
Technical Note: Data assimilation and autoregression for using
near-real-time streamflow observations in long short-term memory
networks
Grey S. Nearing1, Daniel Klotz2, Jonathan M. Frame3, Martin Gauch2, Oren Gilon4, Frederik Kratzert5,
Alden Keefe Sampson6, Guy Shalev4, and Sella Nevo4

1Google Research, Mountain View, CA, United States
2LIT AI Lab & Institute for Machine Learning, Johannes Kepler University, Linz, Austria
3Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, USA
4Google Research, Tel Aviv, Israel
5Google Research, Vienna, Austria
6Upstream Tech, Alameda, CA, USA

Correspondence: Grey Nearing (gsnearing@google.com)

Abstract. Ingesting near-real-time observation data is a critical component of many operational hydrological forecasting sys-

tems. In this paper we compare two strategies for ingesting near-real-time streamflow observations into Long Short-Term

Memory (LSTM) rainfall-runoff models: autoregression (a forward method) and variational data assimilation. Autoregression

is both more accurate and more computationally efficient than data assimilation. Autoregression is sensitive to missing data,

however an appropriate (and simple) training strategy mitigates this problem. We introduce a data assimilation procedure for5

recurrent deep learning models that uses backpropagation to make the state updates.

1 Introduction

Long Short-Term Memory networks (LSTMs) are currently the most accurate and extrapolatable streamflow models available

(e.g., Kratzert et al., 2019c, b; Gauch et al., 2021a; Frame et al., 2021; Mai et al., 2022). Achieving the highest accuracy

simulations possible in an operational setting requires the ability to leverage near-real-time streamflow observation data during10

prediction, wherever and whenever such data are available. There are two primary ways that rainfall-runoff models most often

use near-real-time streamflow observation data: autoregression and data assimilation.

Autoregression (AR) has been a core component of statistical hydrology for decades (e.g., Matalas, 1967; Fernandez and

Salas, 1986; Hsu et al., 1995; Abrahart and See, 2000; Wunsch et al., 2021). AR is also common in machine learning appli-

cations across many different types of domain applications (e.g., Uria et al., 2013; Vaswani et al., 2017; De Fauw et al., 2019;15

Child, 2020; Salinas et al., 2020; Dhariwal et al., 2020), including LSTM based approaches (e.g., Graves, 2013; Gregor et al.,

2015; Van Oord et al., 2016). Most importantly for this discussion, Feng et al. (2020) and Moshe et al. (2020) showed that AR

improves streamflow predictions from LSTMs. AR modeling with LSTMs is complicated somewhat by the fact that LSTMs

are sensitive to missing input data. In particular, a naive LSTM simply cannot run if any of its inputs are missing, and missing

1

near-real-time streamflow data is common, since in many parts of the world streamflow data are collected by hand or using20

sensors that are prone to malfunction, large measurement error, or breaks in communication with data loggers. It is possible

to mitigate the problem of missing data in LSTM inputs by masking (e.g., Chollet, 2017, chapter 4), gap filling, or adversarial

learning (Kim et al., 2020; Dong et al., 2021), however these strategies necessarily introduce some amount of bias in the inputs.

In contrast with statistical autoregressive models, conceptual and process-based rainfall-runoff models typically use data as-

similation (DA) to ingest near-real-time streamflow observations. There are a number of different DA methods used in the Earth25

sciences (Reichle, 2008), ranging from direct insertion to full Markov Chain Monte Carlo approximations of nonlinear, non-

Gaussian conditional probabilities (e.g., van Leeuwen, 2010). Most DA methods use filters or smoothers based on simplified

probabilities – for example, variations of Kalman-type filters minimize variance (e.g., Evensen, 2003), particle filters maxi-

mize more general likelihoods (e.g., Del Moral, 1997) but run into challenges related to high dimensional sampling (Snyder

et al., 2008), and variational filters numerically minimize specified loss functions (Rabier and Liu, 2003). All data assimilation30

methods fundamentally work by conditioning (changing) the states of a dynamical systems model so that information from

observations persist in the model for some amount of time.

Like dynamical systems models, LSTMs have a recurrent state. This means that it is possible to use DA with LSTMs. This

would allow ingesting near-real-time observation data without AR, making it possible to train LSTM models that are able to

leverage near-real-time streamflow data where and when available. Further, LSTMs are trained with backpropagation, which35

means that there already exists a gradient chain through the model’s tensor network that can be used for implementing certain

types of inverse methods required for DA. Similar principles have been applied to update other features in deep learning models

for a variety of purposes. For example, backpropagation to update inputs and specific layers has been used as an analytical tool

(e.g., Olah et al., 2017; Dosovitskiy and Brox, 2016; Mahendran and Vedaldi, 2015) and to generate adversarial examples for

training (Szegedy et al., 2013).40

The major concern with statistical approaches (like AR) is that they often do not generalize to new locations or to situations

that are dissimilar to the training data (e.g., Cameron et al., 2002; Gaume and Gosset, 2003). Rainfall-runoff models based on

LSTMs generalize to ungauged basins Kratzert et al. (2019b); Mai et al. (2022) and extreme events (Frame et al., 2021) better

than both conceptual and process-based hydrology models, however we do not know whether this will also be true for AR

LSTMs. DA has at least a potential advantage over AR in that it is robust to missing data: whenever there is no observation45

data to assimilate, the original model continues to make predictions.

The purpose of this paper is to provide insight into trade-offs between DA and AR for leveraging potentially sparse near-

real-time streamflow observation data. AR is easier to implement than DA (simply train a model with autoregressive inputs),

and it is also more computationally efficient because it does not require any type of inverse procedure during prediction (e.g.,

variational optimization, ensembles for estimating conditional probabilities, high dimensional particle sampling, etc.). Inverse50

procedures used for DA not only require significant computational expense, but also are sensitive to (hyperpar)ameters related

to things like error distributions, regularization coefficients, and resampling procedures (Nearing et al., 2018; Bannister, 2017;

Snyder et al., 2008). On the other hand, AR suffers from problems with missing input data. In this paper we compare two

2

things: (i) a very simple procedure for dealing with missing data data in an AR LSTM model, and (ii) variational DA applied

to an LSTM. We show that the simple AR approach is generally more accurate.55

As a caveat, DA is a large category of very diverse methods. We prefer to define data assimilation as any Bayesian or

approximately Bayesian method for (probabilistically) conditioning the states of a dynamical systems model on observations.

Most common DA methods fit this definition (e.g., Kalman filters and smoothers, EnFK, ENKS, particle filters, variational

filters and smoothers, etc.). The DA method that we present here is novel – we use backpropagation through a tensor network

to update the cell states of an LSTM (see Appendix C), – however we cannot claim that our results will hold for every type60

of DA. Similarly, the AR method we test here is extremely simple and it might be possible to improve on our methodology.

However, our opinion is that both the DA and AR methods that we test are perhaps the most straightforward way to use either

of these categories of approaches for ingesting near-real-time streamflow data, and our objective for this paper is (aside from

highlighting our new deep learning DA approach) is to provide some guidance on what might be most promising for operational

modeling (e.g., Nevo et al., 2021).65

2 Methods

2.1 Data

To allow for direct comparison with previous studies, we tested autoregression and backpropagation-based variational data

assimilation using an open community hydrologic benchmark data set that is curated by the US National Center for Atmo-

spheric Research (NCAR). This Catchment Attributes and Meteorological Large Sample data set (CAMELS; Newman et al.,70

2015; Addor et al., 2017) consists of daily meteorological and daily discharge data from 671 catchments in CONUS ranging

in size from 4 km2 to 25,000 km2 that have largely natural flows and long streamflow gauge records (1980-2014). Again, to

be consistent with previous studies (Kratzert et al., 2019c, 2021; Klotz et al., 2021; Gauch et al., 2021b; Newman et al., 2017;

Frame et al., 2021), we used the 531 of 671 CAMELS catchments that were chosen for model benchmarking by Newman

et al. (2017), who removed basins with (i) large discrepancies between different methods of calculating catchment area, and75

(ii) areas larger than 2,000 km2.

CAMELS includes daily discharge data from the USGS Water Information System, which are used as training and evaluation

target data. CAMELS also includes several daily meteorological forcing data sets (Daymet, NLDAS, Maurer) that are used as

model inputs. Following Kratzert et al. (2021) we used all three data sets as inputs. CAMELS also includes several static

catchment attributes related to soils, climate, vegetation, topography, and geology (Addor et al., 2017) that we used as input80

features – we used the same input features (meteorological forcings and static catchment attributes) that were listed in Table 1

by Kratzert et al. (2019c), and this table is reproduced in Appendix G.

3

2.2 Models

In total, we trained forty-six (46) LSTM models. Twenty-six (26) of these models were trained and tested using a sample split

in time (i.e., some years of data were used for training and some years for testing, but all CAMELS basins contributed training85

data to all models). Twenty (20) of these models were trained and tested using a cross-validation split in space (i.e., some basins

were withheld from training and used only for testing). The latter mimics a situation where no streamflow data is available in a

given location for training (i.e., an ungauged basin), but data becomes available at some point during inference. The purpose of

these basin-split experiments is less to test a likely real-world scenario, as it is to highlight how the different approaches learn

to generalize.90

We trained two classes of models using both the space-split and basin-split approaches: simulation models and AR models.

Simulation models do not receive lagged streamflow inputs and AR models do. Simulation models are used for baseline

benchmarking and also for DA. One (1) simulation model was trained for the time-based train/test split, meaning that a single

model was trained on all training data from all 531 basins. Ten (10) simulation models were trained for the basin-split – in that

case we used a k-fold cross validation approach with k = 10. We used k-fold cross validation for the basin-split so that out-of-95

sample simulations are available for all 531 basins, to compare with models that used a time-split. The same time periods were

used for training and testing in both the time-split and basin-split.

We trained time-split AR models at five different lag times, meaning that the autoregressive streamflow was lagged by 1, 2,

4, 8, or 10 days, respectively. We also trained with different fractions of the streamflow data record withheld (as inputs) during

the training period (0%, 25%, 50% , 75%, 100%). This means that a total of twenty-five (25) AR models were trained on a100

time based train/test split. The reason for training AR models with different missing data fractions becomes apparent when we

present results: models trained with some missing lagged streamflow inputs perform better when there is missing data during

inference. Lagged streamflow data was withheld at these fractions as random sequences of missing data with mean sequence

length of five (5) days. For a full description about how data was withheld see Appendix A. We chose a mean sequence length

of five days for withheld AR inputs because it at time lags greater than this, the AR models revert to accuracies that become105

similar to simulation (non-AR) models. The 100% missing data fractions test cases that are similar to having long periods

of missing data. For each of these twenty-five (25) time split AR models, we performed inference with different amounts of

missing data (the same fractions as used for training). This means that each trained time split AR model was used for inference

five (5) times.

We trained and tested basin-split AR models only at lead time of one day, and only with a missing data fraction of 50%. This110

means we trained a total of ten (10) basin-split AR models.

We did not consider other types of missing data (i.e., meteorological forcings or basin attributes) because they are not central

to the question at hand (how best to use lagged streamflow observations where those are available), and missing meteorolog-

ical inputs are not common in operational models – most operational hydrology models require meteorological data at every

timestep and most meteorological data sets are dense in time at the time resolution of the data set.115

4

DA was performed on the trained simulation models – both the time-split and basin-split models. We performed DA on the

one (1) time-split simulation model with the same missing data fractions as the time split AR models: 0%, 25%, 50% , and

75%, (100% missing data with DA is equivalent to the simulation model without DA). We also performed DA on the ten (10)

k-fold cross validation basin split simulation models with the same missing data fractions as the basin split AR models (50%).

2.2.1 Training120

Daily meteorological forcing data and static catchment attributes were used as input features for all models, and daily stream-

flow records were used as training targets with a normalized squared-error loss function that does not depend on basin-specific

mean discharge (i.e., to ensure that large and/or wet basins are not over-weighted in the loss function):

NSE* =
1

B

B∑
b=1

1

Nb

Nb∑
n=1

(ŷn− yn)2

(s(b)+ ε)2
. (1)

B is the number of basins, Nb is the number of samples (days) per basin b, ε= 0.1 is a constant designed to avoid divide-125

by-zero errors, ŷn is the prediction for sample n (1≤ n≤Nb), yn is the corresponding observation, and s(b) is the standard

deviation of the discharge in basin b (1≤ b≤B), calculated from the training period (see, Kratzert et al., 2019c).

All models were trained using the training and test procedures outlined by Kratzert et al. (2019c). We trained for 30 epochs

using sequence-to-one prediction to allow for randomized, small minibatches. We used a minibatch size of 256 and, due to

sequence-to-one training, each minibatch contained (randomly selected) samples from multiple basins. We used 128 cell states130

and a 365-day sequence length. Input and target features were pre-normalized by removing bias and scaling by variance.

Gradients were clipped to a global norm (per minibatch) of 1. Heteroscedastic noise was added to training targets (resampled

at each minibatch) with standard deviation of 0.005 times the value of each target datum. We used an ADAM optimizer with a

fixed learning rate schedule with initial learning rate of 1e-3 that decreased to 5e-4 after 10 epochs and 1e-4 after 25 epochs.

Biases of the LSTM forget gate were initialized to 3 so that gradient signals persisted through the sequence from early epochs135

(Gers et al., 2000). All models were trained on data from all 531 CAMELS catchments simultaneously. The training period

was October 1, 1999 through September 30, 2008 and the test period was October 1, 1989 through September 30, 1999.

2.2.2 Autoregression

The strategy that we used to deal with missing data in AR models was to replace missing lagged streamflow data with model-

predicted streamflow data at the same lag time. This is related to a standard ML technique for training recursive models,140

discussed in Appendix B. Autoregression models were thus trained with two inputs in addition to the CAMELS data inputs

described in Sect. 2.1: (i) streamflow lagged by some number of days (different lag times) and (ii) a binary input flag that

represents whether any particular autoregressive input came from observation or from previous model predictions. The binary

flag allows the model to differentiate between observed vs. simulated autoregressive inputs.

5

2.2.3 Data Assimilation145

The theory behind using backpropagation through tensor networks to perform variational data assimilation is given in Appendix

C – this is essentially a direct implementation of standard variational DA using tensor networks.

Data assimilation was performed during the test period on the “simulation" LSTMs outlined in Section 2.2. Unlike training

an LSTM, where all training data from all catchments must be used together to train a single model (Nearing et al., 2020; Gauch

et al., 2021b), DA is independent between basins. As such, the loss function we used for data assimilation was a regularized150

Mean Squared Error (MSE) (for more details on the loss function used for data assimilation, see Appendix D)

We used the ADAM optimizer for data assimilation with a dynamic learning rate that started at 0.1 and decreased by a factor

of 0.9 (90%) each time the update step loss failed to decrease. We used an assimilation window of five (5) timesteps (updating

the cell state at timesteps t− 5), 100 update steps (similar to epochs) with early stopping criteria if the learning rate decreased

below 1e−6, and we did not use any regularization. The search used to find these hyperparameter values for data assimilation155

is reported in Appendix F.

2.3 Testing & Evaluation

Following previous studies (cited in Section 2.1), we report a number of hydrologically relevant performance metrics, listed

in Table 1. These metrics (and our evaluation procedure in general) were chosen to allow for benchmarking against previous

studies (Kratzert et al., 2019c, b, 2021; Gauch et al., 2021a; Frame et al., 2020). Metrics in this paper are reported for now-160

casting, meaning that we do not use meteorological forecast data and we do not predict beyond the end of the precipitation

data.

AR models were trained with fractions of missing data (withheld randomly) between 0% and 100% and tested on data with

different fractions of missing data. This was done to understand what effect the training data fraction has on performance.

After choosing an appropriate fraction of missing data for training AR models, these models were trained with streamflow165

inputs that had varying lag times (between 1 and 10 days). Both AR and DA models were tested with different fractions of

(randomly) withheld lagged streamflow input data and different lag times, however all metrics were calculated on all streamflow

observations within each basin during the entire test period, even when some of the lagged streamflow data were withheld as

inputs.

3 Results170

3.1 Training AR Models with Missing Data

Figure 1 compares median (over test periods in 531 basins) NSE values from AR models trained with five (5) missing data

fractions, each tested on five (5) different missing data fractions (a total of twenty-five inference models). The primary signal

in these results is that AR models lose accuracy as the fraction of missing lagged streamflow data in the test period increases.

In general, training with fewer missing data is better if the fraction of missing data in the test period is also low. However, if175

6

Table 1. Overview of evaluation metrics

Metric Description Reference

NSEi Nash-Sutcliff efficiency Eq. 3 in Nash and Sutcliffe (1970)

KGEii Kling-Gupta efficiency Eq. 9 in Gupta et al. (2009)

Pearson-r Pearson correlation between observed and simulated flow

α-NSEiii Ratio of standard deviations of observed and simulated flow From Eq. 4 in Gupta et al. (2009)

β-NSEiv Ratio of the means of observed and simulated flow From Eq. 10 in Gupta et al. (2009)

Peak-Timingv Mean peak time (in days) between observed and simulated peaks Appendix B in Kratzert et al. (2021)

Missed-Peaksvi Fraction of observed peaks above 80th flow percentile without simulated peaks within 1 day Appendix E

i: Nash-Sutcliffe efficiency: (−∞,1], values closer to one are desirable.
ii: Kling-Gupta efficiency: (−∞,1], values closer to one are desirable.
iii: α-NSE decomposition: (0,∞), values close to one are desirable.
iv : β-NSE decomposition: (−∞,∞), values close to zero are desirable.
v : Peak-Timing: [0,∞), values close to zero are desirable.
vi: Missed-Peaks: [0,1], values close to zero are desirable.

the fraction of missing data in the test period is high, then it is better to train with more missing data. Mo matter how the AR

model is trained, when all lagged streamflow data is withheld during inference, performance is similar to the simulation model.

For the remainder of our experiments (including basin-split experiments), we chose to benchmark AR models trained with

50% missing lagged streamflow inputs. This represents a compromise between training with too many or too few missing data

that only degrades below the (median) accuracy of the pure simulation model with a missing data fraction of 90%.180

3.2 Time-Split Models

Table 2 lists the median (over 531 basins) performance metrics for all models with a lag of one day and no missing data. Figure

3 shows the distribution (over 531 basins) NSE scores for the same models. The major takeaways from these statistics are that

both DA and AR improved over the base LSTM model but AR was better. AR (with no holdout) improved the median NSE

(across test periods in 531 basins) by ∼10%, whereas DA improved the median NSE by ∼8%. In general, AR with no missing185

data performed better than DA across all metrics, and also across most basins (Figure 2). Note that AR trained with and without

any missing lagged streamflow data performed similarly with no missing data during inference.

As a point of comparison with previous work, (Feng et al., 2020) reported that autoregression improved LSTM median NSE

by ∼19% (from 0.714 to 0.852), whereas we saw improvement to median NSE of ∼10% (from 0.796 to 0.879). The primary

difference between that previous study and ours is that our baseline LSTMs were better (median NSE of 0.796 vs. 0.714) due190

to the fact that the models reported in this study used multiple forcing data products (Kratzert et al., 2021).

Feng et al. (2020) also reported that autoregression was less informative in flashy basins, and there is a similar effect in

our results (Appendix G reports similar efforts here to correlate differences between autoregression and data assimilation

with basin attributes related to climate, geology, soils, vegetation). While both autoregression and assimilation improved the

7

Figure 1. Median NSE scores of AR models trained and tested with different fractions of lagged streamflow data withheld. The two subplots

show the same results, but organized by the amount of lagged streamflow data withheld during training vs. during testing.

Table 2. Median performance metrics over 531 CAMELS basins.

Simulation AR 0.0 holdout AR 0.5 holdout Assimilation

NSE 0.796 0.879 0.872 0.862

KGE 0.795 0.896 0.896 0.878

Alpha-NSE 0.874 0.942 0.945 0.913

Pearson-r 0.902 0.939 0.937 0.932

Beta-NSE -0.027 -0.007 -0.002 -0.014

Peak-Timing 0.263 0.385 0.368 0.444

Missed-Peaks 0.352 0.250 0.262 0.250

average absolute peak timing error and also allowed the model to miss fewer peak-flow events, the peak timing error with both195

autoregression and data assimilation was always negative due to the fact that the model receives delayed information from

lagged streamflow about any peak event that it might otherwise miss predicting from meteorological data alone. That is, we

predict more peaks but the ones we pick up from using real-time inputs are lagged.

Figure 4 compares the median NSE scores (over 531 basins) between the four models as a function of lag time in days and

fraction of missing lagged streamflow data in the test period. AR is always better than DA, but if the DA model is not trained200

with a fraction of missing data (here 50%), then performance decreases whenever there is missing data in the test period.

In this case, the autoregression model can perform worse than a simulation model with no lagged streamflow data. If the

8

Figure 2. Comparison of per-basin NSEs with an observation lag of one day: (top left) simulation vs. DA with no missing data, (top right)

simulation vs. AR with no missing data, (bottom left) AR vs. DA with no missing data and (right) AR with no missing data vs. AR with 50%

missing data during inference (no missing data during training to be comparable with other models shown in these plots).

autoregression model is trained with an input flag to indicate whether a particular lagged streamflow value is from observation

or simulation, then autoregression almost always improves on the baseline simulation model and is almost always better than

data assimilation (up to large values of missing data). Similar figures for all metrics in Table 1 are given in Appendix H.205

3.3 Basin-Split Models

Figure 5 compares the time-split and basin-split results at 1-day lead time with no training or test holdout. Previous studies

have shown that LSTM models can often be used to predict in basins that did not supply training data, and the purpose of

these basin-split experiments was to assess whether this ability to generalize holds when using observation data as inputs. This

covers a class of use cases where data are not available for training in a given basin, but become available during inference, but210

more importantly, it helps us assess whether the model is learning general relationships between past and future streamflow.

Results in Figure 5 show that this is the case. The main thing to highlight in these results is that AR in basins that were

“ungauged" for training but where data were available during inference (the basin-split AR model) generally performed better

than basins where data was available for training but not for inference (the time-split simulation model). This indicates that

adding AR to the model does not break extrapolatability – for example, the model learns a general representation of relation-215

9

Figure 3. CDF plots of per-basin NSE scores. (Upper Left) Comparison between the main model types with no holdout. (Upper Right)

Comparison of DA models with different holdout fractions during inference (testing). (Lower Left) Comparison of AR models with equal

train and inference (test) holdout fractions. (Lower Right) Comparison of AR models with 50% train holdout and varying inference holdout.

All results from lead times of 1 day.

ships between past streamflow and current inputs and can extrapolate those relationships to new basins. It does not simply learn

to extrapolate streamflow in basins where it was trained.

4 Conclusions & Discussion

Data assimilation is necessary in order to use certain types of data to “drive" dynamical systems models. For example, if

a model is based on some conceptual understanding of a physical system (like a conceptual process-based rainfall-runoff220

model), then the only way to use observations of system states or outputs is through some type of inverse method. DA is a

class of inverse methods that project information onto the states of a dynamical systems model. DA is often complicated to set

up (e.g., choosing parameters to represent uncertainty distributions, sampling procedures, etc.), and often requires simplifying

assumptions that cause significant information loss (e.g., Nearing et al., 2018, 2013). ML models do not necessarily suffer from

these same limitations – it is possible to simply train models to use whatever data is available. This has several advantages,225

including ease of use (no additional hyperparameter tuning), computational efficiency (see below), and, apparently from our

results, an increase in accuracy (less information loss).

10

Figure 4. Median NSE over 531 basins of four models (simulation, AR trained with and without holdout data, and DA) as a function of lag

time in days and fraction of missing lagged streamflow data in the test period. The AR and DA models here used 0% missing data during

inference. Notice the different scales on the y-axis.

It’s worth noting that in the experiments presented here, running DA for inference on the 10-year test period in 531 basins

required approximately ∼2 hours of GPU time (NVIDIA Tesla v100) using the hyperparamters specified in Appendix F.

Inference over the same basins and time period with an AR model required ∼30 minutes, and simulation required less than230

5 minutes. The reason that AR is more expensive than simulation is because the AR LSTM is not CUDA-optimized, since

11

Figure 5. Comparison of NSE scores between Time-Split and Basin-Split models at 1-day lead time with no training or inference (test)

holdout. The left subplot shows median scores (over 531 basins) and 80% interval (10th to 90th percentiles), and the right subplot shows

distributions (over 531 basins)

.

the tensor network includes a gradient path from outputs to inputs. It might be possible to design an optimized version of this

model (similar to the PyTorch optimized LSTM), however this is significantly outside the scope of our project.

DA has one advantage: it does not require that we choose how to withhold inputs to train the model. In cases where there is

no target data during inference, AR models have potential to perform worse than a simulation model (see Figure 3), whereas235

DA models do not. DA reverts to a pure simulation model when there is no data to assimilate. This means that if the purpose

of a model were to predict in a combination of gauged and ungauged basins, DA would allow you to use one trained model

whereas AR would require separate models for gauged and ungauged basins. In principle, you would likely choose whether to

use a simulation model or an AR model dynamically based on whether streamflow data were available at the time and place of

each individual prediction.240

To reiterate from the introduction, both DA and AR are broad classes of methods. We do not know of any benchmarking

study in the hydrology literature that directly compares different DA methods over large, standardized, public data sets. Most

DA methods are based on some type of inverse algorithm, which invariably causes information loss (e.g., Nearing et al., 2018),

and in principle, we would suspect that training a deep learning model to take all data as inputs (including near-real-time lagged

target data) will be more efficient than inverse methods. Whereas inverse methods require making strong assumptions about245

the characteristics of model and data error, generative models, like the LSTM models used here, do not. To summarize, our

conclusion is that it is cheaper, easier, and generally more accurate to simply give your models all the data you have as inputs

whenever possible.

Code and data availability. Plug-and-play code to reproduce the experiments reported in this paper is available at https://github.com/grey-nearing/

lstm-data-assimilation.250

Model code, including data assimilation and autoregression is available at https://github.com/grey-nearing/neuralhydrology. This is a fork

12

https://github.com/grey-nearing/lstm-data-assimilation
https://github.com/grey-nearing/lstm-data-assimilation
https://github.com/grey-nearing/lstm-data-assimilation

of the NeuralHydrology codebase (https://neuralhydrology.github.io/). The fork contains a branch called ‘assimilation‘ that contains code

necessary for data assimilation.

CAMELS data is available at https://ral.ucar.edu/solutions/products/camels, with extensions to 2014 at

https://www.hydroshare.org/resource/0a68bfd7ddf642a8be9041d60f40868c/ and255

https://www.hydroshare.org/resource/17c896843cf940339c3c3496d0c1c077/.

Author contributions. DK, AKS, and GN had the original idea for backpropagation-based data assimilation. All authors contributed to

experimental design. GN wrote the data assimilation code, performed hyperparameter tuning, and conducted all experiments except corre-

lations with basin attributes, which were done by JF. All authors contributed to experimental design. MG suggested to implement the input

data flag for autoregression (which was transformative for AR skill). GN, MG, DK, and FK integrated the data assimilation code into the260

NeuralHydrology codebasde. GN wrote the paper with contributions from all authors.

Competing interests. The authors declare no competing interests

Acknowledgements. FK was supported by a Google Faculty Research Award (PI: Sepp Hochreiter). MG was supported by the Linz Institute

of Technology DeepFlood project. DK was supported by Verbund AG.

Appendix A: Sampling Missing Data265

Streamflow input data was sampled at different missing data fractions for training and testing AR models and for DA. We

masked continuous periods of missing data by using two Bernoulli samplers. We sampled ‘downshifts‘ and ‘upshifts‘ through

a timeseries at different rates (ρd and ρu, respectively). Moving sequentially through a timeseries, downshifts indicate that the

missing data mask is turned on (a period of missing data begins), and upshifts indicate that the missing data mask turns off

(a period of missing data ends). The ρd and ρu were chosen as to yield a mask with two properties: (i) an average masking270

sequence length of a given length (we used 5 timesteps), and (ii) a total masking density of a given percentage of the whole

timeseries. These relationships are:

ρu =
1

mean_missing_length
(A1)

ρd =
ρu ∗missing_fraction
(1−missing_fraction)

(A2)

(A3)275

13

https://ral.ucar.edu/solutions/products/camels
https://www.hydroshare.org/resource/0a68bfd7ddf642a8be9041d60f40868c/
https://www.hydroshare.org/resource/17c896843cf940339c3c3496d0c1c077/

Appendix B: Related ML Techniques for Autoregressive Modeling

The strategy we use for handling missing data in AR models is loosely related to a class of techniques used commonly to train

recursive neural networks called teacher-forcing methods (Williams and Zipser, 1989). Teacher-forcing methods substitute

model outputs from timestep t as inputs into the network at timestep t+1 with observations during training (not during

inference). This was originally used to avoid backpropagating through time, and the method is sensitive to differences between280

train and test samples which can result in divergent behavior when the model is run recursively during inference.

Our strategy for dealing with missing data in AR models does not replace the cell state (the recursive state of the LSTM)during

training, but does run the risk of over-training to observed lagged streamflow inputs in cases where these data are sparse during

inference (Figure 1). Our solution to this problem is to train with a combination of observed and simulated lagged streamflow

inputs, which is a form of scheduled sampling (Bengio et al., 2015). This seems to work in this case (see Sect. 3.1). Another285

class of approaches to solving this problem are professor-forcing methods (Lamb et al., 2016), which uses adversarial learning

to encourage a teacher-forcing network (i.e., trained with only observed inputs) to match the fully recursive model. This could

be applied to the streamflow problem if AR models were to exhibit divergent behavior that cannot be solved with scheduled

sampling.

Appendix C: Variational Data Assimilation in LSTMs290

The method of data assimilation that we will use in this paper is a type of variational assimilation. Variational assimilation

works as follows (Rabier and Liu, 2003). We begin with a model that has time-dependent states, c[t] that determine a time-

dependent observable, y[t], through a (potentially nonlinear) observation operatorH, up to random error εy[t]:

y[t] =H(c[t]) + εy[t] (C1)

The model itself propagates through time according to some state transition function, M, that operates on the state at the295

previous timestep and model inputs, x[t]:

cb[t] =M(c[t− 1],x[t]) (C2)

The background state, cb[t], is the state estimated by modelM at time t without performing assimilation at time t (although

assimilation may have been performed at previous timesteps). The true (but unknown) state of the system is assumed to be

equal to the background state up to random error εc:300

c[t] = cb[t] + εc[t] (C3)

Notating observations and states as drawn from distributions py and pc, we condition the model state on observations at time

t as:

p(c[t]|y[t],cb[t])∝ py(y[t]|c[t])pc(c[t]|cb[t]). (C4)

14

The maximum likelihood estimate of the state vector is found by minimizing the negative log likelihood associated with Eq.305

C4. For example, if the state and observation errors (εc and εy) are assumed to be normally distributed, the resulting loss

function is:

J (c[t]) = (c[t]− cb[t])
TB−1(c[t]− cb[t]) + (y[t]−H(c[t]))TR−1(y[t]−H(c[t])) (C5)

where B and R are covariances of the state and observation errors, respectively. Analytical solutions are known for the special

case when H(·) is linear. Eq. C5 can be understood as a regularized loss function acting on target variables that is to be310

maximized with respect to the model states. If any component of this is not linear and Gaussian, then J (·) must be minimized

numerically.

The LSTM is described by the following equations:

i[t] = σ(Wix[t] +Uih[t− 1]+ bi) (C6)

f [t] = σ(Wfx[t] +Ufh[t− 1]+ bf) (C7)315

g[t] = tanh(Wgx[t] +Ugh[t− 1]+ bg) (C8)

o[t] = σ(Wox[t] +Uoh[t− 1]+ bo) (C9)

c[t] = f [t]� c[t− 1]+ i[t]� g[t] (C10)

h[t] = o[t]� tanh(c[t]), (C11)

x[t] are again the model inputs at time t, and i[t], f [t] and o[t] refer to the input gate, forget gate, and output gate of the LSTM,320

respectively. g[t] are the cell inputs, h[t− 1] are the LSTM outputs, which are also called the recurrent input because these

are used as inputs to all gates in the next timestep. c[t− 1] are the cell state from the previous time step. Similar to dynamical

systems models, the cell state, c[t] tracks the time-evolution of the system.

Model-predicted streamflow values comes from a head layer, and many LSTM studies in hydrology (e.g., Kratzert et al.,

2018) have used a linear (dense) head layer:325

y[t] = h[t]wh + bh (C12)

Eqs. C11 and C12 effectively define the observation operator for data assimilation (Eq. C1). Notice that observations y[t] are

not linear functions of the cell state (through the hyperbolic tangent operator in Equation C11), so no analytical solution to

maximizing Eq. C4 or minimizing Eq. C5 exists. We therefore must minimize J (c[t]) numerically, which requires gradients

with respect to the cell states.330

In any deep learning model, the various weights, W∗, and biases, b∗, are trained by minimizing a training loss function L(·)
using backpropagation along gradient chains like:

δL(x[0 : t],y[0 : t])

δw∗,j
=

(
δL(x[0 : t],y[0 : t])

δhk[t]
× (

δhk[t]

δcl[t]
× δcl[t]

δ∗
× ...× δ∗

δw∗,j

)
+ ... (C13)

where the subscripts j and k (e.g., w∗,j , hk[t]) indicate an arbitrary components of vectors or matrices (e.g., W∗ like Wi,

Wf , Wo, or Wg). h[t−1] are again the LSTM outputs (recurrent inputs), and the ellipses indicate that the network may have335

15

arbitrary depth. Eq. C13 is a simple derivative chain rule that any machine learning software library calculates automatically

through the entirety of whatever tensor network defines a particular model. Almost all deep learning models are trained by

backpropagating information through this type of gradient chain. Every time that the training loss function L(·) is calculated

on a series of model inputs, x[0 : t], and outputs, y[0 : t], the values of all weights and biases in the model are updated based

on perturbing in a direction that will decrease the loss according to these partial derivatives.340

Notice that gradient chains like Eq. C13 necessarily include partial derivatives of the loss function with respect to features

in the model that are not weights and biases. As an example, the partial derivative of loss L with respect to weights in the

input gate, Wi, requires derivatives with respect to the cell states, c[t]. To perform data assimilation, we can simply break the

gradient chains to get partial derivatives of a loss function with respect to cell states like:

δL(x[0 : t],y[0 : t])

δclt
=

(
δL(x[0 : t],y[0 : t])

δhk[t]
× δhk[t]

δcl[t]

)
+ ... (C14)345

Gradient chains like Equation C13 are used when training deep learning models. In this case, the loss function is calculated

over a large number of historical data points (sometimes using minibatches). We want to be able to use streamflow observation

data as it becomes available in near-real-time, which means that we want to use gradient chains like Equation C14 during

inference rather than during training. These take the following form:

δL(x[0 : t],y[t− s : t])
δcl[t− s]

=

(
δL(x[0 : t],y[0 : t− s : t])

δhk[t]
× δhk[t]

δcl[t]
× δcl[t]

δ∗
× ...× δ∗

δcl[t− s]

)
+ ... (C15)350

The primary difference between Equations C14 and C15 is that the loss function is calculated over observations a finite time

period, s, into the past, δL(x[0 : t],y[t− s : t]), and used to update cell states at the start of that observation period. We call s

the assimilation window. After the model is fully trained, and while it is running in forward mode to make new predictions, we

can at any point calculate a loss function like δL(x[0 : t],y[t− s : t]) and use this to update the cell states of the LSTM using

gradient chains like C15.355

Appendix D: Data Assimilation Loss Function

The loss function used for assimilation (i.e., L(·) in Eq. C15) do not need to be the same loss functions used for training (i.e.,

L in Eq. C13). The derivatives that result from gradient chains in a deep learning tensor network can be calculated with respect

to any loss function. Additionally, any loss function can be augmented with regularization – for example, to ensure that the

updated cell states do not deviate too much from the values that are estimated by the trained model. The R and B matrices in360

Eq. C5 are an example of this type of regularization, and it is trivial to use this (or any other) type or regularization in the data

assimilation loss function.

J (c[t− s]) = αc(c[t− s]− cb[t− s])T (c[t− s]− cb[t− s]) +αy(y[t− s : t]− ŷ[t− s : t])T (y[t− s : t]− ŷ[t− s : t]) (D1)

Coefficients αc and αy are constants that are analogous to the B and R terms in Eq. C5. Since, in this form, these are mixing

parameters, our experiments assume that αy = 1−αc. The assimilation window, s, is as in Eq. C15. Gradient chains like Eq.365

16

Table F1. Data assimilation hyperparameter tuning grid search and final values.

Hyperparameter Grid Search Best Value

Initial Learning Rate [1e-4, 1e-3, 1e-2, 5e-2, 1e-1] 0.1

Learning Rate Epochs Drop [1, 5, 10, 50, inf] inf

Learning Rate Drop Factor [0.1, 0.5, 0.9] 0.1

Assimilation Windowi [1, 3, 5, 20] 5

Assimilation History [1, 5, 20, 50] 20

Epochs [5, 10, 100, 1000] 100

Regularizationii [0, 0.01, 0.1, 1, 2] 0

i: This is s from Eq. D1
ii: This is αc from Eq. D1, and it is assumed that αy = 1−αc

C15 do not look forward in time in the sense that the derivative of L with respect to c[t] does not depend on any observation

prior to time t. This means that the assimilation loss Eq. D1 is general in s.

Appendix E: Description of Missed Peaks Metric

The missed peaks metric is calculated by first locating all peaks in the observation and simulation time series that satisfy the

following two criteria: (1) observed and simulated peaks must be at least 30 days apart, and (2) peaks must be above the 80th370

flow percentile in a given basin. Any peak in the observed time series that meets these two criteria and for which there is not a

peak in the simulated time series that also meets these criteria within 1 day (before or after) is considered a missed peak. We

report the fraction of observed peaks that are missed.

Appendix F: Hyperparameter Tuning

Hyperparameter tuning for data assimilation was done with a validation period (1980-1989) that is distinct from both the375

training (1999-2008) and test periods (1989-1999) outlined in Sect. 2.2.1. Due to computational expense, hyperparameter

tuning was done on a subset of fifty-three (53) basins out of the 531 used for the rest of the study (approximately 10%). We

used a simple grid search, which is outlined in Table F1. This grid search resulted in the final data assimilation hyperparameters

listed in the right-most column of Table F1.

17

We used a learning rate scheduler that dropped the learning rate every N epochs. This is the Learning Rate Epochs Drop380

hyperparameter in Table F1 and did not improve performance. Because we used sequence-to-one prediction, we did not perform

assimilation through the entire time series, and the Assimilation History hyperparameter determines how far back in each

sequence (before time of prediction) we start assimilation. This parameter is a multiple of the Assimilation Window. The

Assimilation Window itself is s in Equation C15.

In our setup αc (see Equation D1) was set as a hyperparameter and not trained directly, although learning this parameter385

through backpropagation is possible. Our hyperparameter search returned a value of αc = 0 (and implied value of αy = 1),

meaning that regularizing the loss function was not helpful.

Appendix G: Performance by Basin Attributes

We tested whether it was possible to predict where DA or AR might offer the most benefit by using CAMELS catchemnt

attributes (Addor et al., 2017). These attributes and their abbreviations are listed in Table G1. We used random forest models390

trained with static catchment attributes as inputs using k-fold cross validation to measure the predictability of the increase or

decrease in test-period NSE scores at individual basins. The objective was to determine which types of hydrological character-

istics determine the value or information content of lagged streamflow data.

Results for this analysis are given in Figure G1. The top subplots of Figure G1 illustrate the ability to predict test-period

NSE scores from basin attributes in the three models (simulation, AR, DA), and the bottom subplots illustrate the ability to395

predict differences between test-period NSE scores from the different models. Kratzert et al. (2019c) found that forest fraction

was strongly correlated with a predictor of the basin similarity mapping in an LSTM, and we see a similar effect in the top left

subplot of Figure G1 (forest fraction is the second highest predictor of the skill of the simulation model).

Feng et al. (2020) reported that AR was less informative in flashy basins, and we see some evidence of that effect here: in

particular, the frequency of low precipitation days was the strongest predictor of AR skill such that lower fractions of rainfall400

occurring in low intensity events corresponds with higher AR skill. Similarly, basin area was the third strongest predictor of

AR skill, with AR being better in larger basins.

Snow fraction was the second strongest predictor of skill for both AR and DA, whereas this was not a strong predictor of

skill in the pure simulation model. Kratzert et al. (2019a) showed that LSTMs can learn to store and release snow (without

seeing snow data), however snowpack introduces correlations in streamflow time series that are exploited by both DA and AR.405

The basin attributes that were the most important for determining NSE improvements due to both DA and AR (bottom

center and bottom right subplots of Figure G1) were (i) mean annual precipitation and (ii) high precipitation frequency. High

precipitation frequency was positively correlated with both AR and DA performance improvements. The reason for this is error

in the rainfall data – AR and DA allow the model to effectively "see" streamflow events that occur due to unobserved or under-

observed rainfall, although it takes one timestep for the model to register that a large event happened. This helps the model410

to avoid large errors for events with long recession curves. In general, average precipitation was negatively correlated with

improvements due to incorporating lagged streamflow data, since precipitation events in general reduce autocorrelation in the

18

Table G1. Table of static catchment attributes. Descriptions taken from Addor et al. (2017)

p_mean Mean daily precipitation.

pet_mean Mean daily potential evapotranspiration.

aridity Ratio of mean PET to mean precipitation.

p_seasonality

Seasonality and timing of precipitation. Estimated by representing annual

precipitation and temperature as sin waves. Positive (negative) values

indicate precipitation peaks during the summer (winter). Values of approx.

0 indicate uniform precipitation throughout the year.

frac_snow_daily Fraction of precipitation falling on days with temperatures below 0◦C.

high_prec_freq Frequency of high precipitation days (>= 5 times mean daily precipitation).

high_prec_dur
Average duration of high precipitation events (number of consecutive days

with >= 5 times mean daily precipitation).

low_prec_freq Frequency of dry days (< 1 mm/day).

low_prec_dur
Average duration of dry periods (number of consecutive days with

precipitation < 1 mm/day).

elev_mean Catchment mean elevation.

slope_mean Catchment mean slope.

area_gages2 Catchment area.

forest_frac Forest fraction.

lai_max Maximum monthly mean of leaf area index.

lai_diff Difference between the max. and min. mean of the leaf area index.

gvf_max Maximum monthly mean of green vegetation fraction.

gvf_diff
Difference between the maximum and minimum monthly mean of the

green vegetation fraction.

soil_depth_pelletier Depth to bedrock (maximum 50m).

soil_depth_statsgo Soil depth (maximum 1.5m).

soil_porosity Volumetric porosity.

soil_conductivity Saturated hydraulic conductivity.

max_water_content Maximum water content of the soil.

sand_frac Fraction of sand in the soil.

silt_frac Fraction of silt in the soil.

clay_frac Fraction of clay in the soil.

carb_rocks_frac
Fraction of the catchment area characterized as "Carbonate Sedimentary Rocks".

geol_permeability Surface permeability (log10).

streamflow time series. This effect appears worse for DA than AR (bottom left subplot), although this is a weak signal because

19

Figure G1. Scatterplots, r2 metrics, and feature importances for predicting test-period NSE scores using different models (top subplots), as

well as for predicting differences between models (bottom subplots). Bar charts show the feature importance for these predictions with blue

indicating positive correlations between a given basin attribute and the NSE (or delta-NSE) and red indicating a negative correlation.

we were generally unable to predict differences between the NSE scores of DA and AR (r2 = 0.12; bottom right subplot in

Figure G1).415

Figure G2 shows the spatial distribution of DA and AR NSE improvements relative to simulation. In both cases – but

especially for DA – there is a group of basins in the Midwest and Southeast United States where performance was harmed by

adding lagged streamflow data. We are unsure of the reason for this, but it warrants further exploration.

20

Figure G2. The performance difference (NSE score) between top: autoregression and the baseline simulation, and bottom: data assimilation

and the baseline simulation.

Appendix H: All Metrics Figures

This appendix contains figures similar to Figure 4 for all metrics listed in Table 1. These figures compare the median (over 531420

basins) performance of four models (simulation, autoregression trained with and without holdout data, and data assimilation)

as a function of lag time in days and fraction of missing lagged streamflow data in the test period.

21

Figure H1. Same as Figure 4 but for Kling-Gupta Efficiency.

22

Figure H2. Same as Figure 4 but for the Pearson correlation coefficient.

23

Figure H3. Same as Figure 4 but for α−NSE, which is the ratio of the standard deviation of the observed vs modeled hydrographs.

24

Figure H4. Same as Figure 4 but for β−NSE, which is the ratio of the means of the observed vs modeled hydrographs.

25

Figure H5. Same as Figure 4 but for peak timing error (Appendix E).

26

Figure H6. Same as Figure 4 but for the fraction of missed peak flow events within 1 day above 80th flow percentile (Appendix E).

27

References

Abrahart, R. J. and See, L.: Comparing neural network and autoregressive moving average techniques for the provision of continuous river

flow forecasts in two contrasting catchments, Hydrological processes, 14, 2157–2172, 2000.425

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample

studies, Hydrology and Earth System Sciences (HESS), 21, 5293–5313, 2017.

Bannister, R.: A review of operational methods of variational and ensemble-variational data assimilation, Quarterly Journal of the Royal

Meteorological Society, 143, 607–633, 2017.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks, arXiv430

preprint arXiv:1506.03099, 2015.

Cameron, D., Kneale, P., and See, L.: An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland

catchment, Hydrological Processes, 16, 1033–1046, https://doi.org/10.1002/hyp.317, 2002.

Child, R.: Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images, in: International Conference on

Learning Representations, 2020.435

Chollet, F.: Deep learning with Python, Simon and Schuster, 2017.

De Fauw, J., Dieleman, S., and Simonyan, K.: Hierarchical autoregressive image models with auxiliary decoders, arXiv preprint

arXiv:1903.04933, 2019.

Del Moral, P.: Nonlinear filtering: Interacting particle resolution, Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 325,

653–658, 1997.440

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., and Sutskever, I.: Jukebox: A generative model for music, arXiv preprint

arXiv:2005.00341, 2020.

Dong, W., Fong, D. Y. T., Yoon, J.-s., Wan, E. Y. F., Bedford, L. E., Tang, E. H. M., and Lam, C. L. K.: Generative adversarial networks for

imputing missing data for big data clinical research, BMC medical research methodology, 21, 1–10, 2021.

Dosovitskiy, A. and Brox, T.: Inverting visual representations with convolutional networks, in: Proceedings of the IEEE conference on445

computer vision and pattern recognition, pp. 4829–4837, 2016.

Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean dynamics, 53, 343–367, 2003.

Feng, D., Fang, K., and Shen, C.: Enhancing streamflow forecast and extracting insights using long-short term memory networks with data

integration at continental scales, Water Resources Research, 56, e2019WR026 793, 2020.

Fernandez, B. and Salas, J. D.: Periodic gamma autoregressive processes for operational hydrology, Water Resources Research, 22, 1385–450

1396, 1986.

Frame, J., Nearing, G., Kratzert, F., and Rahman, M.: Post processing the US National Water Model with a Long Short-Term Memory

network, 2020.

Frame, J. M., Kratzert, F., Klotz, D., Gauch, M., Shalev, G., Gilon, O., Qualls, L. M., Gupta, H. V., and Nearing, G. S.: Deep learning

rainfall-runoff predictions of extreme events, Hydrology and Earth System Sciences Discussions, 2021.455

Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J., and Hochreiter, S.: Rainfall–runoff prediction at multiple timescales with a single

Long Short-Term Memory network, Hydrology and Earth System Sciences, 25, 2045–2062, 2021a.

Gauch, M., Mai, J., and Lin, J.: The proper care and feeding of CAMELS: How limited training data affects streamflow prediction, Environ-

mental Modelling & Software, 135, 104 926, 2021b.

28

https://doi.org/10.1002/hyp.317

Gaume, E. and Gosset, R.: Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology?, Hydrology and460

Earth System Sciences, 7, 693–706, https://doi.org/10.5194/hess-7-693-2003, 2003.

Gers, F. A., Schmidhuber, J., and Cummins, F.: Learning to forget: Continual prediction with LSTM, Neural computation, 12, 2451–2471,

2000.

Graves, A.: Generating sequences with recurrent neural networks, arXiv preprint arXiv:1308.0850, 2013.

Gregor, K., Danihelka, I., Graves, A., Rezende, D., and Wierstra, D.: Draw: A recurrent neural network for image generation, in: International465

Conference on Machine Learning, pp. 1462–1471, PMLR, 2015.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria:

Implications for improving hydrological modelling, Journal of hydrology, 377, 80–91, 2009.

Hsu, K.-l., Gupta, H. V., and Sorooshian, S.: Artificial neural network modeling of the rainfall-runoff process, 31, 2517–2530, 1995.

Kim, J., Tae, D., and Seok, J.: A survey of missing data imputation using generative adversarial networks, in: 2020 International Conference470

on Artificial Intelligence in Information and Communication (ICAIIC), pp. 454–456, IEEE, 2020.

Klotz, D., Kratzert, F., Gauch, M., Keefe Sampson, A., Brandstetter, J., Klambauer, G., Hochreiter, S., and Nearing, G.: Uncertainty Estima-

tion with Deep Learning for Rainfall–Runoff Modelling, Hydrology and Earth System Sciences Discussions, pp. 1–32, 2021.

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall–runoff modelling using long short-term memory (LSTM)

networks, Hydrology and Earth System Sciences, 22, 6005–6022, 2018.475

Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S., and Klambauer, G.: Neuralhydrology–interpreting lstms in hydrology, in: Explainable

ai: Interpreting, explaining and visualizing deep learning, pp. 347–362, Springer, 2019a.

Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and Nearing, G. S.: Toward Improved Predic-

tions in Ungauged Basins: Exploiting the Power of Machine Learning, Water Resources Research, 55, 11 344–11 354,

https://doi.org/https://doi.org/10.1029/2019WR026065, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026065,480

2019b.

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hy-

drological behaviors via machine learning applied to large-sample datasets, Hydrology and Earth System Sciences, 23, 5089–5110,

https://doi.org/10.5194/hess-23-5089-2019, https://hess.copernicus.org/articles/23/5089/2019/, 2019c.

Kratzert, F., Klotz, D., Hochreiter, S., and Nearing, G. S.: A note on leveraging synergy in multiple meteorological data sets with deep485

learning for rainfall–runoff modeling, Hydrology and Earth System Sciences, 25, 2685–2703, https://doi.org/10.5194/hess-25-2685-2021,

2021.

Lamb, A. M., Goyal, A. G. A. P., Zhang, Y., Zhang, S., Courville, A. C., and Bengio, Y.: Professor forcing: A new algorithm for training

recurrent networks, in: Advances in neural information processing systems, pp. 4601–4609, 2016.

Mahendran, A. and Vedaldi, A.: Understanding deep image representations by inverting them, in: Proceedings of the IEEE conference on490

computer vision and pattern recognition, pp. 5188–5196, 2015.

Mai, J., Shen, H., Tolson, B. A., Gaborit, É., Arsenault, R., Craig, J. R., Fortin, V., Fry, L. M., Gauch, M., Klotz, D., et al.: The Great Lakes

Runoff Intercomparison Project Phase 4: The Great Lakes (GRIP-GL), Hydrology and Earth System Sciences Discussions, pp. 1–54,

2022.

Matalas, N. C.: Mathematical assessment of synthetic hydrology, Water Resources Research, 3, 937–945, 1967.495

Moshe, Z., Metzger, A., Elidan, G., Kratzert, F., Nevo, S., and El-Yaniv, R.: Hydronets: Leveraging river structure for hydrologic modeling,

arXiv preprint arXiv:2007.00595, 2020.

29

https://doi.org/10.5194/hess-7-693-2003
https://doi.org/https://doi.org/10.1029/2019WR026065
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026065
https://doi.org/10.5194/hess-23-5089-2019
https://hess.copernicus.org/articles/23/5089/2019/
https://doi.org/10.5194/hess-25-2685-2021

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I—A discussion of principles, Journal of hydrology,

10, 282–290, 1970.

Nearing, G., Yatheendradas, S., Crow, W., Zhan, X., Liu, J., and Chen, F.: The efficiency of data assimilation, Water resources research, 54,500

6374–6392, 2018.

Nearing, G. S., Gupta, H. V., and Crow, W. T.: Information loss in approximately Bayesian estimation techniques: A comparison of generative

and discriminative approaches to estimating agricultural productivity, Journal of hydrology, 507, 163–173, 2013.

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.: What role does hydrological

science play in the age of machine learning?, Water Resources Research, p. e2020WR028091, 2020.505

Nevo, S., Morin, E., Gerzi Rosenthal, A., Metzger, A., Barshai, C., Weitzner, D., Voloshin, D., Kratzert, F., Elidan, G., Dror, G., et al.: Flood

forecasting with machine learning models in an operational framework, Hydrology and Earth System Sciences Discussions, pp. 1–31,

2021.

Newman, A., Clark, M., Sampson, K., Wood, A., Hay, L., Bock, A., Viger, R., Blodgett, D., Brekke, L., Arnold, J., et al.: Development of

a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional510

variability in hydrologic model performance, Hydrology and Earth System Sciences, 19, 209, 2015.

Newman, A. J., Mizukami, N., Clark, M. P., Wood, A. W., Nijssen, B., and Nearing, G.: Benchmarking of a physically based hydrologic

model, Journal of Hydrometeorology, 18, 2215–2225, 2017.

Olah, C., Mordvintsev, A., and Schubert, L.: Feature Visualization, Distill, https://doi.org/10.23915/distill.00007,

https://distill.pub/2017/feature-visualization, 2017.515

Rabier, F. and Liu, Z.: Variational data assimilation: theory and overview, in: Proc. ECMWF Seminar on Recent Developments in Data

Assimilation for Atmosphere and Ocean, Reading, UK, September 8–12, pp. 29–43, 2003.

Reichle, R. H.: Data assimilation methods in the Earth sciences, Advances in water resources, 31, 1411–1418, 2008.

Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, T.: DeepAR: Probabilistic forecasting with autoregressive recurrent networks,

International Journal of Forecasting, 36, 1181–1191, 2020.520

Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J.: Obstacles to high-dimensional particle filtering, Monthly Weather Review, 136,

4629–4640, 2008.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R.: Intriguing properties of neural networks, arXiv

preprint arXiv:1312.6199, 2013.

Uria, B., Murray, I., and Larochelle, H.: RNADE: the real-valued neural autoregressive density-estimator, in: Proceedings of the 26th Inter-525

national Conference on Neural Information Processing Systems-Volume 2, pp. 2175–2183, 2013.

van Leeuwen, P. J.: Nonlinear data assimilation in geosciences: an extremely efficient particle filter, Quarterly Journal of the Royal Meteoro-

logical Society, 136, 1991–1999, 2010.

Van Oord, A., Kalchbrenner, N., and Kavukcuoglu, K.: Pixel recurrent neural networks, in: International Conference on Machine Learning,

pp. 1747–1756, PMLR, 2016.530

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.: Attention is all you need, arXiv

preprint arXiv:1706.03762, 2017.

Williams, R. J. and Zipser, D.: A learning algorithm for continually running fully recurrent neural networks, Neural computation, 1, 270–280,

1989.

30

https://doi.org/10.23915/distill.00007

Wunsch, A., Liesch, T., and Broda, S.: Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory535

(LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX), Hydrology and

Earth System Sciences, 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, https://hess.copernicus.org/articles/25/1671/2021/,

2021.

31

https://doi.org/10.5194/hess-25-1671-2021
https://hess.copernicus.org/articles/25/1671/2021/

