site. In this regard, it is true that some reservoirs could benefit more 

from predicting the inflow peak (instead of the total / average inflow volume), but investigating 

such aspect would result in a redesign of the study, which should bank on different forecast 

models and different analyses of how skill and dam design specifications result in forecast value. 

In other words, we preferred to keep a setup that is likely to reflect what the majority of dams 

would benefit from. As for point (B), the rationale is similar: we opted for a setup that is likely to 

reflect the operational objective characterizing most reservoirs. Such choice is corroborated by 

the validation reported in Turner et al. (2017), where we show that maximizing total production 

leads to an accurate simulation of annual hydropower production. That said, we agree with the 

reviewer that both point (A) and (B) are relevant to our study, so we expanded our reasoning in 

Section 5.2.  

MINOR: 

- in eq. 2c, the mass balance equation includes the evaporation losses. Where are these data 

coming from? 

Evaporation is calculated by multiplying the surface area of a reservoir (at each time period) by 

the potential evaporation. Time series of potential evaporation from 1958 to 2000 are obtained 

from the Water and Global Change (WATCH) 20th century model output generated using the 

WaterGAP model (i.e., the same source as our time series for the inflow into each reservoir). We 

clarified this point in the revised version of the manuscript. 
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